
NetICE9: A Stable Landmark-Less Network

Positioning System

Dragan Milić, Torsten Braun

Institute of Informatics and Applied Mathematics

University of Bern, Neubrückstrasse 10, 3012 Bern, Switzerland

email: {milic|braun}@iam.unibe.ch phone: +41 31 511 {2633|2631}

Abstract—We propose NetICE9, a novel landmark-less method
for embedding RTTs into virtual spaces. NetICE9 is inspired
by VIVALDI, the most commonly used landmark-less approach.
VIVALDI chooses its neighbors randomly and optimizes only
towards one neighbor at a time. With NetICE9, we propose a
solution to those drawbacks. NetICE9 significantly improves both
the stability of the simulation and the precision of how RTTs
are embedded into a virtual space. Our evaluation based on
RTTs measured in the Internet show that NetICE9 significantly
outperforms VIVALDI in terms of stability and precision of RTT
prediction. NetICE9 improves RTT prediction also in comparison
to GNP.

I. INTRODUCTION

RTT (round trip time) is one of the most important prop-

erties of Internet communication due to its role as a limiting

factor for the effective bandwidth of TCP connections [5] and

its impact on delay-sensitive real-time applications. The idea

behind an RTT prediction scheme is not to measure the RTT

between each pair of hosts in the network, but to obtain more

or less precise estimates of RTTs between all hosts in the

network based on a small number of measured RTTs. Such

an RTT prediction scheme can be used to optimize overlay

network structures, to choose the nearest data source for file

transfers, or to find an optimal route based on predefined QoS

parameters.

Embedding RTTs into virtual spaces to obtain an efficient

RTT prediction scheme has been a research topic for almost a

decade [2], [3], [8], [13], [14], [17]–[19]. Numerous methods

have been proposed to achieve this goal. All methods proposed

can be classified as either landmark-based or landmark-less.

The former use so-called landmarks, a set of designated

hosts within the network. Those landmarks usually measure

RTTs among each other and use this information to position

themselves within a virtual space. All other hosts in the

network measure RTTs to the landmarks and, in the virtual

space, position themselves relative to the landmarks according

to the measured distances. Landmark-less approaches, on the

other hand, usually perform a distributed simulation of the

physical system. Such a simulation incrementally decreases

the total error for embedding of RTTs in the virtual space

and converges toward an optimal solution. Landmark-based

approaches are usually more stable than landmark-less ones,

in the sense that the host positions in the virtual space are

more stable. Landmark-based approaches usually have limited

scalability and fault tolerance due to the fact that they heavily

depend on landmarks as central components. Landmark-less

approaches are usually completely distributed without any

central components. This makes them very resilient to host

failures and network outages. Landmark-less approaches are

usually quite sensitive to violations of assumptions underlying

the simulation. For example, one of the most commonly

made assumptions is that the triangle inequality holds for

the measured RTTs. As shown in [7], [9], [21], however,

this is not always the case in the Internet. Such violations

lead to undesired effects such as permanent oscillations of

host positions in the simulation; or even worse, rotation and

translation of the whole system within the virtual space. Those

effects lead to unstable host positions, making them useful

only for a limited time, even if there were no changes in the

underlying network.

We propose NetICE9, an improvement of the VIVALDI [3]

approach. Like VIVALDI, NetICE9 is a distributed simulation

of a physical system. Each host calculates its position in

the virtual space without knowing the whole system. The

only information each host has is about its neighbors. Unlike

VIVALDI, which simulates a system of hosts connected by

springs, NetICE9 is a simulation of a crystallization process.

This means that NetICE9 simulates the creation of a crystal

structure in a virtual space, where each host corresponds

to one atom within this structure. The forces determining

the relative positions of the atoms are proportional to the

difference between measured RTTs and distances in the virtual

space representing them. In a crystal, those forces are in

balance. Essentially, each atom is positioned in such a way

that the forces of repulsion from and attraction to its neighbors

are in balance.

In this paper, we also present results of our simulations

based on RTTs measured in the Internet [6], [20]. Comparing

the performance of NetICE9 and VIVALDI with different data

sets, our simulations clearly show that our approach (NetICE9)

yields significantly better results in terms of both the stability

of host positions and the precision of the RTT embedding.

After discussing related work in Section II, Section III

identifies the sources of instability of VIVALDI. Section IV

introduces NetICE9 and Section V presents our evaluation

methodology and simulation results. Section VI summarizes

the proposed approach and evaluation results.

35th Annual IEEE Conference on Local Computer Networks LCN 2010, Denver, Colorado

978-1-4244-8388-4/10/$26.00 ©2010 IEEE 96

II. RELATED WORK

VIVALDI [3] is a distributed simulation of a physical

system, which consists of hosts positioned in a virtual n-
dimensional Euclidean space. Every pair of hosts is connected

by a virtual spring. The force stored in this spring is pro-

portional to the distance between two hosts within the virtual

space and the RTT measured between them. Each host periodi-

cally corrects its position within the virtual space by randomly

choosing a neighbor, measuring the RTT to it and adjusting its

position by moving towards or away from the chosen neighbor

to lessen the force stored by the virtual spring (i.e. the host

adjusts its position to reduce the embedding error). In order to

reduce oscillations of the whole system, VIVALDI proposed

that each step of an optimization (moving towards or away

from the neighbor in order to relax the force of the spring) is

not performed fully. Instead, the spring is relaxed only partially

at each step. As an estimate of how much the spring should be

relaxed, VIVALDI proposed using estimates of the embedding

error of a host performing the optimization and its neighbor.

This estimate of the embedding error is calculated at each step

of the optimization. The goal is to prefer relaxing the springs

to neighbors who have better estimates of their position. In

addition to a host’s position in the virtual space, VIVALDI

also proposed the introduction of a non-negative component,

the so-called “height vector”. This component represents the

non-metric part of the host position. The purpose of the height

vector is to further increase prediction precision by more or

less representing the distance of the host to the backbone of

the Internet. Due to its simplicity (no sophisticated function

minimization is needed) and because it does not need any

infrastructure (landmarks or similar) VIVALDI has become

very popular for different peer-to-peer applications [1], [4],

[16].

In GNP [13], [14], m hosts are chosen as landmarks

(denoted by L1 . . .Lm). All other hosts (denoted by H) in the

Internet measure RTT distances (denoted by d̂HL1
, . . . , d̂HLm

)

to the landmarks and use this information to determine their

positions in a virtual space. The coordinates of a host in a

virtual space (denoted by CH := (C1

H, . . . , Cn
H)) are determined

using multilateration, which is based on minimizing the error

function fe. In the case of GNP, this is the least-squares-error

function:

fe(CH) :=
m

∑

i=1

(d(CH, CLi
)− d̂HLi

)2 (1)

The function minimization is performed using the Downhill

Simplex [12] method. For calculating d(CH, CLi
), the positions

of the landmarks in the virtual space (CL1
. . . CLm

) must

be known. GNP computes coordinates of the landmarks by

minimizing the following error function:

fe(CL1
, . . . , CLm

) :=
∑

i,j∈{1...m},j>i

(d(CLi
, CLj

)− d̂LiLj
)2

III. VIVALDI’S INSTABILITY

VIVALDI has numerous advantages over other RTT em-

bedding schemes. Being fully distributed, it does not require

any infrastructure and is very robust against churn. It also

predicts RTTs pretty well, it scales well with the number of

hosts participating and it is simple to implement. On the other

hand, VIVALDI tends to be unstable. By this we mean that

hosts permanently change their positions in the virtual space.

There are two reasons for this behaviour: One reason are the

local oscillations of the host’s position relative to its neighbors.

These oscillations are relatively small and result in a small

change of RTT predictions.

The more severe reason for this instability is the movement

of the whole system, i.e. all hosts participating in the dis-

tributed simulation performed by VIVALDI. Since VIVALDI

never reaches a stable state, local oscillations never cease.

Those small local oscillations of one host affect all hosts that

have chosen it as one of their neighbors. This change then

affects their neighbors and so on. As the final effect, the whole

system does not stand still in the virtual space, but instead it

translates and rotates.

Movement of the whole system in the virtual space does

not significantly change the RTT predictions obtained by

VIVALDI, since the relative positions of the hosts in the virtual

space do not change much. But, if we consider how such

positions are used, it turns out that the system’s movement

poses a problem. Positions of the hosts are usually used to

predict RTTs. If the positions are constantly changing, we

must obtain a new position of the host, to which we would

like to have an RTT estimate. By doing so, we could also just

perform an RTT measurement itself, since it involves the same

amount of communication. Hence, being able to rely on a host

position for a longer period of time is desirable.

Another additional reason for instability of VIVALDI is

its use of height vectors. Height vectors are a non-metric

component of each host’s position. It quantifies how “far

away” every host is to the “core” of the Internet. This distance

from the metric core of the Internet is represented as a positive

number and this number is used in order to refine RTT

prediction made by VIVALDI. Same as the position in the

metric space, the height vector of every end system is a product

of the distributed simulation process.

Together with positions of end systems, calculating height

vectors are also a result of the simulation process. The

consequence of this is that the leveling of height vectors

aditionally increases convergence time of VIVALDI. Another

reason, why we don’t consider height vectors in this work

is that when height vectors are used, the positions of hosts

are less usable for other purpose than RTT embedding. For

example, if host positions should be used to perform some

kind of geographic routing, height vectors must be discarded.

This increases overall error of the found paths compared to an

approach where height vectors are not used.

A. How Bad Is the Instability?

To illustrate the problem we performed the following exper-

iment: We implemented VIVALDI in an event-based simulator

[15]. For the network model, we used an RTT distance matrix

obtained by the “all sites ping” experiment of Planet-Lab [20].

97

This RTT distance matrix contains RTTs for each pair of hosts

participating in Planet-Lab [10]. The total number of hosts

in our data is 217. Each host obtained a random choice of

18 neighbors, to which it performed RTT measurements and

optimized its position in a virtual 5-dimensional Euclidean

space. The goal of our experiment was to determine, for how

long one could rely on the positions of the other hosts.

To do so, we obtained the position of one host 2 s after the

start of the simulation. We kept this position constant and, at

different time points in the simulation, we used it to determine

the relative embedding error to all other hosts in the system

defined as:
∣

∣

∣

∣

measured rtt− predicted rtt

measured rtt

∣

∣

∣

∣

Figure 1 shows the result of the experiment. The whole

system tends to move away from the position where that host

was located after 2 s of simulation at a more or less constant

speed. This motivated us to define a measure for the instability

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300 350 400

R
e
la

ti
v
e
 E

m
b
e
d
d
in

g
 E

rr
o
r

(m
e
d
ia

n
)

Simulation Time (s)

Fig. 1. Average relative embedding error of the fixed position of one host
relative to changing positions of the whole system

of VIVALDI (and related approaches): average host speed.

Each host “travels” through the virtual space by updating its

position. At each position update, there is a distance the host

has overcome, defined as the distance between the old and the

new position of the host. We define the speed of a host as

the sum of those distances (calculated from the beginning of

the simulation) divided by the simulation time. This measure

gives us an estimate, how unstable one system is: The larger

the average speed of the hosts in the virtual space, the more

unstable is the system.

In order to test the correctness of our VIVALDI imple-

mentation, we compared the behavior of the same simulation

with two different RTT data sets. One data set is the same

we used to obtain results from Fig. 1 (VIVALDI Planet-Lab).

The second one is an RTT matrix we obtained by randomly

placing 217 points in a 5 dimensional Euclidean space and

calculating distances between them (VIVALDI metric). If our

implementation of VIVALDI is correct, the embedding error

of the VIVALDI approach using the VIVALDI Metric data,

which stems from the Euclidean space, should reach 0 after

some convergence time. At the same time, the average host

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250 300 350

R
e
la

ti
v
e
 E

rr
o
r

(M
e
d
ia

n
)

Simulation Time (s)

VIVALDI Planet-Lab
VIVALDI Metric

Fig. 2. Median of the relative embedding error using RTTs measured in
Planet-Lab vs. distances originating from a metric space

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 50 100 150 200 250 300 350

A
v
e
ra

g
e
 H

o
s
t
S

p
e
e
d

Simulation Time (s)

VIVALDI Planet-Lab
VIVALDI Metric

Fig. 3. Average (moving) speed of host using RTTs measured in Planet-Lab
vs. distances originating from a metric space

speed should also reach 0. Figure 2 shows the median of

the embedding error for the two data sets. The median of the

relative embedding error of the simulation using the VIVALDI

Metric data converges after 150 s of the simulation towards 0.
At the same time, the relative embedding error of VIVALDI

Planet-Lab remains more or less constant.

Fig. 3 shows the average host speed for both data sets. The

average host speed of VIVALDI Metric reaches 0 at a the

same time the relative embedding error reaches 0. On the

other hand, the average host speed of VIVALDI Planet-Lab

converges towards a constant value, meaning that the whole

system is constantly moving through the virtual space.

B. Reasons for VIVALDI’s Instability

Three hosts whose RTTs do not satisfy the triangle inequal-

ity may be sufficient to render a VIVALDI system unstable.

For example, those RTTs could be 2.5, 3 and 8ms. Each time

one host tries to correct its position relative to another host, it

will either decrease the “predicted” value of the RTT 8ms or

increase one of the other two RTTs (2.5ms or 3ms) to have

larger predicted values. Since VIVALDI always optimizes one

(randomly chosen) RTT prediction, it never reaches a stable

state, since decreasing error in one direction increases the

error in the other, which must be then compensated in turn.

98

Fig. 4 illustrates such a behaviour, that we describe as “host

chasing”. At each simulation step, a host tries to reduce its

RTT prediction to one other host. By doing so, it increases

the embedding error towards all other hosts. This increased

embedding error then gets corrected by another host, which

in turn increases other embedding errors. The result of this

behaviours is the translation of the whole system through the

virtual space. Another drawback of VIVALDI arises from the

Fig. 4. An example of “host chasing” in VIVALDI caused by a triangle
inequality violation

fact that VIVALDI does not require the “is a neighbor” relation

to be bidirectional. A bidirectional “is a neighbor” relation

means, that if host A optimizes its position relative to host B,

then B should optimize its position relative to A. In practice,

each host chooses a fixed number of random neighbor hosts

and optimizes its position in the VIVALDI system relative to

them. This means, if there is no optimal solution (i.e. some of

the properties of the metric space are violated by the measured

RTTs), hosts will be oscillating around their (theoretically)

optimal position.

Fig. 5 show what could happend, when the “is a neighbor

of” relation is only unidirectional. The host in the middle of

the figure tries optimizing its position relative to the neighbors,

which at each optimization step leads to a new position of the

host, since the neighbors will never move themselves towards

the host in the center. If the relation “is a neighbor of” would

be bidirectional, the neighbors of the host in the center would

also move towards that host, which would reduce oscillation

of its position.

IV. NETICE9

A. Crystallization

The basic idea of NetICE9 is to simulate the process of

crystallization. Crystallization is a process, where a solid

Fig. 5. An example of oscillations in VIVALDI caused by lack of
bidirectional “is a neighbor of” relation

structure is formed incrementally. This structure grows when

new atoms align themselves to their neighboring atoms, which

are already part of the structure. The position of a newly added

atom depends on the forces acting between it and its neighbors.

The attracting and repelling forces between atoms are van der

Waals forces. The final position of the atom is where those

forces are in balance.

Within NetICE9, each host is considered to be an atom

which needs to be embedded into a crystal structure. In

analogy to the attracting and repelling van der Waals forces

between atoms, we define the force between two hosts as the

difference between the predicted and the measured RTT. If

this difference is negative, there is a repulsion force between

two hosts. On the other hand, a positive difference means the

two hosts are attracted to each other.

Since we assume that the triangle inequality does not hold,

the sum of the forces acting on a host is rarely zero. Instead

of trying to find a position, where the sum of those forces

is zero, we look to find the position, where the sum of these

forces is minimal. To achieve this, we propose using a function

minimization method. The function we are minimizing in order

to find the host position is the least square function (similar

to the one used by GNP).

B. NetICE9 Algorithm

The crystal structure of NetICE9 is self-organizing. Each

host determines its own position within the crystal structure.

Every host in NetICE9 is aware of a set of hosts which are its

neighbors. To each of those neighbors, it periodically measures

its RTT. At the same time, the host also queries each of

its neighbors about their current position in the virtual space

and their current speed (at what rate has it been changing its

position recently). The host then uses this information in order

to update its own position. Updating the position is done by

minimizing the objective function:

fe(CH) :=

m
∑

i=1

1

1 + (VNi
· δ)
· (d(CH, CNi

)− d̂HNi
)2

99

This objective function is very similar to the one used by GNP,

with the difference that we are using neighbors as landmarks

and that each neighbor is weighted according to its speed. The

larger a neighbor’s speed, the lower is its weight. We scale

the speed with a constant δ. This constant has an impact on

the convergence time. In our experiments we discovered that

δ = 1000 yields best results. Since the speed of each neigbor

can theoretically be 0, we add 1 to the scaled speed of the

neighbor in order to avoid division by zero. The whole process

of updating the position of a host is described in Algorithm

1.

The reason we use this algorithm is to determine the position

of the host using all available information. VIVALDI uses

a much simpler approach. The optimization is done towards

only one neighbor. In the case where no optimal embedding

is possible, this approach results in oscillating host positions

(see Section III). In NetICE9 we perform the optimization

as proposed in Algorithm 1. The host position will remain

stable, if the positions, velocities, and RTTs remain constant.

This greatly improves both stability and precision (reduces the

embedding error) of the system.

Algorithm 1 NetICE9 algorithm for updating a host’s position

in a virtual space

Require: N Set of neighbors

Require: Tu Update interval

Require: Pc Current position of the host

Require: Vp Previous EWMA (exponentially weighted mov-

ing average) of host speed

Require: α Dampening factor for EWMA

for n ∈ N do

(RTT [n], POS[n], SPEED[n]) ← Query(n) {Query
current speed (EWMA) and position of a neighbor and

measure RTT to it}
end for

Pp ← Pc {Store current host position as previous position}
Pc ← Minimization(RTT, POS, SPEED, Pp)
{Determine new host position using function minimization.

Use the previous position of the host as the starting point

for the function minimization.}
delta← |Pp−Pc| {Calculate distance between old and new

position}
V ← delta/Tu {Calculate the host speed}
Vp ← α · V + (1− α) · Vp {Update EWMA of host speed}
return Pc, Vp

Computational overhead of this algorithm is significantly

larger than the one proposed by VIVALDI. Most of this

overhead is imposed by using function minimization. Since

the computational overhead of the used function minimization

depends on many parameters, such as complexity of the

function and even the start point, we are not able to give an

estimate of the computational overhead. On the upside, when

the changes of the measured RTTs are not large, the function

minimization terminates very quickly, since the starting point

is near the optimum. This makes updates use almost constant

computational overhead in most of the cases (O(1)).

C. Choice of Neighbors

Each host has to select a limited number of other hosts

within the network as its neighbors. We assume that this choice

of neighbors should not be random. VIVALDI [3] showed that

using only the nearest neighbors yields inaccurate predictions

for large RTTs. Instead, VIVALDI uses a mix of close as

well as distant neighbors to give the host a sense of its global

position within the network.

In NetICE9, we decided to use a neighbor selection strategy

with a bidirectional “is a neighbor of” relation. We assumed

that this would significantly reduce the rippling effect of local

oscillations of hosts on the whole system, because the host

oscillations would go both ways and cancel each other out.

The problem was that there did not exist neighbor selection

strategies which fulfilled both conditions: 1) it selects a mix

of close as well as distant hosts as neighbors and 2) it ensures

a bidirectional “is a neighbor of” relation. For this reason, we

developed our own neighbor selection strategy called fisheye

[11]. Fisheye is a topology-aware overlay network building

protocol which is able to give each host a fisheye-view of a

network. A fisheye-view of a network is a choice of c hosts

from the network with special properties. Those properties

are geographical diversity and fisheye-lens like distribution

of neighbors. Geographical diversity means that the choice

of neighbors is evenly distributed around the host. Fisheye-

lens distribution of neighbors means that the density of chosen

neighbors decreases with the distance to the host. We achieve

those properties by performing a distributed gravity force

minimization algorithm as described in [11]. Fig. 6 shows an

example of such a choice of neighbors. An interesting feature

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y

x

fisheye center fisheye view other hosts

Fig. 6. Example of fisheye view calculated using the gravity force mini-
mization algorithm.

of our fisheye approach is that it does not require embedding

of hosts into a virtual space. Instead, it is based only on

measured RTTs. We also developed a version of our overlay

network building protocol which is able to create a fisheye

overlay network with bidirectional “is a neighbor” relation.

This overlay network is the one we are using as a neighbor

selection for our NetICE9 approach.

100

V. EVALUATION

To evaluate the precision and stability of our approach, we

compared it to VIVALDI and GNP by implementing VIVALDI

in an event-based network simulator [15].

A. Simulation Scenario and Parameters

The network model of the simulation is the one used by

Dabek et al. in their original evaluation of VIVALDI [3].

Each message within the network is delayed by half the

RTT between two hosts. RTT information for our model was

obtained from RTT measurements from the Internet. For input

data we had two data sets. One set (denoted as Planet-Lab)

contains a full RTT distance matrix of 217 different hosts

obtained from the “all sites ping” experiment [20]. The other

data set (denoted as KING) contains a full RTT distance matrix

of 462 hosts, which was obtained using the King [6] method.

In each simulation run we started a new instance of a host

every 100ms until all hosts were active. This means that all

hosts are active by the time the simulation has been running

for 21.7 s in the case of the Planet-Lab data or after 46.2 s

in the case of the KING data set. For each embedding we

used a 5-dimensional Euclidean space as the virtual space.

We limited the number of chosen neighbors (c) to 18. We

kept each simulation running for 800 s (simulation time).

B. Impact of Neighbor Selection on VIVALDI

First we noticed in our simulations that selecting neighbors

uni-directionally at random may not be the best choice. In

order to confirm this, we performed a simulation of VIVALDI

with three different neighbor selection strategies.

• RAND selects c neighbors randomly for the optimization.

This strategy is the one used by VIVALDI.

• FISHEYE-UD uses the fisheye in a unidirectional mode.

Each host chooses a fisheye view of the overlay network.

The relation “is a neighbor of” is not guaranteed to be

bidirectional in this strategy.

• FISHEYE-BD is a fisheye in a bidirectional mode. This

strategy differs from the unidirectional fisheye in that the

resulting overlay network is guaranteed to be two-way

(bidirectional “is a neighbor of” relation).

Figures 7 - 10 show the average embedding error and host

speed for all three proposed neighbor selection strategies for

both data sets. The simulation results show that, as we

expected, using a better overlay network can result in more

stable host positions. Figures 8 and 9 show an interesting

result: Using a fisheye overlay without bidirectional “is a

neighbor of” relation actually results in an even more unstable

system. This is because the fisheye method of host selection in-

creases the effect where hosts are “chased” through the virtual

space. For that reason, the prediction error of FISHEYE-UD

is even worse than that of RAND. As soon as the choice of

the neighbors is bidirectional, the “chasing”-effect disappears

and the systems becomes both more stable and more precise

compared to a random choice of neighbors (RAND).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 100 200 300 400 500 600 700 800

R
e
la

ti
v
e
 E

rr
o
r

(M
e
d
ia

n
)

Simulation Time (s)

VIVALDI RAND
VIVALDI FISHEYE-UD
VIVALDI FISHEYE-BD

Fig. 7. Median of embedding error for VIVALDI using different neighbor
selection strategies with Planet-Lab data.

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 100 200 300 400 500 600 700 800

A
v
e
ra

g
e
 H

o
s
t
S

p
e
e
d

Simulation Time (s)

VIVALDI RAND
VIVALDI FISHEYE-UD
VIVALDI FISHEYE-BD

Fig. 8. Average host speed in the virtual space for VIVALDI using different
neighbor selection strategies with Planet-Lab data.

C. NetICE9 vs. VIVALDI

Our second improvement to VIVALDI is to position a

host relative to all known neighbors simultaneously instead

of optimizing the position relative to one neighbor at a time.

As before, we compared the median of the relative embedding

errors and average host speed in the virtual space for VIVALDI

using a random neighbor choice, VIVALDI with a bidirec-

tional fisheye neighbor choice, and NetICE9 (a combination of

bidirectional fisheye neighbor choice and positioning relative

to all neighbors). We performed this comparison for both the

Planet-Lab and the KING data set, see Figures 11 - 14.

D. Prediction Error

Since the median of the relative prediction error just gives an

estimate of the average prediction error, we decided to take

a closer look at the overall distribution of the relative RTT

embedding error. In order to achieve this, we compared CDFs

(cumulative distribution functions) of predicted distances. In

Figures 15 and 16, present the CDFs of the relative embedding

error for NetICE9, GNP, VIVALDI RAND and VIVALDI

FISHEYE-BD. Those CDFs have been obtained by comparing

relative embedding errors of each of those systems after

running the simulation for 400 seconds. In order to have

comparable GNP results we also used embedding into a 5

101

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 100 200 300 400 500 600 700 800

R
e
la

ti
v
e
 E

rr
o
r

(M
e
d
ia

n
)

Simulation Time (s)

VIVALDI RAND
VIVALDI FISHEYE-UD
VIVALDI FISHEYE-BD

Fig. 9. Median of embedding error for VIVALDI using different neighbor
selection strategies using KING data.

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 100 200 300 400 500 600 700 800

A
v
e
ra

g
e
 H

o
s
t
S

p
e
e
d

Simulation Time (s)

VIVALDI RAND
VIVALDI FISHEYE-UD
VIVALDI FISHEYE-BD

Fig. 10. Average host speed in the virtual space for VIVALDI using different
neighbor selection strategies with Planet-Lab data.

dimensional virtual space using 18 landmarks. To reduce the

impact of randomness, we compared the results of 30 simula-

tion runs, each of them made with a different initial seed for

the pseudo random number generator used by the simulator.

This seed both influences the choice of neighbors, landmarks

and initial starting points for function minimization. Figures

15 and 16 show that NetICE9 clearly outperforms VIVALDI in

terms of relative error of RTT embedding. Moreover, NetICE9

outperforms the embedding of GNP. We explain this by the

fact that NetICE9, due to its distributed nature, uses a larger

portion of available RTT measurements. This enables NetICE9

to obtain a better embedding compared to GNP, since GNP

uses only RTTs to landmarks, which are all the same for all

other hosts. Fig. 16 shows that using the bidirectional fish-

eye overlay network improves the performance of VIVALDI

almost to the level of the performance of GNP.

VI. CONCLUSION

We have identified two major sources of VIVALDI’s insta-

bility: 1) it does not choose its neighbors symmetrically. 2) it

optimizes towards only one neighbor at a time and disregards

all information known about the other neighbors. In order to

avoid these problems, we proposed NetICE9, which simulates

the creation of a crystal structure. In this crystal structure,

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 100 200 300 400 500 600 700 800

R
e
la

ti
v
e
 E

rr
o
r

(M
e
d
ia

n
)

Simulation Time (s)

VIVALDI RAND
VIVALDI FISHEYE-BD

NetICE9

Fig. 11. Median of embedding error for NetICE9 compared with VIVALDI
using Planet-Lab data.

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 100 200 300 400 500 600 700 800

A
v
e
ra

g
e
 H

o
s
t
S

p
e
e
d

Simulation Time (s)

VIVALDI RAND
VIVALDI FISHEYE-BD

NetICE9

Fig. 12. Average host speed in the virtual space for NetICE9 compared with
VIVALDI using Planet-Lab data.

every atom (i.e. every host) positions itself relative to its

surrounding atoms (hosts). In order to have a stable system, we

chose the surrounding of each atom such that the whole crystal

remains stable (i.e. the atoms of the crystal do not move). To

achieve this, we propose using such a choice of neighbors that

the“is a neighbor of” relation is bidirectional (A is a neighbor

of B iff. B is a neighbor of A). Motivated by VIVLADI results,

the choice of neighbors should be geographically diverse. This

means that for an ideal RTT prediction scheme, a mix of close

and remote neighbors should be used. One choice of neighbors

fulfilling both of those properties is the fisheye [11] overlay

network.

We have compared NetICE9 approach to VIVALDI and

GNP using a simulation based on RTTs measured in the

Internet. Our evaluation focused mainly on aspects of stability

and precision of RTT embedding. NetICE9 outperforms both

VIVALDI and GNP in the terms of precision of RTT embed-

ding. NetICE9 proved to be more stable than VIVALDI.

REFERENCES

[1] J. Albrecht, D. Oppenheimer, A. Vahdat, and D. A. Patterson. Design
and implementation trade-offs for wide-area resource discovery. ACM

Trans. Internet Technol., 8(4):1–44, 2008.
[2] M. Costa, M. Castro, A. Rowstron, and P. Key. Pic: Practical internet

coordinates for distance estimation. In International Conference on

Distributed Systems, Tokyo, Japan, March 2004.

102

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 100 200 300 400 500 600 700 800

R
e
la

ti
v
e
 E

rr
o
r

(M
e
d
ia

n
)

Simulation Time (s)

VIVALDI RAND
VIVALDI FISHEYE-BD

NETICE9

Fig. 13. Median of embedding error for NetICE9 compared with VIVALDI
using KING data.

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 100 200 300 400 500 600 700 800

A
v
e
ra

g
e
 H

o
s
t
S

p
e
e
d

Simulation Time (s)

VIVALDI RAND
VIVALDI FISHEYE-UD
VIVALDI FISHEYE-BD

Fig. 14. Average host speed in the virtual space for for NetICE9 compared
with VIVALDI using KING data.

[3] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: a decentralized
network coordinate system. In SIGCOMM ’04, pages 15–26, New York,
NY, USA, 2004. ACM Press.

[4] A. Dufour and L. Trajković. Improving gnutella network perfor-
mance using synthetic coordinates. In QShine ’06: Proceedings of

the 3rd international conference on Quality of service in heterogeneous

wired/wireless networks, page 31, New York, NY, USA, 2006. ACM.
[5] S. Floyd and K. Fall. Router mechanisms to support end-to-end

congestion control. Technical report, Lawrence Berkeley National
Laboratory, 1997.

[6] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: Estimating
latency between arbitrary internet end hosts. In SIGCOMM Internet

Measurement Workshop 2002, 2002.

[7] S. Lee, Z.-L. Zhang, S. Sahu, and D. Saha. On suitability of euclidean
embedding of internet hosts. In SIGMETRICS ’06/Performance ’06:

Proceedings of the joint international conference on Measurement and

modeling of computer systems, pages 157–168, New York, NY, USA,
2006. ACM.

[8] H. Lim, J. C. Hou, and C.-H. Choi. Constructing internet coordinate sys-
tem based on delay measurement. In Internet Measurement Confgerence

03, October 2003.
[9] E. K. Lua, T. Griffin, M. Pias, H. Zheng, and J. Crowcroft. On the

accuracy of embeddings for internet coordinate systems. In In IMC,
2005.

[10] R. McGeer. Planetlab: a worldwide deployment infrastructure for the
next generation of network services. Technical report, CERN, Geneva,
2004. CERN, Geneva, 13 May 2004.

[11] D. Milic and T. Braun. Fisheye: Topology aware choice of peers for
overlay networks. In The 34th IEEE Conference on Local Computer

Networks (LCN), Zurich, Switzerland, October 20-23 2009.
[12] J. Nelder and R. Mead. A simplex method for function minimization.

Computer Journal, 7:308–313, 1965.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

Relative Embedding Error

NetICE9
VIVALDI RAND

GNP
VIVALDI FISHEYE-BD

Fig. 15. Comparison of embedding error CDFs using Planet-Lab data.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Relative Embedding Error

NetICE9
VIVALDI RAND

GNP
VIVALDI FISHEYE-BD

Fig. 16. Comparison of embedding error CDFs using KING data.

[13] T. S. E. Ng and H. Zhang. Predicting internet network distance with
coordiantes-based approaches. In IEEE Infocom02, New York / USA,
June 23-27 2002.

[14] T. S. E. Ng and H. Zhang. A network positioning system for the internet.
In USENIX 2004, pages 141–154, Boston MA, USA, June 2004.

[15] OMNET++, avail. online:http://www.omnetpp.org, 2007.
[16] C. Pelsser. Using virtual coordinates in the establishment of inter-

domain lsps. In CoNEXT ’05: Proceedings of the 2005 ACM conference

on Emerging network experiment and technology, pages 274–275, New
York, NY, USA, 2005. ACM.

[17] Y. Shavitt and T. Tankel. Big-bang simulation for embedding network
distances in euclidean space. IEEE/ACM Trans. Netw., 12(6):993–1006,
2004.

[18] Y. Shavitt and T. Tankel. On the curvature of the internet and its
usage for overlay constructi on and distance estimation. In INFOCOM

2004. Twenty-third AnnualJoint Conference of the IEEE Com puter and

Communications Societies, pages 374–384, Hong Kong / PRC, March
7-11 2004.

[19] L. Tang and M. Crovella. Virtual landmarks for the internet. In Internet

Measurement Confgerence 03, October 2003.
[20] C. Yoshikawa. Planetlab all-sites-pings experiment, 2006.
[21] B. Zhang, T. S. E. Ng, A. Nandi, R. Riedi, P. Druschel, and G. Wang.

Measurement based analysis, modeling, and synthesis of the internet
delay space. In IMC ’06: Proceedings of the 6th ACM SIGCOMM

conference on Internet measurement, pages 85–98, New York, NY, USA,
2006. ACM.

103

