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Abstract— In this paper we analyze the positioning of land-
marks in coordinates-based Internet distance prediction ap-
proaches with focus on Global Network Positioning (GNP).
We show that one of the major drawbacks of GNP is its
computational overhead for a large number of landmarks and
dimensions. In our work we identify two factors, which have a
great impact on the computational overhead. The first one is
being able to determine the optimal number of dimensions for
embedding a given set of landmarks into a Euclidean space.
The second factor is the selection of a good starting point
for minimizing the total error of embedding. We propose an
algorithm based on the simplex inequality (a generalized form
of the triangle inequality) to extract the optimal number of
dimensions based on distance measurements between landmarks.
We also provide methods to compute a good starting point for
the minimization problem and to reduce the number of variables
involved in the minimization. We performed experiments with
data obtained from the PlanetLab all-sites-pings experiment to
verify the correctness and performance gains of our algorithm.
The experimental results show that our enhancements to GNP
landmark positioning are able to find the optimal number of
dimensions for embedding the landmarks. These enhancements
also accelerate the function minimization.

I. I NTRODUCTION

A. Motivation

The round-trip-time (RTT) is, besides the available band-
width, one of the most important measurable properties of the
Internet communication. Floyd and Fall have identified in their
work [1] that the effective bandwidth of a TCP connection
is limited by the following properties of the network path:
available bandwidth, packet drop probability and RTT. RTT
information can be used in many ways, i.e. for selecting
application server mirror sites, for optimizing overlay and
peer-to-peer networks, and for finding optimal routes.
Given the number of hosts in the Internet, the overhead of RTT
measurements, and storage for all host-pairs (O(n2)), it is not
feasible to perform and store RTT measurements for all hosts
in the Internet. On the other hand, it has been shown [2] that
it is possible to represent Internet hosts as points in a virtual
d-dimensional Euclidean spaceS such that the Euclidean
distance between two points in such a space (denoted bydS )
is a good prediction of the RTT for the corresponding host-

pair. Knowing that the RTT can be represented as a distance
in a metric space also indicates that in order to position one
host in such virtual space, we do not need to measure RTTs
to all other hosts in the Internet. Theoretically it would be
sufficient for one host to measure “distances” (RTTs) only to
d − 1 other hosts with known positions in order to be able
to determine its position. The procedure of determining an
unknown position based only on distance measurements is
also known as multilateration. By measuring RTTs (distances)
to only a few nodes in the Internet we trade the number of
measurements needed for the precision of RTT estimation —
the more measurements to different hosts we perform, the
more accurate the RTT prediction of the system will be.

B. Related Work

In the last years there have been numerous proposals
for RTT prediction schemes based on coordinates [3]–[10].
Basically there are two types of coordinates based RTT
prediction schemes: landmarks-based and landmarks-less.The
landmarks-based RTT prediction schemes determine coordi-
nates of few fixed reference points (so called landmarks) and
use them to determine the positions of all other hosts. Some of
them are based on positioning landmarks hosts using function
minimization [3]–[5]. The others [8], [9] use the principal
component analysis (PCA) to reduce the dimensionality of
the landmark RTT measurements and to position the hosts.
Landmarks-less RTT prediction schemes such as VIVALDI
[6] or S-VIVALDI [7] are based on distributed simulation
of physical systems to iteratively reduce the overall errorof
the host embedding in a Euclidean space. Another interesting
approach is presented in [10] where the authors are proposing
embedding the Internet hosts in hyperbolic-spaces instead
of Euclidean spaces. Such embedding delivers a better RTT
prediction service, since a weighted graph representing the
Internet can be better projected into a hyperbolic space than
into an Euclidean space.
The first and the most promising landmarks-based RTT pre-
diction scheme is GNP [3], [4]. In GNP,m hosts are chosen as
landmarks (denoted byL1 . . .Lm). All other Hosts (denoted
by H) in the Internet measure RTT distances (denoted by



d̂HL1
, . . . , d̂HLm

) to the landmarks and use this information to
determine their position in a virtual space. The coordinates of
a host inS (denoted byCSH := (C1

H, . . . , Cd
H)) are determined

using multilateration. The multilateration itself is based on
minimizing the error functionfe. In the case of GNP, the
least-squares-error function:

fe(CSH) :=
m
∑

i=1

(dS(CSH, CSLi
)− d̂HLi

)2

is used. The function minimization is performed using the
Downhill Simplex [11] method.
For calculatingdS(CH, CLi

), the positions of the landmarks
in S (CL1

. . . CLm
) must be known. In the case of GNP, the

coordinates of the landmarks are computed by minimizing the
following error function:

fe(CSL1
, . . . , CSLm

) :=
∑

i,j∈{1...m},j>i

(dS(CSLi
, CSLj

)− d̂LiLj
)2

(1)
Besides this error function, the authors of GNP propose in the
same paper an alternative normalized error function:

f ′
e(CSL1

, . . . , CSLm
) :=

∑

i,j∈{1...m},j>i

(

dS(CLi
, CLj

)− d̂LiLj

d̂LiLj

)2

The reason for proposing usingf ′
e instead offe is that it

yields better results when the relative error performance metric
defined as: ∣

∣
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∣

∣

∣

dS(CLi
, CLj

)− d̂LiLj

min
(

dS(CLi
, CLj

), d̂LiLj

)

∣
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∣

∣

∣

∣

is used to evaluate the performance of the RTT predictions.
Whatever landmark positioning strategy is used, it is crucial
that the landmark coordinates are as accurate as possible, since
the coordinates of all other hosts in the Internet are calcu-
lated relative to them. An error in positioning one landmark
decreases the performance of the RTT prediction for almost
every host in the Internet.
The landmark positioning proposed in GNP has numerous
issues — the most severe one is the computational overhead of
the function minimization. The function minimization usedfor
GNP (Downhill Simplex) is very computation-intensive. The
reason for this is the more than linear growth of the problem
space with each additional variable, lack of a “good” starting
point (a point in the vicinity of the optimal solution) and, in
the case of landmark positions, the infinite number of possible
solutions for embedding landmarks, which slows down the
convergence of the function minimization.

C. Overview

In this paper we focus on improving landmark positioning of
GNP by reducing the number of possible solutions to a finite
number, determining the optimal number of dimensions for
the space, in which the landmarks can be positioned, and by
providing a good starting point for the function minimization.
The structure of this paper is as follows: In the next Section

we provide an estimate of the computational complexity
depending on the number of dimensions used for positioning
landmarks using function minimization. In Section III we
provide a formal description for the problem of finding the
landmark coordinates. In Section IV we discuss how the
infinite number of solutions can be reduced to a finite number
and provide an explicit method for constructing a simplex
for the given vertices. In Section V we describe the possible
violations of the properties of ad-dimensional metric space
(the simplex inequality) and how those can be detected (using
Cayley-Menger determinants). In Section VI we describe
algorithms that utilize the results from Sections IV and V to
calculate the optimal number of dimensions for representing
landmark coordinates, and to compute a good starting point for
finding them. In Section VII we evaluate the proposed algo-
rithm by comparing its accuracy, performance and number of
dimensions with the equivalent landmark positioning scheme
proposed in GNP. In Section VIII we summarize the results
of this paper.

II. COMPLEXITY OF FUNCTION M INIMIZATION

The first question to ask is whether there is a scaling
problem for GNP’s landmark positioning regarding the number
of dimensions used. As we have mentioned, GNP proposed
positioning landmarks by minimizing a least squares objective
function fe defined in (1). At the first glance, computing
fe does not depend on the number of dimensionsd. If we
consider the definition of the Euclidean distance between two
landmarksdS (2), it is clear that the computational overhead
of dS is linear (dS ∈ O(d)), which also means thatfe ∈ O(d).

dS(CLi
, CLj

) :=

√

√

√

√

d
∑

k=1

(Ck
Li
− Ck

Lj
)2 (2)

To determine the computational complexity of the function
minimization we still have to determine the number of evalu-
ations offe needed to perform the function minimization. An
analytical approach to find this number is impractical due to
the fact that the number of iterations needed heavily depends
on the starting point used to perform the minimization. To still
be able to roughly determine the computational overhead of
the function minimization, we have gathered empirical data
and performed a statistical analysis of it.
For the experiment, we have randomly chosen 20 hosts from
the Planet-Lab testbed as landmarks. For those 20 landmarks
we retrieved the full RTT measurement matrix from the
PlanetLab all-sites-pings experiment [12]. For this distance
matrix we used the Downhill-Simplex function minimization
as proposed in GNP to determine the landmark positions with
the number of dimensionsd varying between 1 and 19, which
is the theoretical maximum of dimensions with 20 landmarks.
For each number of dimensions we have performed 50 func-
tion minimizations with different randomly chosen starting
points. For each function minimization we have recorded the
number of evaluations of the objective functionfe performed
to obtain the landmark coordinates.
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Fig. 1. Number of evaluations of the objective function usedto position
landmarks
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Fig. 2. Square root of the number of evaluations of the objective function
used to position landmarks

The results of this experiment are summarized in Fig. 1. This
Figure contains the median and the90% confidence interval
of the number of function evaluations performed for each
number of dimensions. As we can see, the number of function
evaluations performed is increasing more than linearly with the
number of dimensions used. Our assumption judging on the
shape of the curve is that it increases quadratically. Our as-
sumption is confirmed by Fig. 2 where we have represented the
square root of the number of performed function evaluations
depending on the number of dimensions. The median values in
this Figure increase linearly, meaning that the original function
is increasing quadratically.
This result allows us to state that the number of function
evaluations is withinO(d2). As shown above, each function
evaluation has a linear computational overhead regarding
the number of dimensions. Therefore, we can state that the
total computational complexity of an average positioning of
landmarks depending on the number of dimensionsd is cubic
(O(d3)).
Fig. 3 shows the average CPU time needed (in seconds) mea-
sured in our experiment to find landmark positions depending
on the number of dimensions. This Figure clearly demonstrates
that reducing the number of dimensions can dramatically
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Fig. 3. Average CPU time in a 3 GHz Pentium-D CPU (in seconds) for
computing landmark positions depending on the number of dimensions

accelerate the time needed to position the landmarks. For
example positioning 20 landmarks in 19 dimensions takes
in average 147.795 seconds CPU time. Finding landmark
positions for the same data in 6 dimensions takes only 6.045
seconds. In our opinion, results of this experiment justify
the need for reducing the number of dimensions used for
positioning landmarks.

III. L ANDMARK COORDINATES: THE PROBLEM

DEFINITION

In GNP we have a set ofm landmarks(L1, . . . ,Lm) and
a complete set of measured distances between the given land-
marks{d̂LiLj

: i, j ∈ {1, . . . , m}}, which can be represented
as the following distance matrix:
















0 d̂L1L2
· · · d̂L1Lm−1

d̂L1Lm

d̂L2L1
0 · · · d̂L2L3

d̂L2Lm

...
...

. . .
...

...
d̂Lm−1L1

d̂Lm−1L2
· · · 0 d̂Lm−1Lm

d̂LmL1
d̂LmL2

· · · d̂LmLm−1
0

















We assume that the distance matrix is symmetric with respect
to the main diagonal, meaning thatd̂LiLj

= d̂LjLi
.

For this input, we are interested in finding the landmark
coordinates(CSL1

, . . . , CSLm
) in the d-dimensional Euclidean

spaceS := (Rd, dS). If the distance measurements are error-
free, we would be able to construct a(m − 1)-simplex,
the simplest regular figure that can be constructed usingm
points in an(m − 1)-dimensional space, with points as the
landmarks and side lengths equal to the measured distances
between them. It is obvious, that all solutions to our landmark
coordinates problem, based on an ideal input, can be obtained
by applying isometric operations (operations that preserve
distances between the points) such as rotation, translation and
reflection to one solution. This means, that in a(m − 1)-
dimensional space there is an infinite number of solutions that
represent the positions of a simplex. For example, Fig. 4 shows
some of the landmark positioning solutions in two dimensions
for the following distances:(1, 1,

√
2). As we can see, any
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Fig. 4. Example of isometric equivalent solutions for coordinates of a 2-
simplex

triangle in Fig. 4 is a solution for the landmark positioning
problem. With an increasing number of dimensions0, the
problem only gets worse — in addition to rotation, translation
and reflection we may also have different shapes of the simplex
that have the same distances. Still, the only two isometric
operations, which generate an infinite number of solutions,
are rotation and translation.
This is actually one of the reasons, why the function mini-
mization used in GNP to determine the landmark coordinates
converges very slowly and is non-deterministic.

IV. CONSTRUCTING ASIMPLEX

If we have a distance matrix as described in Section III and
assuming that it is possible to construct a(m − 1)-simplex
from the input (for a method to verify this assumption see
Section V), reconstructing one such simplex is equivalent to
finding one solution for the following equation system:

m−1
∑

i=1

(Ci
Lj
− Ci

Lk
)2 = (d̂LjLk

)2 (3)

wherej ∈ {1, . . . , k} andk ∈ {1, . . . , m− 1}

As mentioned in Section III there is an infinite number of
possible solutions for landmark positioning, which means that
there is an infinite number of solutions for this equation
system.

A. Eliminating Translation and Rotation

To reduce the number of solutions to a finite number, we
have to eliminate the isometric operations, which yield an
infinite number of solutions. Those operations are rotationand
translation.
To eliminate the translation it would be sufficient to require
a fixed position of one landmark — for example we could
require that the first landmark (L1) should be positioned in
the origin ofS: CSL1

= (0, . . . , 0).
Eliminating translation is unfortunately not sufficient. Even if
we restrain the first landmark to a fixed position we can obtain
an infinite number of solutions by rotating the simplex about
an axis which is running trough that fixed point. To eliminate

the rotation we can require that the second landmark (L2) is
located on the first axis of the spaceS, meaning that only the
first coordinate of the landmark is variable, the rest of them
is zero:C2

L2
= 0, . . . , Cm−1

L2
= 0. The coordinates of the third

landmark (L3) should be located in the plane defined by the
first two axes ofS meaning that:C3

L3
= 0, . . . , Cm−1

L3
= 0.

For every next landmark we allow one more dimension. The
last landmark has no constraints for its coordinates.
By restraining the landmark coordinates we eliminate the
possibility of rotation, since by restraining the positionof the
second landmark to the first axis we eliminate the possibility
that the simplex can be rotated around any other axis. Restrain-
ing the third landmark to a plane defined by the first two axes
eliminates the rotation around the first axis etc. This means, if
we have coordinates of landmarks(L1, . . . ,Lm) represented
as:















C1
L1

C2
L1

. . . Cm−2

L1
Cm−1

L1

C1
L2

C2
L2

. . . Cm−2

L2
Cm−1

L2

...
... . . .

...
...

C1
Lm−1

C2
Lm−1

. . . Cm−2

Lm−1
Cm−1

Lm−1

C1
Lm

C2
Lm

. . . Cm−2

Lm
Cm−1

Lm















we reduce the number of unknowns by restraining the coor-
dinates:















0 0 . . . 0 0
C1
L2

0 . . . 0 0
...

... . . .
...

...
C1
Lm−1

C2
Lm−1

. . . Cm−2

Lm−1
0

C1
Lm

C2
Lm

. . . Cm−2

Lm
Cm−1

Lm















Through restraining the landmark coordinates we have elimi-
nated the rotation and translation and also reduced the number
of unknowns fromm(m− 1) to m(m− 1)/2.
This result alone would noticeably accelerate the convergence
of GNP’s function minimization; beside that there is an explicit
solution to (3), which can be computed directly.

B. Calculating the Simplex Coordinates

After eliminating rotation and translation, the equation
system (3) is simplified to:

(C1
L2

)2 = (d̂L1L2
)2

(C1
L3

)2 + (C2
L3

)2 = (d̂L1L3
)2

...
m−1
∑

i=1

(Ci
Lm

)2 = (d̂L1Lm
)2

(C1
L2
− C1

L3
)2 + (C2

L3
)2 = (d̂L2L3

)2

(C1
L2
− C1

L4
)2 + (C2

L4
)2 + (C3

L4
)2 = (d̂L2L4

)2

...
m−1
∑

i=1

(Ci
Lm−1

− Ci
Lm

)2 = (d̂Lm−1Lm
)2



As mentioned in Section IV-A, the position of the first land-
mark is set to the origin ofS. Since the second landmark is
positioned on the first-dimension axis, the following equation
delivers the first coordinate of the landmark:

C1
L2

= ±d̂L1L2

To determine the position of the third landmark, we have the
following equations:

(C1
L3

)2 + (C2
L3

)2 = (d̂L1L3
)2 (4)

(C1
L2
− C1

L3
)2 + (C2

L3
)2 = (d̂L2L3

)2 (5)

by subtracting (4) from (5) we obtain the first coordinate of
L3:

C1
L3

= −
(d̂L2L3

)2 − (d̂L1L3
)2 − (C1

L2
)2

2C1
L2

The second coordinate ofL3 can be obtained by replacing the
computed value ofc1

L3
in (4):

C2
L3

= ±
√

(d̂L1L3
)2 − (C1

L3
)2

In general, if we have determined the coordinates of the firstk
landmarks (CSL1

, . . . , CSLk
), we determine the positionCSLk+1

:=

(C1
Lk+1

, . . . , Ck
Lk+1

, 0, . . . , 0) of landmarkLk+1 by solving the
following equation system:

k
∑

i=1

(Ci
Lk+1

)2 = (d̂L1Lk+1
)2 (6)

(C1
L2
− C1

Lk+1
)2 +

m−1
∑

i=2

(Ci
Lk+1

)2 = (d̂L2Lk+1
)2 (7)

(C1
L3
− C1

Lk+1
)2 +

+(C2
L3
− C2

Lk+1
)2 +

+
∑k

i=3
(Ci

Lk+1
)2

= (d̂L2Lk+1
)2 (8)

...
k−2
∑

i=1

(Ci
Lk
− Ci

Lk
)2 + (Ck−1

Lk+1
)2 = (d̂LkLk+1

)2

To calculateC1
Lk

we can subtract (6) from (7). After the
subtraction, the result is:

C1
Lk+1

=
(d̂L1Lk+1

)2 − (d̂L2Lk+1
)2 + (C1

L2
)2

2C1
L2

To calculateC2
Lk

we can subtract (6) from (8), which leads to:

C2
Lk+1

= (2C2
L3

)−1
[

(d̂L1Lk+1
)2 − (d̂L3Lk+1

)2 −
−2C1

L3
C1
Lk+1

+ (C1
L3

)2 + (C2
L3

)2
]

(9)

This procedure can be used for all coordinates
C1
Lk+1

, . . . , Ck−1

Lk+1
. For the last coordinateCk

Lk+1
we can

use the computed values and replace them in (6):

Ck
Lk+1

= ±

√

√

√

√(d̂L1Lk+1
)2 −

k−1
∑

i=1

(Ci
Lk+1

)2

The generalized formula for calculating the simplex coordi-
nates derived from this procedure is:

Cj
Li

=















































































0 , j ≥ i

(2Cj
Lj+1

)−1
[

(d̂L1Li
)2 −

−(d̂Lj+1Li
)2 −

−
j−1
∑

k=1

2(Ck
Lj+1

)(Ck
Li

) +

+
j
∑

k=1

(Ck
Lj+1

)2
]

, j < i− 1

±
√

(d̂L1Li
)2 −

j−1
∑

k=1

(Ck
Li

)2 , j = i− 1

(10)

V. D ISTANCES AND METRIC SPACES

In distances derived from real-world measurements, such
as distances to GPS satellites, we are usually confronted with
values, which make the exact positioning impossible due to
the measurement errors. Still, we know that the measurements
stem from a three-dimensional environment, in which the
triangle inequality holds. The problem in the coordinates-
based RTT prediction is that we are fitting the “distance”
measurements into ad-dimensional Euclidean space without
knowing in advance how many dimensions the space has (the
value ofd).
In GNP, the authors propose the “optimal” number of dimen-
sions and landmarks that can be used based on results of their
experiments. In this Section we show that there is a method to
determine the optimal number of dimensions for embedding
landmarks based only on a distance matrix.

A. Constraints on Constructing a Simplex

As mentioned earlier, it is not possible to reconstruct a
(m− 1)-dimensional simplex for an arbitrary distance matrix
representing distances betweenm points. The reason for this
is that projecting a distance matrix into a Euclidean space
(equivalent to constructing a simplex from a distance matrix)
poses strict requirements on the distances. To comprehend
those requirements, we must recall the definition of a metric
space and a Euclidean space.
A metric space is a 2-tuple(A, dS) where A is a set and
dS : A×A→ R a distance function. A functiondS is called
a distance function if the following conditions are fulfilled for
all a, b, c ∈ A:

dS(a, b) ≥ 0

dS(a, b) = 0⇔ a = b

dS(a, b) = dS(b, a)

dS(a, c) ≤ dS(a, b) + dS(b, c) (11)

A d-dimensional Euclidean space is a special case of a metric



space, where:

A := R
d

dS(a, b) :=

√

√

√

√

d
∑

i=1

(ai − bi)2

The inequality (11) is also known as the triangle inequality.
The semantics of the triangle inequality is that there is no
triplet of elementsa, b, c ∈ A where the distance betweena
and c is greater than the sum of the distance betweena and
b and the distance betweenb and c. In an Euclidean space,
the triangle inequality means that with distances between
three points we can always construct a triangle (a 2-simplex)
including the pathological case where the triangle is one line
segment (a + b = c). If we have three distances, which do
not fulfill the triangle inequality (for example: a=1, b=3 and
c=5), we will not be able to reconstruct a triangle, since there
are no three points in any metric space, where the distances
would match.

B. Handling Triangle Inequality Violations

To still be able to have a set of landmarks, one must reduce
the number of dimensions. For example, it is obvious that
for the following distances: a=1, b=3 and c=5 the triangle
inequality does not hold (5 > 3 + 1).
To calculate positions of landmarks we can try to reduce the
number of dimensions: instead of constructing a 2-simplex (a
triangle - which is impossible since the triangle inequality does
not hold) we could construct a 1-simplex (a line segment). This
1-simplex can be used as a “base” for positioning the third
landmark. The third landmark is positioned in such a way
that the embedding-error (e.g. the square error between given
and calculated distances) will be minimized. For example, we
could assign the following coordinates to the landmarks:C1

L1
=

0, C1
L2

= 1 andC1
L3

= 3.5. This solution is not the only one;
actually there are three possible solutions — depending on
which pair of landmarks is chosen as the “base”. Also worth
noting is that the possible solutions are not equal regarding
the total square error of such an embedding. Since we are
interested in minimizing the total error, the optimal choice
would be to use the base, for which the total error is the
smallest — in this case the 1-simplex, which is formed by
landmarksL1 and L3. Whatever solution is chosen, it is
usually not an optimal one, since we were not trying to
optimize by changing all distance. Still, it is a very good
starting point for further minimization — for example using
the Downhill Simplex method.

C. Handling Simplex Inequality Violations

Unfortunately, the triangle inequality is not the only con-
straint to construct a simplex. For example, for the following

distance matrix:








0 3 3 1.6
3 0 3 1.6
3 3 0 1.6

1.6 1.6 1.6 0









the triangle inequality holds for every triple of distances
between the landmarks (3 ≤ 3 + 3, 3 ≤ 3 + 1.6, 1.6 ≤
3 + 1.6, 1.6 ≤ 3 + 3). Still we are not able to construct a
3-simplex (tetrahedron) with the given distances, becausethe
triangle inequality is the necessary but not sufficient condition
for constructing ad-simplex (d ≥ 2). The sufficient condition
in three dimensions would be that the area of every tetrahedron
side (triangle) must be smaller than or equal to the sum of the
areas of all other sides — this inequality does not hold for our
distance matrix.
A more generalized recursive inequality can also be defined for
any d-simplex: the hyper-volume of every “side” (a(d − 1)-
simplex) of a simplex must be smaller or equal to the sum
of hypervolumes of all other simplex-”sides“. This inequality
is also known as the simplex inequality [13]. The simplex
inequality is actually recursive, since, to be able to compute
the hyper-volume of a simplex, one must be able to construct
a simplex. The recursion ends with the triangle inequality for
a 2-simplex. By knowing this, we can construct the landmark
coordinates by reducing the dimensionality as described in
Section V-B. In this case the “base” is a2-simplex (a triangle)
and the fourth landmark is positioned in the plane defined by
the positions of the “base” points.

D. The Cayley-Menger Determinant

Now that we know the sufficient condition for constructing
a simplex, we should be able to find a set of landmarks that can
be used as a base. Unfortunately, there is one small detail of
the simplex inequality, which is still not trivial. The nontrivial
detail is: how do we calculate the hyper-volume of an(d−1)-
simplex based only on the vertices of the simplex?
In the case of a 1-simplex or a 2-simplex the solution is
very simple: a hyper-volume of a line segment is its length,
the hyper-volume of a triangle is its area, which can be
calculated using Heron’s formula. Even for a tetrahedron (a
3-simplex) there is Tartaglia’s formula, but still we need a
general approach, which delivers the volume of ad-simplex,
e.g., the Cayley-Menger Determinant [14].
The Cayley-Menger determinant delivers the square of the
hyper-volume of ad-dimensional simplexSd: V 2(Sd) based
only on vertices of the simplex. The square hyper-volume of
Sd is defined as

V 2(Sd) =
(−1)d+1

2d(d!)2
det(B) (12)

where B is a matrix obtained by bordering a quadratic
distance matrix with a top row(0, 1, . . . , 1) and a left column
(0, 1, . . . , 1)T . For example for a3-simplex the B matrix



would look like:

B =













0 1 1 1 1

1 0 (d̂L1L2
)2 (d̂L1L3

)2 (d̂L1L4
)2

1 (d̂L2L1
)2 0 (d̂L2L3

)2 (d̂L2L4
)2

1 (d̂L3L1
)2 (d̂L3L2

)2 0 (d̂L3L4
)2

1 (d̂L4L1
)2 (d̂L4L2

)2 (d̂L4L3
)2 0













The reason why the Cayley-Menger determinant is very conve-
nient for our cause lies in the definition of the hyper-volumeof
a simplex: a volume of a simplex is proportional to the volume
of a d-dimensional parallelepiped with the same vertices. The
hyper-volume of ad-dimensional parallelepiped is defined as
the parallelepiped’s height in one dimension multiplied with
the hyper-volume of the parallelepiped’s base. The square
of a hyper-volume delivers not only the information about
the simplex hyper-volume, but also the information about the
“heights” of the simplex in lower dimensions.
This information is necessary to be able to draw conclusions
about the co-planarity (in the sense of hyper-planes) of a
simplex. It can be used to determine the optimal number of
dimensions, which should be utilized to construct the simplex.
For example: if we calculate the square hyper-volume for the
distances of the example from Section V-C we would obtain
a negative value.
The negative value of the square hyper-volume means that
the volume of the simplex can only be represented as a
complex number. It also indicates that at least one “height”
of the simplex must be negative, meaning that we will not
be able to construct an optimal simplex. The zero value for
the square volume suggests that at least one height of the
simplex is zero, which means that the points are coplanar (in
the sense of hyper-planes) and can be represented with at least
one dimension less thand. The positive square hyper-volume
indicates that we possiblycould construct an ideal simplex —
it does not show if wecan for sure, because of the possibility
that there is an even number of negative heights in the sub-
simplexes (the product of an even number of negative numbers
is positive). For example, the Cayley-Menger determinant
for the following distance matrix computes a positive square
hyper-volume, although the triangle equation does not hold
(77 > 50 + 25):









0 50 77 36
50 0 25 5
77 25 0 35
36 5 35 0









This is the reason why we state that the positive square hyper-
volume only indicates the possibility to construct a hyper-
volume. To be sure one has to recursively check if all hyper-
volumes of all sub-simplexes (simplexes in lower dimensions
that can be built using a subset of the simplex points) are
positive.

VI. FAST LANDMARK POSITIONING

The results presented in Sections IV and V allow us to
define two algorithms. Algorithm 1 determines an optimal

number for embedding the landmarks by finding all maxi-
mal subsets of landmarks, which allow constructing an ideal
simplex. Algorithm 2 uses the result of Algorithm 1 to find
a good starting point for the GNP’s function minimization
by using the “best” simplex as a base for embedding. The
input of algorithms is a full distance matrix, which contains
RTT measurements between all landmarks. The output is
the number of dimensions and a good starting point for the
function minimization. At the beginning of the Algorithm 1,all
possible 1-simplexes (zero dimensional simplexes containing
one landmark) are added to the set of current simplexes. At
each step of the algorithm, the set of current simplexes is
extended by adding new simplexes. A new simplex is added
to the set of current simplexes by trying to add one landmark
to each simplex from the set and calculating the the Cayley-
Menger determinant such a new simplex. If the value of the
determinant is positive the new simplex is added to the set
of the current simplexes. After all possible simplexes are
generated, simplexes with the maximal number of landmarks
are chosen and passed to the Algorithm 2.
Algorithm 2 determines a good starting point for the function
minimization. Output of the algorithm are coordinates of
landmarks. The algorithm processes each simplex obtained
from Algorithm 1 the same way: The position of all landmarks
that are within one of the simplexes are positioned using
(10). All other landmarks are positioned using the GNP’s host
positioning. By doing so, we obtain a set of possible landmark
positions. From this set our algorithm chooses the landmark
positions with the lowest embedding error as the return value.

Algorithm 1 : FindMaxSimplexes: algorithm for finding all
simplexes of the maximal dimensionality
Input : Distance matrixD containing all distances

betweenm landmarks
Output : A set S, which contains all simplexes (each of

them represented as a set of indexes) that can
be constructed fromD

S ← {{x}|x ∈ {1, · · · , m}};
for i← 1 to m do

for x ∈ S do
/* Add a new simplex if its square

volume is positive */
if SimplexQuadVolume(D, x ∪ {i})> 0 then

S ← S ∪ {x ∪ {i}} ;
end

end
/* Find the maximal simplex size */
max← max(‖x‖ : x ∈ S);
/* Remove all simplexes that cannot

grow larger than the maximal
simplex */

S ← S\{x : x ∈ S, ‖x‖+ (m− i) < max};
end
return S;



Algorithm 2 : FindLandmarkPositions: algorithm for fast
landmark positioning
Input : Distance matrixD containing all distance

betweenm landmarks
Output : A good starting point for function minimization

P and the optimal number of dimensions

find all simplexes with the maximal dimensionality using
the FindMaxSimplexes algorithm;

for each found simplex do

determine the coordinates of the landmarks that are
in the simplex using (10);

determine the coordinates of the remaining landmarks
using GNP host positioning, where the hosts for the
simplex are used as the landmarks;

add the positions of the landmarks to the set of the
potential start-points;

end
choose the best start-point among the potential start
points by finding the one with the smallest total square
error for the embedding;

VII. EVALUATION

A. Evaluation Scenarios

In this Section we present the experimental results of
comparing our Fast Landmark Positioning algorithm with the
landmark positioning proposed in GNP. In the comparison
we are focusing on the accuracy of the landmark position-
ing (the value of the error function) and the computational
overhead (CPU time spent by the process computing the
landmark positions). We base our comparison on data ob-
tained from the PlanetLab “all-sites-pings” experiment [12].
To be able to obtain comparable results, we implemented
the GNP algorithm and both of our algorithms in the PERL
programming language. For the function minimization we used
the Math::Amoeba Perl module obtained from CPAN [15],
which implements the Simplex Downhill algorithm. For each
function minimization we used following parameters:ftol =
10−7 and a maximal eval count of40000. All execution time
measurements were performed on a computer with a 3 GHz
Pentium 4 CPU running the Linux operating system. The
methodology for comparison is always the same: we vary the
number of landmarks between 4 and 20. For each number of
landmarks we randomly choose 20 different subsets of hosts
out of total 125 that we have in our data set, which will be used
as the landmarks (landmark-set). For each such landmark-set
we calculate the coordinates of the landmarks and record the
execution time of the process using the UNIX time utility. For
each landmark-set we have calculated landmark coordinates
using each of the following landmark-positioning:

• MAX: The original GNP landmark positioning where
m landmarks are positioned in a(m − 1)-dimensional
space. The starting point for the function minimization is

randomly chosen. The result of this landmark positioning
should have the smallest total positioning error, since we
have the maximal number of dimensions available. This
positioning is also the slowest one, since we do not have
a reasonable starting point for the function minimization
and the number of variables is the maximum (m(m−1)).

• OPTDIM: The GNP landmark positioning wherem
landmarks are positioned in ad-dimensional space. The
optimal number of dimensionsd is determined using
Algorithm 1. The starting point for the function mini-
mization is randomly chosen. This landmark positioning
should be much faster thanMAX since the optimal
number of dimensions is usually much lower than the
maximal number of dimensions

• OPTDIM-SP: The same landmark positioning asOPT-
DIM with a starting point for the function minimization
determined by Algorithm 2. The execution time for calcu-
lating the starting point is also a part of the total execution
time. If our assumption is correct, this algorithm should
be faster thanOPTDIM since the function minimization
should be faster if a good starting point is provided.

• OPTDIM-SP-R: This landmark positioning algorithm
does the same function minimization asOPTDIM-SP but
eliminates the rotation and translation of the resulting
positions (for details see Section IV-A). Our guess was
that this algorithm should be the fastest one, since it
utilizes every optimization proposed in this paper: optimal
number of dimensions, starting point for the function
minimization and reducing the number of variables used
in the function minimization.

Since there are two flavors of GNP (for details see Section I-
B), we perform our test using both alternative error functions
for GNP. We refer to GNP using the standard distance square
error functionfe as plain GNP. To GNP using the square error
of normalized distances we refer as normalized GNP.

B. Correctness

At the beginning of our evaluation we were interested if
our algorithm really finds an optimal number of dimensions.
To verify this, we compare for each number of landmarks
m, the total error of the landmark coordinates computed by
OPTDIM-SP with the total error that is obtained by performing
GNP usingm − 1 dimensions (MAX). If our algorithm is
correct, the total error of our landmark positioningOPTDIM-
SP should be equal to or better than the total error ofMAX.
Since the expected value of the total square error varies greatly,
depending on the landmark choice, we performed Wilcoxon
signed-rank [16] statistical tests for each number of landmarks.
The reason for choosing the Wilcoxon signed-rank test is
that we have paired measurements (total error of landmark
positioning for the same set of landmarks for each algorithm)
and that the test makes no assumption about the distribution
of the data.
With the test we are trying to detect whether the medians
of the total errors ofMAX and OPTDIM-SP are different.
To be able to detect all kind of differences we performed



three tests for each pair of value sets. The first test (t<)
tests whether the median ofMAX is lower than the median
of OPTDIM-SP. In this case our conservative hypothesis is
H<

0 : µ(MAX) ≥ µ(OPTDIM-SP). The alternative hypothesis
is H<

1 : µ(MAX) < µ(OPTDIM-SP). The second test (t>)
determines whether the median ofMAX is higher than the
median ofOPTDIM-SP with the hypotheses:H>

0 : µ(MAX) ≤
µ(OPTDIM-SP) and H>

1 : µ(MAX) > µ(OPTDIM-SP).
The third test (t 6=) checks whether the medians ofMAX
and OPTDIM-SP significantly differ. In this test we have
the hypotheses:H 6=

0 : µ(MAX) = µ(OPTDIM-SP) and
H 6=

1 : µ(MAX) 6= µ(OPTDIM-SP). To determine which
hypothesis is correct, we have to compare thep values with
the significance level (α = 0.05).
For example, if we obtain the followingp values as depicted
in Table I for 5 landmarks and plain GNP:0.978 for t>,
0.022 for t< and 0.044 for t 6=, we can say thatµ(MAX) is
significantly higher thanµ(OPTDIM-SP). The reason for this
is that we havep values for the testst> and t 6= under the
significance threshold (0.05), meaning that those tests show
that the hypothesesH>

1 andH 6=
1 are correct.

We have performed the statistical tests for each number of
landmarks and for both flavors of GNP (plain and normalized).
We have computed thep values of the tests using thewilcoxon
test() statistical function of the octave [17] mathematical
software. Thep values of tests are represented in Table I.
As we can see, our algorithm for finding an optimal number

TABLE I

WILCOXON MATCHED PAIRS SIGNED RANK TEST p VALUES OF THE

TOTAL ERROR FORMAX AND OPTDIM LANDMARK POSITIONING.

MAX vs OPTDIM-SP MAX vs.OPTDIM-SP
(plain GNP) (normalized GNP)

p(t<) p(t>) p(t6=) p(t<) p(t>) p(t6=)
4 0.617 0.383 0.765 0.206 0.794 0.411
5 0.978 0.022 0.044 0.999 0.001 0.002
6 0.997 0.003 0.005 0.999 0.001 0.001
7 1.000 0.000 0.001 0.997 0.003 0.006
8 1.000 0.000 0.001 1.000 0.000 0.000
9 1.000 0.000 0.001 0.996 0.004 0.009
10 1.000 0.000 0.000 1.000 0.000 0.000
11 0.999 0.001 0.002 1.000 0.000 0.000
12 1.000 0.000 0.000 0.999 0.001 0.001
13 0.999 0.001 0.001 0.999 0.001 0.001
14 1.000 0.000 0.001 1.000 0.000 0.000
15 1.000 0.000 0.000 1.000 0.000 0.000
16 1.000 0.000 0.000 1.000 0.000 0.000
17 1.000 0.000 0.000 1.000 0.000 0.000
18 1.000 0.000 0.000 1.000 0.000 0.000
19 1.000 0.000 0.000 1.000 0.000 0.000
20 1.000 0.000 0.000 1.000 0.000 0.000

of dimensions seems not only to be correct, but also has a
significantly lower total error than GNP with the maximal
number of dimensions for each number of landmarks.
We also performed the same tests to compare the performance
of OPTDIM-SP-R with OPTDIM-SP. To our surprise, the tests
showed, thatOPTDIM-SP-R has significantly larger errors
thanOPTDIM-SP. Further investigations have shown, that the

error difference is very small for each sample. The median of
the RTT prediction error betweenOPTDIM-SP andOPTDIM-
SP-R was less than1% of the predicted distance. The value
distribution of the prediction error was very asymmetric – most
of the values were in the very low range (less than1.5%) and
we only had a few outliers with very high values. We assume,
that there are two reasons for this result. The first reason is
the numerical precision loss of the Simplex Downhill function
minimization due to the reduced number of variables, which
explains most of the small error values. The reason for the
outlier with high errors is the increased probability that the
Simplex Downhill will be stuck in a local minimum when the
number of possible solutions is reduced. Depending on the
start point for the function minimization (initial simplex), the
Simplex Downhill method may converge to a local minimum,
which must not necessarily be the global minimum. In the
case where the number of solutions is not reduced, there is a
higher probability that the Simplex Downhill method will find
a better solution in the vicinity of the non-optimal solution
and converge towards this solution.

C. Processing Performance

Our accuracy analysis indicates that our error prediction is
not worse than the best case of the GNP landmark positioning.
Now we are interested whether our landmark positioning
has any performance gains compared to the standard GNP
positioning. To verify this, we have compared the execution
time (in terms of CPU time spent by the execution process)
for the following positionings:MAX, OPTDIM, OPTDIM-SP
andOPTDIM-SP-R.
If our assumptions are right, the execution time ofMAX
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Fig. 5. Performance comparison for the plain GNP

should be the worst of all alternatives followed byOPTDIM,
OPTDIM-SP should be faster thanOPTDIM but slower than
OPTDIM-SP-R andOPTDIM-SP-R should be the fastest.
We represent the experiment’s results (the execution time in
Fig. 5 and 6 and number of dimensions in Fig. 7) using plots.
The plots summarize the results of 20 experiments grouped
for each number of landmarks using bars. The middle point
of a bar represents the median of all values. The lower point
of a bar represents the minimum of all values. The upper point
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of a bar represents the maximum. The medians of the bars for
the different experiments are connected with a line.
As we can see in Fig. 6 our assumption is correct for the
normalized GNP but Fig. 5 shows that the performance of
OPTDIM-SP is almost always better than the performance of
OPTDIM-SP-R. In our opinion, the reason for this is the use
of the simplex-downhill method for function minimization.
At this time we cannot support this assumption with any
experimental data, but we will focus our future work on replac-
ing Simplex Downhill with some other function minimization
strategy and comparing the results.
For the sake of completeness we also present in Fig. 7 the
optimal number of dimensions calculated by our algorithm
for the experiments.
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VIII. C ONCLUSIONS

In this paper we showed that it is possible to determine
the optimal number dimensionsd for embedding landmarks
in a Euclidean space. We also showed that it is possible
to find a good starting point for the function minimization.
Based on this, we have defined two algorithms. The first
algorithm is able to find the optimal number of dimensionsd
for embedding landmarks in a Euclidean space and all sets of
landmarks that can be used as a base for that embedding. The

second algorithm finds a good starting point for the function
minimization used in GNP to find the landmark positions.
We have validated our algorithms by using data obtained
from PlanetLab “all-sites-ping” experiments. The resultsof
our evaluation show that both algorithms we are proposing,
are correct and able to accelerate the computation of the
landmark positions of GNP. Given the complexity of landmark
positioning, one could consider using more than one CPU for
solving the task. Unfortunately we see no way how the task
of iterative function minimization using the Downhill Simplex
method could be parallelized, since every iteration depends
on the result of the previous iteration. One task that could
be parallelized is computing the objective function, which
could lead to some performance gains in the cases where the
overhead of inter-process communication (IPC) is lower than
the CPU time needed to calculate the objective function.
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