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Abstract

Wireless Mesh Networks (WMNs) are growing in attention and are becoming an important tech-
nology to interconnect computer systems and networks in a cheap and flexible way. Many differ-
ent application scenarios use this new technology, such as monitoring and surveillance systems,
the interconnection of different networks and buildings or the fast setup of a temporary commu-
nication infrastructure in areas without network coverage. Especially in emergency or disaster
recovery scenarios, the immediate deployment of a working communication infrastructure is
crucial for saving lives. Unfortunately, after happening of such natural disasters, impassable
terrain makes it hard or even impossible to deploy a ground-based WMN.

For this reason, we developed UAVNet, a framework focusing on the autonomous deploy-
ment of a flying WMN, using small quadrocopter Unmanned Aerial Vehicles (UAVs). Every
UAV carries a lightweight wireless mesh node, which is directly connected to the flight elec-
tronics of the UAV using a serial interface. The flying wireless mesh nodes are automatically
interconnected to each other and are building an IEEE 802.11s WMN. Every wireless mesh node
works as an Access Point (AP) and provides access for regular IEEE 802.11g wireless devices,
such as notebooks, smartphones, and tablets.

UAVNet includes a concept and a prototype implementation of an autonomously deployable
flying WMN. The current prototype is capable of autonomously interconnect two communi-
cation peers by setting up an airborne relay, consisting of one or several flying wireless mesh
nodes. Furthermore, UAVNet includes ideas and concepts to extend the functionality of the pro-
totype. To control the UAVs and to manage the network, the software running on every wireless
mesh node follows a decentralised approach. The UAV swarm can, therefore, adapt to current
communication needs.

Additionally, an iPad or iPhone, with a customized software running on it, can be used to
simplify the configuration, deployment, and monitoring of a UAVNet. The complete configu-
ration and automatic deployment process can be executed by using a user-friendly Graphical
User Interface (GUI). The deployed network with all of its participants can be displayed and
monitored on an interactive map.

We have proven the feasibility of an autonomously deployable, flying WMN using UAVs.
The working prototype implementation is not yet able to cover autonomously a defined region,
but it includes the basic functionality to setup, deploy and monitor such a network. It is already
capable of interconnecting multiple client devices by setting up an airborne relay.

Our evaluations have shown that UAVNet can optimize the network on respect of its per-
formance. They have proven that the performance of a flying network is much higher than a
ground-based approach, due to the better network coverage.
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Chapter 1

Introduction

Wireless Mesh Networks (WMNs) are growing in attention both in research projects and in
commercial and private applications. They provide an efficient and cheap way to deploy large
communication networks, as well as to interconnect separated existing networks. Depending on
the network scenario and the area of application it can be difficult to deploy and maintain the
participating mesh nodes. Additionally, it may be crucial to set up the network in the shortest
possible time, e.g. in emergency and disaster recovery scenarios like earthquakes, avalanches
and floodings. The deployment and maintenance of current mesh network solutions may be
difficult, inefficient and time consuming, or even impossible if the affected area is inaccessible.

This Master thesis introduces and evaluates the framework UAVNet, a highly adaptive and
mobile WMN using small Unmanned Aerial Vehicles (UAVs). It includes a concept and a pro-
totype implementation of an autonomously deployable temporary WMN, using UAVs with at-
tached wireless mesh nodes. The deployed communication network enables the connectivity
between different clients like notebooks, smartphones and tablets and even other wireless or
wired networks.

The structure of this introductory chapter is as follows: Section 1.1 gives a short overview of
the history of wireless networking, followed by an introduction in WMNs in Section 1.2. After
a short description of UAVs in Section 1.3, the motivation for the development of UAVNet is
discussed in Section 1.4. The chapter concludes with an overview about the remaining chapters
of this thesis in Section 1.5.

1.1 History of Wireless Networks

In 1888, the first radio waves were discovered and produced by Heinrich Hertz [1]. During
World War II, the United States used the first radio signals for data transmission. The world’s
first wireless computer communication network, ALOHAnet [2], was developed by Norman
Abramson, a professor at the University of Hawaii in 1971. It interconnected six computers
on four islands and the central one on the Oahu Island in a bi-directional star topology. Ten
years later, amateur radio operators developed the first generation of wireless data modems. In
1990, the 802.11 Working Group was established by the Institute of Electrical and Electronics
Engineers (IEEE) 802 Executive Committee to create a Wireless Local Area Network (WLAN)
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standard. Finally, the standard data communication format for wireless local area networks,
IEEE 802.11, was approved in 1997. Since then, newer standards and amendments have been
developed and approved, namely the IEEE standards 802.11a, 802.11b, 802.11g and 802.11n.
They all cover the same network scenario, where the clients connect to one or multiple central
access points (APs). To establish other network scenarios like so-called ad-hoc networks, which
does not need a central management station, IEEE specified the additional Independent Basic
Service Set (IBSS) mode. However, these improvements are still not enough to meet the nowa-
days desired adaptable, mobile and decentralized network scenarios. Therefore, new standards
have been developed. Among others, these are IEEE 802.11s (Mesh networking) and IEEE
802.16 (WMAN/WiMAX).

1.2 Wireless Mesh Networks

Nowadays WMNs are growing in attention and are currently the subject of many research
projects around the world. They are considered to be a special type of wireless ad-hoc net-
works. Its main purpose is to avoid the centralized and managed approach of today’s common
network architectures. Traditional wireless networks consist of one or multiple APs, which man-
age the entire network, as shown in Figure 1.1. WMNs consist of multiple hosts, which have
the same functionality and responsibility in respect of the network topology. This decentralized
approach of WMNs (Figure 1.2) is much more flexible and dynamic. It allows the setup of large,
inexpensive, reliable, and redundant networks, even in hardly accessible regions. Furthermore,
it allows the interconnection of different networks and allows the integration of Wireless Sensor
Networks (WSNs). A WMN may involve fixed and mobile nodes. Mobile Ad-hoc Networks
(MANETs) combine the mesh topology of WMN with highly mobile and independent nodes,
joining, traversing and leaving the network at any time and in any direction.

Client

Client

Wired network/
Internet

Wireless
Access point

Figure 1.1: Common managed wireless network.

Client

Client

Wireless
mesh node

Wired network/
Internet

Figure 1.2: Wireless mesh network.

An overview of WMN technology and its applications is provided in [3, 4, 5]. WMNs con-
sist of two different node types: mesh clients and mesh routers. Often the mesh routers are
static and are powered by the electricity network. Therefore, they often are equipped with more
sophisticated hardware such as multiple radio interfaces and offer bridge and gateway function-
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alities. Mesh clients often are mobile devices which connect over multi-hop communications to
the WMN. The main characteristics of WMNs are the following [6]:

• Multi-hop wireless communication.

• Ad-hoc networking.

• Self-configuration, self-organisation, self-healing.

• Mobility

• Various types of network interfaces.

• One to multiple radios.

According to [3, 4], WMNs are considered to be a useful communication technology in the
following scenarios:

• Metropolitan area networks

• Enterprise networking

• Community and neighbourhood networking

• Broadband home networking

• Building automation

• Health and medical systems

• Surveillance systems

• Emergency/disaster systems

• Transportation systems

• Vehicular networks

The drawbacks of such highly mobile and adaptable network topologies are the need for
complex and challenging routing and management algorithms, such as Optimised Link State
Routing (OLSR) [7] or Ad-Hoc On-Demand Distance Vector Routing (AODV) [8]. Addition-
ally, mobile devices have limited power resources and need highly optimized software and hard-
ware to reduce the energy consumption.
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1.3 Unmanned Aerial Vehicles

Per definition, a UAV is “a powered, aerial vehicle that does not carry a human operator, uses
aerodynamic forces to provide vehicle lift, can fly autonomously or be piloted remotely, can be
expendable or recoverable, and can carry a lethal or nonlethal payload” [9]. UAVs exist in a lot
of different shapes, configurations, sizes and serve for various purposes. A few variations are
shown in Figure 1.3. UAVs exist in two different varieties: some are remote controlled, others
are flying completely autonomous. Most of them carry a lot of different sensors and cameras,
providing data for other applications or used for adjusting current flight parameters.

Author: U.S. Air Force, Public domain 

Author: Nicolas Halftermeyer, CC BY 3.0 

Author: DARPA, Public domain 

Figure 1.3: Different kinds of UAVs.

As well as the WMNs, UAVs are growing in attention. They are used in many different
research projects, as well as in private, commercial, and military products. UAVs are used in
a wide variety of application scenarios. The majority of the functions they perform are some
form of remote sensing and measuring. Common functions they perform among others are the
following [10]:

Remote Sensing UAVs may carry a wide variety of sensors, different cameras and other mea-
surement equipment. The gathered data can be stored locally for further analysis or trans-
mitted directly to the base station.

Surveillance and Exploration Using cameras with different spectrum as well as radar systems,
allow the exploration and surveillance of large areas and all kind of objects or living
creatures.

Transportation Depending on its size and form, the UAV can carry different amount and kind
of payload.
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Search and Rescue UAVs with attached cameras and other measurement tools are often used
for search and rescue missions, as they can fly in inaccessible areas and are much cheaper
and safer than standard rescue operations using helicopters and human beings.

Scientific Research UAVs are involved in a wide variety of research projects.

Armed Attacks More and more often UAVs are used by the military for armed attacks of targets
in sensitive areas.

1.4 Motivation

Nowadays, networks - communication in general - are becoming more and more important.
Sadly, due to the global warming, more and more often, severe first response scenarios such
as earthquakes, avalanches, and floodings happen. To rapidly organize and coordinate the res-
cue forces, a working communication infrastructure is essential. Unfortunately, often the entire
communication infrastructure is destroyed during the disaster or was never present in some ur-
ban regions. Therefore, it would be very helpful and most-likely lifesaving, if a broadband and
reliable communication infrastructure could be deployed quickly and maintained. This tempo-
rary infrastructure should be adaptable to different scenarios and should be deployable as fast
and easy as possible. The currently existing solutions for such scenarios are often ground-based,
which makes it very difficult to establish a working communication infrastructure in a destroyed
and inaccessible area. Our proposed solution avoids all these disadvantages: An autonomously
deployable and highly adaptable flying WMN could support the rescuers and help them saving
lives. The main goals of this study are the following:

• Create a detailed concept how a flying WMN should be designed, developed, deployed
and maintained to provide an adaptable, mobile, scalable and robust communication in-
frastructure. It should be deployable in a fast and easy way, even in inaccessible areas.

• Implement and evaluate different possible network scenarios and topologies. UAVNet
should cover a wide range of different applications such as a simple connection between
two client devices or the coverage of large areas by multiple UAVs. Analyse the feasibility
of an implementation of a working prototype within the limits of this thesis.

• Implement a working prototype to show the feasibility of a flying communication network.
Keep the prototype as generic and expandable as possible to simplify the development and
implementation of future extensions and application scenarios.

• Use common standard software and hardware to keep the system as cheap, compatible
and lightweight as possible.

• Use a user-friendly Graphical User Interface (GUI) on a mobile user device to simplify
the deployment and monitoring of the network.

• Evaluate the built prototype and the developed concepts and compare them to land-based
approaches.
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1.5 Thesis Outline

The thesis is structured as follows. In Chapter 2, the work of other researchers is discussed
in relation to the developments described in this thesis. This includes underling software and
hardware as well as other projects, directly connected to this work. The general architecture
and concepts of this Master thesis are presented in Chapter 3. It explains how the entire system
works and how the different parts of UAVNet are connected to each other. Additionally, it de-
scribes the capabilities of the built prototype. The concrete implementation of the system and
the prototype is presented in detail in Chapter 4 and 5. In Chapter 6, the prototype of UAVNet
and different parts of the UAVNet system are evaluated by comparing the performance of our
approach with other networks and systems. Finally, Chapter 7 concludes the thesis. It proposes
also improvements for UAVNet and provides an outlook for possible future work.
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Chapter 2

Related Work

To develop and implement a complex and large system like UAVNet, a lot of different hardware
and software components have to interact with each other and fit together. Most of these com-
ponents have already existed in a more or less usable way, but must be adapted, extended and
combined in the right way to build a complete and working system.

This chapter discusses related work and contains background information about the involved
hardware and software components. It provides the basic knowledge to understand how UAVNet
works and how the existing projects have been included, adapted and extended. Section 2.1
presents the used UAV platform. This includes the hardware of the UAV as well as the software
running on the flight electronics. The used wireless mesh nodes are described in Section 2.2.
The first part of this section covers the hardware, the second part discusses the software running
on the nodes. Finally, Remote Control App, an other project which builds a remote control client
to configure and monitor UAVNet, is presented in Section 2.3.

2.1 Quadrocopter

An important part of a flying WMN are the UAVs carrying the wireless mesh nodes. As the flying
nodes should stay pretty stable in the air, quadrocopters are used in this work for implementing
UAVNet and not fixed-wing planes. Due to their moderate costs, good availability, open software,
and community support, quadrocopters from the Mikrokopter.de community project [11] have
been chosen.

A quadrocopter’s principle of flight is as follows: Four brushless motors are mounted in
the same horizontal plane at the ends of the frame cross. They are controlled by four brushless
controllers and drive the fixed propellers. The front and back rotors turn in opposite directions
than the left and right rotor to prevent the torque about the yaw axis (see Figure 2.1). The flight
speed and direction are controlled only by increasing and decreasing the speed of the rotors. To
fly in a specific direction, the speed of the motor being opposite of the desired flight direction
is increased. This gets the quadrocopter in an inclined position and it flies into the desired
direction. To turn the quadrocopter around its vertical axis (yaw), the speed of the front and
back rotors is increased and the speed of the left and right rotors is decreased.

The following subsections present the used hardware and software components of the
quadrocopters in detail.
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1

4 3

2

Figure 2.1: A quadrocopter’s principle of flight.

2.1.1 Hardware

The UAVs used in the UAVNet project are built from self-assembly kits of the Mikrokopter.de
project [11]. The assembled quadrocopter is shown in Figure 2.2. It is powered by a 2200 mAh
Lithium-ion Polymer (LiPo) battery, which provides energy for about 10-20 minutes, depend-
ing on the flight style and the attached payload. The used UAV kit consists of the following
components [12]:

• MK Basisset M3 ME

– 1x preassembled flight controller (FlightCtrl ME 2.0)

– Altitude sensor

– 4x preassembled brushless controllers (BL-Ctrl V1.2)

– 1x switch for power supply

– 1x Mikrokopter Universal Serial Bus (USB) adapter (MKUSB)

– 1x Frame set L with anodized (coloured) riggers 1x (red, black 3x)

– 1x LiPo 2200er/4s

– 5x pairs of propellers suitable for multicopter setups (e.g. Maxx Products EPP1045)

– 4x brushless motors (Roxxy 2824-34)

– 1x connection cable for receiver

– 1x extensive set of cables

– Data cable (twisted pair cable - no silicone wire)
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– 4x vibration dampers M3x15

– Heat shrink tubing for other solder joints

– 2 pieces of Velcro strips

– 4 pieces flex Light-emitting Diodes (LED) tape for lighting

– 100 cable ties (black)

• Wi232-Module + adapter board

• Navigation controller (NaviCtrl V1.1)

• 3-axis compass (MK3Mag)

• Global Positioning System (GPS) receiver using Surface-Mount Device (SMD) technol-
ogy (MKGPS)

• Remote control transmitter (Graupner MX-16s 35/35B MHz)

• Quartz crystal oscillator (Graupner 35 MHz)

• 3 LEDs (2x in white color, 1x in red color)

Figure 2.2: Assembled Mikrokopter kit.

A standard quadrocopter consists of four main components:

• Frame that carries the flight electronics and motors

• Flight electronics with different components and sensors

• Four brushless motors controlled by four brushless controllers

9



• Lithium-ion Polymer (LiPo) battery

The flight electronics of the Mikrokopter consists of several different parts (Figure 2.3).
First, the FlightCtrl controls the speed of the four brushless motors by separate brushless con-
trollers. To stabilize the UAV, the FlightCtrl board employs the values of the three integrated
rotation speed sensors (gyroscopes), the 3-dimensional acceleration sensor and a height sensor.
The second controller board called NaviCtrl, provides data from an additional GPS receiver and
a 3-dimensional compass.

Figure 2.3: Flight electronics of a Mikrokopter (from left to right): the main controller board FlightCtrl,
brushless controllers, GPS board and the navigation controller board NaviCtrl with an attached three
dimensional compass [6].

Equipped with all these sensors, the UAV is capable of calculating permanently its exact
location and position in the air. This ensures a very stable and exact flight. Additionally, the
UAV is also capable of holding autonomously its position or even fly on a predefined route using
several GPS waypoints, thanks to the GPS receiver.

2.1.2 Software/Firmware

On the flight electronics, different pieces of software and firmware are running. These are soft-
ware packages for the FlightCtrl board, the NaviCtrl board, the compass MK3Mag, the brushless
controllers and the Mikrokopter-Tool. The last one is not running on the Mikrokopter, but is used
to flash new software on the UAV and to manage, monitor and configure the quadrocopter using
a personal computer. All software is maintained and downloadable from Mikrokopter.de [11].
To keep UAVNet compatible, maintainable, and simple, we developed a concept to not alter any
software running on the flight electronics. All our custom software runs on the mesh node and
communicates with the stock software on the flight electronics using the provided serial commu-
nication protocol [13], which is described in detail in Section 5.2.3. Currently, we are running
the following software versions on the flight electronics:

• FlightCtrl 0.78b

• NaviCtrl 0.18c

• MK3Mag 0.23a
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Newer versions are available but have not been tested yet.
The main functionality of the interface to the flight electronics is the possibility to create,

modify, delete and monitor GPS waypoints and locations as well as receiving and interpreting
navigation and other useful data over the serial line.

2.2 Wireless Mesh Node

Besides the UAV, the attached mesh nodes are the other main part of UAVNet. They are con-
nected with a serial interface to the flight electronics of the UAV and communicate with each
other by setting up an IEEE 802.11s WMN between them. Additionally, they are working as
an IEEE 802.11g wireless AP to get connected to regular client devices like notebooks, smart-
phones, tablets, etc.

To be usable in the UAVNet project, mesh nodes must meet the following requirements:

• Being capable of setting up an IEEE 802.11s wireless mesh network and an IEEE 802.11g
wireless infrastructure network.

• Being as small and lightweight as possible.

• Being powered by a battery.

• Fulfilling the hardware requirements to run our embedded Linux distribution ADAM (Ad-
ministration and Deployment of Adhoc Mesh Networks) as operating system (OS).

• Consuming low energy.

The following sections provide detailed information about the hardware and the software
running on the wireless mesh node.

2.2.1 Hardware

The node used for the UAVNet project is the “Professional Mesh OM1P” from Open-Mesh [14]
shown in Figure 2.4. It measures 9.5cm x 7cm x 2.5cm and weighs around 86 grams. It is a very
low-cost router built on an Atheros AR2315(A) System on Chip (SoC) with a 180 MHz MIPS
4KEc CPU, 32 MB RAM and 8 MB NAND storage. It contains an IEEE 802.11b/g wireless
interface (Atheros RF2316), an Ethernet interface (Atheros AR8012), and an internal Universal
Asynchronous Receiver/Transmitter (UART) serial port. Additionally, a hardware watchdog is
included, which reboots the node if the timer is not reset regularly. It offers recovery if the
software crashes. The antenna is a 2.5dbi RP-SMA. The node needs to be powered by 12V
DC, which matches the LiPo batteries that we are using for our UAV. Except for the additional
hardware watchdog, the OM1P node is built upon the same hardware as the Meraki Mini [15],
which is already supported by the ADAM framework. The serial port, which is used for the
connection with the flight electronics of the UAV, is not directly accessible from the outside of
the node and is not operated on the same voltage level as the remaining UAV flight electronics.
Therefore, some slight modifications had to be done, which are described in Chapter 4.
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Figure 2.4: Professional Mesh Node OM1P from Open-Mesh [6].

2.2.2 ADAM

The operating system running on the mesh node is ADAM, the embedded Linux distribution
developed at University of Bern [6, 16, 17, 18]. ADAM includes a management architecture for
MANETs and WMNs. It provides a platform to setup, manage, configure and monitor networks
of different sizes. It contains a decentralized distribution mechanism for software updates and
remote network configurations. This avoids costly on-site reconfigurations and repairs. Its self-
healing mechanisms ensure a stable and safe network.

The nodes fetch (pull) available software or configuration updates from their direct neigh-
bors. This epidemic distribution mechanism ensures the deployment of new software and con-
figuration images within the entire network. If a node is down or if it has no connection to
the network during an ongoing update distribution, it fetches the new software or configuration
automatically as soon as it is reintegrated in the network. ADAM is very flexible by using a
modular approach, including full Internet Protocol Version 4 (IPv4) and Internet Protocol Ver-
sion 6 (IPv6) support. To guarantee a permanently working network, ADAM provides fall back
mechanisms that recover the node, even from a faulty software or configuration update.

ADAM does not only include a framework to set-up and maintain a heterogeneous WMN,
but also provides an intuitive, adaptable and simple build system for building an adapted em-
bedded Linux system. It supports a variety of embedded platforms and architectures, such as
the WRAP and Alix platforms from PC Engines [19], Meraki and others, by using different
build profiles. The included build scripts automate all the steps to cross-compile the appropriate
source code and generate an adapted Linux system, optimized for WMNs.

Additionally, ADAM provides an user-friendly web interface for displaying the node status
and monitoring the WMN as well as generating and distributing new software and configuration
images in the entire network [18]. Figure 2.5 shows the web interface to configure a WMN.
It shows all currently deployed nodes, allows the user to generate and deploy a network con-
figuration and to start the automatic distribution of software and configuration image updates.
Figure 2.6 depicts the web interface to configure an individual node in the WMN.
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Figure 2.5: ADAM: Network management [6].

To reduce the data transfered in the WMN and, thus, to reduce the probability of network
and node failures, ADAM uses separate image files for software and configuration updates.
Therefore, only a few KB of data must be distributed in the network, if its configuration changes
or an additional node is added to the network. Separating software and configuration data also
helps to reduce redundancy, as not a complete image must be distributed for every single node.
It is sufficient to deploy one single image file that contains the OS kernel and the binaries for all
nodes of a similar type.

In UAVNet, ADAM is used to build, configure and set up the mesh nodes attached to the
UAVs. The modifications, adaptations and extensions done to ADAM are described in detail in
Chapter 5.

2.2.3 Linux kernel / compat-wireless / ath5k

ADAM generates an embedded Linux operating system, which is highly optimized for WMNs
and nodes with limited hardware equipment. It uses a Linux kernel which is compiled from
the standard sources with an adapted kernel configuration. As all the wireless network drivers,
algorithms and protocols are still under heavy development and the AR2315 SoC used in this
project is somehow special and not yet supported very well, the Linux kernel used in our project
had to be extended with the compat-wireless package [20]. It adds all the latest versions of
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Figure 2.6: ADAM: Node configuration [6].

wireless tools and drivers to a stable and older base kernel. This includes the ath5k wireless
driver [21] that replaces the older madwifi project [22], an IEEE 802.11s implementation [23,
24, 25, 26] which is described in the next subsection and other necessary and useful tools like
for example iw [27].

2.2.4 IEEE 802.11s

As mentioned in Section 1.2, highly adaptable and mobile WMNs need sophisticated routing
algorithms to build a performant and robust network. As currently all the existing IEEE 802.11
standards have been developed and approved in earlier days, when centrally managed wireless
networks (See Figure 1.1) were state of the art, they are not designed to deal with the fast path
and topology changes of the nowadays upcoming ad-hoc networks. Even the additional IBSS
extensions are no more sufficient today. Therefore, the new standard IEEE 802.11s has been
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started in September 2003 as a Study Group of IEEE 802.11 [28]. IEEE 802.11s is an exten-
sion to the IEEE 802.11 standard and is specifically designed to work in current and upcoming
network scenarios using mesh networking. It defines how multiple wireless devices can be in-
terconnected in WMNs without the need of a central AP managing the network and works in
static, as well as in dynamic ad-hoc networks. Although it is in a preliminary development
stage, the IEEE 802.11s draft is already supported by many different products. open80211s is
a consortium of companies who are sponsoring (and collaborating in) the creation of an open-
source implementation of the emerging IEEE 802.11s wireless mesh standard [29]. It claims to
“create the first open implementation of 802.11s”. As part of the mac80211 layer, a reference
implementation of the IEEE 802.11s draft is available in the Linux kernel.

In UAVNet, we use the IEEE 802.11s protocol to interconnect the flying mesh nodes with
each others. The needed kernel and driver configuration, extensions and modifications are in-
cluded in the Linux system by using the compat-wireless package, which adds the newest wire-
less kernel developments to an older stock kernel.

2.2.5 IEEE 802.11g

To get standard clients such as notebooks, smartphones and tablets connected to UAVNet, it is
not sufficient to provide only an IEEE 802.11s network. Often these clients do not support the
new IEEE 802.11s draft yet. Therefore, each node provides also IEEE 802.11g access, which is
supported by all modern client devices. To provide this access point functionality, the hostapd
user space daemon [30] runs on every node. It implements IEEE 802.11 access management,
different authenticators like WPA, WPA2, EPA and others and supports different wireless cards
and drivers. It works with bridged network interfaces, what is crucial for our combined IEEE
802.11g and IEEE 802.11s network.

2.3 Remote Control App on iOS Devices

To configure, deploy, and monitor the UAVNet prototype, the Remote Control App has been
developed [31]. It runs on iOS devices such as iPhones and iPads. Figure 2.7 shows the Remote
Control App running on an iPad. The functionality is the same on all devices, the interface
adapts to the different screen sizes. It offers three main functions in a convenient and nice
looking interface to manage a UAVNet:

• Configuring, setting up and deploying one to several UAVs building a UAVNet network.

• Monitoring a deployed UAVNet, including the involved UAVs and ground based clients.

• Reviewing saved flights and deployments.

2.3.1 Configuring and Deploying the Network

To configure and deploy the UAVNet, the user can choose between different possible scenarios,
searching and positioning algorithms, which are provided by the UAVNet prototype. Possible
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Figure 2.7: Remote Control App on an iPad: Selection of the deployment scenario [31].

deployment scenarios are Airborne relay with one or multiple UAVs, Area coverage and Mon-
itoring. Right now, the area coverage scenario is not yet supported by our UAVNet prototype,
but it is already implemented in the Remote Control App. The selectable algorithms are either
a manual or an autonomous searching mode and a location based or signal strength based posi-
tioning algorithm. Figure 2.8 shows the Remote Control App on an iPhone. The details of the
supported scenarios, positioning, and searching algorithms are described in Chapter 3.
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Figure 2.8: Remote Control App on an iPhone: Selection of the deployment scenario [31].

2.3.2 Monitoring the Network

Remote Control App is aware of nearby UAVs due to their broadcasted ping messages and is
capable to subscribe to their notification service (See Section 3.2.4 and Section 3.2.5 for more
details). All the participants of a deployed UAVNet are shown on an interactive electronic map.
This includes the own position, all UAVs and the involved clients. Additionally, some important
UAV data such as battery level, flight direction, speed and height over ground are shown on the
map (See Figure 2.9). The map is always automatically rotated towards North direction, thanks
to the implemented electronic compass. The electronic map can display online or pre-rendered
offline maps from different sources, for example from the OpenStreetMap project [32].
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Figure 2.9: Current state of a UAV in the Remote Control App [6].
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Chapter 3

UAVNet: Architecture and Concepts

UAVNet is a framework, which provides the autonomous deployment of highly adaptive and
flexible WMNs. UAVNet uses common techniques, established standards and new technologies
to build an expandable, robust and highly mobile communication network using UAVs. UAVNet
is a collaborative project with [6] and [31].

In first response and worst-case scenarios, such as avalanches, earthquakes or floodings,
the entire communication infrastructure is often destroyed during such an event, overloaded or
nonexistent in outlands. For an efficient and fast rescue it is important to establish a working and
robust communication infrastructure as fast and easy as possible. It helps the rescuer to coor-
dinate their rescue efforts and provides the possibility to exchange information and multimedia
data among the rescue squads, the coordinator and with the rest of the world. A WMN can
provide such a communication network. It is sufficient to distribute some wireless mesh nodes
in the affected area. However, as after worst-case scenarios often the terrain is impassable, it is
almost impossible to set up a regular ground based communication network in the first phase of
a rescue operation within reasonable time.

UAVNet is a prototype implementation of an autonomously deployable WMN using UAVs.
The mesh nodes are attached to UAVs, building a kind of “flying mesh nodes”. These highly
mobile and fast distributed mesh nodes can be flown to sites, that cannot or only hardly be
reached by land robots. The distributed network, consisting of several UAVs equipped with
wireless mesh nodes, is very mobile and adaptable to different situations. Additionally, the
mesh nodes in the air provide a better coverage and availability than mesh nodes placed on the
ground.

A disadvantage of UAVs is their pretty high and continuous energy consumption, where land
robots can go to sleep when they have reached their final position. A real-live implementation
of UAVNet has to deal with this drawback and has to implement some kind of replacing and
recharging mechanism of the UAVs, which is discussed in more detail in Chapter 7.

This chapter introduces the used architecture for the entire communication network, includ-
ing clients, wireless mesh nodes and UAVs and concepts to provide solutions for different sce-
narios, positioning and searching algorithms.

In Section 3.1, the architecture and the different parts of the entire system are discussed.
Section 3.2 then shows different concepts and the solutions to make the network as efficient as
possible.
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3.1 Architecture of UAVNet

UAVNet consists of three different components that are interconnected and communicate with
each other. These are clients on the ground, wireless mesh nodes and the UAVs.

3.1.1 Participants of a UAVNet

Participants of UAVNet are clients (notebooks, iPhones, iPads, etc.), wireless mesh nodes and
the UAVs. The central point of the entire communication infrastructure are the wireless mesh
nodes. They are attached to the UAVs and communicate directly with the flight electronics of
the UAV over a serial interface. Additionally, they are also connected with the other mesh nodes
and the clients over WLAN using the IEEE 802.11g and IEEE 802.11s protocols. The clients
are used to configure and monitor the network and the UAVs and can share information and data
with other clients using UAVNet as the communication network.

Figure 3.1 shows a typical setup of UAVNet. Two notebooks use two flying UAVs to com-
municate with each other. Other clients like iPads and iPhones can be used to configure and
monitor the flying network. The dashed arrows symbolize the wireless communication and the
solid arrows represent the serial communication.

serial
IEEE 802.11g

2 3

1

4

IEEE 802.11s

Figure 3.1: Typical setup of UAVNet with two UAVs with attached wireless mesh nodes and multiple
clients.
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1. The wireless mesh nodes are directly connected to the flight electronics of the UAVs using
a serial connection.

2. The devices of the rescuers are connected to the mesh network using a standard IEEE
802.11g wireless connection. The wireless mesh nodes act as ordinary APs.

3. Clients like iPhone and iPad are used to configure and monitor the network and its partic-
ipants. They use also an IEEE 802.11g wireless connection to interact with the UAVNet.

4. Traffic between the end devices is forwarded over the IEEE 802.11s wireless mesh net-
work, automatically set up by the UAVs.

3.1.2 Main Components of UAVNet

Figure 3.2 shows the schematic architecture and communication interfaces of UAVNet. The
dashed arrows symbolize the wireless communication and the solid arrows represent the serial
communication.
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Figure 3.2: Architecture and communication interfaces of UAVNet.

The base system software running on the mesh nodes is a Linux 2.6.37.6 kernel [33], ex-
tended with the compat-wireless package [20]. The driver from the ath5k project [21] is used
for the WLAN chip. On top of the kernel ADAM is running. It provides the base system of
the mesh nodes. The uavcontroller is the software written in C that works as the main com-
ponent of UAVNet. It uses two libraries libuavext and libuavint. They handle the wireless and
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serial interfaces between the different components of UAVNet. libuavint handles the internal
communication between the mesh node and the flight electronics of the UAV using the serial
port. libuavext handles the external communication between the mesh nodes and the clients us-
ing Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) sockets over an
IEEE 802.11g and IEEE 802.11s wireless network. On the client (notebooks, iPads or iPhones)
is running uavclient that uses also the library libuavext to handle the communication between
the client and the mesh node. In order to develop UAVNet, we updated the Linux kernel in the
ADAM distribution and extended it with the compat-wireless package, which contains the re-
quired WLAN driver and additional protocols. Moreover, ADAM has been extended and the
four different pieces of software (uavcontroller, uavclient, libuavext and libuavint) have been
developed and implemented. All the details of the made modifications, extensions and develop-
ments are described in Chapter 5.

3.1.3 Network Configuration

The assignment of IP addresses in UAVNet can be separated in two sections. First, all UAVs use
static IP addresses. The addresses are defined during the common configuration and setup pro-
cedures in ADAM, as described in [17, 16, 18]. Second, the clients such as the notebooks on the
ground and the monitoring iPad or iPhone devices, use dynamically assigned IP addresses. On
every wireless mesh node runs a Dynamic Host Configuration Protocol (DHCP) server, which
allocates IP addresses to the connected clients. This setup ensures on one side a well structured
and well defined wireless mesh network. On the other side, the rescuers on the ground do not
need to configure their devices in a special way to connect to the network.

The following section describes the different communication interfaces and used protocols
and messages.

3.1.4 Communication between UAVNet participants

UAVNet uses two different kinds of interfaces to establish the communication between the UAVs,
wireless mesh nodes and clients. The first one is a serial connection between the serial interface
of the mesh node and the NaviCtrl of the UAV. The second kind of communication is using
the IEEE 802.11g and IEEE 802.11s protocol. The mesh nodes are configured as Mesh Access
Points (MAPs), which are able to interconnect different kinds of WLANs and also Local Area
Networks (LANs). The wireless connection is used by the wireless mesh nodes to communicate
with each other and with the clients on the ground. These two interfaces are described in detail
in the next sections.

Connection Wireless Mesh Node - UAV

The uavcontroller on the wireless mesh node uses libuavint to communicate directly with the
flight electronics of the UAV using a serial connection.

The NaviCtrl is directly connected to the FlightCtrl and has a debug port, which is used for
the connection with the wireless mesh node. The UAV, or to be more precise, the NaviCtrl, sends
periodically NaviData messages to the mesh node that contain information about its current
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position, flight direction and speed and other important data. The uavcontroller receives and
processes these messages. Afterwards, it sends them to other wireless mesh nodes and clients or
it instructs the UAV with new commands.

Using the serial connection, uavcontroller is able to send commands to the flight electronics
and firmware of the UAV, e.g., the command to fly directly to a specific GPS position.

The details and implementation of the different messages and commands are described in
Chapter 5.

Connection Wireless Mesh Node - Wireless Mesh Node

The wireless mesh nodes communicate with each other using a wireless connection and the
new IEEE 802.11s mesh protocol. They establish the connection using TCP and UDP sockets,
depending on the purpose of the connection. The sockets and the messages are managed by the
library libuavext which is a part of the uavcontroller running on the mesh nodes.

There are two different reasons for the communication between the mesh nodes. The first
one is to forward the traffic between two or multiple clients on the ground. The second reason
for the connection between the mesh nodes is that the UAVs use these sockets to communicate
with each other. The mesh nodes talk to each other and exchange information from the UAVs
such as its positions, its flight directions and speeds or the current status. The uavcontroller on
one wireless mesh node constantly receives data from it’s own UAV and also from the other
wireless mesh nodes. It uses all this information to act appropriately and send new data and
instructions to the electronics of the UAV or the other mesh nodes.

Connection Wireless Mesh Node - Client

The clients communicate with the wireless mesh nodes in the same way as the mesh nodes do
it with each other. The sockets are also handled by the library libuavext that is also a part of
uavclient. As most of the clients do not implement the IEEE 802.11s protocol yet, the standard
wireless protocol IEEE 802.11g is used for the connection between the clients and the wire-
less mesh nodes. For the communication between the wireless mesh nodes and the clients, the
following different sockets and protocols are used:

• Unicast messages, using a TCP socket on port 7654 for transmitting regular control mes-
sages.

• Broadcast messages, using a UDP socket on port 7655 for transmitting ping messages.

• Unicast messages, using a UDP socket on port 7656 for transmitting notification mes-
sages.

The details of the implementation of the different sockets and messages are described in
Chapter 5.
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3.2 Concepts of UAVNet

UAVNet is capable of building up different network scenarios using various positioning and
searching algorithms.

UAVNet is built to provide a network infrastructure that includes one to several UAVs and that
can be used by multiple different clients. In the following subsections, the different scenarios,
positioning, and searching algorithms are described. The details of how the different algorithms
are implemented can be found in Chapter 5.

3.2.1 Network Scenarios

UAVNet is capable of establishing networks that provide coverage for two different scenarios.
The first one is the Airborne Relay scenario where one or several UAVs hover in between two
clients to provide a network bridge in the air. The second scenario is the Area Coverage sce-
nario, where several UAVs cover autonomously a given area. The Area Coverage scenario is
not implemented completely in the prototype. In the following the two different scenarios are
described in detail.

Airborne Relay Scenario

The Airborne Relay scenario offers a solution to establish a wireless connection between two
clients (probably two notebooks), which do not get a direct connection, as they are positioned
too far away from each other or because there are obstacles between them.

Therefore, one or multiple UAVs autonomously position themselves between the two clients.
The attached wireless mesh nodes forward the traffic and thus enable the communication be-
tween the two clients. If the two clients are too far away from each other and one UAV is not
sufficient to establish a connection, multiple UAVs can build a kind of a forwarder-chain.

When a third client is located in the transmission range, it could provoke a wrong deploy-
ment of the UAVs by submitting its own position before the official second client can do it. To
prevent this scenario, the user transmits the Media Access Control (MAC) addresses of the two
clients participating in the Airborne Relay to the UAV, before the deployment process starts. All
transmissions from unauthorised clients are ignored then by the UAVs.

In the following paragraphs, the Airborne Relay scenario using one or multiple UAV(s) are
described in detail.

Airborne Relay Scenario with One UAV

In the fist scenario, one UAV is sufficient to establish a connection between two clients on the
ground. The UAV flies autonomously between the two clients and let the attached mesh node
forward the traffic between the clients. In Figure 3.3 the Airborne Relay scenario with one UAV
is shown.

The UAV starts near the first client and begins to broadcast regularly ping messages, which
are described in detail in Chapter 5. The first client receives these messages and sends its own
GPS position to the UAV. Depending on the defined searching algorithm, which is described in
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Figure 3.3: Airborne Relay scenario with one UAV [31].

detail in Section 3.2.2, the UAV begins to fly in a given direction or on a spiral track around
the first client to search the second client. If the second client receives the broadcasted ping
messages, it sends again its own GPS position to the UAV. Depending on the positioning algo-
rithm, which is described in detail in Section 3.2.3, the uavcontroller calculates and measures
the position between the two clients and directs the UAV to this calculated center position. When
it arrives at its calculated destination, it can be reached by both clients and forward the traffic
between them. The details of the set up process using the simple searching and positioning
algorithms are shown and described in Figure 3.9 in the Section 3.2.3.

Airborne Relay Scenario with Multiple UAVs

If one UAV is not sufficient to bridge the distance between the two notebooks on the ground,
multiple UAVs can be used. They build a chain to forward the traffic between the clients over
several wireless mesh nodes. Such an Airborne Relay scenario with multiple UAVs is shown in
Figure 3.4.

Figure 3.4: Airborne Relay scenario with multiple UAVs [31].

The process of setting up such a chain of multiple UAVs is shown in Figures 3.5-3.7 and
works as follows:

1. The first starting UAV acts as a kind of a scout spotting the exact position of the second
client. Therefore, it uses the same searching algorithms as described in Section 3.2.2
and its behaviour of positioning differs from the succeeding UAVs. As soon as it gets
the position message from the second client, it broadcasts this position with the ping and
notification messages. This mechanism ensures that all succeeding UAVs already know
the location of the second client and the chain is set up in the correct direction.

2. The first UAV then positions itself directly in the middle between the two clients using the
location positioning algorithm, described in Section 3.2.3.
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Figure 3.5: Multi-hop Airborne Relay scenario: setup UAV 1.
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Figure 3.6: Multi-hop Airborne Relay scenario: setup UAV 2.
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Figure 3.7: Multi-hop Airborne Relay scenario: setup UAV 3.

3. When it arrives at this center position, it begins to fly into the direction of the first client
until it receives a predefined signal strength (which is explained and evaluated in Sec-
tion 6.1) from this first client. This location is locked then as the final position of the first
UAV. Flying back to the first client and using then the same algorithm as the succeeding
UAVs would consume more energy and time and is unnecessary.

4. The second UAV flies directly to the location of the first UAV and moves then into the
direction of the second client until it reaches the defined signal strength to the first posi-
tioned UAV. This mechanism ensures a straight line of UAVs towards the location of the
second client.

5. This is repeated as long as all UAVs are positioned accordingly. This process ensures
that the entire chain is built up in the correct direction to ensure optimal connectivity. To
avoid collisions, the UAVs are placed at different altitudes. There is no collision avoidance
algorithm included in this prototype.
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Area Coverage Scenario

This mode is not yet implemented in the prototype, but it is included in the planning and concepts
of the different parts of UAVNet. It could be implemented in a next step. The idea is to define a
given area using a polygon on an interactive map. UAVNet positions then autonomously several
UAVs to ensure an optimal coverage of the given area. The decision where to place the UAVs
depends heavily on the number of available UAVs. If not enough UAVs are available to cover the
complete area with a high performance network, some trade-offs between coverage and perfor-
mance must be made. To deploy such a scenario, sophisticated swarm and collision avoidance
algorithms must be implemented. For additional thoughts on this topic see also Section 7.2.

3.2.2 Searching Modes

To ensure an optimal connectivity between the clients on the ground, it is important that UAVNet
knows its exact locations. To achieve this, the clients transmit their exact GPS coordinates to
the UAV. To receive also the position of the second client, the UAVs must get in its transmission
range, to receive their sent position message. The uavcontroller uses two different searching
algorithms to find the second client. Both are implemented in the prototype of UAVNet.

The first one is the manual searching algorithm, in which the first client or the user must tell
the UAV in which direction it should fly to find the other client. The second algorithm is the
autonomous searching mode. Using this mode, the UAV can find the second client without any
hint of its location. Both algorithms are implemented and functional in the prototype implemen-
tation, as well as in the Remote Control App. In the following subsections, these two algorithms
are described in detail.

Manual Searching Mode

If the uavcontroller has been told to use the manual searching mode, it has to know in which
direction the second client is located. This information is transmitted from the first client or
the mobile device to the UAV using a flightDirection message. This information can be trans-
mitted by entering the direction directly on the command line of the client or by touching the
approximate location of the second client on the map on an iPhone or iPad. Listing 3.1 shows
a typical command to start the uavclient on the first notebook. The parameters of the command
are described in Table 3.1.

> ./uavclient 46.95599 7.43878 359 0.074 1 ath0

Listing 3.1: Command to start the uavclient on the first notebook.

When the UAV gets the position from the first client, it depends on the configured searching
mode how the UAV proceeds. If it is in manual searching mode it sends a getFlightDirection
message back to the client. Then the client transmits in which direction the UAV should fly to
find the second client. If the UAV is in autonomous searching mode, which is described in the
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Parameter Example value Description
lat 46.95599 Latitude of the GPS location of the first client
lon 7.43878 Longitude of the GPS location of the first client
dir 359 Direction in degrees to look for the second client
dist 0.074 Maximum distance of the second client in km
conf 1 Defines if UAVNet is configured by a mobile user device
iface ath0 Used WLAN interface

Table 3.1: Description of the parameters of uavclient

next subsection in detail, the UAV starts directly to look for the second client without expecting
a flightDirection message.

When the UAV knows in which direction the second client is located, it starts its flight in
the given direction until it gets a position message from the second client or until it reaches
the defined maximum distance. The details of the message flow of the manual searching mode
between the clients and the UAV is described in Section 5.2.3

Autonomous Searching Mode

The UAVs of UAVNet are able to find the second client autonomously. If the submitted start-
Configuration message contains the autonomous searching mode, the UAV does not request a
flight direction. Instead it calculates multiple waypoints lying on a spiral track around the start
position. Figure 3.8 shows the concept of the autonomous searching mode with two notebooks
and one UAV. After the first notebook submitted its position and the start command is given (1),
the UAV starts flying on this calculated spiral like route (2) until it gets a position message from
the second client (3). Then, it positions itself between the two clients (4) as described in Sec-
tion 3.2.3. There is no risk for collisions in a single-hop airborne relay scenario, because only
one UAV is flying in the air. In a multi-hop scenario, the UAVs are placed manually at different
altitudes to avoid collisions. The details of the message flow of the autonomous searching mode
between the clients and the UAV is described in Section 5.2.3.

3.2.3 Positioning Algorithms

UAVNet uses two positioning algorithms to place the UAVs between the clients.
The first one is the location positioning mode. It uses the submitted GPS locations of the

notebooks and directs the UAV to the exact position between these two GPS coordinates. The
second one is the signal strength positioning algorithm. It extends the location positioning mode
and includes also the received signal strength of the two notebooks to calculate a more accurate
position for the UAV. This takes the quality of the wireless connection and other environmental
influences into consideration. The used mode is transmitted to the UAV at the beginning of the
configuration process using the submitStartConfiguration message. In the following subsections,
these two positioning algorithms are described in detail.
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Figure 3.8: Concept of autonomous searching mode.

Location Positioning Mode

The location positioning mode uses the transmitted GPS locations of the two notebooks to cal-
culate the exact position between them. The calculation of this target location is simply the
average of two latitude and longitude values:

Latcenter =
1
2

(Latpos1 + Latpos2)

Loncenter =
1
2

(Lonpos1 + Lonpos2)
(3.1)

Latcenter = Latitude of center position Loncenter = Longitude of center position
Latpos1 = Latitude of client 1 Lonpos1 = Longitude of client 1
Latpos2 = Latitude of client 2 Lonpos2 = Longitude of client 2

The advantage of this algorithm is its simplicity and that the UAV is always positioned
exactly between the two notebooks, taking the inaccuracy of GPS signal into account. The
drawback is that the quality of the wireless signal and other environmental influences are not
considered. It is possible that the wireless signal of the one notebook has a lower range than the
one of the other notebook. This can happen due to obstacles, different wireless chips, antennas
with different gains or other technical and environmental influences. In this case, the UAV would
be positioned in the middle between the two notebooks, but not in the middle of the two wireless
coverages. That would result in a worse connection quality than possible.
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Figure 3.9 shows the positioning process of the UAV between two notebooks with the same
transmission range using the location positioning mode.

PING

OWN_POSITION
OWN_POSITION
DATA
Flight of the UAV

3

4

5

6

7

1

START_CONFIG

2

Client 1

Client 2

Figure 3.9: Procedure of the Location Positioning mode.

The deployment process of UAVNet using the location positioning and manual searching
mode consists of the following seven numbered steps, shown in Figure 3.9:

1. When the UAV and the mesh node is switched on and booted up, it announces its presence
by sending periodically a ping message.

2. A remote control client discovers the presence of the UAV by receiving that message. The
user selects then the deployment scenario and modes and transmits a submitStartConfigu-
ration to the UAV. Additionally, it defines the involved clients and it can subscribe to the
notification service.

3. Client 1 also receives the ping messages and transmits its position to the UAV. Further-
more, it transmits also the direction in which the UAV should fly to discover client 2.

4. The UAV now searches for the second client by flying into a predefined direction.

5. When client 2 receives the ping messages, it transmits its own GPS position to the UAV.
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6. The UAV now positions itself between the two client.

7. Both clients can now communicate with each other, using the UAV as an airborne relay.

Signal Strength Positioning Mode

To overcome the drawbacks of the location positioning algorithm, the UAV can be configured
to use the received signal strength for positioning (signal strength positioning mode). It is an
extension of the location positioning algorithm that considers also the quality of the wireless
signal to calculate the optimal location between the clients for the UAV.

The beginning of the positioning process is the same as in the location positioning mode,
shown in Figure 3.9. When the UAV is located exactly between the two notebooks using the GPS
coordinations as described in Section 3.2.3, the extended functionality of the signal strength po-
sitioning algorithm jumps in. As the UAV is positioned in the middle of a direct connection
line between the two notebooks, it is sufficient to direct the UAV towards the first or the second
notebook, depending on their signal strengths. Therefore, the signal strength values of both note-
books are continuously monitored. The best location is reached when both signal strength values
are the same. To avoid permanent back and forth movements of the UAV, possibly wrongly mea-
sured values are ignored and a threshold value is introduced. It is used to calculate the range in
which the measured signal strength values are treated as equal and, therefore, no further posi-
tioning adjustments happen.

Listing 3.2 shows the simplified pseudo code of the signal strength positioning algorithm. S1
and S2 are the signal strengths of client 1 and 2, h is the signal strength threshold, evaluated in
Section 6.1.

while (true) {
if(S1 < S2 - h) {

Flight one meter in direction of Client 1
} else if(S1 - h > S2) {

Flight one meter in direction of Client 2
} else {

Stay where you are
}

}

Listing 3.2: Pseudo code of the signal strength positioning algorithm.

Figure 3.10 shows the positioning process of the UAV between two notebooks with different
transmission ranges using the signal strength positioning mode.

3.2.4 Presence Announcement of the UAVs

UAVNet is designed to operate in large areas with not always having direct connections between
the participant mesh nodes and devices. Therefore, it is important that the UAVs announce
their presence and submit some state information about the network and their own status. To
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Figure 3.10: Procedure of the Signal Strength Positioning mode.

accomplish this, every UAV periodically broadcasts a ping message every few seconds. The
ping message can be received by all other participants like UAVs, smartphones, notebooks, etc...
It contains some data about the network and the UAV. The details can be found in Chapter 5. By
receiving such a message, the devices know that a UAV is in transmission range. In addition, the
status and the network state are announced.

3.2.5 Notifications

To monitor the entire network, UAVNet contains a notification service that provides information
about the UAVs and the locations of the clients. It sends data about the UAVs and the involved
clients to every device that explicitly subscribed to the service.

UAVNet can be monitored using an iPhone or iPad with the Remote Control App [31], which
is described in more detail in Section 2.3. The notification function works as a subscription
service. When the monitoring iPhone or iPad receives a ping message of a UAV, it can send
a notificationSubscription message to the UAV. From that moment the UAV sends periodically
notification messages to the subscribed client. The notification message contains data about the
positions of the different notebooks and information like the position, flight direction, battery
status, etc. of the UAV. The provided data can be used to draw the positions and status of
the different components of a UAVNet on an interactive map. The software on the iPhone and
iPad is capable of handling and displaying notification messages from several different UAVs.
This allows the monitoring of a complete UAVNet with several UAVs. Figure 3.11 shows a
screenshot of such a map, showing different information about the UAV and the clients. The
message flow of the notification subscription and the sent notification messages is described in
detail in Section 5.2.3.

32



Figure 3.11: Screenshot of a map showing UAVNet [31].

3.2.6 Start Procedure

The current prototype implementation of UAVNet does not contain any kind of autonomous
starting and landing procedure. The UAVs must be started manually and are placed at the de-
sired altitude before the autonomous network deployment can be started. Figure 3.12 shows the
remote control unit (RCU) of the UAV.

The complete start procedure works as follows:

• The mesh node and the UAV are switched on. The flight electronics of the UAV need
about ten seconds to boot up, the mesh node takes up to one minute. The mesh node has
booted completely when the WLAN LED are turned on.

• First, the UAV needs an accurate GPS location, with signals from at least six satellites.
Therefore, the GPS switch on the RCU has to be set to “hc:on gps:ch” ((3) in Figure 3.12)
until the UAV stops beeping. Then the switch is set back to “hc:off gps:off” (1).

• The motors are started and the UAV can fly manually to the desired start location and
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Figure 3.12: Remote Control Unit of the UAV.

altitude.

• When the UAV reaches its start location, the switch on the remote control unit is set to
“hc:on gps:hp” (2), which keeps the UAV autonomously at the current position

• When the network is configured using the Remote Control App on the iPad and the network
deployment should start, the switch is set to “hc:on gps:ch” (3).

Additional information on the calibration, starting, and GPS topic can be found in the
Mikrokopter.de wiki [34, 35, 36].

3.2.7 Simulation Script

The uavcontroller provides a simulation mode that can be used to test the monitoring client
without the need of a real flying UAV.

To test the monitoring client such as an iPhone or iPad the uavcontroller can be started in
the simulation mode. This mode uses simulated GPS locations and data about the UAV that are
defined in a separate file. To start the uavcontroller in the simulation mode the -s flag must be
added to the start command:

> ./uavcontroller -s

Listing 3.3: Starting uavcontroller in the simulation mode.
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Chapter 4

UAVNet: Hardware Implementation

In the previous chapter, the general concepts and the architecture of UAVNet were introduced.
The different components of UAVNet were described and the functionality of the entire network
as well as the individual components were shown. This and the following chapter cover the
implementation details. This includes the modifications on the involved hardware such as the
UAV and the mesh nodes as well as the detailed implementation and adaptations on the software
running on the mesh nodes and the clients.

To implement UAVNet several different hardware components are used. A minimal UAVNet
uses at least one flying UAV. It carries an attached small and lightweight wireless mesh node,
providing the WLAN connection between two clients such as notebooks, smartphones and
tablets. Additionally, an iPhone or iPad can be used to configure the network and monitor the
complete UAVNet, including the UAV in the air and the clients on the ground.

The structure of this chapter is as follows: These four sections, Section 4.1 - 4.4, describe
hardware related components and modifications, used to develop a “flying wireless mesh node”.
This includes the UAV as well as the attached mesh nodes and the serial connection between the
flight electronics of the UAV and the mesh node and the clients on the ground.

4.1 Unmanned Aerial Vehicle

The most important components of UAVNet are the UAVs carrying the wireless mesh nodes.
They should be equipped with all the required electronics such as GPS, compass, acceleration
sensors, gyroscopes, height sensors, brushless motors and controllers. Additionally, the UAVs
should be agile, but also fly pretty stable in the air and, therefore, be not too heavy.

The following components are used to implement a complete “flying wireless mesh node”:

• 1x UAV (Mikrokopter)

• 1x OM1P wireless mesh node

• 1-2x 2200mAh/11.1V LiPo

• 1x 1250mAh/3.7V LiPo for lighting
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The UAVs used for this project are based on the Mikrokopter.de platform. The Mikrokopter
was assembled by ourselves, using the Mikrokopter.de kits. All the instructions how to assemble
the different parts as well as other useful tips, hints and configuration instructions can be found in
the wiki and the forum of Mikrokopter.de [11]. The assembly took some time, but was straight
forward with the mentioned online instructions. To test the different UAVNet scenarios, three
UAVs have been built.

To increase the visibility of the position and location of the UAV in the air, several LEDs in
different colors are attached to the ends of the riggers of the quadrocopter. The Mikrokopter.de
platform proposes several different lighting schemes on [37]. The lighting used in this project is
shown in Figure 4.1. To reduce the energy consumption, only two white and one red LEDs are
attached to the UAV. This is sufficient, as no manual controlling of the UAV is required. The
LEDs are powered by an additional 3.7V LiPo battery.

Flight direction

Figure 4.1: Used lighting scheme of a UAV.

4.2 Mesh Node

The “Open-Mesh Professional Mini” is a small, lightweight and low-cost wireless mesh router
[38]. It is equipped with a Atheros AR2315(A) SoC with a 180MHz MIPS 4KEc CPU, 32MB
RAM and 8MB NAND storage. It has an Ethernet interface (Atheros AR8012), an IEEE
802.11b/g wireless interface (Atheros RF2316) and an internal serial interface UART. Addi-
tionally the OM1P is equipped with an onboard hardware watchdog chip to ensure a higher
reliability.

As the OM1P operates with a voltage between 6V and 18V, it can be powered directly with
the same LiPo battery that is used for the UAV. The drawback of using the same battery to power
the UAV and the mesh node is the high energy consumption of the UAV. This means, that also
the mesh node becomes unpowered, if the UAV drained the battery. To avoid this, we used two
separate batteries to power the UAV and the mesh node.

Power provisioning for the wireless mesh node required some customized battery cables.
They are shown in Figure 4.2. There are different configurations, using different types of con-
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nectors like “Dean plug” [39], “DC power connector” [40], and “Banana connector” [41] and
also a cable to connect a single battery to both, the UAV and the mesh node.

Figure 4.2: Different cables to provision electric power to the UAV and the mesh node.

4.3 Connection UAV - OM1P

The connection between the electronics of the UAV and the OM1P is implemented by using a
serial connection between the UART interface on the OM1P and the debug port on the NaviCtrl
of the flight electronics of the mikrokopter. As the serial interface on the wireless mesh node
works with 3.3V and the NaviCtrl operates on 5V, a logic level converter is used to establish
the connection [42]. It converts signals using 5V base voltage level to signals using 3.3V base
voltage level and vice versa. This enables the communication between these two components.
Figure 4.3 shows how the Logic Level Converter is used to connect the serial interface of the
mesh node with the flight electronics. The red circles indicate the Logic Level Converters. On
the left side, the Logic Level Converter is presented on its own. In the middle it is shown how
the Logic Level Converter was connected during the development and tests. On the right side the
Logic Level Converter is shown fully integrated into the mesh node case of the running UAVNet
prototype.
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Figure 4.3: Logic Level Converter during the development phase and in the final prototype implementa-
tion.

4.4 Client (Notebook/iPhone/iPad)

UAVNet is able to interconnect different types of wireless devices, such as notebooks, smart-
phones and tablets. The hardware of these client devices does not need to be modified. They
simply need a configured and working wireless interface to connect to the UAVNet and the ap-
propriate software, which is described in the following chapter.
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Chapter 5

UAVNet: Software Implementation

In the previous chapter, hardware related implementations, adaptations, and modifications were
described. This chapter covers the software related work.

The software of UAVNet consists of different components running on the mesh nodes and on
the clients. To guarantee the highest possible compatibility, the software on the flight electronics
of the UAV has not been modified or extended. The original software from the mikrokopter.de
project can be installed and used on the flight electronics of the UAV. The versions used in this
project can be found in Section 2.1. This firmware provides an interface for other hardware and
software components to communicate directly with the FlightCtrl and NaviCtrl and is used by
UAVNet to implement its functionality [13].

The following sections, Section 5.1 - 5.2, cover software related implementations. This
includes the complete UAVNet software architecture, the communication protocol, the modifica-
tions on ADAM and the Linux system, as well as the used configuration tools and other involved
software packages.

5.1 Wireless Extensions of ADAM

A lot of modifications and additions to the software on the node have been done to meet the de-
fined requirements. At first, ADAM had to be slightly adopted to support the new node type. As
the Meraki node, which uses almost the same hardware as the OM1P node, is already supported
by ADAM, only a few modifications had to be made.

In order to use the new IEEE 802.11s protocol as routing mechanism in the mesh network,
ADAM had to be extended by several different components.

First, the Linux kernel had to be updated. Nowadays, the Linux kernel 2.6.37.6 is used [33].
To ensure that the newest possible WLAN drivers can be used, also the compat-wireless packet is
configured and installed, currently the version 2011-12-24 [20]. Second, the old madwifi WLAN
driver [22] is replaced by the new ath5k driver [21], which supports also the AR2315 SoC now
[43]. Additionally, the software iw [27] was updated and installed to configure the mesh network
and wireless interfaces. All the drivers, protocols and tools are still under development. It
is possible that future updates will provide even better performance and stability. To prevent
the mesh node from rebooting every five minutes due to a not reset hardware watchdog, an
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additional kernel module has to be installed. This module generates a /proc/gpio device that can
be triggered by crontab to reset the watchdog. A new version of hostapd [30] is used to set up a
standard IEEE 802.11b/g AP, for clients that do not support IEEE 802.11s yet.

5.1.1 Wireless Mesh Network - IEEE 802.11s

To build up the mesh network and manage the communication between the flying mesh nodes,
the new IEEE 802.11s standard is used. It is still in a preliminary development stage, but already
supported by several soft- and hardware products and projects. As part of the mac80211 layer, a
reference implementation of the IEEE 802.11s draft is included in the Linux kernel.

The IEEE 802.11s standard is included in the mac80211 kernel module [44]. This is a
framework that can be used by driver developers to write drivers for wireless devices. The
kernel module mac80211 uses the underlying new Linux wireless configuration Application
Programming Interface (API) cfg80211 [45]. This API replaces the Wireless-Extensions [46]
and uses nl80211 [45] to configure cfg80211 devices.

These new modules are included in the ADAM build system using the compat-wireless
package to always stay up-to-date with the latest driver developments.

5.1.2 The Wireless Driver - ath5k

Ath5k is a new wireless driver for Atheros based wireless chipsets [21]. It has evolved out
of MadWiFi [22], OpenHAL [47], and the open-sourced HAL code of Atheros and Sam Leffler
[48]. Recently ath5k has been extended to support also the Atheros AR2315 SoC [43]. However,
it is still under development and not everything works smoothly until now. The used chipset
AR2315 seems to be a little different than other Atheros chipsets and needs sometimes special
treatment in the code of ath5k.

Although the Atheros chipsets should be supported by the ath5k driver, the first tries to get
this driver work with our AR2315 SoC failed completely. No wireless device was created. Only
after applying a few special patches from the ath5k development community, especially from
Wojciech Dubowik, the driver provides the full functionality now [43]. However, there still
seems to exist some incompatibilities with this chipset.

Ath5k is compiled as a kernel module staying on top of the module chain and depends on
the modules ath, mac80211, cfg80211 and compat.

5.1.3 Bridging Wireless Interfaces

To forward the traffic between the clients over the IEEE 802.11s network, a bridging interface
is set up on the nodes. It forwards the traffic from the IEEE 802.11b/g to the IEEE 802.11s
network and vice versa.

On every node, two virtual wireless interfaces (VIF) are configured. First, there is an in-
terface called mesh0 that is participant of the mesh network using the IEEE 802.11s protocol.
The second interface is called wlan0 and handles the IEEE 802.11g traffic between the wireless
mesh node and the client on the ground. hostapd uses this second interface to set up its access
point functionality. A bridge interface called br0 bridges the VIFs mesh0 and wlan0 to forward
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the traffic between these two different networks. Figure 5.1 shows a schematic presentation of
the two bridged wireless interfaces.

wlan0 mesh0

br0

node1

wlan0mesh0

br0

node2

802.11s 802.11b/g802.11b/g

Figure 5.1: Bridged wireless interfaces.

5.1.4 Configuration of Wireless Devices - iw

To configure the wireless device and the network, iw, the new nl80211 based command-line in-
terface (CLI) configuration utility for wireless devices, is used [27]. It is still under development
and replaces in ADAM the older tool iwconfig from the Wireless Tools for Linux package [49].
Currently, the version 0.9.20 is used in UAVNet, but newer versions are available.

The tool iw is used to set up the network devices, to configure it as mesh point and a wireless
AP, to configure the channels and mesh id and to apply other configuration parameters. It is in-
cluded in the ADAM build and configuration process and is called automatically when the mesh
node starts up. To configure the devices, iw uses the configuration values from the network.conf
file, introduced in ADAM. A possible configuration of such a setup with two wireless interfaces,
one bridge interface and a running hostapd is shown in Listing 5.1.

> iw phy phy0 interface add wlan0 type __ap
> iw phy phy0 interface add mesh0 type mp mesh_id uavmesh
> brctl addbr br0
> ip link set down dev wlan0
> ip link set down dev mesh0
> iw dev mesh0 set channel 1
> ip link set address 00:12:cf:d2:dc:23 dev wlan0
> ip link set address 00:12:cf:d2:dc:24 dev mesh0
> brctl addif br0 wlan0
> brctl addif br0 mesh0
> ip addr add 0.0.0.0/0 dev mesh0
> ip addr add 0.0.0.0/0 dev wlan0
> ip link set address 00:12:cf:d2:dc:24 dev br0
> ip link set dev mesh0 up
> ip addr add 192.168.230.13/24 dev br0
> ip link set up dev br0
> hostapd -B /etc/hostapd.conf

Listing 5.1: Setting up two wireless interfaces combined by a bridge and a running hostapd.
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5.1.5 Infrastructure/Managed Wireless Network - hostapd

As not every client supports the new IEEE 802.11s protocol, a standard IEEE 802.11b/g AP
is set up on the nodes. Clients can connect to it by using the published Service Set Identifier
(SSID) “uavmesh”.

Setting up the AP is done by hostapd [30], an IEEE 802.11 AP and IEEE 802.1X/W-
PA/WPA2/EAP/RADIUS Authenticator. It runs on every node in the mesh network to guarantee
a highest possible connection availability and best performance. As this is just a prototype, cur-
rently the network is protected only with a WPA2 encryption and no further authentication or
security is included. Activating additional security features seems to cause no big problems. An
exemplary running hostapd configuration is shown in Listing 5.2.

interface=wlan0
bridge=br0
driver=nl80211
ssid=uavwlan
hw_mode=g
channel=1
ctrl_interface=/var/run/hostapd
ctrl_interface_group=0
ignore_broadcast_ssid=0
dump_file=/root/hostapd.dump
logger_syslog=-1
logger_syslog_level=0
logger_stdout=-1
logger_stdout_level=0
wpa=1
wpa_passphrase=asdfasdf
wpa_key_mgmt=WPA-PSK
wpa_pairwise=CCMP TKIP
eapol_version=1
auth_algs=3
eapol_key_index_workaround=0
eap_server=0

Listing 5.2: Exemplary hostapd.conf.

5.1.6 Network configuration - network.conf

As mentioned before, the VIFs are configured and set up according to values stored in the net-
work.conf file. This simplifies the process of configuring multiple devices and the reconfigura-
tion of the network. Additionally, all the common processes and cfengine distribution mecha-
nisms of ADAM can be used to build the images and update existing networks. To make this
possible, the network.conf file has been extended by some additional configuration values. The
newly introduced variables are described in Table 5.1.
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Variable Description Default Value
UAVNET BRIDGE Set this to “yes” if this particular node is a

UAVNet bridge, which is generally the case,
and bridges the network traffic between reg-
ular IEEE 802.11g WLAN clients and the
UAVNet IEEE 802.11s mesh network. This
generates two interfaces, one for the WLAN
clients, the other one for the mesh network. If
set to “no”, only a mesh interface is generated.

“yes”

UAVNET WLAN DEVICE Defines the name of the IEEE 802.11g WLAN
interface if UAVNET BRIDGE=“yes”.

“wlan0”

UAVNET WLAN MAC MAC address of the IEEE 802.11g WLAN in-
terface.

UAVNET MESH DEVICE Defines the name of the IEEE 802.11s mesh
interface.

“mesh0”

UAVNET MESH MAC MAC address of the IEEE 802.11s mesh inter-
face.

UAVNET MESH CHANNEL Used channel for the IEEE 802.11s mesh net-
work. Must be the same on all mesh nodes.

“1”

UAVNET MESHID Defines the IEEE 802.11s mesh id. This must
be the same on all mesh nodes.

“uavmesh”

UAVNET BRIDGE DEVICE Defines the name of the bridge inter-
face if UAVNET BRIDGE=“yes”, bridg-
ing the UAVNET WLAN DEVICE and the
UAVNET MESH DEVICE.

“br0”

UAVNET BRIDGE IP IP of the bridge interface. “192.168.230.10”
UAVNET BRIDGE MASK Netmask of the bridge interface. “255.255.255.0”

Table 5.1: Newly introduced variables in network.conf

5.2 UAV Management

The key innovation of UAVNet is the software controlling and coordinating the UAVs. It consists
of different components, installed on the different participating UAVs, clients and configuration
devices of UAVNet. The most important software component of UAVNet is running on the mesh
node. Other components are running on the clients, either a notebook or an iPad/iPhone con-
trolling and monitoring the network. The software on the flight electronics provides an interface
to all needed functionality. Therefore, it does not have to be modified. This ensures a highest
possible compatibility also with newer versions of the firmware.

The software of UAVNet consists of three main components. These are the uavcontroller
running on the mesh nodes, the uavclient running on the devices on the ground and the software
running on the flight electronics of the UAVs. As the firmware running on the flight electronics
did not need to be modified, it is not described in detail in this thesis. Both components, the
uavcontroller and the uavclient, make use of two libraries. The first one is libuavext, which
handles the external communication, meaning the communication between the mesh nodes and
the clients using the wireless interface. The second library is libuavint. It handles the UAV
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internal communication, meaning the communication between the mesh node and the flight
electronics using the serial interface. The uavcontroller includes both libraries, the uavclient
uses only libuavext. These two libraries work as the interfaces between the mentioned three
main software components of UAVNet.

This modular approach allows the implementation of other clients or controllers by including
the provided libraries. One example is the iPhone/iPad client to configure and monitor UAVNet.
Another one could be the implementation of an Android version (see Section 7.2). In the fol-
lowing subsections the uavcontroller, uavclient, libuavext, and libuavint are described in detail.

5.2.1 Uavcontroller

The uavcontroller is the main component of UAVNet and runs on every mesh node of the net-
work. It handles all the communication between the mesh nodes, the clients and the flight
electronics. Additionally, it controls and monitors the different parameters from the UAV and
sends appropriate commands and information to the flight electronics, clients and other mesh
nodes.

The uavcontroller runs as a daemon on the Linux wireless mesh node. It is crucial that the
uavcontroller is always running, otherwise there is no more control over the UAV. Therefore,
the daemon is configured to automatically be restarted, if there should be a problem with it or
if it is shutted down unexpectedly. This is achieved by using the respawn mechanism of init
which restarts a process automatically, if it gets killed [50]. Additionally, a mechanism can be
implemented that restarts uavcontroller, if it becomes unresponsive. This could be some kind of
a software or hardware watchdog and could be realised as future work.

The component uavcontroller consists of several different parts: Besides the main part, two
libraries are included and several parts are running as separate threads. Figure 5.2 shows a
schema of the architecture of the uavcontroller. In the following the different parts are described
in detail:

main

This is the main part of the uavcontroller. It controls the entire system and manages the different
running threads, the wireless and serial interfaces and contains the entire logic. Further, it man-
ages the flow of the different information and control messages. It includes the libuavext and
libuavint and spawns the different threads. It contains also the state and data of the UAVs, the
current network configuration and status and keeps track of the existing clients, the other UAVs,
and subscribed configuration devices.

External Communication - libuavext

libuavext is programmed as a library, used to manage the external traffic in the network. This
includes the traffic between the mesh nodes, as well as the traffic between the mesh nodes and
the client devices. It is included in the uavcontroller software, as well as in the software on the
clients and on monitoring and configuration devices like iPhones or iPads. It manages both, the
outgoing and incoming traffic and is responsible for the following tasks:
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Figure 5.2: Schema of the architecture of the uavcontroller.

• Establishing, listening on, managing, handling and closing all different kind of sockets on
different ports to enable the communication between the different devices.

• Handling and translating the different hostnames, Internet Protocol (IP), and MAC ad-
dresses, using standard operating system procedures like static hostname - IP mappings
in the /etc/hosts file, Domain Name System (DNS) using the /etc/resolv.conf file, and the
Address Resolution Protocol (ARP).

• Sending and receiving all different kind of TCP and UDP packets on the different sockets.
This includes the automatic retransmission on failed submissions.

• Handling, decoding, and encoding all the different outgoing and incoming notification,
ping and control messages. This includes the Cyclic Redundancy Check (CRC) calcula-
tion and validation, as well as the base64-encoding and -decoding among other tasks.

Internal Communication - libuavint

libuavint is a library similar to libuavext, but it handles the internal communication between the
mesh node and the flight electronics of the UAV using the serial interface. It is included only in
the uavcontroller software running on the mesh node. Like the libuavext, it manages both, the
outgoing and incoming traffic on the serial interface and is responsible for the following tasks:

• Managing the serial connection between the mesh node and the flight electronics of the
UAV.

• Sending and receiving the different messages between the mesh node and the UAV.
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pinger

pinger is a thread that broadcasts every few seconds some information about the UAV using a
sendPing-message. It uses a multicast address and the port 7655. All clients and configuration
devices receiving such a message know that the UAV is in transmission range, its current status
and the positions of already found registered other clients.

notifier

notifier is a thread sending regularly notification-messages to subscribed clients or configuration
devices. It uses an unicast address and the port 7656 to transmit the message containing a
Notification t-structure as payload. It contains the GPS coordinates, the altitude, battery voltage,
heading, speed and the status of the UAV and network. To receive the notification-messages,
a client or configuration device must subscribe itself to the notification service at first, using
a notificationSubscription-message. The same message can be used to unsubscribe from the
service.

pinglistener

pinglistener is a thread, listening for broadcasted ping-messages by other UAVs on the port 7655.
It keeps track of all the UAVs, including their current states and found client positions. This
mechanism ensures that every UAV knows exactly the current network state and the positions of
the other UAVs and clients, even if another UAV discovered the notebooks or smartphones on
the ground.

seriallistener

seriallistener is a thread, listening for serial transmissions from the flight electronics. These
are regular messages like current navigation and status information or answers on sent serial
commands. seriallistener collects all incoming messages and passes them to the main part of
the uavcontroller for further evaluation and processing.

5.2.2 Uavclient

The uavclient is the software running on the clients or configuration devices on the ground. It
includes the libuavext to communicate with the mesh nodes in the air, using a wireless IEEE
802.11g connection. There are different possibilities to implement this part of software. The
proposal we make in this thesis is only one way to do it and works as follows:

The devices on the ground are divided in two groups, playing different roles in the UAVNet.
The first group are the notebooks trying to communicate with each other. The second group
contains a monitoring and configuration device, in our case an iPhone or iPad. It is also possible
to write a client software containing both components, without the existence of an iPad/iPhone
or an Android version. The two following subparagraphs describe the role of the two different
device groups.
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Notebook

In general, the uavclient running on the notebook on the ground, listens for a near UAV and
transmits its position to the flying mesh node.

In detail it works as follows: The uavclient listens on the port 7655 for a ping-message from
a UAV. As soon as it receives such a message it knows that a UAV is in transmission range.
The ping-message contains information about the current state of the UAV and the UAVNet.
Depending on this information, the uavclient transmits its own position to the UAV using a
submitPosition-message. This type of message contains a GPS Pos t structure and the MAC-
address of the notebook. If the transmission is successful, the uavcontroller running on the
mesh node registers the client and its position and continues deploying the UAVNet, depending
on the current state and configuration, as described in more detail in Section 3.2.

Configuration Devices

The iPad/iPhone is used to configure and deploy the network as well to monitor it. The Remote
Control App running on it includes also the libuavext library and listens on the port 7655 for a
ping-message from a nearby UAV. If a UAV is discovered, the app provides the possibility to
define the network scenario and the used positioning and searching modes. After submitting
this configuration by transmitting a submitStartConfiguration-message, the deployment process,
as described in Section 3.2, is initialized. Additionally the iPad/iPhone can subscribe to the
UAV’s notification service, using a notificationSubscription-message. From this moment on, the
software listens on port 7656 for the notification-messages from the UAVs. These messages
contain all needed information to show the positions of the UAVs and clients on an interactive
map, with some additional values like the altitude, speed, direction and battery level of the UAVs.

5.2.3 Communication Protocol

To transmit messages between the mesh nodes, the clients, and the flight electronics, a special
protocol is used. For both types of messages (for internal and external messages) the same pro-
tocol with slight modifications is used. The software running on the flight electronics provides
already an interface and a protocol to transmit messages [13]. This message protocol is im-
plemented in UAVNet for the internal messages. To keep it simple and standardized, the same
protocol is used also for the external messages with a slight adaption. The following paragraphs
describe how the protocol is implemented and what messages are defined.

Protocol Messages

Every sent and received message, either between the mesh nodes or between the mesh node and
the flight electronics, is a special string of characters. Figure 5.3 shows the structure of a typical
internal message in detail:

It starts with the dedicated 1-byte sign ’#’ to signalize the start of a message. The second
byte describes the part of the flight electronics, that is the sender or receiver of this message and
can be one of the following characters:
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# Start delimiter / End delimiter

c Address: a=any, b=FC, c=NC, d=MK3Mag 

s Command: s=Send target position

F Data: "modified-base64" encoded

CRC

r Y \r= r Y= \r= =

\r

r Y

Figure 5.3: Internal message format.

• ’a’: No specific component

• ’b’: FlightCtrl

• ’c’: NaviCtrl

• ’d’: MK3Mag

The third byte is an ’id’ that defines the command or kind of message. The following bytes
are the actual payload, encoded by a modified Base64 algorithm. The next two bytes are CRC
characters to ensure the correct encoding and transmission of the message and finally the end-
byte ’\r’ signalizes the end of the message.

The structure of a typical external message is very similar to an internal message and is
shown in Figure 5.4. The only difference is the omitted ’id’-byte, which describes the flight
electronics part in internal messages.

The payload of such a message can contain anything from a simple 1-byte value to a complex
nested structure. The UAVNet-software provides methods to simplify the process of generating
and extracting transmission messages. To transmit complex data like navigation and position
information, the data is packed and handled in c structures [51], which can be converted into
transmission messages. The off-the-shelf software on the UAV flight electronics uses the same
mechanism to handle the data.
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s Command: s=Send target position

F Data: "modified-base64" encoded

CRC

\rr Yr Y \rF m b | = == =
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Figure 5.4: External message format.

In-UAV Messages

In the following, the existing internal messages are described in detail. The firmware of the flight
electronics implements some more messages, which are not used by UAVNet and, therefore, not
implemented and supported. Every specific message is sent only in one direction, from the
mesh node to the flight electronics or vice versa. There exists similar messages in one or the
other direction but every ’id’-byte is unique for one message-type.

outSerialLinkTest

The outSerialLinkTest message, shown in Figure 5.5, is sent from the mesh node to the flight
electronics and is used to test the serial connection. It contains a two-byte integer as payload.
This message is sent periodically until it gets an inSerialLinkTest message with the same integer
as payload. From this moment, the software knows, that the serial connection is established and
the flight electronics booted up and is running and functional.

# c z 8273 r Y \rX X \r

Figure 5.5: Message outSerialLinkTest.
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inSerialLinkTest

Figure 5.6 shows the inSerialLinkTest message. It is sent from the flight electronics to the mesh
node as an answer on a received outSerialLinkTest message. It contains the same two-byte
integer value, that was sent from the mesh node. This test ensures that the UAVNet-software
waits to send data to the flight electronics until it is booted up and the serial connection is
working.

# c Z 8273 r Y \rX X \r

Figure 5.6: Message inSerialLinkTest.

outSerialOSDInterval

The message outSerialOSDInterval, shown in Figure 5.7, is sent from the mesh node to the flight
electronics and contains as payload a 1-byte integer. It configures the sending interval in 10ms
steps of the inSerialOSDData messages, sent from the flight electronics to the mesh node. The
outSerialOSDInterval message must be resent at least every four seconds to ensure a regular
reception of inSerialOSDData messages.

# c o 10 r Y \rX X \r

Figure 5.7: Message outSerialOSDInterval.

inSerialOSDData

Figure 5.8 shows the message inSerialOSDData, which is sent periodically from the flight elec-
tronics to the mesh node with the interval defined by the outSerialOSDInterval message. Usu-
ally, it happens a few times per second. The message contains a NaviData t structure, which is
shown in Figure 5.9. The structure NaviData t contains a lot of different positions and values
from the NaviCtrl of the flight electronics of the UAV. These are for example the current and
next GPS positions, flight altitude, flight direction and speed, battery voltage and many more.
Some of these values are sent in the sendPing and sendNotification messages to the clients and
configuration devices.

# c O NaviData_t X X \r\r

Figure 5.8: Message inSerialOSDData.
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NaviData_t

Version (uint8)

TargetPosition

HomePositionDeviation

WaypointIndex

(GPS_Pos_t)

TargetPositionDeviation

HomePosition

(GPS_PosDev_t)

(GPS_Pos_t)

(GPS_PosDev_t)

(uint8)

WaypointNumber (uint8)

SatsInUse

Altimeter

UBat

GroundSpeed

(uint8)

(int16)

Variometer

FlyingTime

(int16)

(uint16)

(uint8)

(uint16)

Heading (int16)

CompassHeading

AngleNick

FCFlags

NCFlags

(int16)

(int8)

AngleRoll

RC_Quality

(int8)

(uint8)

(uint8)

(uint8)

Errorcode (uint8)

OperatingRadius

TopSpeed

(uint8)

(int16)

TargetHoldTime

RC_RSSI

(uint8)

(uint8)

Gas

Current

(uint8)

(uint16)

UsedCapacity (uint16)

CurrentPosition (GPS_Pos_t)

SetpointAltitude (int16)

Figure 5.9: NaviData t structure.

outSerialRequestWaypoint

The message outSerialRequestWaypoint, shown in Figure 5.10, is sent from the mesh node to
the flight electronics and requests a given waypoint stored in the waypoint list of the UAV.
The payload is a 1-byte integer containing the index of the requested waypoint. The answer
from the flight electronics on an outSerialRequestWaypoint-message is an inWaypoint-message
containing the requested waypoint structure.
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# c w a

a Index of requested waypoint

X X \r\r

Figure 5.10: Message outSerialRequestWaypoint.

inWaypoint

Figure 5.11 shows the message inWaypoint, which is sent from the flight electronics to the mesh
node in answer to a received outSerialRequestWaypoint message. As payload the message con-
tains a Waypoint t structure, shown in Figure 5.12. This structure contains the GPS coordinates
of the requested waypoint and some additional information.

# c w a

a Number of waypoints

X X \r\rb Waypoint_t

b Index of sent waypoint

Figure 5.11: Message inWaypoint.

Waypoint_t

Position

Heading

Event_Flag

Index

(GPS_Pos_t)

(int16)

ToleranceRadius

HoldTime

(uint8)

(uint8)

(uint8)

(uint8)

Reserve (uint8[11])

Figure 5.12: Waypoint t structure.

outSerialSendWaypoint

The message outSerialSendWaypoint, shown in Figure 5.13, is sent from the mesh node to the
flight electronics and submits an additional waypoint to the waypoint list stored on the UAV.
It contains a Waypoint t structure, shown in Figure 5.12. If the GPS Pos t structure (shown in
Figure 5.12), included in the Waypoint t structure, contains a 0 as the Status value, the flight
electronics clear the entire waypoint list. This mechanism is used when a new waypoint route
must be submitted to the UAV, or if the flight should be aborted. The answer from the flight
electronics on a received outSerialSendWaypoint message is an inNbrOfWaypoints message.
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# c w Waypoint_t X X \r\r

Figure 5.13: Message outSerialSendWaypoint.

GPS_Pos_t

Longitude

Latitude

(int32)

(int32)

Altitude

Status

(int32)

(uint8)

Figure 5.14: GPS Pos t structure.

inNbrOfWaypoints

Figure 5.15 shows the message inNbrOfWaypoints, which is sent from the flight electronics to
the mesh node after processing the received outSerialSendWaypoint message. It contains only
a 1-byte integer value, showing how many waypoints currently are stored on the UAV flight
electronics.

# c W a

a Number of waypoints

X X \r\r

Figure 5.15: Message inNbrOfWaypoints.

outSerialSelectFC

The message outSerialSelectFC, shown in Figure 5.16, is sent from the mesh node to the flight
electronics and is used to change the main component. It is implemented in the UAVNet software
only for compatibility and future purposes and implementation. It is not used for the current
functionality.

# c u 0 X X \r\r

Figure 5.16: Message outSerialSelectFC.

53



outSerialSelectNC

The message outSerialSelectNC, shown in Figure 5.17, is sent from the mesh node to the flight
electronics and is used to change the main component of the UAV. It is a kind of a special
message and has not the same structure as all other messages. It has to be sent before any out-
SerialSendWaypoint message. Otherwise the flight electronics would not accept the transmitted
waypoint.

0x1B 0x1B 0x55 0xAA 0x00

Figure 5.17: Message outSerialSelectNC.

External Messages

In the following, all the existing external messages are described in detail. All of these messages
are sent between the mesh nodes and the clients or the configuration devices. The structure of an
external message is shown in Figure 5.4. It looks very similar to the one of an internal message.
The only difference is the omitted ’id’-byte.

submitStartConfiguration

The message submitStartConfiguration, shown in Figure 5.18, is sent from the client or the
monitoring/configuring device to the wireless mesh node. It is the first message that has to be
transmitted to start the deployment of a UAVNet. Its payload contains a StartConfig t structure,
shown in Figure 5.19. This structure contains the used scenario and searching and positioning
algorithms, described in Section 3.2. Additionally, it contains an AllowedClients t structure,
shown in Figure 5.20. This structure contains the MAC addresses of the two clients involved in
an Airborne Relay scenario. Only these two clients are allowed to transmit their position to the
UAV. Once a submitStartConfiguration message is sent to the UAV, it cannot be changed any-
more, except an abort message is sent and the deployment process is restarted. After receiving
a submitStartConfiguration message, the UAVNet starts to deploy the network, depending on the
submitted configuration values.

# C \rr YX X \rStartConfig_t

Figure 5.18: Message submitStartConfiguration.
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StartConfig_t

Scenario

Searching

(uint8)

(uint8)

Positioning

AllowedClients

(uint8)

(AllowedClients_t)

Figure 5.19: StartConfig t structure.

AllowedClients_t

MAC1

MAC2

(uint8[6])

(uint8[6])

Figure 5.20: AllowedClients t structure.

submitPosition

Figure 5.21 shows the message submitPosition, which is sent from the client notebook the the
mesh node. It contains a Submitted Pos t structure as shown in Figure 5.22. A Submitted Pos t
structure contains a GPS Pos t structure with the GPS coordinates and the MAC address of the
submitting client.

# P \rr YX X \rSubmitted_Pos_t

Figure 5.21: Message submitPosition.

Submitted_Pos_t

Position

MAC

(GPS_Pos_t)

(uint8[6])

Figure 5.22: Submitted Pos t structure.

sendNotificationSubscription

The message sendNotificationSubscription, shown in Figure 5.23, is sent from the client or the
monitoring/configuring device to the mesh node to subscribe to the UAV’s notification service.
Normally it is sent either after the client received a ping message, or if the user selected it on
the configuration device. The payload of this message is a NotificationSubscription t shown in
Figure 5.24. This structure contains a 1-byte integer to define if the sending device should be
subscribed or unsubscribed and the IPv4 or IPv6 address of the subscribing client or configura-
tion device.
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# N \rr YX X \rNotification_Subscription_t

Figure 5.23: Message sendNotificationSubscription.

NotificationSubscription_t

Subscription

Addr

(uint8)

(sockaddr_storage)

Figure 5.24: NotificationSubscription t structure.

sendFlightDirection

Figure 5.25 shows the message sendFlightDirection, which is sent from the client or configu-
ration device to the mesh node. It tells the UAV to which GPS location the UAV should fly
at maximum to reach the second notebook. Therefore, the payload of the sendFlightDirection
message is a Submitted Pos t structure, shown in Figure 5.22.

# D \rr YX X \rSubmitted_Pos_t

Figure 5.25: Message sendFlightDirection.

sendNotification

The message sendNotification, shown in Figure 5.26, is sent regularly from the mesh node to
subscribed clients or configuration devices. The payload of this message is a Notification t
structure shown in Figure 5.27. It contains a GPS Pos t structure (see Figure 5.14), a Status t
structure (see Figure 5.29) and some additional information like the altitude, battery voltage,
heading and speed. The sendNotification message is sent periodically every few seconds to all
devices, that subscribed to the notification service using a sendNotificationSubscription message.

# n \rr YX X \rNotification_t

Figure 5.26: Message sendNotification.
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Notification_t

Position

Height

Speed

Status

(GPS_Pos_t)

(uint16)

Battery

Heading

(uint8)

(int16)

(uint16)

(Status_t)

Figure 5.27: Notification t structure.

sendPing

Figure 5.28 shows the message sendPing, which is broadcasted regularly by the mesh node. The
payload of that message is a Status t structure as shown in Figure 5.29. This structure contains
information about the configuration of the network, the positions of the clients and the hostname
of the UAV, as well as its position, IP and MAC address. The sendPing message is broadcasted
every few seconds using a multicast address and the port 7655.

# p \rr YX X \rStatus_t

Figure 5.28: Message sendPing.

Status_t

Scenario

State

Position Client1

Position Client2

Hostname

(uint8)

(uint8)

Positioning

Searching

(uint8)

(uint8)

(Submitted_Pos_t)

(char[])

(Submitted_Pos_t)

IPv4 (char[])

MAC (uint8[6])

Position (GPS_Pos_t)

Figure 5.29: Status t structure.

outSocketResponse

The message outSocketResponse, shown in Figure 5.30, is sent in answer to almost every re-
ceived control message. It contains a 1-byte integer that signalizes if the transmission and com-
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mand was successful or if it failed. As answer on a submitStartConfiguration message, a special
answer is sent if the chosen scenario is Airborne Relay, to let the client know that a sendFlight-
Direction message is expected.

# r \rr YX X \ra

a Response value

Figure 5.30: Message outSocketResponse.

sendAbort

Figure 5.31 shows the message sendAbort, which is sent from the client or configuration device
to abort the entire setup process. It contains only a 1-byte integer as payload. If the UAV receives
such a message it aborts everything and flies back to his home position.

# A \rr YX X \r1

Figure 5.31: Message sendAbort.

Message Flow

In the following, the three main message flows are described in detail. These are the UAVNet
deployment processes using the Manual Searching and Autonomous Searching algorithm and
the message flow for the Notification Service. The shown scenario is the standard Airborne Re-
lay consisting of a UAV, a monitoring iPhone and two clients on the ground. All the messages
(except the broadcasted ping and the notification messages) are acknowledged with an outSock-
etResponse message. For reasons of clarity these acknowledgement messages are not shown in
the following figures.

Manual Searching Mode Message Flow

Setting up a UAVNet using the manual searching algorithm is shown in detail in Figure 5.32 and
works as follows:

• The user starts the Remote Control client.

• Then he/she switches on the UAV.

• As soon as the software on the flight electronics has booted, which takes some seconds,
and the mesh node has connected successfully to the flight electronics, the UAV begins to
broadcast periodically the ping message to indicate its presence and its current state (1).
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Client 1 UAV / MeshiPhone

PING

START_CONFIG

DIRECTION?

OWN_POSITION

Flight in given direction

(manual search)

Client 2

DIRECTION

PING

PING

OWN_POSITION

Flight to final position

1

2

3

4

5

6

7

9

8

10

PING

PING

PING

1

8

Figure 5.32: Message flow of manual searching mode.

• These messages are received by the iPhone, and the UAV is shown as a newly detected
UAV in the GUI.

• The user configures the scenario, searching, and positioning mode, defines the MAC ad-
dressed of the participating clients and transmits this information to the UAV using a
submitStartConfiguration message (2).

• In the manual searching mode, the UAV asks now for the direction of the expected location
where it should get connection to the second client (3).

• After selecting this direction on the iPhone and transmitting it to the UAV with a send-
FlightDirection message, the configuration is done (4). From this moment, the ping mes-
sages, broadcasted by the UAV, contains the awaiting position 1 state.

• As soon as the client 1 receives such a message (5), it sends its own position to the UAV,
using a submitPosition message (6).

• The UAV starts the flight in the given direction (7), broadcasting an awaiting position 2
ping message (8).
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• When client 2 receives such a message, it transmits again its own position to the UAV (9).

• The uavcontroller software calculates now the center coordinates between these two GPS
positions and flies to this location (10).

• The UAVNet deployment is done.

Autonomous Searching Mode Message Flow

The setup process of a UAVNet using the autonomous searching mode is similar to the manual
searching one and is shown in detail in Figure 5.33. The differences are the following:

• The UAV does not require a flight direction. Therefore, the user does not need to define a
flight direction on the Remote Control App (iPhone).

• The uavcontroller switches directly to the awaiting position 1 state after receiving a sub-
mitStartConfiguration message, containing the autonomous search mode.

• The UAV does not fly on a direct line to the second client, but along a spiral around the
first client. As the number of stored waypoints on the flight electronics of the UAV is
limited, it does not fly on a smooth spiral, but on a spiral shaped line of waypoints.

Once the UAV received the position of the second client, it uses the same algorithms as in
the manual searching mode to calculate the center position and flies to this location.

Notification Service

The message flow of the notification service, shown in Figure 5.34, is straight forward. When the
configuration device receives a ping message of a UAV and, therefore, knows that it is present
and in transmission range, it can register to the service by sending a sendNotificationSubscription
message. Unsubscribing is done by sending the same message but with a different payload.
While being subscribed, the registered client or configuration device receives periodically a
sendNotification message.
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Client 1 UAV / MeshiPhone

PING

START_CONFIG

OWN_POSITION

Flight on a spiral to find the
second client autonomously

(autonomous search)

Client 2

PING

PING

OWN_POSITION

Flight to final position

PING

PING

PING

Figure 5.33: Message flow of autonomous searching mode.
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PING

NOTIFICATION
SUBSCRIPTION
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NOTIFICATION
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UNSUBSCRIPTION
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PING

Figure 5.34: Message flow of a notification subscription.
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Chapter 6

Evaluation

The main goal of UAVNet is to provide a solution to deploy a performant and reliable network
in a fast and easy way. To evaluate the performance of UAVNet and to compare it to ground-
based approaches, different Round-trip Time (RTT) and TCP/UDP throughput measurements
have been performed. RTT measurements were done by using the ping tool from the iputils
package [52]. The throughput of the network was measured by using netperf [53]. Different
scenarios have been set up to evaluate the different parts and networks of UAVNet.

The evaluation of UAVNet is structured as follows: Section 6.1 evaluates the optimal signal
strength threshold between two UAVs in terms of optimal network performance and reliability.
The mesh network performance including multiple nodes is measured and discussed in Sec-
tion 6.2. Section 6.3 evaluates a complete UAVNet one-hop Airborne Relay scenario. It shows
several measurements with UAVs located at different positions and compares the results between
flying mesh nodes and ground-based approaches. The chapter concludes with the evaluation of
a multi-hop Airborne Relay scenario in Section 6.4.

6.1 Optimal Signal Strength Threshold

To set up a performant and reliable network, the distances and signal quality between the network
participants is crucial. To measure the optimal distance between the UAVs, the optimal signal
strength threshold has been evaluated by measuring the RTT and the TCP and UDP throughput
with decreasing distance between the two nodes.

6.1.1 Evaluation Setup

To determine the optimal signal strength threshold, we performed multiple measurements be-
tween two mesh nodes while the distance between them was constantly decreased, as shown in
Figure 6.1. In order to obtain meaningful results, the nodes have been placed considering the sig-
nal strength between them, independent of the real distance between the nodes. We measured the
TCP and UDP throughput with the netperf tool, using its TCP STREAM and UDP STREAM
tests. The RTT was evaluated by using the ping tool, performing 1000 measurements with a
measurement interval of 0.1 seconds and a payload of 56 bytes. To measure the signal strength,
we used the iw tool [27].
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node01

TCP/UDP throughput, RTT measurements

node02

Deplacement

Figure 6.1: Evaluation Setup to determine the optimal signal strength threshold.

6.1.2 Results

Figure 6.2 shows the average TCP throughput and the standard deviations (whiskers) between
two mesh nodes with decreasing distance between them. For signal strengths above -70 dBm
the throughput reaches a pretty stable value of about 10 Mbps. For a value below -70 dBm,
the TCP throughput drops significantly. The reason for this is the higher number of packet
retransmissions, caused by more lost packets on weak connections. The lists of all achieved
measurements can be found in the Tables B.1, B.2, B.3, and B.4 in Appendix B.1.
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Figure 6.2: TCP throughput between two mesh nodes depending on signal strength.

The results of the UDP throughput measurements, shown in Figure 6.3, depict a very similar
graph. The throughput decreases significantly below a signal strength of -70 dBm and stays very
stable at around 16-17 Mbps above this threshold. As UDP has no flow and congestion control,
the measured receive rate is slightly lower than the send rate. Thus, some packets are lost. This
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is marked in green color in Figure 6.3. Overall, the UDP throughput is higher than the TCP
throughput as expected.
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Figure 6.3: UDP throughput between two mesh nodes depending on signal strength.

During the TCP and UDP throughput measurements also the RTT was evaluated. Figure 6.4
depicts the average RTT and the standard deviations depending on the received signal strength
on the mesh node. The RTT increases with a signal strength of below -70 dBm.

Based on the described TCP and UDP throughput and RTT measurements, we defined a sig-
nal strength threshold of -60 ± 10 dBm for an optimal positioning of the UAVs. This threshold
guarantees a performant network with fast and reliable connections.
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Figure 6.4: RTT between two mesh nodes depending on signal strength.

6.2 Mesh Network Performance

To evaluate the performance of the wireless mesh network, multiple UDP and TCP throughput
and RTT measurements have been performed. First, the influence of the number of involved
nodes on the network performance has been tested. Second, the effect of too far away nodes
has been measured, to evaluate the influence of wrongly placed UAVs. A failure or removal of a
center node would result in a similar situation and network performance.

6.2.1 Multi-Hop Performance

UAVNet is designed to deploy large networks, consisting of multiple wireless mesh nodes.
Therefore, it is crucial to know the expectable network performance and how the connections
behave, depending on the number of involved network members. As the nodes of our UAVNet
prototype contain only one radio and a single channel communication, a decrease in the perfor-
mance is expected for multi-hop connections.

Evaluation Setup

To evaluate the influence of multiple mesh nodes on the performance of a network connection,
four nodes were placed outdoors in a chain topology with the evaluated signal strength threshold
of -60 ± 10 dBm between them. We measured the TCP and UDP throughput between the
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first node (node01) and the other nodes (node02, node03, node04), as shown in Figure 6.5.
The measurements were done with the netperf and ping tool, using the same configuration and
parameters as in the tests before.

node01 node02 node03 node04

1 Hop

2 Hops

3 Hops

Figure 6.5: Evaluation Setup of Multi-Hop Performance Measurements.

Results

The results of the measurements are shown in Figure 6.6. They are listed in detail in the Ta-
bles B.5, B.6, and B.7 in Appendix B.2. The graph includes the average TCP and UDP through-
put over one to three hops and the corresponding standard deviations (whiskers). The measured
TCP and UDP throughputs over one hop are a bit lower but similar to the results gained in the
Optimal Signal Threshold (Section 6.1) experiment. As expected, the throughput over multiple
hops is significantly lower than if only two nodes are involved. This is a known phenomenon
in ad-hoc networks for a small number of hops and is due to the one radio and single chan-
nel communication of our prototype nodes. The reason for this is that node02 forwards the
packets to node03 using the same radio as for the communication with node01. Using a three-
hops-connection shows only a small decrease in the throughput, compared to the two-hops-
communication. The reason for this is that the nodes are positioned far enough from each other,
so the link between node01 and node02 does not affect the communication between node03 and
node04 too much. As in all experiments the UDP throughput is higher than the TCP throughput.
But due to the lacking retransmission in the UDP protocol, some packets are lost.
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Figure 6.6: TCP and UDP throughput over multiple mesh nodes.

6.2.2 Too Far Away Node

As seen in the experiments before, the positioning of the UAV is crucial for the network perfor-
mance. As UAVNet is highly mobile, it is likely that the UAVs are not placed totally accurate all
the time. An other aspect needs to be considered as well: in possible future implementations of
UAVNet a UAV must leave the network to recharge its battery or it can fail completely. To mea-
sure the influence of such not optimal UAV positioning or the failure of an intermediate mesh
node, the following additional scenario has been set up and evaluated.

Evaluation Setup

Three mesh nodes (node01, node02, node03) have been placed outside, stationary on the ground
in a chain setup, as shown in Figure 6.7. We measured the TCP and UDP throughput between
node01 and node03, using node02 in-between as traffic forwarder. To simulate a node failure,
node02 has been removed afterwards and the throughput measurements have been repeated.
Node01 and node03 were kept at the same place and had only a very weak connection, because
of the big distance between them.
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node01 node02 node03

2 Hops

node01 node03

1 Hop

Figure 6.7: Evaluation Setup of the “Too far away node”-Scenario.

Results

The results shown in Figure 6.8 are expected. The measured throughput with the included center
node node02 is very similar to the 2-hops result in the Multi-Hop Performance test. With a
removed center node, the TCP throughput decreases drastically by a factor of 10 from 2.7 Mbps
to 0.2 Mbps. Also the UDP throughput drops significantly. Additionally, a lot of packet loss
occurs in the second UDP experiment. However, communication was still possible and affirms
the optimal positioning of the nodes in respect of deploying a robust network. The measured
values can be found in the Tables B.8, B.9, and B.10 in Appendix B.3.

Based on these results, three different strategies for recharging the batteries of the UAVs are
conceivable:

• UAVs leaving the network to recharge its batteries are not replaced by other UAVs and
the network does not adapt. This would be the simplest solution to implement. The
evaluation results show that communication in the network is still possible but the network
performance might decrease drastically.

• The leaving UAV could be replaced immediately by a fully charged UAV. This strategy
would ensure a high network performance all the time, but it needs some additional UAVs
in reserve. Maybe the overall network performance would be higher if these additional
UAVs are integrated in the network instead of keeping them in reserve to replace other
UAVs.

• The third strategy could be to not replace the leaving UAV, but to adapt the positions of the
remaining UAVs, to close the “hole”. After the recharging of the battery, the UAV could
be reintegrated in the network. This strategy would result in a slightly lower network

69



performance because gaps between the nodes are larger than in an optimal scenario, but
no additional UAVs are required.
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Figure 6.8: TCP and UDP throughput over multiple mesh nodes.

6.3 End-to-End Throughput in a Single-Hop Airborne Relay Sce-
nario

The measurements described above evaluate the wireless mesh network, not including the end
systems. This is only one part of a complete UAVNet setup. Therefore, some evaluations with a
fully functional Single-Hop Airborne Relay setup have been done. This includes two stationary
placed notebooks as clients and a flying UAV with an attached wireless mesh node, working as
an airborne relay. We evaluated the advantage of our flying UAVNet approach over setups where
the wireless mesh nodes were placed on the ground. Additionally, the difference between the
location based and the signal strength positioning algorithm have been evaluated.

6.3.1 Evaluation Setup

In this setup several TCP throughput measurements have been performed. Two notebooks
(shown as client1 and client2 in Figure 6.9) were placed on the ground, with a distance of
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75 m between them. They stayed at the same place during all measurements. The UAV was
placed and moved at an altitude of about 3-5 meters over ground to different locations. Both
notebooks were connected to the UAV using a wireless IEEE 802.11g connection. The setup is
shown in Figure 6.9. The TCP throughput measurements between client1 and client2 have been
performed multiple times with the same configuration and parameters, but with the UAV located
at the following positions:

1 2

35

4client1 client2

Figure 6.9: End-to-end throughput setup.

1. The UAV was placed on the ground, directly beside client1 to simulate no flying UAV
between the two clients. As the clients are configured to communicate using an AP, using
a different technology to interconnect the two clients with no involved mesh node could
result in measurements, which are not comparable to the desired network scenario.

2. The UAV was placed on the ground, exactly between the two notebooks, to simulate a
ground based approach, using the Location positioning algorithm.

3. The UAV was hovering exactly between the two notebooks, to measure the UAVNet ap-
proach, using the Location positioning algorithm.

4. The UAV was placed on the ground, with the same signal strength to both notebooks to
simulate a ground based approach, using the Signal Strength positioning algorithm.

5. The UAV was flying with the same received signal strength from both notebooks to mea-
sure the UAVNet approach, using the Signal Strength positioning algorithm.

As the two notebooks have different hardware and software, the strengths of their transmitted
wireless signals were not the same. This is the reason why the UAV was not positioned exactly
between the notebooks when it received the same signal strength from both notebooks.

6.3.2 Results

Figure 6.10 depicts the average TCP throughput from one notebook to the other one with the cor-
responding standard deviation (whiskers), depending on the location of the UAV. The achieved
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results are listed in Table B.11 in Appendix B.4. Measurements with location 1) resulted in
a very low TCP throughput of 0.064 Mbps, which indicates that the notebooks had almost no
direct connection. The evaluation shows that there is a huge difference between ground based
approaches and our flying UAVNet proposal. With a flying UAV, we reached a 5.3 to 6.3 times
higher throughput, than when the UAV is positioned on the ground at the same location. Also
the used positioning algorithm has significant influence on the reached throughput. The Sig-
nal Strength Positioning algorithm resulted in a 24% - 46% higher throughput compared to the
Location Positioning mode. The best measured throughput was achieved, when the airborne
relay was set up using the Signal Strength Positioning algorithm. The throughput was 127 times
higher than the measurement with no UAV positioned between the notebooks.
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Figure 6.10: TCP throughput between two notebooks in an airborne relay setup.

6.4 End-to-End Throughput in a Multi-Hop Airborne Relay Sce-
nario

As seen in Section 6.2, in which the performance of the mesh network was evaluated, the number
of involved nodes in a communication path has a remarkable influence on the network perfor-
mance. Therefore, we also evaluated a Multi-hop Airborne Relay scenario and compared these
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results with the measurements done during the “End-to-end throughput” evaluation of a Single-
hop Airborne Relay scenario described in Section 6.3.

6.4.1 Evaluation Setup

Figure 6.11 shows this evaluation setup. To compare the results to a ground based approach,
two different scenarios have been deployed. In scenario 1 the UAVs were placed on the ground.
Scenario 2 uses a real Multi-hop Airborne Relay setup with two flying UAVs. Several TCP
throughput measurements have been performed between the two notebooks client1 and client2.
The two UAVs were deployed in-between the clients, using the Multi-hop Airborne Relay sce-
nario. The traffic from client1 was forwarded over both UAVs to client2.

client1 client2

1

2

Figure 6.11: End-to-end throughput setup using a Multi-hop Airborne Relay scenario.

6.4.2 Results

Figure 6.12 depicts the average TCP throughput of ten measurements from one notebook
(client1) to the other one (client2) with the corresponding standard deviation (whiskers). The
achieved results are listed in Table B.12 in Appendix B.5. As seen in the evaluations before, the
measured throughput in scenario 1 is much lower than in scenario 2. With the UAVs placed on
the ground, we achieved an average throughput of 0.266 Mbps, whereas the flying nodes pro-
duced an average throughput of 1.868 Mbps, which is a factor of seven higher. The comparison
with the single-hop airborne relay evaluation reveals expected results as well. As seen already
in the multi-hop mesh network performance evaluation in Section 6.2 and Figure 6.6, the per-
formance of the multi-hop airborne relay setup is lower than the performance of the single-hop
airborne relay scenario, where one UAV is sufficient to cover the shorter distance between the
two clients. However, the multi-hop airborne relay scenario achieves a significantly higher net-
work throughput compared to a single-hop scenarios where the distances between the nodes are
too large (“Too Far Away Node”-evaluation in Section 6.2). The results of such measurements
heavily depend on several factors like used hardware, distances and the accuracy of the GPS
signal.
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Figure 6.12: TCP throughput between two notebooks in a multi-hop airborne relay setup.
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Chapter 7

Conclusions and Future Work

This chapter concludes the gained insights and experiences made during the implementation,
testing, and evaluation of UAVNet. Furthermore, it shows some ideas how UAVNet could be
improved in future work. Additionally, it shows up some needed extensions to evolve UAVNet
from a prototype to a usable system in real-world scenarios.

7.1 Conclusions

This Master thesis introduces UAVNet, a concept and an implemented prototype of an au-
tonomously deployable temporary flying IEEE 802.11s WMN. The main purpose of this frame-
work is to provide a possibility to deploy a complete communication network in emergency and
disaster recovery scenarios in an easy and fast way. The concept is based on small quadrocopter
UAVs with attached lightweight wireless mesh nodes. The mesh nodes are connected directly
to the flight electronics of the UAVs and control the autonomous network deployment using a
decentralized approach. The entire deployment process can be configured with the integrated
user-friendly Remote Control App running on an iPad or iPhone. Additionally, the Remote Con-
trol App monitors the entire UAVNet and displays all involved participants such as UAVs and
clients on an interactive map.

We have proven the feasibility of an autonomously deployable flying WMN. The Open-
Mesh OM1P mesh nodes set up an IEEE 802.11s WMN and provide access for any kind of
IEEE 802.11g wireless devices such as notebooks, tablets or smartphones. The integrated IEEE
802.11s wireless mesh network protocol guarantees optimal performance in a highly mobile
network. This prototype implementation is capable of autonomously interconnect two distant
clients by deploying an airborne relay, consisting of one or multiple UAVs. It provides sophis-
ticated searching and positioning algorithms and can be extended with additional functionality.
The entire network can be configured, deployed, and monitored by a single user, using a user-
friendly application on an iPad or iPhone. Additional scenarios and usages are included in the
concept, as well as in the UAVNet code and the Remote Control App.

We achieved to implement UAVNet without having to modify the original firmware running
on the flight electronics of the UAVs. This guarantees an optimal compatibility and expandability
of the system. The system could be adapted to be deployed on UAVs using different flight
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electronics. UAVNet uses a uniform communication protocol to exchange commands and data
between the flight electronics, attached mesh nodes and wirelessly connected devices.

UAVNet has some significant advantages, compared to a ground-based network approach: It
has been shown that the flying wireless mesh nodes result in an up to 6.3 times higher network
throughput compared to a ground-based approach. The UAVs are highly mobile and the network
is adaptable for different network scenarios and requirements. Its placement is not restricted by
the environment and the deployment is simple and fast and can be performed by a single person.

To achieve a best possible network performance, an optimal distance between the UAVs has
been evaluated. Results of other tests confirm this optimal placement. The nodes are placed near
enough to each other to achieve a good received signal strength, but are sufficiently far away
from each other to get not too much interferences, caused by the single channel radio chip. If an
intermediate node fails, the evaluation of UAVNet shows that communication between the nodes
is slow, but still possible.

Almost all of the defined goals in Section 1.4 have been achieved. The area coverage sce-
nario could not be implemented completely, but it is included in the overall system concept and
could be implemented in a future work, based on the provided UAVNet prototype. The UAVs of
the current prototype implementation are able to communicate with each other and exchange all
kind of data. To deploy a functional area coverage scenario, some self-organizing distribution,
replacement, and collision avoidance algorithms and strategies have to be developed.

Unfortunately, not all the drivers and used tools were totally stable during the development
of UAVNet. However, the used build system ADAM makes it fairly easy to upgrade the Linux
kernel, the wireless drivers and the other software running on the mesh nodes. As the IEEE
802.11s standard, especially its implementation in the Linux kernel, the wireless driver and
other tools are still under heavy development, it can be expected that the overall performance
and the robustness of the entire network may increase with advancing development.

Several flights, measurements, and deployment tests during the development and evaluation
of UAVNet have shown that the entire system heavily depends on strong and accurate GPS sig-
nals. If the signals are weak or even wrong, the inaccuracy of the automatic deployment and
placement of the UAVs can amounts to several meters or even a few dozen meters.

A big drawback of the entire system is the fact that the UAVs cannot stay longer than 10
- 15 minutes in the air, due to their high energy consumption. This might not be enough for
a real system, but it is sufficient to prove the feasibility of a flying WMN. In addition, battery
technology is making huge progresses in the last decade and may provide better batteries in the
future.

76



7.2 Future Work

The provided prototype of UAVNet offers a lot of different possible extensions and improve-
ments. The first step to evolve the prototype to a fully functional real world system would be to
introduce an autonomous replacement and recharging strategy to keep the system alive for sev-
eral hours or days. UAVs with low battery capacity should autonomously leave the network and
fly to a recharging station. The missing UAV must be replaced by another one, or the formation
must adapt to ensure optimal network connectivity. After recharging, the UAV can be reinte-
grated into the network. The recharging of a UAV would include some automatic landing and
starting procedure. Additionally, the possible flight duration, which is currently 10 - 15 minutes,
should be increased. That could be achieved by either using better and maybe larger batteries or
by optimizing the needed amount of energy.

Other enhancements include the implementation of the area coverage scenario. Several
UAVs should autonomously position themselves over a user-defined area to maximise the net-
work coverage of this region. This includes some self-organizing distribution and collision
avoidance algorithms.

Another subject of research could be the increase of the network performance and reliabil-
ity by positioning the UAVs accordingly. Questions such as “How many UAVs are needed to
guarantee an optimal network performance over a given area?”, or “Should more UAVs placed
in regions with more clients?” should be answered. The system could constantly measure the
achieved network performance and adapt autonomously, if needed.

Furthermore, UAVNet provides a good prototype for the research project “Opportunistic
Routing for Highly Mobile Ad-hoc Networks” (ORMAN). New opportunistic multi-channel
routing protocols and topology controlling algorithms for highly mobile networks must be de-
veloped. They guarantee that the UAVs are always connected to each other and maximise the
overall network performance and stability. Newly developed opportunistic routing protocols
should include all available data from the UAVs, such as flight direction, speed, altitude, loca-
tion, and battery voltage and predict future topology configurations and changes.

Another possible enhancement is to not keeping the UAV swarm stationary on a given region,
but let the swarm autonomously follow a predefined route. This could be useful, if the covered
area is replaced by another one. Instead of taking all UAVs down and redeploy the network at
the other location, the swarm could just move to the new region.

Besides the Remote Control App for iOS devices, other clients could be implemented. This
includes for example an Android version for tablets and smartphones or a client running on
Linux, Mac or Windows notebooks or netbooks.
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Appendix A

Evaluation Setup

A.1 Notebook 1
Model: IBM ThinkPad X41
Operating System: Debian GNU/Linux (i686)
Kernel: 2.6.16.1
Wireless Chip: Atheros Communications Inc. AR5212 802.11abg (rev 01)
Wireless Driver: MadWifi 0.9.4

wpa supplicant 0.6.4
Wireless Kernel Module: ath pci

A.2 Notebook 2
Model: IBM ThinkPad T43
Operating System: Ubuntu 10.04 (Lucid Lynx, i686)
Kernel: 2.6.32-24-generic
Wireless Chip: Intel Corporation PRO/Wireless 2200BG
Wireless Driver: Intel(R) PRO/Wireless 2200/2915 Network Driver 1.2.2kmprq

wpa supplicant 0.6.9
Wireless Kernel Module: ipw2200

A.3 Mesh Nodes
Model: Open-Mesh OM1P
Operating System: ADAM
Kernel: 2.6.37.6-om1p

compat-wireless-2011-12-24
Wireless Chip: Atheros Communications Inc. AR2315 802.11bg
Wireless Driver: ath5k
Wireless Kernel Module: ath5k
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Appendix B

Evaluation Results

B.1 Optimal Signal Strength Threshold Evaluation Results

To simplify the layout, the following tables depict only the averages of ten measurements per-
formed at every location.

B.1.1 TCP Throughput

Signal Minimal 1st quartile Median 3rd quartile Maximal Stddev Average
strength Throughput Throughput Throughput Throughput Throughput Throughput Throughput
[dBm] [Mbps] [Mbps] [Mbps] [Mbps] [Mbps] [Mbps] [Mbps]
-39.5 9.77 10.09 10.19 10.29 10.52 0.21 10.17
-53.3 10.29 10.31 10.37 10.42 10.71 0.13 10.40
-59.3 9.00 10.02 10.19 10.26 10.31 0.39 10.05
-67.7 10.29 10.50 10.55 10.59 10.84 0.14 10.54
-80.8 7.36 7.50 7.80 8.67 9.110 0.65 8.04
-90.8 2.58 3.74 3.81 3.89 3.950 0.53 3.60

Table B.1: TCP throughput between two nodes, placed at different locations.
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B.1.2 UDP Throughput

Sent

Signal Minimal 1st quartile Median 3rd quartile Maximal Stddev Average
strength Throughput Throughput Throughput Throughput Throughput Throughput Throughput
[dBm] [Mbps] [Mbps] [Mbps] [Mbps] [Mbps] [Mbps] [Mbps]
-37.7 17.72 18.01 18.03 18.13 18.22 0.14 18.04
-57.3 18.22 18.24 18.27 18.37 18.41 0.08 18.3
-71.9 16.32 17.18 17.59 17.89 18.16 0.61 17.45
-77.6 10.56 11.71 13.41 15.79 16.95 2.41 13.67
-80.3 8.78 9.63 11.25 13.17 14.3 2.03 11.46
-85.1 2.23 4.6 5.57 7.33 11.22 2.52 6.09

Table B.2: UDP throughput (sent) between two nodes, placed at different locations.

Received

Signal Minimal 1st quartile Median 3rd quartile Maximal Stddev Average
strength Throughput Throughput Throughput Throughput Throughput Throughput Throughput
[dBm] [Mbps] [Mbps] [Mbps] [Mbps] [Mbps] [Mbps] [Mbps]
-37.7 16.99 17.33 17.4 17.5 17.6 0.18 17.39
-57.3 16.94 17.06 17.22 17.42 17.58 0.23 17.24
-71.9 14.99 15.81 16.08 16.25 16.83 0.53 15.99
-77.6 10.53 11.51 13.27 15.43 16.27 2.22 13.42
-80.3 8.62 9.21 10.61 12.51 13.88 2.02 10.89
-85.1 2.02 4.6 5.57 7.33 11.22 2.56 6.06

Table B.3: UDP throughput (received) between two nodes, placed at different locations.
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B.1.3 RTT

Signal Minimal 1st quartile Median 3rd quartile Maximal Stddev Average
strength RTT RTT RTT RTT RTT RTT RTT
[dBm] [ms] [ms] [ms] [ms] [ms] [ms] [ms]
-39.5 2.037 2.276 2.339 2.385 2.981 0.243 2.380
-53.3 2.035 2.067 2.087 2.101 2.433 0.114 2.114
-59.3 2.033 2.124 2.156 2.260 2.419 0.113 2.193
-67.7 2.014 2.065 2.094 2.125 2.415 0.111 2.121
-80.8 2.265 2.451 2.566 2.691 2.906 0.217 2.577
-90.8 2.742 2.780 2.860 3.004 3.387 0.210 2.927

Table B.4: RTT between two mesh nodes, placed at different locations.
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B.2 Multi-Hop Mesh Network Performance Evaluation Results

B.2.1 TCP Throughput

Number Minimal 1st quartile Median 3rd quartile Maximal Stddev Average
of hops Throughput Throughput Throughput Throughput Throughput Throughput Throughput

[Mbps] [Mbps] [Mbps] [Mbps] [Mbps] [Mbps] [Mbps]
1 6.650 7.168 7.780 8.093 8.470 0.622 7.674
2 2.790 3.063 3.335 3.685 4.190 0.441 3.408
3 3.030 3.073 3.190 3.225 3.270 0.089 3.158

Table B.5: TCP throughput depending on hop count.

B.2.2 UDP Throughput

Sent

Number Minimal 1st quartile Median 3rd quartile Maximal Stddev Average
of hops Throughput Throughput Throughput Throughput Throughput Throughput Throughput

[Mbps] [Mbps] [Mbps] [Mbps] [Mbps] [Mbps] [Mbps]
1 11.280 13.458 14.060 14.418 15.230 1.115 13.875
2 3.460 4.148 5.245 7.058 8.260 1.740 5.615
3 3.250 3.695 4.245 5.908 8.940 2.067 5.035

Table B.6: UDP throughput (sent) depending on hop count.

Received

Number Minimal 1st quartile Median 3rd quartile Maximal Stddev Average
of hops Throughput Throughput Throughput Throughput Throughput Throughput Throughput

[Mbps] [Mbps] [Mbps] [Mbps] [Mbps] [Mbps] [Mbps]
1 11.200 13.133 13.650 14.128 14.620 0.980 13.499
2 3.010 3.110 3.485 5.060 5.210 0.999 3.967
3 3.140 3.615 4.025 4.313 4.530 0.494 3.920

Table B.7: UDP throughput (received) depending on hop count.
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B.3 Too Far Away Node Evaluation Results

B.3.1 TCP Throughput

Node Minimal 1st quartile Median 3rd quartile Maximal Stddev Average
setup Throughput Throughput Throughput Throughput Throughput Throughput Throughput

[Mbps] [Mbps] [Mbps] [Mbps] [Mbps] [Mbps] [Mbps]
n01 - n02 - n03 1.100 2.330 2.585 3.353 4.530 1.118 2.725

n01 - n03 0.000 0.010 0.190 0.365 0.570 0.203 0.209

Table B.8: TCP throughput (missing node).

B.3.2 UDP Throughput

Sent

Node Minimal 1st quartile Median 3rd quartile Maximal Stddev Average
setup Throughput Throughput Throughput Throughput Throughput Throughput Throughput

[Mbps] [Mbps] [Mbps] [Mbps] [Mbps] [Mbps] [Mbps]
n01 - n02 - n03 1.910 2.545 3.495 5.605 8.700 2.135 4.198

n01 - n03 0.810 0.848 1.035 1.248 3.300 0.832 1.305

Table B.9: UDP throughput (sent, missing node).

Received

Node Minimal 1st quartile Median 3rd quartile Maximal Stddev Average
setup Throughput Throughput Throughput Throughput Throughput Throughput Throughput

[Mbps] [Mbps] [Mbps] [Mbps] [Mbps] [Mbps] [Mbps]
n01 - n02 - n03 1.860 2.478 3.445 4.453 5.970 1.456 3.675

n01 - n03 0.080 0.160 0.265 0.395 0.600 0.181 0.291

Table B.10: UDP throughput (received, missing node).
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B.4 End-to-End Throughput in a Single-Hop Airborne Relay

Setup/ Minimal 1st quartile Median 3rd quartile Maximal Stddev Average
Location Throughput Throughput Throughput Throughput Throughput Throughput Throughput

[Mbps] [Mbps] [Mbps] [Mbps] [Mbps] [Mbps] [Mbps]
1 0.000 0.013 0.035 0.070 0.290 0.086 0.064
2 0.630 0.790 0.860 1.125 1.800 0.406 1.041
3 4.900 6.095 6.380 7.365 8.040 0.998 6.546
4 1.140 1.370 1.400 1.568 2.210 0.313 1.523
5 7.170 7.818 8.115 8.505 8.870 0.525 8.143

Table B.11: TCP throughput (end-to-end, single-hop).

B.5 End-to-End Throughput in a Multi-Hop Airborne Relay

Scenario Minimal 1st quartile Median 3rd quartile Maximal Stddev Average
Throughput Throughput Throughput Throughput Throughput Throughput Throughput

[Mbps] [Mbps] [Mbps] [Mbps] [Mbps] [Mbps] [Mbps]
1 0.010 0.090 0.210 0.495 0.560 0.224 0.266
2 0.290 1.588 2.110 2.250 2.980 0.807 1.868

Table B.12: TCP throughput (end-to-end, multi-hop).
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