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Abstract—Constructing a topology aware overlay network is
an open research topic. In this paper we propose a novel protocol
for building overlay networks - a distributed fisheye view. Similar
to round trip time (RTT) prediction approaches, we consider the
end systems to be embedded in a virtual metric space. Unlike
other approaches, we use only the distances (measured RTTs)
to build an RTT proximity aware overlay network. Therefore,
we are able to construct a fisheye view without performing the
embedding. At the same time we are still able to guarantee the
geographical diversity of the neighbors. Once built, the fisheye
views on the end systems are continuously refined as information
about new potential neighbors is available. This makes our
overlay network adaptive to changes in the network topology. To
evaluate our approach, we compared it with an existing topology
aware overlay network construction approach – binning. We
based this comparison on RTT measurements obtained using
the King RTT measurement method and from the Planet Lab
“all site ping” experiment. Our evaluation shows that the overlay
network built using our approach outperforms binning in terms
of relative RTT stretch. We also show that for increasing number
of neighbors the performance of our approach converges towards
an optimal solution.

I. INTRODUCTION

Peer-to-peer (p2p) and overlay networks are widely used in

the Internet today. Such networks are usually used, when a

service is required that is missing in the underlying network,

such as multicast or a distributed hash table (DHT). The ad-

vantage of using p2p and overlay networks in such a scenario

is the ease of the deployment. In contrast to deploying a new

service in the underlying network, which implies changing

the infrastructure and/or deploying servers, a p2p network is

deployed only on end systems interested in using the service.

This means that there is no need for the cooperation of the

network provider or some third party.

As of today, there are numerous p2p and overlay protocols.

Most of them are designed to provide services such as service

discovery [10], [26], DHT [6], [12], [17], [19], [22], applica-

tion layer multicast (ALM) [2], [3], [20]. All of those protocols

are designed to be scalable and efficient within the overlay

network. For example, the number of hops for a lookup in

Chord [22] is guaranteed to grow logarithmically with the size

of the network. On the other hand, the same protocol totally

disregards the topology of the underlying network. This means

that routing from end system A to end system B, which are in

the same autonomous system (AS), may be performed via an

end system C, which is in another AS. As a result, one query

may unnecessarily traverse “long” (in terms of communication

delay) links in the underlying network several times before

it reaches its destination. This unnecessarily increases the

communication delay.

Basically there are two approaches for extracting topology

information for the underlying network. The most straight-

forward method is to consider the underlying network as a

white box. This means that the topology information (topology

graph) of the underlying network is extracted and used to

construct an optimal overlay network. Topology information

gathering is usually done either by querying databases pro-

vided by the Internet service providers and BGP routing tables

or using topology discovery tools [1], [11]. This approach

may yield a good result for small overlay networks, because

it allows quite precise optimization on the link level. On

the other hand, this approach introduces too much overhead

and complexity for large overlay networks. The amount of

information needed to optimize the overlay structure of a large

overlay network is quite huge. In addition, finding the optimal

solution for the problem is more or less equivalent to the

traveling salesman problem, which is NP-hard. Another issue

is that ISPs are rarely willing to provide the information about

the internal structure of their network.

In contrast to the white box approach, in the black box ap-

proach, the structure of the underlying network is not analyzed.

Instead, targeted QoS parameters such as available bandwidth,

RTT, jitter etc. are actively or passively measured between

end systems. Based on this information the structure of the

overlay network can be optimized. Still, just measuring QoS

parameters for each pair of end systems scales quadratically

O(n2) relative to the number of end systems. Also, the

optimization task is still NP-hard. This makes the optimization

of large overlay networks unscalable. To solve this problem,

we should not aim for finding the optimal solution. Instead

we need a method that provides a solution close to the

optimal one, but with much lower cost in terms of number

of measurements required and computational overhead.

In order to obtain a usable method to build a topology

aware overlay network we need to reduce the number of

required measurements and the overhead of overlay optimiza-

tion. To have scalable measurements, we could reduce the

number of measurements performed at the cost of accuracy,

by eliminating the need to perform measurements for all end

system pairs. Another effective method is to have a system



that does not need the RTT information for every pair of

end systems immediately. Instead, the system can perform a

constant number of measurements per time unit and use this

newly obtained information to continuously converge towards

a better solution.

Numerous position based mobile ad-hoc network routing pro-

tocols [16], [24] are based on a “fisheye” view of the network.

The “fisheye” view of the network implies that each end

system has a view of its neighborhood similar to how a fisheye

sees. The lens of a fisheye has an extreme wide angle. The

light is refracted by the fisheye lens such that the center of

the view contains very high level of detail. With increasing

distance from the center of the view, the detail level rapidly

decreases.

In this paper, we propose a black box based approach to

build an overlay network. We propose periodically measuring

RTTs and using that information to build a fisheye view of

the overlay network at each end system. This fisheye view is

constantly refined when new information is available. By doing

so we ensure constant convergence towards a better overall

solution for the overlay network.

This paper is structured as follows. In the next Section, we

give an overview of the related work relevant for this paper.

In Section III we present how the fisheye view paradigm can

be applied to computer networks. In the same Section we show

how a fisheye view can be incrementally built for overlay

networks even without using an embedding of end systems

in a virtual space. Section IV identifies the problems that

occur, if we use a naive approach of independently building a

fisheye view at each end system. Our solutions to the identified

problems are presented in the same Section. Section V presents

a distributed communication protocol used to incrementally

build and refine the fisheye view of the overlay network on

each end system. Section VI compares our approach with other

existing topology aware approaches. In the last section we

summarize our approach, the experimental results and outline

the possible use of such an overlay network.

II. RELATED WORK

When we apply the paradigm of a fisheye view to a position

based computer network, each end system should have a

fisheye view of the overlay network. This fisheye view is

populated with many near neighbors. The density of known

neighbors decreases with increasing distance. Theoretically,

the density should never reach zero. In the case of an overlay

network this is not possible, since both the number of end

systems and the diameter of the space populated by the end

systems are finite.

The advantages of the fisheye view at each end system of

the overlay network are twofold. The fisheye view decreases

the amount of data that one end system must store about the

network. Since memory at each system is limited, the amount

of information stored should be kept constant regardless of the

overlay network size. A fisheye view also contains a rather

high density of “close” neighbors allowing efficient routing

using short distances. At the same time, it contains minimal

information about remote neighbors, making the long routing

“jumps” possible.

A. Use of Fisheye View in Overlay Networks

The fisheye view paradigm is not only limited to network

routing protocols. Many of the existing DHT approaches are

based on a fisheye routing table to achieve a balance between

the size of the routing table and the number of routing hops.

For example, Pastry [19] and other Plaxton-based routing

protocols [17] use prefix based routing table, which is nothing

else than a fisheye view of the ID space.

B. Topology Aware Overlay Networks

Most of the proposed topology aware overlay networks are

used to provide application level multicast (ALM) services.

One of the first proposed topology aware ALM is NARADA

[3]. NARADA is designed for relatively small groups of end

systems. The approach of NARADA is to build a connected

graph of overlay nodes, which the authors termed “mesh”.

The mesh is constantly refined according a utility function,

which regards the utility gain (reduction of RTT) for the other

neighbors. Building multicast trees in NARADA is done using

the DVMRP [5] protocol.

Another interesting topology aware overlay protocol is Pastry

[19]. Pastry is a general purpose overlay network routing

protocol. Each Pastry node has an unique (usually randomly

chosen) ID. Routing in Pastry is done using prefix routing

table using Plaxton like routing [17]. This is, like many other

overlay/p2p routing protocols, a fisheye view of the address

space. The feature that makes Pastry different compared to

other prefix based routing schemes is the way the routing table

is built. If more than one candidate exists for an entry in the

prefix table, Pastry chooses the one with smallest RTT. In such

a way, Pastry optimizes not only the routing in the overlay,

but also in the underlying network.

Meridian [23] is an overlay network for finding near services

regarding RTT. Similar to the approach we are proposing

here, Meridian keeps a fisheye view of its neighbors. This

fisheye of each end system consists of concentric rings with

increasing radius. Within each of the rings a constant number

of neighbors are kept (k). The geographic diversity of the

chosen neighbors within one ring is ensured by maximizing a

k-polytope formed by the neighbors. Since Meridian has no

guarantee to form a connected graph, it is not suitable for the

purpose of unicast or multicast routing. Instead, the purpose

of Meridian is to provide an efficient neighbor finding service

in terms of communication delay. The number of hops of a

query is guaranteed to scale logarithmically O(log n) relative

to the number of end systems participating in the Meridian

network.

In our approach we combine the ideas of having a bidirec-

tionally connected graph that is continuously improved as

proposed by NARADA with a fisheye view at each end system

as proposed by Meridian. We improve Meridian’s method for

choosing neighbors by minimizing the forces of gravity instead

of having concentric rings and maximizing k-polytopes.



III. FISHEYE VIEW

Almost all existing fisheye view approaches [12], [16], [19],

[22], [24] are based on an assumption that each end system

has a position in a one- or a two-dimensional Euclidean space.

When we consider a generic computer network such as the

Internet, we are dealing with a connected graph. There is no

guarantee that this graph can be embedded into a metric space.

Even if there is such an embedding, there is no guarantee that

the number of the dimensions used for the embedding is low.

To overcome this problem, we could use an approach that

does not necessarily embed the distances, but tries to embed

distance approximations in order to reduce the overall error.

For example, we could use some kind of position based RTT

prediction scheme such as GNP [13], [14] or VIVALDI [4] to

obtain coordinates of the end systems. The problem of such an

approach is that they are per design not accurate – mostly due

to the fact that RTTs in the Internet frequently violate one of

the basic properties of metric distances: the triangle inequality.

Nevertheless, for the clarity of our explanations, we assume

that there is an accurate embedding of end systems into a d-

dimensional Euclidean space, in such a way that the distance

between any end system pair in the metric space is exactly

the measured RTT between those end systems. Later, we will

show that there is actually no need to perform the embedding,

since we can operate only with measured distances, which

significantly simplifies our approach.

To explain our idea for building a fisheye overlay network we

assume the following. Our end systems in the overlay network

are defined as a set of k nodes N := {ni|i ∈ {0 . . . k}}. Each

of the nodes has a position denoted by Cni
in a p-dimensional

Euclidean space denoted Sp. The positions of the nodes in Sp

are not random – they are chosen in such a way that for every

pair of nodes nl, nm ∈ N the Euclidean distance, defined in

(1)

d̂(Cnl
, Cnm

) :=

√

√

√

√

p
∑

i=1

(Ci
nl

− Ci
nm

)2 (1)

is equal to the RTT between those two nodes measured through

the underlying network d(nl, nm). Each node is allowed to

store information of at most c neighbors at the same time.

The problem we are trying to solve is to assign a fisheye

view choice of neighbors to each end system in a distributed

manner. This choice should fulfill the properties of the fisheye

view, meaning that most of the neighbors should be from

the direct vicinity in terms of network distance (RTT). At

the same time, the fisheye view should also contain a few

“long” links to neighbors that are more distant. Those long

links enable efficient routing towards end systems that are far

away. Another important property of a fisheye view is the

geographical diversity. Geographical diversity means that if

we embed the overlay network into a metric space, the chosen

neighbors would “surround” the end system. The geographical

diversity ensures efficient routing in each “direction” through

the overlay network.

A. Universe Analogy

In order to explain our approach we use the universe

analogy. We consider an overlay network to be a universe.

Each end system is one planet located somewhere within this

universe. Distances between the planets are RTTs measured

between the corresponding end systems. Since the universe

has no reference point, each planet has its own “view” of

the universe. Each planet’s view considers this planet to be

in the center of the view. The problem we are trying to

solve is to reduce the number of planets within the view to

a constant number c. This reduction of the planet’s view is

equal to choosing the overlay neighbors for one end system.

The two most distinguishing properties of the fisheye view are

geographical diversity and a degree of detail that decreases

with increasing distance to the center of the visual field.

Therefore, the reduction we perform should consider those

properties. As in the real universe, there is the gravity force

in our universe. This gravity force is defined by (2), where r
is a distance between two planets and m1 and m2 are masses

of those two planets.

F = G ·
m1 · m2

r2
(2)

B. Geographical Diversity

Let us assume, we would only try to achieve geographical

diversity. As mentioned before, the planet for which we tailor

its view is in the center of the view. We denote this planet

(end system) with nc. The other planets surrounding it are not

necessarily uniformly distributed through the universe. There

may be some clusters of planets, which are located close to

each other. Also, there may be some portions of the universe

containing no planets at all. This means that the density of

planets is not evenly distributed through the universe. The goal

of our reduction of planets in the view is to remove the planets,

which are close to each other, i.e., to avoid clusters. We could

achieve this by iteratively removing planets, one by one. At

each iteration we would have to pick one planet that is in the

dense part of the universe. This procedure can be continued

until we have exactly c planets left. The planets that are still

in the view are evenly distributed through the universe and

therefore the obtained view is geographically diverse.

The only question that remains is: Which planet should be

removed at the iteration? As an answer to this question, we

propose removing the planet with the maximum sum of gravity

forces, because those planets are in the most dense parts of

the universe. We assume that each planet in the universe has

a constant mass (for simplicity we assume m = 1). For each

planet pair ni, nj within the universe we could calculate the

gravity force using (2). This gravity force increases (more than

linearly) with decreasing distance between planets. For that

reason, the total sum of gravity forces for planets that are in

a cluster of planets is higher than for planets that are located

in less dense parts of the universe. Therefore, if we always

remove the planet with the maximum sum of gravity forces

from the view, we will equalize the density of planets. The



equation for computing the gravity force would be (3).

Fnc

i
=

∑

j∈N\{i,c}

1

(d(ni, nj))2
(3)

C. Enforcing Fisheye View

Up to now we assumed that the mass of a planet is equal for

every planet. As a result of this, the reduced view of planets is

(as far as possible) equally distributed. This equal distribution

of the view unfortunately does not have the fisheye property.

In order to have the fisheye property, we should favor planets

close to the center of the universe (the planet for which we

calculate the view). To do so, we propose considering the mass

of planets not to be constant, but proportional to the distance

to the center of the universe nc. By doing so, we shift the

density of the planets remaining in the view towards the center

of the universe to obtain a fisheye view. The final equation for

computing the total gravity force for one planet ni for the

center nc is (4).

Fnc

i
=

∑

j∈N\{i,c}

d(ni, nc) · d(nj , nc)

(d(ni, nj))2
(4)

As an illustration, Fig. 1 shows the result of our algorithm

applied to a “universe” of 300 end systems. The universe is

reduced to 25 neighbors. Of course, in a p2p network, one peer
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Fig. 1. Example of fisheye view calculated using our gravity force
minimization algorithm.

never stores the information about the whole overlay network

at the same time. Instead, one peer becomes aware of only few

new peers at a time. Fortunately, our algorithm is by design

incremental and can be applied each time a new peer is known,

to determine whether the new peer should replace an existing

one in the view. For example, if one peer already has its fisheye

view of the network and becomes aware of a new peer, it only

needs to add this peer to its “view”, which now contains the old

fisheye view and additionally the new peer, and to re-calculate

the sum of the gravity forces in it. If the new “planet” has a

lower sum of gravity forces than the other planets, then the

planet with the largest sum of gravity forces is removed from

the fisheye and the new neighbor becomes a new planet in the

“view”. By this an end system incrementally refines its fisheye

view through its lifetime.

D. Are Positions Required?

If we examine (4), we see that the total gravity force depend

only on distances. Since in our case the distances are measured

RTTs, we could use our algorithm without embedding the end

systems into a virtual space. Instead of embedding, we can

directly use the measured distances (RTTs) to construct the

fisheye view for each end system. Since our approach does

not require the knowledge of the host position, it avoids the

error introduced by performing the embedding. This means

that our approach should still be effective, even if not all

distances fulfill the triangle inequality property. This has been

substantiated by experiments performed in [4], [13], [14], [21]

that show that those embeddings provide a quite precise RTT

prediction service. This means that assuming that the Internet

can be embedded in a metric space is not completely false.

IV. PROBLEMS OF INDEPENDENT CONSTRUCTION OF THE

FISHEYE VIEW

If we simply apply the method we described in Section

III, each end system in the overlay network would be able

to construct its own fisheye view of the network. At the first

glance, this would be a good idea, since there is no requirement

for cooperation between the end systems, besides providing

RTT measurements. But there are also two major drawbacks

to this approach: asymmetry of the connection graph and non

uniform connection distribution.

A. Asymmetry of the Connection Graph

We can observe an overlay network as a connected graph.

If each end system independently decides which other end

systems are known to him, we obtain a directed graph. Such a

graph has no guarantee that it will be connected. For example,

if we have a portion of the virtual space with high end system

density, the chances are growing that at least one of those end

systems will not be “chosen” by some other end system to

be its neighbor. As a consequence, if one of the end systems

is never chosen as a neighbor, there is no edge in the graph

representing the overlay network that leads to this end system.

This means that the graph is not necessarily connected.

To overcome this problem we propose that the “is a neighbor

of” relation of a fisheye view is bidirectional. This means n1

is a neighbor of n2 iff n2 is a neighbor of n1. If the “is a

neighbor of” property holds, the graph is bidirectional and

must be connected. This is due to the fact how the overlay

network is built. We assume that the existing overlay network

is a connected graph. If one node joins the network, the new

node must connect to at least one of the end systems of the

existing network. If this connection is bi-directional, the graph

of the extended overlay network is also connected.

B. Non-Uniform Connection Distribution

Another problem that can occur, if the end systems are

not uniformly distributed within the virtual space, is the non-

uniform distribution of connections in the overlay network.

The problem occur if one end system is isolated and alone

in a large portion of the virtual space. Since this end system



is the only end system in a quite large portion of the space,

the total sum of the gravitation forces for that end system is

probably quite low. As a consequence, this end system will be

in the fisheye view of many other end systems. Thus this end

system may be forced, depending on what the overlay network

is used for, to handle a lot of traffic.

To solve this problem, we split the fisheye view into incom-

ing and outgoing connections. Each end system can have

at most C inc incoming and Cout outgoing connections. An

outgoing connection is a connection initiated by the local

system. Incoming connection means that the connection is

initiated by some other end system. Each end system is free

to use its outgoing connections to improve its fisheye view

by disconnecting from one and connecting to another remote

system, if that improves its fisheye. However, an end system is

not allowed to disconnect incoming connections. We also add

a multiplication factor for the total sum of gravity forces (4)

to stimulate connecting to the end systems with lower number

of incoming connections: 1

Cinc−E inc , where E inc is the current

number of open incoming connections. Thus, the improved

function to compute the sum of gravity force in the universe

is (5).

Fnc

i
=

∑

j∈N\{i,c}

1

C inc
j − E inc

j

·
d(ni, nc) · d(nj , nc)

(d(ni, nj))2
(5)

V. DISTRIBUTED FISHEYE VIEW

In this Section we propose a distributed algorithm and a

communication protocol for building a fisheye overlay net-

work. Our protocol is designed to incrementally converge to-

wards the optimal solution by using only partial measurement

information and knowledge of the overlay network.

The goal of the algorithm and the protocol is to build and

maintain a fisheye view at each end system. The constructed

overlay network represents a bi-directionally connected graph,

where each end system has knowledge of only a constant

number of other end systems. The protocol is constructed in

a way such that it is robust against end node failures. Also it

is reactive to topology changes of the underlying network.

A. Gossiping and Keep Alive Messages

Each end system participating in the overlay network sends

periodically UPDATE messages to all of its neighbors. To

avoid synchronous “heartbeats” of the network, the retrans-

mission time is randomly (with uniform distribution) chosen

from the interval txmit ∈
[

tupdate

2
, tupdate

]

. The UPDATE message

contains the current fisheye view of the end system and a

gossiping list. One purpose of the UPDATE message is to

confirm the aliveness of an end system to all of its neighbors

(keep alive message). At the same time, the UPDATE message

performs a random gossiping of new end systems that can be

used to optimize fisheye views of the neighbors.

B. Opening and Closing Connections

Each end system may at any time open a new outgoing

connection to any other end system in the overlay network.

Usually one end system contains a list of end systems,

which should be used to optimize the overlay network. This

list is maintained by combining information from UPDATE

messages received from the neighbors. Opening the connection

is initiated by sending an OPEN message to the remote end

system. Upon receiving an OPEN message, the end system

may either reply with an ACCEPT or with a REJECT message.

The response of the end system depends on the number of

already established incoming connections. If the number of

already established incoming connections reached its max-

imum, then the response will be REJECT. Otherwise the

response is ACCEPT. With an OPEN message, the list of all

current neighbors is sent. If the remote system replies with an

ACCEPT message, it also must perform RTT measurements to

all end systems from the list contained in the OPEN message

and send them back as a part of the ACCEPT message. This

information is used at the connection initiating end system

to calculate a new fisheye view. If the new fisheye view

represents a better fisheye view, in terms of the force of gravity

minimization described in Section III, then the initiating end

system sends a COMMIT message to the remote system.

Otherwise, a ROLLBACK is sent to the remote system, to

indicate that the connection has not been established.

The closing of an established outgoing connection is indicated

by sending a CLOSE message to the other end system. Also,

an end system gracefully leaving the overlay network, should

send a CLOSE message to all of its neighbors, regardless

whether the connection is incoming or outgoing.

C. Bootstrapping

To join a fisheye overlay network, an end system must

“know” at least one node already joined to the overlay

network. To find this node, one of the usual p2p bootstrapping

methods can be used, such as having a well known peer, dy-

namic DNS, etc. [7]. The new node contacts its bootstrapping

node by sending a HELLO message to it. As a response to a

HELLO message the bootstrapping node sends the UPDATE

message, which contains its current neighbors and a gossiping

list. The gossiping list contains a random choice of known

systems, which are not the direct neighbors. Each end system

maintains a list of such potential neighbors. The reason for

this is to increase the random choice of neighbors to connect

to. Since this is the same message used for maintaining and

gossiping in the overlay network, the joining node can use

the information contained in it to choose its neighbors for its

initial fisheye view and establish a connection as described in

Section V-B.

VI. EVALUATION

In order to verify the performance of our approach, we

have compared the overlay network constructed using our

approach with binning, an optimal heuristic and a random

overlay construction approach [18]. Since we are focusing on

the properties of the constructed overlay network, we avoid

using any particular overlay routing protocol. Instead, we

always calculate an optimal path in the overlay network (path



with the minimal RTT stretch) and compare the lengths of

those paths.

A. Protocol Simulation

We evaluated our overlay construction approach using

an event based simulation [15]. In order to have a realistic

network model, we used RTT information measured in

the Internet. In our network model, each overlay message

was delayed for half of the RTT measured between end

systems in the Internet. The RTT distances are obtained by

performing RTT measurements for each pair of end systems

in the Internet. In our case, we have used one RTT matrix

obtained from the Planet Lab “all sites ping” experiment [25]

and one obtained using the King [8] method. Used data sets

contain a complete RTT distance matrix for 218 Planet Lab

end systems and 462 end systems measured with the King

method. The nodes in our simulation are started with 0.1

second delay, meaning a high churn at the first 21.8 seconds

of simulation in the case of Planet Lab data and 46.2 seconds

for the King data set.

B. Comparison Methodology

The goal of our evaluation is to determine, whether the

overlay network constructed using our fisheye view (FISH-

EYE) approach is better or worse than existing approaches. We

compare our approach with the following other approaches:

• RND: The random approach is the most common one

used in unstructured overlay networks. Each end system

randomly chooses S other end systems already partici-

pating in the overlay network. The performance of this

approach is an upper boundary for a topology aware

overlay network, since it totally disregards the topology

of the underlying network.

• OPT-HEUR: A heuristic method that should approximate

the optimal choice of neighbors. This approach is based

on choosing S/2 nearest neighbors of an end system

and S/2 of randomly chosen neighbors from the overlay

network. According to [18], this approach delivers re-

sults that approximate an optimal solution. We used this

heuristic method as a lower boundary for the performance

of an overlay building strategy, since finding an optimal

overlay network is NP-hard. The main drawback of this

method is that each end system would need to have a

complete knowledge of the overlay network in order to

determine the c/2 nearest neighbors.

• BINN: In a topology aware approach [18]. Each end

system is assigned into one of the L! bins relative to

L randomly chosen landmarks. A bin is determined by

measuring RTT to a set of landmarks and ordering those

landmarks according to the relative distance to an end

system. End systems in the same bin are considered to be

roughly in the same area of the network. Hence, similar to

OPT-HEUR, this strategy assigns S/2 neighbors from the

same (or the most similar) bin and S/2 neighbors chosen

randomly from the overlay network. For our experiments,

we have set the number of landmarks L = 5, which gives

the maximal number of 120 different bins

To compare the efficiency of the paths in the overlay network,

we compare the relative length of the path through the overlay

network in terms of RTT between each pair of end systems in

the overlay network. We define the relative path between two

overlay systems as:

RTT of the optimal path through the overlay network

RTT of the optimal path through the underlying network

The relative path length of 1.0 means that the communication

delay through the overlay network is optimal (as good as

the best route through the underlying network). A relative

path length value larger than 1.0 indicates the “penalty”

(additional overhead) for routing using the overlay network.

Values smaller than 1.0 are not possible.

C. Results

Since the performance of all approaches varies depending

on the initial random seed, we performed 10 runs of each

experiment with different seeds. Figures 2 and 3 show the

median of relative paths for the overlay networks using the

Planet Lab and King data sets for all four approaches depend-

ing on the number of neighbors (S) that we varied between 9
and 21. As the Figures show, the median of all relative paths
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Fig. 2. Median of relative path length in the overlay network in dependence
of number of neighbors for the Planet Lab data set.

in our approach outperforms both RND and BINN overlay

construction strategies and approaches the performance of

OPT-HEUR for increasing S.

In order to keep Figures 2 and 3 readable, we omitted confi-

dence intervals. To have a better overview of the performance,

we also show the cumulative distribution function (CDF) of

optimal paths for 9 and 21 neighbors in Figures 4 and 6 for

Planet Lab and in Figures 5 and 7 for the King data set.

The CDF data for 7 neighbors show that FISHEYE and BINN

do not significantly differ. With increasing number of neigh-

bors, performance of FISHEYE improves and for 21 neighbors

outperforms the HEUR-OPT strategy in the King data set.

Both median and CDF comparisons show that the FISHEYE

approach clearly outperforms both RND and BINN overlay
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Fig. 3. Median of relative path length in the overlay network in dependence
of number of neighbors for the King data set.
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Fig. 4. CDF of relative path lengths in the overlay network with 7 neighbors
for the Planet Lab data set.

construction strategies for a number of neighbors larger than

7. Another interesting result is that with the increasing number

of neighbors, the FISHEYE approach converges towards the

performance of the OPT-HEUR approach.

D. Convergence

We also examined the speed of convergence of our approach

at high rates of joins and leaves. For this, we simulated

building a FISHEYE overlay network with S = 19 using

the King data set for 500 seconds. Every 10 seconds of the

simulation, we calculated optimal paths in the constructed

overlay network. The median of this data is shown in Fig. 8.

Since we used the King data set for this experiment, all end

systems have joined the overlay network after 46.2 seconds of

simulation time. The system converged towards a stable state

at 210 seconds after the start of the simulation. This means

that the overlay protocol reaches a stable state after roughly

3.5 times the duration of a high churn period.

E. Comparison With Pastry

As another illustration of efficiency of our overlay building

protocol, we compare it with the open source implementation

of the Pastry protocol [9]. We compared the relative lengths

of optimal paths in the fisheye overlay network and the path
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Fig. 5. CDF of relative path lengths in the overlay network with 7 neighbors
for the King data set.
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Fig. 6. CDF of relative path lengths in the overlay network with 21 neighbors
for the Planet Lab data set.

lengths using the Pastry routing. For this comparison, we used

the Planet Lab data set. For our approach, we used S = 18 (18

neighbors). Although Pastry is topology aware and has much

larger routing tables (potentially more than 100 neighbors),

Fig. 9 shows that after the stabilization phase, our approach

outperforms the Pastry overlay by a factor of 7.

VII. CONCLUSIONS

In this paper we have presented a fully distributed method

for topology aware selection of neighbors in order to construct

an overlay network. This method is based on providing a

fisheye view of the overlay network to each end system

participating in it. The basic principle of the proposed method

is to incrementally refine the fisheye view of each end system.

The constructed overlay network is guaranteed to be a fully

connected bidirectional graph and has a constant upper limit of

known neighbors (limited maximal fan out). Those guarantees

make such an overlay network a perfect candidate for nu-

merous overlay applications such as topology aware multicast

service or as the overlay network for an unstructured P2P

network. In the evaluation we showed that the overlay network

constructed using our method outperforms the one constructed

by an already existing binning overlay building strategy in

terms of relative path length of routes.
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Fig. 7. CDF of relative path lengths in the overlay network with 21 neighbors
for the King data set.
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