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Abstract. The main challenge in wireless networks is to optimally use
the confined radio resources to support data transfer. This holds for
large-scale deployments as well as for small-scale test environments such
as test-beds. We investigate two approaches to reduce the radio traffic
in a test-bed, namely, filtering of unnecessary data and aggregation of
redundant data. Both strategies exploit the fact that, depending on the
tested application’s objective, not all data may be of interest. The pro-
posed design solutions indicate that traffic reduction as high as 97% can
be achieved in the specific case of test-bed for indoor localisation.
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1 Introduction

Wireless sensor networks provide excellent means for monitoring and data gath-
ering in a large range of application areas. One such application is the use of
radio-enabled sensor nodes for (indoor) positioning in which the sensor nodes
collect signal measurements of user devices using radio transmissions, e.g., Blue-
tooth. Among the most frequently used radio standards are the IEEE 802.11
(with commercial name WiFi) and Bluetooth standards. Processing of the col-
lected measurements can derive the location coordinates of the transmitting de-
vice. Potential use cases of a positioning application include, but are not limited
to, analysis of visitor behaviour in shopping malls, tailored discount dissemina-
tion in attraction parks and evaluating staff efficiency in hospitals.

Inspired by the many use case opportunities, the Location Based Analyser
(LBA) project addresses the indoor localisation challenge by leveraging radio
frequency (RF) based technologies, namely WiFi and Bluetooth. More specifi-
cally, we use multiple sensor nodes at known positions to collect measurements
on the received signal strength indicator (RSSI) from personal devices on the
premises. The collected measurements are periodically sent to a central database
server where they are sorted per observed device and processed to determine the
current position of each device. There are various techniques to map RSSI to
distance, the most often cited being (multi)lateration and fingerprinting.
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As part of the development process of the localisation system we set up a
test-bed for the purpose of testing and performance evaluation. Early in the
design and testing phase we stumbled across the problem of rapidly growing
sensor data. Although test-beds are designed typically at a smaller scale than the
finally deployed system, challenges related to congestion of the wireless medium
may arise. In addition, data storage may prove another affected aspect. In order
to ensure non-disrupting operation and system scalability one needs to take care
when managing the radio resources. We chose for an intuitive approach that
classifies the wireless traffic and identifies what data is pertinent for the needs of
the application. Possible data reduction strategies include filtering of unnecessary
data, aggregation of redundant data and data compression. Data aggregation in
WSNs has been largely studied [5,9,12] and evaluated in WSN testbeds [1,3,10]
for the purposes of reducing traffic volume and energy consumption.

This paper describes how we adopt filtering and aggregation to minimise
wireless traffic in a test-bed. Contrary to other studies, e.g., [9], which address
hierarchical aggregation in the network, we are only interested in a local (on
a single node) aggregation. We take as an example the case of a localisation
application but the discussed data reduction strategies can be applied to a larger
set of applications by modifying parameters of switching functionality on or off.

The rest of the paper is organised into the following sections. Section 2 de-
scribes the specific test-bed that we use and the encountered traffic challenges,
given the application’s needs. Next, Sections 3 and 4 discuss the implementation
and performance of filtering and aggregation respectively. Their combined use is
analysed in Section 5. Finally, Section 6 summarises the paper.

2 Localisation WSN test-bed

2.1 Localisation of user devices

We designed an indoor localisation system that relies on sensor nodes at known
positions, which collect signal measurements from personal devices. A central
server processes the collected measurements to derive the location of the personal
devices. We are interested in signals from personal devices and in signals from
the sensor nodes. These signals are used to monitor the quality of the radio
channel and to improve the performance of the system.

In order to test and evaluate the localisation system we built a test-bed
inside a single room, which reflects the system design. Its objective is to collect
measurements of signals from personal devices and reference sensor nodes. The
test-bed contains 16 sensor nodes, which form a 4x4 grid at 0.5 meter below
the room ceiling, see Figure 1. The sensor nodes scan continually for WiFi and
Bluetooth signals and record the RSSI levels. Periodically, each sensor node
sends its measurements to a gateway node, which collects all measurements and
forwards them to the database server. At the server the measurements are stored
and analytically processed. In the rest of the paper the term sensor node and
sensor are used interchangeably.
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Fig. 1. LBA test-bed architecture: multiple sensor nodes (SNs), connected over WiFi
to a gateway (GW). Measurements are stored in a database server (DB)

In our proposed localisation system the amount of wireless traffic depends
on the number of deployed sensor nodes, the frequency at which measurements
are reported, and on the number of detected or tracked devices. Additionally,
there is interfering traffic from other devices that may use the same wireless
medium. Since the test-bed is located in the Computer Science building of the
University of Bern, there are other experimental wireless networks and wireless
access infrastructures that use the same radio channels. We consider traffic from
such networks and WiFi access points, e.g., beacons, as non-informative since
measurements regarding these devices contribute neither to the localisation of
devices nor to the radio channel monitoring. Therefore, these are unnecessary
measurements and while we cannot always avoid their collection we can prevent
their transmission to the central server. To this end we apply filtering.

Another factor that directly affects the busyness of the radio channel is the
proportion of collected measurements per device. For each device several mea-
surements may be collected by one sensor while a single measurement would
suffice for localisation. Clearly, reporting all measurements would be redundant
and we would like to minimise the radio channel utilisation. This can be achieved
by decreasing the amount of data to send. Therefore, we explore the use of data
aggregation.

2.2 Test-bed implementation

As sensor nodes we used Gumstix Overo Fire devices [2] with integrated on-
board Bluetooth and WiFi interfaces, which support the scanning of the wire-
less medium. Moreover, we attached an additional WiFi card, which is used for
communication between the sensor node and the gateway. On the sensor nodes,
we run a light Linux kernel and several lightweight packages to keep the sensor
as lightweight as possible. This sensor software is built using the Administration
and Deployment of Adhoc Mesh (ADAM) framework [11] which includes the
custom packages needed for running the Bluetooth and WiFi scanners. WiFi
measurements are collected by capturing packets on the wireless interface with
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libpcap, an application programming interface for capturing network traffic, and
by hopping through the WiFi channels with an interval of one second. Bluetooth
measurements are recorded by using output from the bluez Linux Bluetooth li-
brary. When the measurement buffer is full or a predetermined period has ended,
the measurements are flushed to the gateway. All the sensor nodes and the gate-
way are situated in the same local network.

The gateway and the database server both run on a regular Linux distri-
bution. The gateway can reside on both a desktop machine or a sensor node,
as long as there is a wired connection available for the communication to the
database server. The communication is through a SOAP web-service. At the
database server, we use a regular MySQL databases.

3 Filtering

One strategy to decrease traffic in the test-bed (and any other wireless net-
work) is to transmit only data that is pertinent. Filtering is a method that can
successfully omit the collection and transmission of unnecessary measurements.
The choice of an appropriate filtering solution needs an answer to three design
questions: what to filter, where to filter and how to filter.

What to filter A filtering solution is needed that can identify unnecessary
measurements and only allow the transmission of measurements on user devices
(used for localisation) and reference sensor nodes (used for channel estimation).
As discussed earlier, we consider measurements on signals from experimental
wireless networks and WiFi infrastructure, e.g., access points (APs), as unnec-
essary. We refer to the former group as ’always-on devices’ and to the latter -
as ’fixed infrastructure’. Each group requires different filtering strategies as it is
explained later.

Where to filter Three places can be identified in our system where we can
employ filtering: the sensors, the gateway and the database server. Filtering at
the sensors has a direct impact on buffer occupation and on wireless traffic but
is challenging due to their limited resources while the decision what to exclude
needs large sets of measurements. The only benefit of filtering at the gateway is
the decreased traffic towards the database server. However, often bandwidth is
not a problem since wired connections are used generally. Moreover, the gateway
also does not have knowledge on long-term data. On the database server, we have
both the capacity and the measurements at our disposal to support a decision
making for filtering. Hence, it is a more appropriate system for the filtering
decision process.

How to filter Filtering can be based on black- or whitelisting of certain MAC
addresses. When a certain MAC address is blacklisted, all measurements of that
MAC address are discarded. When a MAC is whitelisted, all measurements re-
lated to it are collected. The choice of strategy depends entirely on the applica-
tion’s objective. In a controlled environment, when the target group of devices to
monitor is well defined, whitelisting is the better choice since we are only inter-
ested in measurements from a limited set of known MAC addresses. In realistic
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environments, where we have no control over the target devices, whitelisting is
not feasible because the targeted MAC addresses are not known beforehand. In
such case blacklisting is the better choice.

Another classification criterion is how the decision what to filter is taken. If
we collect the MAC addresses and enter them manually into the filtering system
we call this static filtering. Static filtering is time consuming, requires effort and
does not scale well. A better alternative is dynamic filtering, which introduces
certain intelligence in the system. Such a system integrates decision making
processes to analyse incoming measurements and decides what MAC addresses
to filter out.

3.1 Filtering solution

Taking into account the requirements of the current experimental test-bed we
chose a dynamic blacklisting strategy with static elements and static whitelisting
support, which we term combi-listing.

Static blacklisting Static blacklisting refers to the filters that are directly
installed at the sensor to filter out signal measurements from the fixed infras-
tructure (APs). An AP contributes significantly to the wireless traffic because (i)
it typically sends a beacon message every 100ms and (ii) it serves multiple clients
in parallel. Note that measuring this kind of traffic is undesirable, independently
of the specific WSN application.

Filtering of the fixed infrastructure is quite easily done at the sensor nodes
using the two distribution system (DS) flags in a WiFi packet [4] that indicate
sender (first bit) and receiver (second bit): 0 for mobile device and 1 for AP.
Hence, since they already use libpcap to capture packets at the WiFi interface,
we only need to create an additional rule to discard all packets with the type
’Beacon’ or DS flags 10 or 11 (first bit 1 indicates AP originating traffic). Static
blacklisting is implemented using the existing libpcap functionality.

Dynamic blacklisting Static blacklisting on top of libpcap is not feasible for
the identification of always-on devices that behave as any other device but are ac-
tive continually or for long periods of time. Instead we use a dynamic blacklisting
technique that combines a decision making process, which periodically generates
blacklists, and a dissemination process, which distributes the blacklists to the
sensor nodes.

Decision making The decision making process is situated on the central server
and is responsible for the generation of the blacklists - one for each sensor node.
The process relies on one commonality between all always-on devices, namely,
they are generally connected 24/7. Therefore, if we analyse the collected mea-
surements over a long period we should be able to identify always-present MAC
addresses that correspond to always-on devices.

Formally a device in our test-bed can be identified by its MAC address and
activity level, i.e., the percentage of time in which measurements of its MAC
address were received. The activity level is calculated over a specific evaluation
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period, which is the timespan over which the list of blacklisted MAC addresses is
generated. For example, if a device was active for two hours within an evaluation
period of eight hours it has an activity level of 25%. If we define an activity level
threshold and a device’s activity level is above this level we can deduce that this
is an always-on device. The choice of the threshold is very important and related
to the duration of the evaluation period. For instance, it is fair to say that a
threshold of 80 or 90% should allows the identification of always-on devices.

An easy way to implement the proposed decision making is to count the
number of distinct timestamps for a specific MAC address and divide this by
the total number of seconds in the evaluation period. However, there are disad-
vantages to that in our test-bed. First, our WiFi-scanner hops channels every
second. Second, if an always-on device is only connected to the network and not
actively transmitting it will have only few measurements. To correct for this, we
divide the evaluation period into equal-length activity periods. Per MAC address,
we check within each activity period whether there is at least one measurement
of this address. If this is the case we mark the period as true, otherwise we
mark it as false. If we now count the number of activity periods marked as true
and divide that by the total number of activity periods in the evaluation period
(equation 1) we will get the percentage of time that this MAC address has been
active. We can derive the number of activity periods by dividing the evaluation
period by the activity period, both measured in seconds.

A simple comparison of the activity level threshold with the activity levels of
all MAC addresses detected within the evaluation period will give us the MAC
addresses to include in the blacklist.

ActivityLevel =
count(ActivityPeriod True)

EvaluationPeriod/ActivityPeriod
(1)

Dissemination The dissemination of blacklists is pull-based. The procedure
is shown in Figure 2. The sensors request the blacklists from the central database
server via the gateway node. The server can answer, also via the gateway, either
with a new blacklist, when available, or with an empty message, when the sensor
polled too early and no update is available yet. Note that the new blacklist from
the server can contain no MAC addresses when there are none to filter out. If a
sensor should blacklist certain MAC addresses it filters out their measurements
but keeps statistics for each of the blacklisted address. Periodically this informa-
tion is sent back to the server, where it is used to re-evaluate whether the MAC
address should stay blacklisted. Without these statistics the decision support
process will loop into a repetitive adding and removing of MAC addresses to the
blacklist.

The dissemination procedure is implemented by extending the test-bed func-
tionality and introducing three new message types, namely, blacklist request,
blacklist update and blacklist aggregate messages. Either on start-up or after a
timer expires, the sensor nodes request a blacklist through the gateway using
a blacklist request message. The message contains a timestamp of the current
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Fig. 2. Message exchange between sensors, gateway and database server regarding the
blacklist

blacklist at the sensor and the type of blacklist the node is requesting (Blue-
tooth or WiFi).

The server answers with a blacklist update message, which contains the times-
tamp of the list in the update, or the timestamp of the blacklist request if no
newer update is available. The checkback-time field suggests how many seconds
will pass between the timestamp and the time a new blacklist will be available.
The list size field tells us how many MAC addresses the complete blacklist con-
tains. The update flag indicates if a new list is sent (flag 1) or if the sensor polled
and there is no update (flag 0). When there are no MAC addresses to blacklist
the flag is 1 (true) but the list size is zero and the MAC addresses field is empty.
The length of the MAC addresses field for a non-empty list depends on the list
size field.

Upon receiving the blacklist update message the sensor replaces the old black-
list with the new one and resets the timer according to the checkback-time field.
For each blacklisted MAC address the sensor collects statistics and reports them
hourly back to the server in a blacklist aggregate messages. The blacklist ag-
gregates message contains one or more structures depending on the number of
blacklisted MAC addresses. Each structure contains the MAC address of the
blacklisted device along with the first-seen and last-seen timestamp, the number
of measurements between the two timestamps and the average RSSI. The count
is used to make a decision whether a MAC address has to remain blacklisted.

Static whitelisting Static whitelisting is used to ensure the collection of mea-
surements on the reference sensor nodes which are used for channel evaluation in
the test-bed. For that purpose the MAC addresses of all reference sensor nodes
are identified and a specific whitelist for each sensor is kept at the central server.
The server is responsible to check that a MAC address from the whitelist does
not become blacklisted.

Alternative solutions The proposed distribution of node-specific blacklists
uses many unicast connections, which may lead to depletion of radio resource
if a large-scale sensor network is considered. Therefore, the realisation of the
filtering solution may need modifications in order to scale down service traffic.
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One possible approach is to broadcast the blacklist, that is the same for all sensor
nodes in a specific area (the area size depends on the communication range of
the radio technology). In addition, each sensor can pull its specific whitelist from
the central server when coming online.

3.2 Experimental analysis

In this section we present results on the data reduction that filtering can bring
but first we discuss some parametrisation issues.

Parametrisation Integrating the proposed filtering solution requires setting
up some parameters such as the blacklist evaluation period and the activity
period. For our purposes we selected an evaluation period of 24 hours, which
aligns easily with human activity. Choosing a good value for an activity period
is more challenging. In order to analyse this, we set up a test, where we included
a fixed WiFi device (laptop) in idle mode in the test-bed. The device was only
connected to a wireless network with no data traffic exchange. We let the sensor
nodes collect measurements over 65 hours and calculated the activity level of
the idle and the most frequently seen device at each of the sensor nodes for an
activity period of 60 and 300 seconds. Corresponding box plots over all sensors
are given in Figure 3.

A successful deployment should be able to filter out the idle device’s MAC
address as well as other high activity MAC addresses (most frequently seen
device). As we can see in Figure 3, an activity period of 60 seconds will not lead
to a successful identification of the idle device as ’always-on’ since its activity
level reaches only about 42% on average. When we change the activity period to
300 seconds the activity period of the idle devices rise up to 90% and it can be
easily identified for blacklisting. The reason for the above behaviour is the idle
status of the device in which case it communicates to the networks once every
few minutes. Note that the most seen device is less vulnerable to short activity
periods and easily reaches 80-90% of activity because it is actively transmitting.

Traffic reduction To quantify the gains in terms of reduced number of mea-
surements we conducted the following experiment. First, the testbed ran for full
24 hours, after which both Bluetooth- and WiFi blacklists were generated for
each node. Then, in a second 24 hours run no filtering was directly applied but
the generated blacklists were used to calculate, for the same data set, what the
measurement reduction would have been. This provides us a common base for
comparison since we are using the same data set. In the filtering decision the
parameters are: activity level > 0.8, activity period = 300 seconds, evaluation
period = 86400 seconds (24 hours).

Table 1 provides detailed statistics on the measurement reduction per sensor
node. The reduction is the percentage of measurements that will not be trans-
mitted if using filtering. Interestingly, the size of the generated blacklist is rather
small although the test-bed location would suggest much larger wireless activity.
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Fig. 3. WiFi: Activity level over all sensors for the most active MAC address and an
idling device when the activity period is 60 seconds

We explain that with the fact that the experiments were conducted on a week-
end when there are significantly less people, and hence always-on devices, in the
building.

In terms of reduced measurement values the results show that the effect
of filtering is significant. The reduction with combi-listing includes whitelisting
of the MAC addresses of the other sensor nodes for reasons discussed earlier.
For deployments where whitelisting is not needed the gains in reduction would
be even bigger. This trend is better visible in Figure 4 for WiFi - the mean
measurement reduction per sensor without whitelisting is about 93%, more than
10 percentage points higher than the mean reduction with combi-listing, i.e., the
combined use of black- and whitelists.

For Bluetooth we registered even higher measurement reduction with 99.76%
on average. We explain that with the smaller (six times) proportion of Bluetooth
devices in our test-bed environment compared to the number of WiFi devices.
As result one Bluetooth MAC address contributes more to the total number of
measurements. In addition, the range of Bluetooth is smaller than for WiFi and
therefore less devices will be detected in general. Note that whitelisting is not
included because there are no addresses to be whitelisted for Bluetooth (we do
not use Bluetooth signals in channel characterisation).
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Fig. 4. Measurement reduction comparison over all sensors after filtering

Sensor Total measurements Reduced measure-
ments

Reduction [%] Blacklisted MACs

1 408.453 74.569 81.7% 26

2 458.547 83.204 81.9% 26

3 425.139 76.017 82.1% 26

4 416.985 72.839 82.5% 25

5 432.813 72.880 83.2% 27

6 404.987 71.233 82.4% 26

7 418.635 74.164 82.3% 25

8 412.666 76.420 81.5% 25

9 441.695 83.182 81.2% 26

10 390.836 70.235 82% 26

11 394.006 71.564 81.8% 26

12 441.728 78.060 82.3% 25

13 427.409 72.928 82.9% 26

14 364.902 62.817 82.8% 26

15 268.988 63.144 82.9% 25

16 414.818 63.914 84.6% 26

Table 1. Overview of WiFimeasurements in the second 24 hour period in the experi-
ment.

4 Aggregation

Aggregation of data (measurements) is another strategy that can improve the
utilisation of the limited radio resource and decrease the chances of collision.
Generally speaking aggregation is a technique to decrease the amount of mea-
surements sent over the wireless channel while retaining the measurements cred-
ibility. In sensor networks aggregation has been proposed to decrease energy
consumption [8, 12] or network congestion [5]. We are interested in using ag-
gregation to decrease network traffic and improve scalability since the current
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deployment of electrically powered sensor nodes does not face energy consump-
tion challenges.

4.1 Aggregation mechanism

(a) WiFi (b) Bluetooth

Fig. 5. Measurement reduction over different timespans of aggregation.

Several approaches towards data aggregation are possible. One strategy is
to let the sensors report only changes in measured values, which is not suitable
since RSSI vulnerable to external factors and not very stable. Another aggre-
gation method is to send a single measurement (e.g., mean, max) per timespan
where the timespan duration largely depends on the type of application. For ex-
ample, for monitoring of ambient temperature one measurement per hour may
be sufficient while for target tracking a timespan in the order of few seconds is
more appropriate. We have chosen for the second option; the choice of timespan
duration is investigated in Section4.2.

In addition, we need to select which value to report. In the case of RSSI we
expect that the maximum value would be best since it is the least affected by
propagation conditions. The feasibility of other choices such as an average value
or another statistic registered over the aggregation timespan are discussed in
another study, namely [6].

An alternative approach to decrease wireless traffic is data compression [7].
Instead of using the redundancy in measurements data compression gains from
redundancy in the data itself by applying appropriate encoding. Although ben-
eficial it also requires additional processing.

To enable the chosen aggregation strategy in the test-bed two buffers are set
at the sensor nodes - one that collects all raw measurements and another for the
reported values. When the first buffer is full, or at the end of a reporting period,
all measurements are processed and the maximum RSSI per MAC address is
written into the second buffer. Then, it flushes the data to the gateway.
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4.2 Experimental analysis

To determine the measurement reduction we can achieve by applying aggrega-
tion, we used the same experiment setup as for the filtering experiment. We took
measurements over the first 24 hours and calculated the measurement reduction
if each sensor would apply aggregation. Given the mobility of the tracked de-
vice, we chose o aggregate over timespans of one to five seconds. We have chosen
to report the maximum RSSI value since we believe they are least affected by
propagation factors. The calculations were done for both WiFi- and Bluetooth
signals.

Results for WiFi are shown in Figure 5(a), where boxplots of the reduction
achieved by each sensor node (y-axis) are plot against the used timespan (x-axis).
As expected, aggregation significantly affects the measurement traffic and in our
cases leads to a reduction in the number of measurements by more than 79% on
average for a one-second timespan. Increasing the timespan to five seconds does
only marginally improve the reduction to 81%. The reason for this is twofold. On
the one hand, not all devices are broadcasting every second. On the other hand,
the WiFi-scanner hops the wireless channels every second. Since devices commu-
nicate with a network on a single channel, we will not see their MAC addresses
after this second again until we completed the cycle of channel-hopping.

In Figure 5(b) the results for Bluetooth show different patterns - the mea-
surement reduction has an almost linear increase when we increase the timespan.
More notably the measurement reduction grows from 12% to 40%, a less dra-
matic improvement than in the case of WiFi. The number of measurements we
collect for Bluetooth are far fewer than the measurements collected for WiFi,
reflecting the ratio of devices that use the two technologies. Based on the results
we can conclude that the optimal value of the aggregation period for Bluetooth
depends on the application needs.

5 Combined filtering and aggregation

While the individual measurement reduction of both filtering and aggregation
shows great promise, it will be interesting to know if we can gain even more
by applying both techniques in the same sensor network. To analyse this, we
again used the results of the estimated measurement reduction experiment for
the filtering and calculated the total measurement reduction when we apply
aggregation (with one-second timespan) on top of that.

Figure 6(a) shows the results for WiFi measurements. For comparison reasons
we include the results for filtering as shown in Figure 4. Aggregation adds an
additional gain on top of the reductions that can be achieved by black- and
whitelisting. Differences between blacklisting and whitelisting are consistent with
previous observations - disabling whitelisting leads to even higher reduction. In
our specific case, given we chose to apply a combi-listing, the combined reduction
will be on average just shy of 94%.
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(a) WiFi (b) Bluetooth

Fig. 6. Measurement reduction for combinations of blacklisting, whitelisting and ag-
gregation.

The results of combining filtering and aggregation for Bluetooth are shown
in Figure 6(b). For reference, the results on using only blacklisting are included.
The graphs show that aggregation only slightly improve performance, the rea-
sons being the few Bluetooth devices that the system detects and the efficient
filtering of always-on devices that already brings measurement reduction of al-
most 99.8%. Although we are aware that the results are sensitive to the specific
system deployment, we expect that aggregation will lead to smaller reduction in
measurements for Bluetooth than for WiFi due to the typically lower number of
Bluetooth devices. Note that there is no whitelisting for Bluetooth since in the
current deployment it is not used for channel estimation.

6 Conclusion

This paper deals with radio traffic challenges arising in wireless sensor test-beds.
We showed how the traffic volume can be greatly reduced by leveraging filtering
and aggregation independently and combined. We achieved reductions of 80%
on average with a peak above 95%, depending on used settings. Without this
reduction in traffic, the testbed would not be able to scale well when extended
to large testing sites due to the limited resources on the sensors and congestion
of the radio medium.

The reductions were achieved for an experimental test-bed consisting of 16
sensor nodes deployed indoors for the purpose of testing a positioning system
based on WiFi and Bluetooth technologies. Therefore, the chosen parameter
setting were specifically tailored to the system. Still, the described approaches
of filtering and data aggregation can fit to a diversity of WSN applications by
simply alternating component combinations (filtering) or fine tuning of param-
eters (aggregation). For example, an environmental monitoring application can
tolerate long aggregation periods, radio echo profiling can use only whitelisting
the deployed sensors but an assisted/ambient living application may prefer pure
blacklisting, since whitelisting requires human participation.
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The presented evaluation and results have relevance beyond the scope of
wireless test-beds. We are confident that filtering and aggregation strategies can
also help real-world deployments to scale better and to make better use of the
limited radio resources. We are aware that both mechanisms have a downside,
e.g., wrongly identifying a device as always-on in filtering or loosing measure-
ments details in aggregation, but we believe that a careful parametrisation can
eliminate the effects. In addition, compression techniques could further bring the
size of the transferred data down.
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