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Abstract— In this paper we analyze the positioning of land- pair. Knowing that the RTT can be represented as a distance
marks in coordinates-based Internet distance prediction p- in a metric space also indicates that in order to position one
proaches with focus on Global Network Positioning (GNP). gt in such virtual space, we do not need to measure RTTs
We show that one of the major drawbacks of GNP is its ¢ Il other hosts in th I’t t Th tically it Id b
computational overhead for a large number of landmarks and 0 6? ,0 er hosts in the Internet. .eore Ically It wou e
dimensions. In our work we identify two factors, which have a Sufficient for one host to measure “distances” (RTTs) only to
great impact on the computational overhead. The first one is d — 1 other hosts with known positions in order to be able
being able to determine the optimal number of dimensions for to determine its position. The procedure of determining an
embedding a given set of landmarks into a Euclidean space. \nynown position based only on distance measurements is
The second factor is the selection of a good starting point 5o k ltilaterati B ing RTTs (dist
for minimizing the total error of embedding. We propose an also known as mu |a.era lon. By measuring s (distapce
a|gorithm based on the Simp|ex inequa”ty (a genera”zed fon to Only a few nodes in the Internet we trade the number of
of the triangle inequality) to extract the optimal number of measurements needed for the precision of RTT estimation —
dimensions based on distance measurements between landk&r the more measurements to different hosts we perform, the

We also provide methods to compute a good starting point for more accurate the RTT prediction of the system will be.
the minimization problem and to reduce the number of variables

involved in the minimization. We performed experiments with
data obtained from the PlanetLab all-sites-pings experimet to B. Related Work
verify the correctness and performance gains of our algoritm. In the last years there have been numerous proposals

The experimental results show that our enhancements to GNP for RTT prediction schemes based on coordinates [3]-[10].
landmark positioning are able to find the optimal number of pagically there are two types of coordinates based RTT
dimensions for embedding the landmarks. These enhancement . ]
also accelerate the function minimization. prediction schemes: landmarks-based and landmarksilbss.
landmarks-based RTT prediction schemes determine coordi-
. INTRODUCTION nates of few fixed reference points (so called landmarks) and
use them to determine the positions of all other hosts. Sdme o
them are based on positioning landmarks hosts using functio
The round-trip-time (RTT) is, besides the available bandninimization [3]-[5]. The others [8], [9] use the principal
width, one of the most important measurable properties @f titomponent analysis (PCA) to reduce the dimensionality of
Internet communication. Floyd and Fall have identified ieith the landmark RTT measurements and to position the hosts.
work [1] that the effective bandwidth of a TCP connectiohandmarks-less RTT prediction schemes such as VIVALDI
is limited by the following properties of the network path{6] or S-VIVALDI [7] are based on distributed simulation
available bandwidth, packet drop probability and RTT. RT®f physical systems to iteratively reduce the overall ewbr
information can be used in many ways, i.e. for selectinfpe host embedding in a Euclidean space. Another integestin
application server mirror sites, for optimizing overlaydan approach is presented in [10] where the authors are progosin
peer-to-peer networks, and for finding optimal routes. embedding the Internet hosts in hyperbolic-spaces instead
Given the number of hosts in the Internet, the overhead of RDTI Euclidean spaces. Such embedding delivers a better RTT
measurements, and storage for all host-pair&#)), it is not prediction service, since a weighted graph representigg th
feasible to perform and store RTT measurements for all hostdernet can be better projected into a hyperbolic space tha
in the Internet. On the other hand, it has been shown [2] thato an Euclidean space.
it is possible to represent Internet hosts as points in aiadirt The first and the most promising landmarks-based RTT pre-
d-dimensional Euclidean spacg such that the Euclidean diction scheme is GNP [3], [4]. In GNR; hosts are chosen as
distance between two points in such a space (denoteispy landmarks (denoted by, ... ~L,,). All other Hosts (denoted
is a good prediction of the RTT for the corresponding hosby H) in the Internet measure RTT distances (denoted by

A. Motivation



dHLl,...,JHLm)to the landmarks and use this information tave provide an estimate of the computational complexity
determine their position in a virtual space. The coordigate depending on the number of dimensions used for positioning
a host inS (denoted byC?, := (C,,...,C%)) are determined landmarks using function minimization. In Section Il we
using multilateration. The multilateration itself is bdsen provide a formal description for the problem of finding the

minimizing the error functionf.. In the case of GNP, the landmark coordinates. In Section IV we discuss how the

least-squares-error function: infinite number of solutions can be reduced to a finite number
m and provide an explicit method for constructing a simplex
fe(C;i) — Z(ds(cﬁjcfi) _ JHQ)2 for the given vertices. In Section V we describe the possible

i—1 violations of the properties of d-dimensional metric space

is used. The function minimization is performed using thghe simplex inequality) _and how those can be detectedgu_sin
Downhill Simplex [11] method. Cayley-Menger determinants). In Section VI we describe

For calculatingds(C,Cz,), the positions of the Iandmarksalgorithms that utilize the results from Sections IV and V to

in S (Cr Cc ) must be known. In the case of GNP, th alculate the optimal number of dimensions for represegntin
PR ' ’ dmark coordinates, and to compute a good starting point f

coordinates of the landmarks are computed by minimizing thg "~ ;
following error function: fl_ndlng them. In _Sec_tlon VIl we evaluate the proposed algo-
rithm by comparing its accuracy, performance and number of

fe(C2,....C8 ) = > (ds(CZ.,CZ)—dc.c,)? dimensions with the equivalent landmark positioning soem

i5€{1...m},j>i proposed in GNP. In Section VIII we summarize the results
(1)  of this paper.
Besides this error function, the authors of GNP proposeén th
same paper an alternative normalized error function: Il. COMPLEXITY OF FUNCTION MINIMIZATION

R 2 The first question to ask is whether there is a scaling
oS cS ) = Z ds(Ce;,Cry) —deic, problem for GNP’s landmark positioning regarding the numbe
fe( L2 [,m) . 5 . . .
i el lm} i dc,c, of dimensions used. As we have mentioned, GNP proposed

) S _ _ positioning landmarks by minimizing a least squares object
The reason for proposing usinf{ instead of f. is that it function f. defined in (1). At the first glance, computing
yields better results when the relative error performanegria f. does not depend on the number of dimensidnsf we
defined as: R consider the definition of the Euclidean distance between tw
ds(Cc;,Cc;) —dcc; landmarksds (2), it is clear that the computational overhead
min (ds(C,ci,C,cj), cza,;cj) of ds is linear (s € O(d)), which also means thgt € O(d).

is used to evaluate the performance of the RTT predictions.
Whatever landmark positioning strategy is used, it is @lci
that the landmark coordinates are as accurate as possitae, s
the coordinates of all other hosts in the Internet are calclie determine the computational complexity of the function
lated relative to them. An error in positioning one landmarfinimization we still have to determine the number of evalu-
decreases the performance of the RTT prediction for almasions of f. needed to perform the function minimization. An
every host in the Internet. analytical approach to find this number is impractical due to
The landmark positioning proposed in GNP has numerothe fact that the number of iterations needed heavily depend
issues — the most severe one is the computational overhea@the starting point used to perform the minimization. Tith st

the function minimization. The function minimization usked  be able to roughly determine the computational overhead of
GNP (Downhill Simplex) is very computation-intensive. Théhe function minimization, we have gathered empirical data
reason for this is the more than linear growth of the probleand performed a statistical analysis of it.

space with each additional variable, lack of a “good” stayti For the experiment, we have randomly chosen 20 hosts from
point (a point in the vicinity of the optimal solution) andh i the Planet-Lab testbed as landmarks. For those 20 landmarks
the case of landmark positions, the infinite number of pdssibve retrieved the full RTT measurement matrix from the
solutions for embedding landmarks, which slows down thélanetLab all-sites-pings experiment [12]. For this dista

dS (CC1 ’ C[,j ) = (2)

convergence of the function minimization. matrix we used the Downhill-Simplex function minimization
) as proposed in GNP to determine the landmark positions with
C. Overview the number of dimensionsvarying between 1 and 19, which

In this paper we focus on improving landmark positioning a6 the theoretical maximum of dimensions with 20 landmarks.
GNP by reducing the number of possible solutions to a finiteor each number of dimensions we have performed 50 func-
number, determining the optimal number of dimensions feion minimizations with different randomly chosen stagtin
the space, in which the landmarks can be positioned, and fyints. For each function minimization we have recorded the
providing a good starting point for the function minimizati number of evaluations of the objective functign performed
The structure of this paper is as follows: In the next Sectido obtain the landmark coordinates.
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Fig. 1.  Number of evaluations of the objective function usedposition Fig. 3. Average CPU time in a 3 GHz Pentium-D CPU (in seconds) f
landmarks computing landmark positions depending on the number ofdsions
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accelerate the time needed to position the landmarks. For
example positioning 20 landmarks in 19 dimensions takes
in average 147.795 seconds CPU time. Finding landmark
positions for the same data in 6 dimensions takes only 6.045
seconds. In our opinion, results of this experiment justify

the need for reducing the number of dimensions used for
positioning landmarks.
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IIl. LANDMARK COORDINATES. THE PROBLEM

square root of number of function evaluations

200 DEFINITION
®c 2 4 6 & 10 12 14 1 18 2 In GNP we have a set of: landmarks(£4, ..., ~L,,) and
fumber of dmensions a complete set of measured distances between the given land-
Fig. 2. Square root of the number of evaluations of the oijedunction Marks{dc,c; :4,j € {1,...,m}}, which can be represented
used to position landmarks as the following distance matrix:
R 0 dLl£2 T d[;\l[/?nfl C{[/l‘cvn
The results of this experiment are summarized in Fig. 1. This e,z 0 o de,ycs desc,,
Figure contains the median and thé% confidence interval : : ' : :
of the numper of. function evaluations performed for eagh VI 0 de, o
number of dimensions. As we can see, the number of function d d d 0
Lom L1 LoLa " OLp Loy

evaluations performed is increasing more than linearly wie

number of dimensions used. Our assumption judging on tiée assume that the distance matrix is symmetric with respect
shape of the curve is that it increases quadratically. Our d@e the main diagonal, meaning thét, ., = d., ¢, .

sumption is confirmed by Fig. 2 where we have represented ther this input, we are interested in finding the landmark
square root of the number of performed function evaluatiomsordinates(CZ ,...,C2 ) in the d-dimensional Euclidean
depending on the number of dimensions. The median valuespaces := (R%, ds). If the distance measurements are error-
this Figure increase linearly, meaning that the originalion free, we would be able to construct @ — 1)-simplex,

is increasing quadratically. the simplest regular figure that can be constructed using
This result allows us to state that the number of functiopoints in an(m — 1)-dimensional space, with points as the
evaluations is withinO(d?). As shown above, each functionlandmarks and side lengths equal to the measured distances
evaluation has a linear computational overhead regardibgtween them. It is obvious, that all solutions to our landma
the number of dimensions. Therefore, we can state that tb@ordinates problem, based on an ideal input, can be olgtaine
total computational complexity of an average positionirig dy applying isometric operations (operations that preserv
landmarks depending on the number of dimensigis cubic distances between the points) such as rotation, translatid
(O(d?)). reflection to one solution. This means, that in(a — 1)-

Fig. 3 shows the average CPU time needed (in seconds) maiaensional space there is an infinite number of solutioas th
sured in our experiment to find landmark positions dependimgpresent the positions of a simplex. For example, Fig. &vsho
on the number of dimensions. This Figure clearly demorstrasome of the landmark positioning solutions in two dimension
that reducing the number of dimensions can dramaticallgr the following distances(1,1,+/2). As we can see, any



the rotation we can require that the second landmar) (s
located on the first axis of the spaSe meaning that only the
r 1 first coordinate of the landmark is variable, the rest of them
‘L is zero:C3, =0,...,C}.~" = 0. The coordinates of the third
1 landmark {3) should be located in the plane defined by the
- first two axes ofS meaning thatrjz3 =0,... ,C’ﬁ”;l = 0.
N i For every next landmark we allow one more dimension. The
last landmark has no constraints for its coordinates.

By restraining the landmark coordinates we eliminate the
possibility of rotation, since by restraining the positiohthe
second landmark to the first axis we eliminate the posgybilit
1 0 N 2 3 4 that the simplex can be rotated around any other axis. Restra

ing the third landmark to a plane defined by the first two axes
Fig. 4. Example of isometric equivalent solutions for caoates of a 2- eliminates the rotation around the first axis etc. This mg#ins

simplex we have coordinates of landmarks,, ..., L,,) represented
as:

NP . _ Ch,  C3, ... CpToCp
triangle in Fig. 4 is a solution for the landmark positioning C11 Cgl leg leq
problem. With an increasing number of dimensions0, the L2 I L2
problem only gets worse — in addition to rotation, transiati : : . : :
and reflection we may also have different shapes of the simple ci ., Ci ... Ccpocpl
that have the same distances. Still, the only two isometric c. Cci ... Ccprocpt
operations, which generate an infinite number of solutions, ’ ’
are rotation and translation. we reduce the number of unknowns by restraining the coor-
This is actually one of the reasons, why the function minflinates:
mization used in GNP to determine the landmark coordinates 0 0 0 0
converges very slowly and is non-deterministic. cl. 0 o 0 0

IV. CONSTRUCTING ASIMPLEX : : : :

If we have a distance matrix as described in Section Ill and Cr.., Ci. ., Cr=2 0

assuming that it is possible to construci{ra — 1)-simplex Ch CZ ... CZ";W‘Q C?;;l

from the input (for a method to verify this assumption see o _ o
Section V), reconstructing one such simplex is equivalent T hrough restraining the landmark coordinates we have elimi

finding one solution for the following equation system: nated the rotation and translation and also reduced the eumb
_— of unknowns fromm(m — 1) to m(m — 1)/2.
Z (L —Ch)? = (JLL )2 3) This result alo_ne un_ld _noti_ceably accelerate the_ converge
= k Ik of GNP’s function minimization; beside that there is an &ipl
wherej € {1,...,k} andk € {1,...,m — 1} solution to (3), which can be computed directly.

As mentioned in Section Il there is an infinite humber oB. Calculating the Smplex Coordinates
possible solutions for landmark positioning, which medrat t

. e . . . After eliminating rotation and translation, the equation
there is an infinite number of solutions for this equanogy g q

stem (3) is simplified to:

system.
1 \2 _ 7 2
A. Eliminating Trandation and Rotation (€2,)” = (deies)
1 \2 2 \2 7 2
To reduce the number of solutions to a finite number, we (Cry)” +(C2)" = (drics)
have to eliminate the isometric operations, which yield an
infinite number of solutions. Those operations are rotagiod S
translation. Ch )2 = (Cg£ o)
To eliminate the translation it would be sufficient to reguir ; fm o
a fixed position of one landmark — for example we could cL L2 2\2 _ (5 2
) . o : - +(C = (d
require that the first landmarkC() should be positioned in ) 1( ‘2:2 §3)2 ( §3)2 (fz“)z
the origin of S: CZ = (0,...,0). (Cr, —C2)" +(C2)" +(Cz)" = (deocd)

Eliminating translation is unfortunately not sufficientveh if
we restrain the first landmark to a fixed position we can obtain 1
an infinite number of solutions by rotating the simplex about Z (Ck —Ch )2 = (Cg£ o)

an axis which is running trough that fixed point. To eliminate =



As mentioned in Section IV-A, the position of the first landThe generalized formula for calculating the simplex coeordi
mark is set to the origin o8. Since the second landmark isnates derived from this procedure is:
positioned on the first-dimension axis, the following edprat

delivers the first coordinate of the landmark: 0 Jj =
Ck = +d o irs
Lo L1L2 (ZCJLH_l) 1 [(dﬂlﬁi)Q _
_(dﬁj+1ﬁi)2 -
To determine the position of the third landmark, we have the i i o
following equations: ci=¢ k§1 2Cz,, )€ )+ Tl (10)
7 J
(CL,)*+(CZ,)* = (C{zzlca)Q 4) +30 (k)
(Céz - Céa)Q + (0%3)2 = (d£2£3)2 (5) k=1
by subtracting (4) from (5) we obtain the first coordinate of . j—1
£3: + (dﬂlﬁi)Q - Z (CZL)Q aj =i—1
~ ~ k=1
cl o (dﬂ2£3)2 - (dﬁlﬂzs)Q - (0}12)2
Lz = 2(3%2 V. DISTANCES AND METRIC SPACES

The second coordinate @f; can be obtained by replacing the

L In distances derived from real-world measurements, such
computed value ot in (4):

as distances to GPS satellites, we are usually confrontdd wi

2 i\/(d 12— (CL )2 values, which make the exact positioning impossible due to
Ls £1Lls Ls the measurement errors. Still, we know that the measuresment
In general, if we have determined the coordinates of thefirststem from a three-dimensional environment, in which the
Iandmarks(,’fl,...,cfk),we determine the positicmfk+1 := triangle inequality holds. The problem in the coordinates-
(C}:M,...,C§k+l,0,...,0) of landmarkZ;, by solving the based RTT prediction is that we are fitting the “distance”
following equation system: measurements into @&dimensional Euclidean space without
& knowing in advance how many dimensions the space has (the
i 2 _ (4 2 value of d).
;(Cﬁk“) (ereen)” O) In GNP, the authors propose the “optimal” number of dimen-
1 sions and landmarks that can be used based on results of their
(CL, - CEM)Q 4 Z (CZM)Q = (desri)? (7) experiments. In this Section we show that there is a method to

determine the optimal number of dimensions for embedding
landmarks based only on a distance matrix.

=2
(Cz, =Cr,, )" +
+(C%3 - C%;H_l)Q + = (dﬂ2ﬁk+1)2 (8)

: A. Congtraints on Constructing a Smplex
k i
+20ims(Cr, )

As mentioned earlier, it is not possible to reconstruct a
(m — 1)-dimensional simplex for an arbitrary distance matrix

k=2 : P ol 2 . ) representing distances betweenpoints. The reason for this
D Ch —CL P+ CEL)? = () is that projecting a distance matrix into a Euclidean space
i=1 (equivalent to constructing a simplex from a distance matri
To calculateckk we can subtract (6) from (7). After theposes strict requirements on the distances. To comprehend
subtraction, the result is: those requirements, we must recall the definition of a metric
de r )2 dr. s )2+ (CL)? space gnd a Euglldean space. _
Clpn = (erers) (QCi en)” + (Cr,) A metric space is a 2-tupléA, ds) where A is a set and
Lo ds : A x A — R a distance function. A functiods is called
To calculateczk we can subtract (6) from (8), which leads toa distance function if the following conditions are fulfidldéor
15 - all a,b,c € A:
C?E;H_l = (26%3) ! [(dﬁ1£k+1)2 - (dﬁ3£k+1)2 -
—2C},Ch,.,, +(C2,)? + (C2,)7] 9 ds(a,b) >0
This procedure can be wused for all coordinates ds(a,b) =0 a=b
C}:M, e ,Cf:;jl. For the last coordinatei’fgk . Wwe can ds(a,b) = ds(b, a)
use the computed values and replace them in (6): ds(a,¢) < ds(a,b) + ds(b, ¢) (11)

>~

c—1

C,Iéclk+1 ==+ (dﬁl['kJrI)Q B (Céik+1)2

1 A d-dimensional Euclidean space is a special case of a metric

K3



space, where: distance matrix:

0 3 3 16
3 0 3 16
3 3 0 16
16 16 16 0

the triangle inequality holds for every triple of distances
between the landmarkg < 3+ 3, 3 <3+16, 16 <

The inequality (11) is also known as the triangle inequality + 1.6, 1.6 < 3 + 3). Still we are not able to construct a
The semantics of the triangle inequality is that there is n&Simplex (tetrahedron) with the given distances, becduse
triplet of elementsu, b, ¢ € A where the distance between triangle inequality is the necessary but not sufficient ctorl
andc is greater than the sum of the distance betweeand for constructing al-simplex ¢ > 2). The sufficient condition

b and the distance betweénand c. In an Euclidean space, in three dimensions would be that the area of every tetramedr
the triangle inequality means that with distances betwe&lfle (triangle) must be smaller than or equal to the sum of the
three points we can always construct a triangle (a 2-sin)pleeas of all other sides — this inequality does not hold far ou
including the pathological case where the triangle is one li distance matrix.

segment ¢ + b = ¢). If we have three distances, which doA more generalized recursive inequality can also be defioed f
not fulfill the triangle inequality (for example: a=1, b=3dn any d-simplex: the hyper-volume of every “side” (@ — 1)-
c=5), we will not be able to reconstruct a triangle, sincaghesimplex) of a simplex must be smaller or equal to the sum
are no three points in any metric space, where the distan@dypervolumes of all other simplex-"sides®. This ineqtial
would match. is also known as the simplex inequality [13]. The simplex
inequality is actually recursive, since, to be able to cotepu
the hyper-volume of a simplex, one must be able to construct
a simplex. The recursion ends with the triangle inequatity f

To still be able to have a set of landmarks, one must redu@éSimplex. By knowing this, we can construct the landmark
the number of dimensions. For example, it is obvious thgPordinates by reducing the dimensionality as described in
for the following distances: a=1, b=3 and c=5 the triangi@€Ction V-B. In this case the "base” i2esimplex (a triangle)
inequality does not holds(> 3 + 1). and the fourth landmark is positioned in the plane defined by

To calculate positions of landmarks we can try to reduce i€ Positions of the “base” points.
number of dimensions: instead of constructing a 2-simpéex (

triangle - which is impossible since the triangle ineqyadibes D. The Cayley-Menger Determinant
not.hold) we could construct a }-smelex @ I|n.e' segmentbs Th Now that we know the sufficient condition for constructing
1-simplex can be used as a “base” for positioning the third

landmark. The third landmark is positioned in such a Wa&smplex, we should be able to find a set of landmarks that can

that the embedding-error (.g. the square error betweamngiy® used as a base. Unfortunately, there is one small detail of

and calculated distances) will be minimized. For example, V\t/he simplex inequality, which is still not trivial. The noivial

could assign the following coordinates to the landmatks= gﬁa':éjg];svégme g?liﬁfzﬁgsezygf :;]\;Ogmelg;(f A-1)-
0,Cz, =1 andCj}, = 3.5. This solution is not the only one; P y plex:

actually there are three possible solutions — depending bnn the case of a 1-simplex or a 2-simplex the solution is

which pair of landmarks is chosen as the “base”. Also worth Y simple: a hyper-volume of a line segment is its length,
) he hyper-volume of a triangle is its area, which can be

noting is that the possible solutions are not equal reggrdin . \
the total square error of such an embedding. Since we caelculated using Heron’s formula. Even for a tetrahedron (a
. quare error 9 . _3-simplex) there is Tartaglia’s formula, but still we need a
interested in minimizing the total error, the optimal choic . . .

. ) eneral approach, which delivers the volume af-aimplex,
would be to use the base, for which the total error is the )
smallest — in this case the 1-simplex, which is formed b‘?ﬁé, ?aeyizsyllig;ugsp %gte[:ritiigltnzgtli\[/i‘rg. the square of the
landmarks £; and £3. Whatever solution is chosen, it 'Shyper—volume of ad-dimensional simplexS,: V2(S,) based

usually not an optimal one, since we were not trying to . :
. . . S nly on vertices of the simplex. The square hyper-volume of
optimize by changing all distance. Still, it is a very gooc%

starting point for further minimization — for example using”? is defined as
the Downhill Simplex method. (—1)d+1

VQ(Sd) = W

B. Handling Triangle Inequality Violations

det(B) (12)
C. Handling Smplex Inequality Violations ) ) ) ) .
where B is a matrix obtained by bordering a quadratic
Unfortunately, the triangle inequality is not the only condistance matrix with a top roW0, 1,...,1) and a left column
straint to construct a simplex. For example, for the follogvi (0,1,...,1)7. For example for a3-simplex the B matrix



would look like: number for embedding the landmarks by finding all maxi-

mal subsets of landmarks, which allow constructing an ideal

0 1 1 1 1
3 2 /5 2 (5 2 simplex. Algorithm 2 uses the result of Algorithm 1 to find
B 1 (JL(L )2 (dﬂlo’cg) Eg??; Efil?;z a good starting point for the GNP’s function minimization
P S 9 23 S by using the “best” simplex as a base for embedding. The
1 (‘{'53‘1)2 @‘3'52)2 0 ) (deacs) input of algorithms is a full distance matrix, which contgin
1 (deae,)® (deyes)® (degcs) 0 RTT measurements between all landmarks. The output is

The reason why the Cayley-Menger determinant is very conée number of dimensions and a good starting point for the
nient for our cause lies in the definition of the hyper-volusfie function minimization. At the beginning of the Algorithmalj
a simplex: a volume of a simplex is proportional to the volumeossible 1-simplexes (zero dimensional simplexes coimigin
of a d-dimensional parallelepiped with the same vertices. TH#e landmark) are added to the set of current simplexes. At
hyper-volume of al-dimensional parallelepiped is defined agach step of the algorithm, the set of current simplexes is
the parallelepiped’s height in one dimension multipliedhwi €xtended by adding new simplexes. A new simplex is added
the hyper-volume of the parallelepiped’s base. The squdfethe set of current simplexes by trying to add one landmark
of a hyper-volume delivers not only the information abou© each simplex from the set and calculating the the Cayley-
the simplex hyper-volume, but also the information aboet tiMenger determinant such a new simplex. If the value of the
“heights” of the simplex in lower dimensions. determinant is positive the new simplex is added to the set
This information is necessary to be able to draw conclusiofé the current simplexes. After all possible simplexes are
about the co-planarity (in the sense of hyper-planes) ofggnerated, simplexes with the maximal number of landmarks
simplex. It can be used to determine the optimal number @f¢ chosen and passed to the Algorithm 2.
dimensions, which should be utilized to construct the sempl Algorithm 2 determines a good starting point for the funitio
For example: if we calculate the square hyper-volume for tiginimization. Output of the algorithm are coordinates of
distances of the example from Section V-C we would obtalandmarks. The algorithm processes each simplex obtained
a negative value. from Algorithm 1 the same way: The position of all landmarks
The negative value of the square hyper-volume means tifa@t are within one of the simplexes are positioned using
the volume of the simplex can only be represented as(¥0). All other landmarks are positioned using the GNP’sthos
complex number. It also indicates that at least one “heightositioning. By doing so, we obtain a set of possible landmar
of the simplex must be negative, meaning that we will ngositions. From this set our algorithm chooses the landmark
be able to construct an optimal simplex. The zero value fepsitions with the lowest embedding error as the returnezalu
the square volume suggests that at least one height of the
simplex is zero, which means that the points are coplanar (in
the sense of hyper-planes) and can be represented withsat leAlgorithm 1 : FindMaxSmplexes: algorithm for finding all
one dimension less thah The positive square hyper-volume simplexes of the maximal dimensionality
indicates that we possiblgould construct an ideal simplex —  Input : Distance matrixD containing all distances
it does not show if weean for sure, because of the possibility betweenm landmarks
that there is an even number of negative heights in the sub-Output: A set S, which contains all simplexes (each of
simplexes (the product of an even number of negative numbers them represented as a set of indexes) that can
is positive). For example, the Cayley-Menger determinant be constructed fronD
e oo e v s e ? S (1)

! for i — 1tom do

(77 > 50 + 25):

0 50 77 36
50 0 25 5
725 0 35
36 5 35 0

This is the reason why we state that the positive square hyper
volume only indicates the possibility to construct a hyper-
volume. To be sure one has to recursively check if all hyper-
volumes of all sub-simplexes (simplexes in lower dimension
that can be built using a subset of the simplex points) are
positive.

for x € S do
[+ Add a new sinplex if its square
vol une is positive */
if Si npl exQuadVol ume( D,z U {i}) > 0 then
S— Su{zu{i}};

end
end
[+ Find the maxi mal sinplex size  */
max < max(||z| : z € S);
/* Rernove all sinplexes that cannot
grow | arger than the naxi nal
si npl ex */

V1. FAST LANDMARK POSITIONING dS —S\{z:z €S, [z + (m —1i) <max};
. . en
The results presented in Sections IV and V allow us to return S

define two algorithms. Algorithm 1 determines an optimat



Algorithm 2: FindLandmarkPositions: algorithm for fast
landmark positioning

Input : Distance matrixD containing all distance
betweenm landmarks

Output: A good starting point for function minimization
P and the optimal number of dimensions

find all simplexes with the maximal dimensionality using
the Fi ndMaxSi npl exes algorithm;

for each found simplex do

determine the coordinates of the landmarks that are
in the simplex using (10);

determine the coordinates of the remaining landmarks
using GNP host positioning, where the hosts for the
simplex are used as the landmarks;

add the positions of the landmarks to the set of the

potential start-points;
end

choose the best start-point among the potential start
points by finding the one with the smallest total square
error for the embedding;

randomly chosen. The result of this landmark positioning

should have the smallest total positioning error, since we
have the maximal number of dimensions available. This
positioning is also the slowest one, since we do not have
a reasonable starting point for the function minimization

and the number of variables is the maximum({r —1)).

o« OPTDIM: The GNP landmark positioning where:

landmarks are positioned in &dimensional space. The
optimal number of dimensiond is determined using
Algorithm 1. The starting point for the function mini-
mization is randomly chosen. This landmark positioning
should be much faster thaMAX since the optimal
number of dimensions is usually much lower than the
maximal number of dimensions

o OPTDIM-SP: The same landmark positioning @PT-

DIM with a starting point for the function minimization
determined by Algorithm 2. The execution time for calcu-
lating the starting point is also a part of the total exeautio
time. If our assumption is correct, this algorithm should
be faster tharOPTDIM since the function minimization
should be faster if a good starting point is provided.
OPTDIM-SP-R. This landmark positioning algorithm

does the same function minimization @®TDIM-SP but

eliminates the rotation and translation of the resulting
positions (for details see Section 1V-A). Our guess was
that this algorithm should be the fastest one, since it
utilizes every optimization proposed in this paper: optima
number of dimensions, starting point for the function

VIl. EVALUATION
A. Evaluation Scenarios

In this Section we present the experimental results of

comparing our Fast Landmark Positioning algorithm with the  minimization and reducing the number of variables used
landmark positioning proposed in GNP. In the comparison n the function minimization.

we are focusing on the accuracy of the landmark positio&jnce there are two flavors of GNP (for details see Section I-
ing (the value of the error function) and the computationgy \ve perform our test using both alternative error funatio
overhead (CPU time spent by the process computing th& GNP, We refer to GNP using the standard distance square

landmark positions). \We b?se our cqmp?rison on data Qdior functionf, as plain GNP. To GNP using the square error
tained from the PlanetLab “all-sites-pings” experimen2][l f normalized distances we refer as normalized GNP.
To be able to obtain comparable results, we implemented

the GNP algorithm and both of our algorithms in the PERB. Correctness

programming language. For the function minimization weduse At the beginning of our evaluation we were interested if
the Math::Amoeba Perl module obtained from CPAN [15kur algorithm really finds an optimal number of dimensions.
which implements the Simplex Downhill algorithm. For eactto verify this, we compare for each number of landmarks
function minimization we used following parametet = 1, the total error of the landmark coordinates computed by
10~7 and a maximal eval count af0000. All execution time OPTDIM-SP with the total error that is obtained by performing
measurements were performed on a computer with a 3 GIdNP usingm — 1 dimensions MAX). If our algorithm is
Pentium 4 CPU running the Linux operating system. Theorrect, the total error of our landmark positioniGPTDIM-
methodology for comparison is always the same: we vary ti# should be equal to or better than the total errolbAX.
number of landmarks between 4 and 20. For each numberSifice the expected value of the total square error varieslgre
landmarks we randomly choose 20 different subsets of hogigpending on the landmark choice, we performed Wilcoxon
out of total 125 that we have in our data set, which will be usefigned-rank [16] statistical tests for each number of laarks.
as the landmarks (landmark-set). For each such landméark-pRe reason for choosing the Wilcoxon signed-rank test is
we calculate the coordinates of the landmarks and record #gt we have paired measurements (total error of landmark
execution time of the process using the UNIX time utilityr Fopositioning for the same set of landmarks for each algorjthm
each landmark-set we have calculated landmark coordinaggefl that the test makes no assumption about the distribution
using each of the following landmark-positioning: of the data.
« MAX: The original GNP landmark positioning whereWith the test we are trying to detect whether the medians
m landmarks are positioned in @n — 1)-dimensional of the total errors ofMAX and OPTDIM-SP are different.
space. The starting point for the function minimization i§o be able to detect all kind of differences we performed



three tests for each pair of value sets. The first tes) ( error difference is very small for each sample. The median of
tests whether the median tMAX is lower than the median the RTT prediction error betweeddPTDIM-SP andOPTDIM-

of OPTDIM-SP. In this case our conservative hypothesis iSP-R was less thani % of the predicted distance. The value
Hg : p(MAX) > 1 (OPTDIM-SP). The alternative hypothesisdistribution of the prediction error was very asymmetric esn

is H : u(MAX) < u(OPTDIM-SP). The second testt{) of the values were in the very low range (less thasts) and
determines whether the median BfAX is higher than the we only had a few outliers with very high values. We assume,
median ofOPTDIM-SP with the hypotheses?;” : n(MAX) < that there are two reasons for this result. The first reason is
u(OPTDIM-SP) and Hy : p(MAX) > u(OPTDIM-SP). the numerical precision loss of the Simplex Downhill fuoeti

The third test {.) checks whether the medians &AX minimization due to the reduced number of variables, which
and OPTDIM-SP significantly differ. In this test we have explains most of the small error values. The reason for the
the hypotheses'Hg'é w(MAX) = p(OPTDIM-SP) and outlier with high errors is the increased probability thhet
Hf’é w(MAX) # p(OPTDIM-SP). To determine which Simplex Downhill will be stuck in a local minimum when the
hypothesis is correct, we have to compare phealues with number of possible solutions is reduced. Depending on the
the significance levelo( = 0.05). start point for the function minimization (initial simplixthe

For example, if we obtain the following values as depicted Simplex Downhill method may converge to a local minimum,
in Table | for 5 landmarks and plain GNRL978 for ¢, which must not necessarily be the global minimum. In the
0.022 for t. and 0.044 for ¢, we can say thap(MAX) is case where the number of solutions is not reduced, there is a
significantly higher than:(OPTDIM-SP). The reason for this higher probability that the Simplex Downhill method will éin

is that we havep values for the test$. andt¢. under the a better solution in the vicinity of the non-optimal solutio
significance threshold0(05), meaning that those tests showand converge towards this solution.

that the hypotheseH:” and H] are correct. .
We have performed the statistical tests for each number %T Processing Performance

landmarks and for both flavors of GNP (plain and normalized). Our accuracy analysis indicates that our error predicten i
We have computed thevalues of the tests using thélcoxon_ not worse than the best case of the GNP landmark positioning.
test() statistical function of the octave [17] mathematicaNow we are interested whether our landmark positioning
software. Thep values of tests are represented in Table has any performance gains compared to the standard GNP

As we can see, our algorithm for finding an optimal numbdositioning. To verify this, we have compared the execution
time (in terms of CPU time spent by the execution process)

for the following positioningsMAX, OPTDIM, OPTDIM-SP
and OPTDIM-SP-R.
If our assumptions are right, the execution time MAX

TABLE |
WILCOXON MATCHED PAIRS SIGNED RANK TEST p VALUES OF THE
TOTAL ERROR FORMAX AND OPTDIMLANDMARK POSITIONING.

MAX vs OPTDIM-SP MAX vs.OPTDIM-SP 4500 —
(plain GNP) (normalized GNP) OPTOIM
p(t<) | p(t>) [ ptx) | p(t<) [ p(t>) [ p(t») Bl P o
4 [ 0.617 | 0.383 | 0.765 || 0.206 | 0.794 | 0.411 2500 |
5 |[ 0.978 | 0.022 | 0.044 |[ 0.999 | 0.001 | 0.002
6 || 0.997 | 0.003 | 0.005 || 0.999 | 0.001 | 0.001 3000
7 |[ 1.000 | 0.000 | 0.001 || 0.997 | 0.003 | 0.006 o 2500}
8 |[ 1.000 | 0.000 | 0.00T1 || 1.000 | 0.000 | 0.000 T
9 1.000 | 0.000 | 0.001 || 0.996 | 0.004 | 0.009 = 2000
10 |[ 1.000 | 0.000 | 0.000 || 1.000 | 0.000 | 0.000 1500 -
11 [[ 0.999 | 0.001 | 0.002 |[ 1.000 | 0.000 | 0.000
12 [[ 1.000 | 0.000 | 0.000 || 0.999 | 0.001 | 0.001 1000 |
13[[ 0.999 | 0.001 | 0.001 || 0.999 | 0.001 | 0.001 500 - ]
14 |[ 1.000 | 0.000 | 0.001 || 1.000 | 0.000 | 0.000 T A e
15 || 1.000 | 0.000 | 0.000 || 1.000 | 0.000 | 0.000 i k1 it 1 i B 0
16 |[ 1.000 | 0.000 | 0.000 || 1.000 | 0.000 | 0.000 number of landmarks
17 |[ 1.000 | 0.000 | 0.000 || 1.000 | 0.000 | 0.000
18 || 1.000 | 0.000 | 0.000 1.000 | 0.000 | 0.000 Fig. 5. Performance comparison for the plain GNP
19 [ 1.000 | 0.000 | 0.000 || 1.000 | 0.000 | 0.000
20 |[ 1.000 | 0.000 | 0.000 || 1.000 | 0.000 | 0.000

should be the worst of all alternatives followed BPTDIM,
OPTDIM-SP should be faster tha®@PTDIM but slower than

of dimensions seems not only to be correct, but also hasORTDIM-SP-R and OPTDIM-SP-R should be the fastest.
significantly lower total error than GNP with the maximaMe represent the experiment’s results (the execution time i
number of dimensions for each number of landmarks. Fig. 5 and 6 and number of dimensions in Fig. 7) using plots.
We also performed the same tests to compare the performambe plots summarize the results of 20 experiments grouped
of OPTDIM-SP-Rwith OPTDIM-SP. To our surprise, the testsfor each number of landmarks using bars. The middle point
showed, thatOPTDIM-SP-R has significantly larger errors of a bar represents the median of all values. The lower point
thanOPTDIM-SP. Further investigations have shown, that thef a bar represents the minimum of all values. The upper point
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Performance comparison for the normalized GNP

second algorithm finds a good starting point for the function
minimization used in GNP to find the landmark positions.
We have validated our algorithms by using data obtained
from PlanetLab “all-sites-ping” experiments. The resudfs
our evaluation show that both algorithms we are proposing,
are correct and able to accelerate the computation of the
landmark positions of GNP. Given the complexity of landmark
positioning, one could consider using more than one CPU for
solving the task. Unfortunately we see no way how the task
of iterative function minimization using the Downhill Sirgx
method could be parallelized, since every iteration depend
on the result of the previous iteration. One task that could
be parallelized is computing the objective function, which
could lead to some performance gains in the cases where the
overhead of inter-process communication (IPC) is lowentha

the CPU time needed to calculate the objective function.

of a bar represents the maximum. The medians of the bars for
the different experiments are connected with a line.

As we can see in Fig. 6 our assumption is correct for the This work was carried out within the Swiss National Science
normalized GNP but Fig. 5 shows that the performance &pundation project “Efficient and Robust Overlay Networks
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OPTDIM-SP-R. In our opinion, the reason for this is the use
of the simplex-downhill method for function minimization.
At this time we cannot support this assumption with an)ll]
experimental data, but we will focus our future work on repla
ing Simplex Downhill with some other function minimization [2]
strategy and comparing the results.

For the sake of completeness we also present in Fig. 7 thg
optimal number of dimensions calculated by our algorithm
for the experiments. [4]

(5]
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VIIl. CONCLUSIONS [12]

In this paper we showed that it is possible to determirigs]
the optimal number dimensions for embedding landmarks
in a Euclidean space. We also showed that it is possikﬂéﬂ
to find a good starting point for the function minimization[15]
Based on this, we have defined two algorithms. The firatG]
algorithm is able to find the optimal number of dimensiahs
for embedding landmarks in a Euclidean space and all sets[17
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