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Abstract—Numerous round trip time (RTT) prediction
schemes use the least squares method to embed hosts in vir-
tual euclidean spaces. The least squares method minimizes the
residuals between measured data (measured RTTs) and their
approximation (euclidean distances between the host position
and fixed points, to which the distance was measured). This is
achieved by minimizing an objective function, which is defined as
a sum of square differences between measured distances to fixed
points (landmarks) and euclidean distances to those landmarks
in a virtual space. Since there is no direct way (closed form)
for finding minima of the objective function, numerical function
minimization must be used. In this paper we identify the problem
of existence of multiple local minima of objective functions and
their impact on resulting RTT predictions. To overcome this
problem, we propose an algorithm for finding all local minima
of the objective function. By finding all minima, we are able to
identify the global minimum of the objective function, and thus
ensure the optimal embedding of a host in the virtual space. To
evaluate our algorithm we compare it with standard methods
for function minimization using data collected by the Planet-Lab
all-pings experiment.

I. INTRODUCTION

Round-trip-time (RTT) is one of the most important prop-
erties of Internet communication, due to its role as a limiting
factor for the effective bandwidth of TCP connections [5]
and its impact on delay sensitive real time applications such
as teleconferencing, massive multiplayer on-line games etc.
The idea behind a RTT prediction scheme is not to measure
RTT between each pair of hosts in the network, but to to
have a more or less precise estimate of RTTs between all
hosts in the network based on a small amount of measured
RTTs. Such a RTT prediction scheme can be used to optimize
overlay network structures, to choose nearest data source for
file transfer, or to find an optimal route based on predefined
QoS parameters.
Numerous RTT prediction schemes already exist. Most of
them have been developed in the last years. The most promis-
ing among them are based on embedding hosts in a (low
degree) dimensional euclidean space. Almost all of such RTT
prediction schemes are based on minimizing a so called “ob-
jective function” to embed the host into the euclidean space.
Since there are usually no direct (closed form) methods for
finding the minimum of such a function, minimization is only
possible using numerical (iterative) methods. Besides the non-
negligible computational overhead of function minimization,
such methods are only able to find one minimum of the

function. The problem is, that the objective functions that are
used to embed hosts in virtual spaces can have more than one
minimum and only one of them is the minimum, which we
are interested in: the global minimum.
In this paper, we investigate the magnitude of the problem
of local minima existence based on real Internet RTT mea-
surements. We show that the number of local minima of
the objective function and the probability of not finding the
global minimum affects a considerable percentage of hosts.
The consequence of this is that the hosts are not optimally
positioned in the virtual space, which reduces the precision of
the RTT prediction. We also propose an algorithm, which is
in most of the cases able to find the global minimum of the
objective function.
This paper is structured as follows. In the next Section we give
an overview of related work in the field of RTT prediction. In
Section III we motivate the need for finding global minimum
of the objective function by showing the results of our research
regarding the frequency of local minima occurrence based on
data measured in the Planet-Lab all-pings experiment. Section
IV describes the principles of different multimodal numerical
function minimization techniques. In the same Section we
also illustrate the impact of using different minima on RTT
prediction error. We also show using a constructed example,
the existence of local minima even in an ideal case, where
RTTs are originating from euclidean space distances (no
violations of the triangle inequality). In Section V we describe
our proposed method for finding global minima of the common
objective functions used for embedding the hosts in the virtual
euclidean space. In Section VI we present the evaluation of
our algorithm for finding the global maximum described in
Section V and compare it with plain GNP.

II. RELATED WORK

In the last years there have been numerous proposals for
RTT prediction schemes based on coordinates [2]–[4], [7],
[9]–[11]. Essentially there are two types of coordinates based
RTT prediction schemes: landmarks-based and landmarks-
less. The landmarks-based RTT prediction schemes determine
coordinates of a few fixed reference points (so called land-
marks) and use them to determine the positions of all other
hosts. Some of them are based on positioning landmarks
using function minimization [2], [9], [10]. The others [7],
[11] use the principal component analysis (PCA) to reduce



the dimensionality of the landmark RTT measurements and to
position the hosts. Landmarks-less RTT prediction schemes
such as VIVALDI [3] or S-VIVALDI [4] are based on a
distributed simulation of physical systems to iteratively reduce
the overall error of embedding a host in an euclidean space.
The first and the most promising landmarks-based RTT predic-
tion scheme is GNP [9], [10]. In GNP, m hosts are chosen as
landmarks (denoted by L1 . . .Lm). All other Hosts (denoted
by H) in the Internet measure RTT distances (denoted by
d̂HL1

, . . . , d̂HLm
) to the landmarks and use this information

to determine their position in a virtual space. The coordinates
of a host in a virtual space (denoted by CH := (C1

H, . . . , Cn
H))

are determined using multilateration. The multilateration itself
is based on minimizing the error function fe. In the case of
GNP, the least-squares-error function

fe(CH) :=

m
∑

i=1

(d(CH, CLi
)− d̂HLi

)2 (1)

is used. The function minimization is performed using the
Downhill Simplex [8] method.
For calculating dS(CH, CLi

), the positions of the landmarks
in the virtual space (CL1

. . .CLm
) must be known. In the case

of GNP, the coordinates of the landmarks are computed by
minimizing the following error function:

fe(CL1
, . . . , CLm

) :=
∑

i,j∈{1...m},j>i

(d(CLi
, CLj

)− d̂LiLj
)2

III. MOTIVATION

The mere existence of local minima does not necessarily
mean that the RTT prediction scheme proposed in GNP
produces significant difference in RTT prediction. To show
how the magnitude of the problem, we have performed a series
of experiments with goal to determine how the portion of the
hosts that are affected by the existence of the local minima.
Another goal of our experiments is to determine if there is
a significant degradation of RTT prediction by using a local
instead of the global minimum for the host embedding.

A. How Frequent are Multiple Minima?

To determine how frequent local minima of the objective
function really occur, we have performed a so called “monte
carlo” minimum search. The idea is to perform large numbers
of numeric minimum searches – each time with an other
randomly chosen start point. If we would perform an infinite
number of such function minimizations, we would be able to
find every local minimum for any function. Since we know that
the number of minima is relatively low (usually not more than
5), performing a relatively low number of such minimizations
would result in a good estimate about how many minima there
are and where they are located. In this case we used 400
function minimizations.
Since we are using numerical methods, we still need a non-
strict method for deciding, whether if two minima are “equal”.
For this experiment, we considered two local minima m1, m2

as equal if the following inequality holds: d(Cm1
, Cm2

) < 2.

We have agreed on the value of 2 since the units that are used
in the all-pings experiment are milliseconds and a positioning
error of two milliseconds is an acceptable compromise be-
tween the number of false positives and the prediction error –
we are looking for errors of much larger magnitude. Due to
this, our method cannot distinguish two local minima if the
euclidean distance between them is less than two milliseconds.
This is acceptable for us, since we are not interested in an exact
number of minima, but only in an estimate of how many local
minima there are, that are located “far” away from each other.
At the beginning we used the Downhill Simplex method for
the function minimization. As the result of this experiment,
we have obtained a huge amount of local minima located near
each other (but more than 2 ms apart). Further investigation has
shown that the main reason for this effect was not the existence
of numerous local minima, but the function minimization
method used. Often the Downhill Simplex method got stuck
in a point that was not a local minimum. The reason for this
is most probably due to the collapse of the simplex – a known
issue of the Downhill Simplex method, where the used simplex
“looses” at least one dimension due to choosing a “better”
point, which is near to the plane defined by other points of
that simplex. To eliminate this effect, we decided to use a
more robust Conjugate Gradient method to position the hosts,
which yielded in much better results.
For our experiment, we have taken one snapshot on the RTT
information measured by the Planet-Lab all-pings experiment
[13]. Since the data of the all-pings experiment is not com-
plete, we removed some hosts from the data set to obtain a
complete distance matrix containing measured RTTs between
each pair of hosts. The final distance matrix contained the
complete distance information for 218 hosts scattered around
over the Internet. We used a fixed number of landmarks (12)
and calculated for a varying number of dimensions (2 to 9)
their coordinates using the method proposed by GNP (Down-
hill Simplex). For all other hosts, which are not landmarks,
we have calculated their positions in the virtual space by
minimizing the objective function (1). This method allows
us to find the percentage of hosts, for which the objective
function has more than one local minimum. Those results
are represented in Figure 1. The gathered data also allows
us to calculate an estimate on the probability for finding the
global minimum by starting the minimization in a random
point within the boundaries: by dividing the number of random
starting points that “landed” in the global minimum by the
total number of starting points (400). The average of those
probabilities are represented in Figure 2. Our experiment
shows that the number of the hosts, for which the objective
function has more than one minimum is dropping with the
number of dimensions. The probability of finding the global
minimum by starting at a random point within the boundaries
is more or less constant at 60% for a number of dimensions
between 2 and 5. We can also see, that for more than five
dimensions the number of local minima found is practically
zero. Unfortunately, since the computational complexity of
a function minimization increases rapidly with the number
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Fig. 1. Percentage of hosts with more than one local minimum of the
objective function.
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Fig. 2. Average probability for finding the global minimum by starting the
function minimization at a random point

of dimensions used, we cannot rely on simply increasing
the number of dimensions to reduce the probability of the
existence of the local minima.

B. Local Minima of the Objective Function

One might think that the only reason for the existence of
local minima are the violations of the triangle inequality of the
measured data (caused usually by policy-based routing in the
Internet). To show that this is not the case, we have constructed
the following example:
We take a two-dimensional euclidean space and four land-
marks L1,L2,L3,L4 with the following coordinates: CL1

:
(0, 180), CL2

: (0,−180), CL3
: (30,−30), CL4

: (30, 30) and
a host with the coordinates CH: (−100, 0). If we calculate
the euclidean distances between the host and the four land-
marks and use them (together with the landmark positions)
to construct the usual objective function (1) used for host
embedding, we obtain a function, which has two local minima
(see Figure 3). As the Figure clearly shows, the objective
function obtained has not only one, but two local minima. One
of them is located at the real position of the host (−100, 0).
The other one is located behind the “pass” located between the
“peaks” formed by the two nearest landmarks (L3 and L4).
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Fig. 3. Objective function demonstrating the existence of local minima in
the case where measured distances are “ideal”.

The function values at the local minima are different. While
the value of the objective function at the global minimum (at
the original position of the host: −100, 0 ) is zero, the value at
the other global minimum is larger than zero, but surrounded
by points with larger values.
There are only few proposals for a generalized approach to
finding a global minimum [6]. None of these approaches
utilizes the information about the morphology of the function.
We feel that for this special case, a better approach to finding
the global minimum can be found if we analyze the properties
of the objective function that we are minimizing.

C. Impact of Local Minima on RTT Prediction

As an illustration how local minima affects the RTT predic-
tions we show the CDF of the relative error of RTT prediction
for one host with three local minima in two dimensions. Figure

4 shows a CDF of relative error
∣

∣

∣

d(CH1
,CHi

)−d̂H1Hi

d̂H1Hi

∣

∣

∣
. As we

can see, the use of the global minimum results in a smaller
RTT prediction relative error compared to using the non-global
minima.
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IV. NUMERICAL METHODS FOR FINDING LOCAL MINIMA

Finding maxima or minima of a function is a well re-
searched area of mathematical analysis. For continuous func-
tions with a known first derivative (gradient), finding local
minima is as simple as finding all points where the gradient
is equal to zero and evaluating the function value in those
points. In such way, we can find all minima, maxima and
saddle points.
The problem arises when there is no closed form for deter-
mining all the points, where the gradient of the function is
zero. In such cases, numerical methods are used to find local
minima (finding a maximum of a function is equal to finding
a minimum of the negative of that function). All of those
numerical methods start from one or multiple points in the
parameter space as initial guess, which is considered to be the
current solution. This current solution is then iteratively refined
by replacing it with a better one that is obtained by an iterative
step. Each of the iterative numerical function minimization
strategies also has an terminating condition - the heuristic for
telling if further refinements do make sense by considering
the computational cost of the last refinement step and the
level of refinement reached trough it. Usually, the terminating
condition is either the distance of the last two solutions in the
parameter space or the function value difference between the
last two refinements. The method to obtain a better refinement
of the current solution distinguishes the numerical function
minimization strategies. In this paper we describe the two most
popular of them: Downhill Simplex and conjugate gradient

A. Downhill Simplex

Downhill Simplex [8] function minimization is one of the
most general and hence most popular function minimization
methods. Its popularity is based mostly on the fact that it needs
neither first nor second derivative information of the function
to perform the minimization.
The Downhill Simplex algorithm performs as follows: a start-
ing point of the algorithm is a simplex (the simplest geometric
figure, which can be constructed in a n-dimensional space
using n + 1 points) defined in the parameter space of the
objective function. The points of this simplex must be affine
independent (can be used as a base for a n dimensional space)
– otherwise the Downhill Simplex method would not be able to
minimize the function value in each dimension. The Downhill
Simplex function minimization always tries to find a better
simplex than the current one by moving the “high” point (the
point of the simplex for which the value of the objective
function is maximal) somewhere into the parameter space. To
do so, Downhill Simplex tries different transformations of the
simplex such as stretching, contracting or mirroring. If none of
those moves yields a better point Downhill Simplex contracts
the simplex towards the “low” point of the simplex. The price
of the flexibility of the Downhill Simplex method is a quite
large number of evaluations of the objective function needed
to perform the minimization, since it does not make use of
additional information about the objective function such as its
gradient.

B. Gradient Methods

If the gradient of the function can be computed efficiently,
one can use the gradient methods such as Steepest Descent
or Conjugate Gradient methods to find a local minimum (for
a good introduction to different non-linear function minimiza-
tion methods see [12]). The procedure for all gradient methods
is the same: First, a direction of the search is chosen based
on the function gradient at the current solution and eventually
based on previous current solutions. After choosing a direction,
a one-dimensional minimum search is performed on a line
defined by the current solution and the search direction. To
perform the one-dimensional function minimization, first the
minimum is bracketed by finding a triplet of parameters a, b, c
where a < b < c, f(a) > f(b), f(c) > f(b). Then, the
bracketed minimum is iteratively reduced, until the difference
between a and b is smaller than the given threshold (Brent’s
golden section search – for details see [1]). The newly found
minimum is now the new solution and the procedure for the
function minimization is re-iterated until the function value
difference of the newly found solution is below the defined
threshold.

C. Other Methods

The last two methods discussed are the most commonly
used ones for function minimization. In addition to those there
are numerous other methods, which we did not mentioned,
such as Newton’s Iterative, Gauss-Newton, different hybrid
methods etc. Those methods are not discussed in this paper,
since the two methods mentioned above are sufficient for our
purposes. The strategy for the choice of direction is different
for every Gradient Method. For example, the Steepest Descent
methods decides at each iteration to follow the negative of
the gradient (the direction, in which the function has the
steepest decrease). It has been shown that this is not an optimal
decision in the general case (see [12]) and that other strategies
that involve the knowledge of previous local minima, such as
Conjugate Gradient are more efficient.

V. PROPOSED METHOD TO FIND THE GLOBAL MINIMUM

Most of the general function minimization methods make
very few assumptions about the function to be minimized.
Generally this is a good idea, since the method can be applied
to a wide range of functions. On the other hand, by exploiting
additional information about the function known to us, we can
create a less general, but more effective method to find the
global minimum of the function. In this Section, we describe
one such method we developed to find the global minimum
of the family of functions described by (1).

A. Limiting the Function

As defined in (1) the objective function is unbounded. This
means that the definition range of the objective function is R

n.
Still, there must be a range where local minima can be found.
This range is important, since we are performing a minimum
search in one direction within the parameter space and we need
to know at which point we should stop searching for the next



minimum or maximum. The “range” of the objective function
we are using is defined as follows: the objective function is
“limited” by a hyperball where the center is the center of all
landmark positions. The diameter is equal to a maximum of
all radii for each landmark. The radius for one landmark is
defined as sum of the euclidean distance of the landmark to the
center of all landmarks and the double of the measured RTT
to that landmark. The rationale behind the choice of such a
boundary is that it must be easy to compute and that it includes
all possible local minima. Since we define the boundary as a
hyperball checking if one point is within the boundary is as
simple as computing the euclidean distance from the point to
the center of all landmarks and comparing this distance with
the hyperball radius. The choice of the hyperball radius makes
sure that each measured RTT can reach its double length. We
have chosen this, since the positioning of the host (minimizing
the objective function) in the case where the embedding error
is not zero, is equivalent to changing the distances to the
landmarks. Meaning that in the process some distances are
getting shorter, some are getting longer. With our choice we
make sure that the boundary allows enough room for stretching
the measured distances in the worst case.

B. Dissecting the Objective Function

The objective function is usually defined as follows:

f(CH) :=
m

∑

i=1

(d(CLi
, CH)− d̂LiH)2

For each landmark (Li) there is one summand of the form:

f := (d(CL, CH)− d̂LiH)2

Represented separately in two dimensions, the shape of this
summand looks like in Figure 5. As we can see, one summand
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Fig. 5. Single summand of the objective function represented in a two-
dimensional space.

of the objective function consists of a “peak” at the position
of the landmark. The more we are moving away from the
landmark position, the more the function values are decreasing
until a circular valley is reached, which is on the exact distance
to the landmark, as the distance measured from the host. The
valley itself is surrounded by a “wall” (a hill with infinite

height), which is getting steeper with increasing distance from
the landmark. Since the valley around the peak is not just a
single point, but a circle, there is an infinite number of minima
(a circle with the radius equal to the measured distance to the
host) of this function. Now, if we add two summands (two
landmarks) the “landscape” of the function would look like in
Figure 6. With two summands we can see that the “landscape”
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Fig. 6. Objective function with three landmarks represented in a two-
dimensional space.

has two peaks at the positions of the corresponding landmarks
and two valleys. Each valley of this landscape has its minimum
on the same “height” (function value), meaning that there
are two possible solutions to position the host. To be able to
decide where the host has to be actually positioned we need
the measurement to a third landmark.
In Figure 7 we can see the “landscape” of the final objective
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Fig. 7. Objective function with three landmarks represented in a two-
dimensional space.

function with three landmarks. As in Figures 5 and 7 we have
one “peak” per landmark. Similar to Figure 6 we have two
valleys (minima), but this time the function value in one of
the minima is lower than in the other. The minimum with the
lower function value is the minimum we want to find: the
global minimum. If we start a numerical method for function
minimization such as Downhill Simplex or some kind of
a Gradient method, depending on the starting point for the



function minimization we are either going to land in one or
the other minimum. What we are trying to achieve with our
approach is to find most of the local minima. If we are able
to do so, we can also find the global one, since one of them
must be the global minimum.

C. Exploring the Function Landscape

After finding one of the minima, we propose finding others
by “climbing” out of the valley. The first question that arises
is, how do we know in which direction should we climb? For
making this decision we have the following information: we
know the positions of the “peaks” (landmark positions) and we
know our current position. For making the decision in which
direction to climb, we should recall the “landscape” defined
by two landmarks (shown in Figure 6). When we have two
landmarks in two dimensions, the function “landscape” has
one saddle point that is located between those two landmarks.
If we were in one of the valleys in Figure 6, the shortest path,
for reaching the second valley, would be to climb the hill
crossing the saddle point between the peaks. We translate this
analogy into mathematical language: we should try moving
within the parameter space of the objective function into the
direction defined by the position of the current local minimum
and the orthogonal to a line drawn trough the positions of the
pair of landmarks. Since we do not “know” on which side of
the hill we are located, we should try moving in both directions
defined by such a vector.

D. Analogy for “Climbing the Hill”

-2

 0

 2

 4

 6

x

-4

-2

 0

 2

 4

y

 0
 10
 20
 30
 40
 50
 60

f(x,y)

Fig. 8. One direction for leaving the valey of a local minimum.

The next question is: what is the mathematical equivalent to
climbing a hill? The answer is: moving into one direction in
the parameter space (x-y plane on Figures 5, 6 and 7) until the
function stops increasing else we have left the “boundaries” of
the function. For moving into one direction in the parameter
space we need a fixed point P and a direction vector x.
By having that, we can define climbing the hill by finding
a parameter λ > 0, for which the one-dimensional function
f ′(λ) := f(P + λ · x) has a maximum, which is equivalent
to finding a minimum of −f ′(λ). Figure 8 shows one such
direction. If we are able to find a minimum for −f ′(λ) we

know that we have reached the saddle point (or a point near
it) and that the function value of f ′(λ) is decreasing beyond
this point, meaning that we can now start descending into a
valley.

E. Descend Into the Next Valley

After finding the maximum of f ′(λ) we can now start to
descend into the next valley. Since we are using a numerical
method for finding a maximum of f ′(λ) we cannot just start a
multivariate function minimization in the point P + λx since
there is a possibility that we would fall back into the starting
point of the climb (old valley). To eliminate this possibility,
we propose finding the next minimum of f ′′(µ) := f ′(λ +
µ) = f(P + (λ + µ)x). Now we can start a gradient based
multivariate function minimization at that point. The result of
this function minimization can be either a new minimum (a
new valley) or the old minimum, if the mountain we have just
crossed leads back to the previous valley. This procedure can
be re-iterated until the “boundary” of the function is reached.

F. Handling Multiple Dimensions

The whole analogy we have been using so far is specific
to a two-dimensional parameter space. The third dimension,
which is actually defining the shape of the landscape in our
examples is the value of the objective function.
Since the RTT prediction schemes based on minimizing the
objective function are usually gaining in precision with an
increasing number of dimensions, we also need to consider
how we could find all valleys in a generalized case of an n-
dimensional parameter space.
For leaving the current valley we need a direction vector. For
this vector we propose using an orthogonal vector to a hyper-
plane defined by n landmarks. In a two dimensional parameter
space, it would be a line orthogonal to a line defined by two
landmarks. For three dimensions the direction would be a line
orthogonal to a plane defined by three landmarks etc. Given
the positions of n landmarks (CL1

, . . . , CLn
) the orthogonal

vector x := (x1, x2, . . . , xn) to a hyper-plane defined by those
landmarks can be computed as the following determinant:
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G. Algorithm for Exploring the Landscape

In the previous sub-section we have defined everything we
need to explore the landscape of the objective function. Now
we put all of that together into an algorithm, which is using an
“educated guess” about the landscape of the objective function
to try to find all valleys of the landscape defined by it.
The algorithm uses two sets: a set of starting points (S), which
should be used to perform a numerical function minimization
and a set of known local minima (M ). At the beginning the
set of the known local minima is empty and the set of the



starting points contains one starting point (randomly chosen or
obtained in some other manner). The first step of the algorithm
is to remove one point from the set of the starting points and
to perform a multilateral function minimization (for example
using the Conjugate Gradient method) with that starting point.
The result of the function minimization is one local minimum.
Our algorithm checks whether the found local minimum is in
the set of known local minima. If this is not the case, it is
added to the set of known local minima and is used to find
new starting points.
To find new starting points for the search based on a new local
minimum m we use the following procedure: For every subset
of landmarks used in the objective function we calculate an
orthogonal vector dir (for details see Section V-F). For each
such orthogonal vector we try to leave the minimum’s valley
by finding the next maximum of the one dimensional function
f ′(λ) := f(P + λ · dir) (see Section V-D) and the minimum
that is behind that maximum by minimizing f ′′(µ) := f ′(λ +
µ). If we are able to find one such pair of maximum/minimum,
we take that starting point defined as m′ = m + (λ + µ) · dir
into the set of the starting points. We continue finding the next
maximum/minimum pair in the same direction until we leave
the “range” of the objective function. The same procedure for
finding maximum/minimum pairs is also done in the opposite
direction (dir′ := −dir), since we cannot be sure in which
direction the hill really is. After all starting points relative to
a new minimum P are found, the new minimum is taken into
a set of known local minima and the whole algorithm is re-
iterated. The algorithm terminates when the set of the starting
points is empty. A more formal version of this algorithm can
be found in Algorithm 1.

H. On the Computational Complexity of the Algorithm

The computational complexity of the algorithm we are
proposing, depends on the following variables: number of
dimensions (denoted by n), number of landmarks (denoted
by L) and number of local minima of the function (denoted
by M ). Since it is very difficult to analytically determine the
computational overhead of a numerical method for multimodal
function minimization, we will only give the best case and
worst case estimations of the number of such local minimiza-
tions performed by our algorithm.
Considering the number of local minima M , the best case
is the one where the function (1) has only one minimum:
M = 1. In this case, our algorithm performs one function
minimization to find that minimum and afterwards tries to
“climb” out of the valley of that minimum using different
directions. Each direction is calculated based on positions
of n landmarks chosen from the given set of L landmarks.
Therefore, the number of possible directions is the number
of combinations without repetition:

(

L
n

)

= L!
n!(L−n)! . For each

such direction we perform two searches: one in the positive
and one in the negative direction. Each of these searches
results in a certain number of possible starting points for
further function minimization. The worst case for the number
of possible starting points is obtained if all landmarks are

Algorithm 1 Algorithm for enlisting all local minima
Require: LMS set of landmark positions
Require: DST vector of distances measured to landmarks
Require: D number of dimensions

S ← {random point} // Start with a random point
M ← ∅ // Start with an empty set of local minima
for p ∈ S do

m ← find min(p, LMS, DST, D) // Find a local
minimum
if m /∈M then

for os ∈ {x|x ∈ LMS, ‖x‖ = D} do
dir ← orthogonal(os) // Calculate the orthogonal
vector to landmark positions
λ← 0
while m + λ · dir within function boundaries do

λ ← next max(λ, m, dir) // Find next one-
dimensional function maximum relative to λ start-
ing at m along the direction vector dir
λ ← next min(λ, m, dir) // Find next one-
dimensional function minimum relative to λ start-
ing at m along the direction vector dir
if still inside function boundaries then

S ← S ∪ {m + λ · dir}
end if

end while
λ ← 0 // Perform search also in the negative
direction
while m + λ · −dir within function boundaries do

λ ← next max(λ, m,−dir) // Find next one-
dimensional function maximum relative to λ start-
ing at m along the direction vector dir
λ ← next min(λ, m,−dir) // Find next one-
dimensional function minimum relative to λ start-
ing at m along the direction vector dir
if still inside function boundaries then

S ← S ∪ {m + λ · −dir}
end if

end while
end for

end if
end for
return S

located on one straight line determined by the search direction
and the already found local minimum. In such a case, our
algorithm will find L − 1 new starting points for the local
minimum search. As a result, the number of local minimum
searches performed by our algorithm is 2(L−1)L!

n!(L−n)! . This is of
course the upper boundary for the worst case. In the best case
no new starting points will be found and hence only one local
minimization will be performed.
For the general case where the number of local minima
is M > 1, we can assume that in the worst case each
minimum found will yield 2(L−1)L!

n!(L−n)! starting points for the



local search. This gives us the upper boundary of the worst
case: 2M(L−1)L!

n!(L−n)! . In the best case each minimum will yield
only one new starting point, in which case the number of
performed local minimum searches is equal to M .
It is obvious that our algorithm can yield a large number of
local function minimizations. Especially in the case where the
dimensionality of the virtual space n is low and the number
of landmarks L is high, our algorithm will perform very large
amount of local searches. On the other hand, with a decreas-
ing number of dimensions, the computational overhead for
finding the local minimum is also decreasing. Also, compared
with other global minimum search algorithms, our algorithm
guarantees to terminate in a finite number of steps, assuming
the non-pathological case of (1), where the number of local
minima M is finite. This is also an advantage to other random
start point methods, which lack a good terminating criterion.

VI. EVALUATION

To verify if our proposed algorithm increases the probability
of finding the global minimum we used the following exper-
iment. We have compared the results of the standard GNP
host positioning system in terms probability to find the global
minimum using the same data used to show the existence of
the multiple minima of the objective function from Section V.
To have comparable results, we have implemented the host
positioning from GNP using Downhill Simplex function mini-
mization provided by [12]. We also implemented our algorithm
using conjugate gradient, linear minimization (golden section
search with hyperbolic extrapolation) and one dimensional
minimum bracketing functions provided by the same source
[12]. For the experiment we used a fixed number of landmarks
(10) and varied the number of dimensions between 2 and
8. To have comparable results and to avoid interference by
using different landmark positions, we have based all our
objective functions on the same landmark coordinates. The
landmark coordinates were calculated only once (per number
of dimensions) and used by both our and the GNP algorithm.
For each host from our RTT distance matrix we have calcu-
lated the host coordinates using the GNP algorithm and our
algorithm. We also estimated the total number of local minima
of the objective function by performing Conjugate Gradient
minimum search with 200 different starting points.
Figure 9 shows the percentage of global minima found by GNP
and by our algorithm. As we can see, our algorithm was able
to find the global minimum of the objective function almost for
each host in our sample. However, there are some cases, where
our algorithm is not able to find the global minimum. The
reason for this is that our algorithm is using only a heuristic
to minimize the probability of not finding the global minimum.
it does not guarantee, that it will find every minimum there is.

VII. CONCLUSION

In this paper we identified the problem of the existence
of multiple local minima of the objective function used to
position hosts in a virtual space. The existence of multiple
local minima has an impact on our perspective of minimizing
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Fig. 9. Comparison of the probability for finding global minima between
GNP and our algorithm.

a function. It is not enough to have a method that is fast and
precise in finding a local minimum. We also need an algorithm
that is able to find the global minimum of the objective
function. Our research has shown that the existence of multiple
minima of the objective function occurs too frequent that
it could be ignored. To overcome this problem we have
developed an algorithm, which exploits the knowledge of the
objective function’s “landscape” shape trying to find all local
minima and thus the global minimum. Our evaluation has
shown that our algorithm is performing much better than the
plain host positioning by function minimization as proposed
by GNP.
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