Automated Service Provision-
ing in Heterogeneous Large-
Scale Environment

Ibrahim Khalil and Torsten Braun

Institut fur Informatik und angewandte Mathematik (IAM)
Neubrickstr. 10

8012 Bern, Switzerland

ibrahim,braun @iam.unibe.ch

Abstract

With the increasing complexity of network management activities due to naturally limited
human involvement, carriers and service providers are looking to migrate from manual, static
provisioning models to the more dynamic service-oriented automated provisioning models to
meet customer demands for rapid service turn-up and obtain more customers and maximize
revenue opportunities. We propose a novel distributed architecture where highly mobile and
intelligent agents can take the responsibilities of not only provisioning, but also configuration
audit management in a timely fashion. Although recent research have focused on using mo-
bile agents for network monitoring or simple push-based device configuration in a distributed
architecture, their ability have not been exploited in dynamic IP service provisioning. Using
a simple push-based model to configure network services while ignoring dependencies among
configuration elements may easily lead to configuration inconsistencies resulting in failure or
inefficiencies. In this paper, we have taken a new approach to configuration modeling that
is device neutral and based on which any existing or emerging IP services can be presented
by encapsulating service semantics, including service-specific data. We have developed new
mobile intelligent provisioning and audit agent architectures that use the knowledge built
upon configuration dependency modeling. Examples of intelligent agent are presented to
complement the proposed management architecture.

Keywords

Dynamic Service Provisioning, Service Management Architecture, Distributed Management,
Configuration Modeling, Mobile Agent, Intelligent Agent, Automated Configuration, Auto-
mated Device Auditing.

1 Introduction

In large scale Internet service deployment scenarios Internet Service Providers (ISPs) and
large enterprises often face the daunting task of provisioning huge number of network devices
in a short period of time and continue ongoing device management. Manual provisioning
methods and manual element interconnection across multiple discrete elements leaves a
high margin for errors. Carriers and service providers are, therefore, looking to migrate
from manual, static provisioning models to the more dynamic service-oriented automated

provisioning models to meet customer demands for rapid service turn-up and obtain more
customers and maximize revenue opportunities.

Existing Network management architectures ([19]) deploying SNMP [25] as the management
protocol do not really fit well to suit the needs of automated provisioning in a large scale
environment due to some well known limitations. Not only the centralized approach of
SNMP has severe scalability limitations, but it is also a less powerful for making modifica-
tions to the network. SNMP Management Information Base (MIB) implementation for new
emerging services like IPSec [13], MPLS [9], DiffServ [4] do not even exist in most vendors
equipments so as to enable SNMP set command to dynamically configure these services.
Attempts have been made ([24], [17], [18], [12],[21]) to address the scalability problem by
decentralizing processing and control to distribute processing load and reduce the traffic
around the management station. Most of the efforts have been made by using intelligent
and mobile agents [11] that are able to perform management functions by carrying code,
instructions,data and executing tasks on any network node. However, while addressing only
scalability issue the vast majority of these agents [20], [1], [10], [6], [3], [8] have been mainly
used in traffic analysis, fault management, network monitoring and performance manage-
ment.

Despite the ability of mobile agents, in the area of network device configuration management
[7], [2], [21] and automation they have played only limited role. In this regard, they mostly
have been found up-loading management scripts that were compiled at machines hosting
agents [22]. In reality, many of the dynamically created services at least partially depend on
the current configuration states of the target devices. Using a simple push-based model to
configure network services while ignoring dependencies among configurations elements may
easily lead to configuration inconsistencies resulting in failure or inefficiencies. This often
neglected but important issue of configuration modeling was however addressed in [27] with
limited use in useful and complex IP service creation.

In this paper, we have taken a new approach to configuration modeling that is device neutral
and based on which any existing or emerging new IP services can be presented in abstract
form by encapsulating service semantics, including service-specific data. We have developed
a new intelligent mobile provisioning agent architecture that uses the knowledge built upon
configuration dependency modeling. We have also proposed a hierarchical look like high
level network management architecture that has a central policy and data repository and
deploys several intelligent agents playing the role of managers. The agents can take the
responsibilities of not only provisioning but also perform ongoing device management often
termed as auditing. The basic objective of audit management is to ensure that the expected
configuration as stored in the policy repository is equivalent to the actual configuration in a
physical device. This is necessary because accidental manual mis-configuration or configu-
ration performed by any external process other than the automated system can easily result
in unexpected behaviors of network devices. Intelligent audit agents periodically sent to
visit network devices have procedures in place to reestablish lost service. Several real world
examples of intelligent provisioning are presented to show the applicability of our approach.
The rest of the paper discusses all in details.

2 Automated IP Service Provisioning Architecture

2.1 Provisioning Requirements in Large Scale Environment

As today’s network infrastructure continues to grow and new IP services (e.g. VPN, QoS,
MPLS) emerge, the ability to manage an increasing network complexity is considered as cru-
cial for deployment. Growing trend also rise among corporate customers to out-source such
complicated management services to Internet Service Providers (ISP) not only to avoid the

Distributed Management Access

Central Repository, Agent Coordinator

Distributed processing

device specific rules
configurations

(b) @

Figure 1: (a) Proposed Network Architecture, (b) Translation of device independent meta-
data to device-specific configurations by Intelligent Provisioning Agent

complexities of management of those services, but also for economic reasons. Although this
opens the possibility of a tremendous business opportunity for ISPs, they also see challenges
in deploying and managing the network services efficiently and cost effectively. It is not
unlikely that a single ISP might need to timely manage thousands of network devices. The
effective way to meet such challenges is to provide automated service provisioning. Managing
devices not only means one time service activation for customers, but also providing ongo-
ing device management often termed as audit management. Ongoing device management is
needed for several reasons such as:

e Services configured by human administrators many lead to mis-configuration or cause
conflict with existing services activated via automated system.

e If network devices crush due to power failure or for some other reasons, valuable
configuration information that were thrown into the devices might well be lost partially
or fully.

e One can not rule out the possibility of an inside or outside intruder changing some
configuration settings.

In summary, configuration performed by any process other than automated system can
easily result in malfunctioning of the managed services in network devices. If the Service
Level Agreement (SLA) states that should any such problem occur that it would deal within
x minutes of the occurrence, then the automated system would need to send a delegated
entity capable of fixing the problem in a time period close to . That delegated entity, if we
term that as an intelligent agent, should have the knowledge and ability to perform audit
management in an appropriate manner. Such agents will need to understand the complete
dependencies in a configuration storage of a network device while provisioning a new service
or modify an existing one.

2.2 Proposed Architecture

The proposed hierarchical look-like network management architecture shown in Figure 1(a)
addresses the provisioning requirements mentioned above in a large-scale environment. In

such an environment, with a large number of different types of network devices, service
providers will need to deploy a network architecture that can use huge number of automated
agents acting as managers to provision and perform on going device management and provide
distributed management access to the large number of potential customers that want to
create and modify services dynamically on demand. The proposed architecture simply aims
to achieve this. It comprises several management interfaces, a central repository system
with agent communicator, and several service provisioning agents mainly performing the
role of managers. Having several management interfaces not only facilitates dynamic service
creation by the very customers that out-source services to ISPs, but also allows several
system administrators to manage a large enterprise or ISP network from a network operations
center or distributed locations.The agent coordinator performs no management tasks, but
only delegates service requests to the provisioning agents. Therefore, the agent coordinator
does not become the processing bottleneck.

The service-specific intelligent provisioning agents build a generic service environment that
enable customization of service creation and control of network resources. By encapsulating
service semantics, including service-specific data and the logic to interpret the data in ser-
vice provisioning agents we can provide an abstract network interface, separating services
from the underlying network. As shown in Figure 1(b), these agents are able to translate
user requests and pseudo rules extracted from data/policy repository into device-specific
configurations to automate service provisioning process.

By using intelligent provisioning agents we address both scalability problem and lack of
ability of traditional network management approaches to automatically provision a very
large network. The scalability problem is well handled by the agents’ ability to decentralize
processing and control, and, distribute processing load to reduce the traffic around the man-
agement station. Provisioning agents are able to filter and process data locally at the network
nodes without the need for transmission to the Top Level Manager (TLM) like agent coor-
dinator. In fact, traditional distributed management architectures ([19] do not help much to
alleviate the scalability problem as management repository is partitioned and replicated, and
thus require another protocol to maintain the consistency of distributed repositories. Un-
fortunately, perfect consistency is impossible to achieve making such approach less effective
in time-sensitive distributed provisioning.

In this architecture, by using mobile agents we have not only provided decentralization,
but by embedding intelligence we have also added dynamism to the agents that are able
to perform configuration and audit even in hostile situation when actual device state might
be different from expected device state. We build intelligent provisioning agent as an au-
tonomous software entity embedding mobile code, configuration data which has the capabil-
ity of moving itself in the network and executing onto specific network nodes. On a network
node, the provisioning agent can analyze and retrieve local configuration information, install
and execute code, take decisions, thus leading to fully decentralized network management
activities. This obviates the need for MIB implementation in the network devices. None of
the previous works [20], [1], [10], [6], [3], [8] have considered performing such level of complex
provisioning and audit management.

3 Configuration View in Network Devices

Dynamic IP service creation in network devices relies on the fundamental assumption of
having an accurate and consistent abstraction of the underlying network, particularly a
view of essential parts of configuration information stored in those devices spread across
different device-specific repositories in different formats. The complexity of large IP networks
and the paucity of commercial configuration tools means that this is often an unrealistic
assumption. Hence, populating a service model must be closely coupled with checking for

crypto isaknp policy 1
hash nd5
aut hentication pre-share

. lifetime 500

172.17.0.102 172.18.0.100 crypto isaknp key GENEVA- BERN address 129.194.90. 20

crypto ipsec transformset ah-nd5-hnacANDesp-des ah-nmd5- hmac esp- des

crypto ipsec transformset ah-nd5-hnac ah-nd5- hmac

crypto ipsec transformset ah-sha-hnac ah-sha-hnmac

crypto ipsec transformset esp-encryption esp-des

172.17.00

129.194.90.20

crypto map genbern 160 i psec-isaknmp

set peer 129.194.90.20

set transformset ah-nd5- hnacANDesp- des
mat ch address 140

interface FastEthernet0/0
ip address 130.92.70.102 255.255.0.0
no i p directed-broadcast
traffic-shape group 150 1000000 100000 100000 1000
crypto map genbern

access-list 140 pernit ip host 172.17.0.102 host 172.18.0.100
(b) access-list 150 permit ip host 130.92.70.101 host 129.194.90. 20

172.17.00 172.18.0.0

|

129.194.90.20

©

Figure 2: (a) Setup for VPN Network (b) Expanded Setup for VPN Network (c) Partial I0S
Configuration File of Cisco Router 130.92.70.102

possible configuration mistakes. Relationships between different configuration elements are
implicit with repositories containing replicated and interdependent configuration information
leading to inconsistency. Many of the dynamically created services at least partially depend
on the current configuration states of the target devices. Using a simple push-based model
to configure network services while ignoring dependencies among configurations elements
may easily lead to configuration inconsistencies resulting in failure or inefficiencies.

In this section, we present a new device neutral approach to configuration modeling and based
on which any existing or emerging new IP services can be presented by encapsulating service
semantics, including service-specific data. We present a generalized view of configuration
information in a network device and try to model it as clusters of configuration elements.
For this purpose, we show examples of IPSec VPN configurations (Figure 2) in a widely used
Cisco I0S device. Our previous experience [15], [14], [5] with VPN provisioning and also
complexity of VPN configurations in various commercially available devices are the main
motivations behind using these specific examples here.

Basically, no widely accepted standard for network configuration exists, and SNMP, in re-
ality, simply remains a tool for network monitoring. Access mechanisms and manipulations
of configuration information in device repositories are largely vendor-specific. While many
devices are accessible via TELNET/FTP, others need to be accessed via HTTP or LDAP.
The configuration modeling process is independent of the device access mechanism. How-
ever, the intelligent agents built upon the knowledge derived from configuration modeling
use various device access drivers (i.e telnet driver, HT'TP driver, etc.) as required.

3.1 Configuration Element

The configuration element is a customizable object with several attributes in a configuration
space (i.e repository) of a network device. Configuration space, which we will describe later,
represents the complete configuration information of a single device. The attributes of a
configuration element reflect, how it would behave when embedded in a service and also
how they can be linked to other elements to create a service. The attributes of a basic
configuration element as shown in Figure 3(a) are:

e body: identifies the type of action a configuration element performs.

e hook: configuration elements are usually linked to each other in a configuration space.
A hook helps to attach one element to the other.

Access-List

ACL Number: 140
Traffic Action: permit
Traffic Type: ip
source: host 172.17.0.11
Dest : host 172.18.0.100

ost 172.18.0.100

Cell A

o

2

@

2

©

2
ﬂ
b

Cell B

CelC
Cel D

|
-
Py
.
i
.
F

Cell E

5 o | e o =938
)
) ©

(© (b)

Figure 3: (a) Configuration Element and its Attributes (b) Modeling a Configuration Ele-
ment in a Network Device (¢) Mapping Configuration Space

e ring: is the identifier of a particular configuration element and it is that part to which
hook of another element attaches in order to create a composite element or service.

e hole: defines the behavior of configuration element. Holes are filled up with parameters
that actually determine the behavior.

Figure 3(b) shows an example of modeling a basic configuration (non-composite) element.
This particular element classifies traffic based on source and destination addresses. Clearly,
the body of the element is access-1list as this identifies what it does (i.e classifies traf-
fic). permit (action on traffic), ip (type of traffic), host 172.17.0.102 (source) and host
172.18.0.100 are the parameters of several holes of the element and determine its behav-
ior; 140 uniquely identifies this element, i.e. acts as a reference to this. The element in the
device can be viewed as a simple text line or can be presented via a GUI. Regardless of how
it is viewed in heterogeneous devices, we can always model an element with the same sets
of attributes.

3.2 Composite Element

A composite element is a collection of several basic configuration elements. This is created
by hooking an element to the ring of another.

Figure 4 shows an example of modeling a composite configuration element relating to IPSec
tunnels configuration in device 130.92.70.102 for the setup shown in Figure 2(a). Three
non-composite configuration elements with body labels access-1list, crypto iksamp key
and crypto ipsec transform-set linked to another element having a body crypto map
that binds them with the hooks and create a composite element basically defining the tunnel
configuration part in peer device 130.92.70.102.

1 crypto isakmp key GENEVA-BERN address 129.194.90.20
2 Erypto ipsec transform-set ah-md5-hmacANDesp-des ah-md5-hmac esp-des

crypto map genbern 160 ipsec-isakmp

3| set peer1299.194.90.20
set transform-set ah-md5-hmacANDesp-des
match address 140

4 Eccess-list 140 permitip host 172.17.0.103 host 172.18.0.100

ah-md5-hmacANDesp-des

140

permit

element 4 element 2

host 172.17.0.103

crypto ipsec

access-list
host 172.18.0.103

ah-md5-hmac esp-des

GENEVA-BERN

crypto isakmp key

element 1

address
129.194.90.20

Figure 4: Example of Modeling a Composite Configuration Element

3.3 Composite Service

‘When one or more basic or composite configuration elements are bundled together to perform
a network service, the bundle is called the composite service, partial or full, depending on
the nature of the service. For example, traffic policing based QoS configuration in an edge
device can be a complete composite service while for a VPN tunnel service creation two
network devices will have to configured. Therefore, in a VPN tunnel service creation each
device will have partially complete composite service. The example shown in Figure 4 is a
partially complete VPN composite service in network device 130.92.70.102.

3.4 Configuration Space

Figure 3(c) shows the whole configuration information of a single device that can be logi-
cally mapped to a configuration space viewed as clusters of cells, where each cell contains
one or more of the configuration elements. However, a cell consists of only homogeneous
configuration elements. For example, all access-1ist configuration elements as shown in
Figure 2(c), can be viewed to be part of a cell having body tag access-list. Similarly,
all the configuration elements having the body crypto ipsec transform-set are parts of
another cell in the configuration space.

4 Intelligent Agents for Service Provisioning

The goal of our automated provisioning architecture is to develop distributed collections of
intelligent software agents that operate mostly independently to perform a variety of service-
specific configuration information retrieval and provisioning tasks in a network device. In
this section, we develop an architecture for an Intelligent provisioning agent whose service-
specific intelligence is derived from configuration modeling and device-specific rules. The

agents can translate user request and pseudo rules extracted from data/policy repository
into device-specific configurations to dynamically provision network devices.

4.1 Problem of Conventional Provisioning Agent

Automated agents [22] that exist today for provisioning network devices consider translating
device-specific rules, but are not truly interactive and intelligent. These agents basically push
configuration scripts to the devices and can be characterized as follows:

e These provisioning agents assume that since the scripts are correct in syntax the devices
will be configured correctly. This always does not happen. The basic problem of this
approach is that it does not consider the current configuration state in the devices.
Consequently, potential conflicts might arise while agent pushes configuration script to
the certain network devices. Also, this approach does not allow to provide an device
independent repository.

e Most of the agents keep device state in an external repository and assuming that to
be the actual device state at all times. However, human system administrators might
as well manually configure those devices, in which case, the external repository based
device state no longer reflects the actual device state.

e Because such agents lack interaction, in case of a conflict no way remains to identify
it.

4.2 Agent Architecture

We considered the general problems of the conventional provisioning agents and have de-
signed our agent that does not suffer from the same problems. Figure 5 shows the internal
architecture of our proposed intelligent provisioning agent. The main functional components
of the agent follow:

4.2.1 Knowledge Base

In earlier section we discussed about modeling a configuration element and mapping such
elements in a configuration space. The main motivation was to to create a knowledge base
for a specific service. The service, for example, could be dynamic VPN service creation, or
QoS configuration, or QoS enabled VPN, in which case both VPN and QoS configuration
is necessary in a network device. For a particular service, the knowledge base, contains
complete dependencies of configuration elements constituting the service, their composition
in a configuration space including the device-specific rules.

4.2.2 Element Linker

This uses the knowledge base to create links between various configuration components to
build a new service. Rings of some configuration elements are attached to the hook of
another one to create links. Link assembler does this job when requested by cell-specific
mini agents in an agent kernel. Link disassembler traces back the links of an existing service
to modify one of the configuration elements to add or remove a new service.

4.2.3 Agent Kernel

It is the main functional engine of an intelligent agent to support automated intelligent
configuration. The essential parts forming the kernel are:

o Puller: It retrieves configuration information (for example Cisco IOS file) from the
target device to read the current configuration state in that device. This pulled infor-
mation can be a simple ASCII file or HTML embedded. Whatever the format is, the
kernel, with its parser, extracts appropriate values and configuration elements.

o Cell-Specific Mini Agents: These are specialized in managing configuration elements
that are cell-specific. A particular mini agent only knows how to configure elements
with similar bodies. The agent kernel has several mini agents that work cell-wise and
the results from these when combined with the help of element linker (which of course
derives knowledge from the knowledge base) produce the desired action needed to
create the required service.

e Pusher: This sends the ultimate combined configuration results to the network device
through device connector.

4.2.4 Interface to Dispatcher

This is a communication port of the agent for the Central Dispatcher to send service request.
This is usually achieved by having the server socket program waiting for service request on a
specific port. The interface also serves as an indicator of service type the agent can provide,
since agents are service-specific.

4.2.5 Interface to Report Collector

This is yet another communication port that is actually a client socket program. This
interface basically sends all event reports prepared by the reporter of the agent kernel to
report collector located in the central repository system.

4.2.6 Device Connector

As configuration sent by the pusher needs to be sent in different ways to the devices, Device
Connector has several plug-ins like TELNET, HTTP, FTP, SNMP etc. to facilitate such
service in a heterogeneous environment where devices have various access mechanisms.

4.3 Example of Intelligent Provisioning

In this section we will show some VPN service-specific implementation examples of the
intelligent provisioning agents.

The first example in Figure 6(b) shows C++ code of a cell- specific mini agent that intelli-
gently pulls out available traffic-classifier number (usually called access-1ist number) from
a network device. Every time there is new a source-destination pair for VPN traffic a new
’access-list’ number is needed that uniquely identifies the traffic. If the valid starting
number is 100 for a particular device and there is no traffic classifier present in that device
the mini agent returns 100; otherwise, it returns the next unused number. It does so by
searching for configuration elements having body access-1list in the configuration space
represented as ConfigFile in the code. The string ConfigFile contains the whole Cisco

interface to interface to

|siatc er report collector
Knowledge Base

Element Linker

link assembler link disassembler

Agent Kernel
{

[cell specific } [ol specifc } [cell specific }
mini Agent mini Agent mini Agent

Device Connector

Figure 5: Intelligent Provisioning Agent Architecture

10S configuration file as shown in Figure 2(c). This helps us to avoid storing device-specific
data in policy repository. In this example, we do not need to store access-list numbers
because this is device-specific and having only source-destination pairs as VPN traffic in
the policy repository should be enough for other device-specific agents to translate that into
appropriate device-specific configurations by deploying similar agents.

The second example in Figure 6(a) shows C++ code of another cell-specific mini agent that
smartly configures an IPSec VPN service in a network device. Assume that we currently have
a network setup as shown in Figure 2(a) and a VPN administrator wishes to create a tunnel
between device 130.92.70.102 and 129.194.90.20 for a source-destination pair 172.17.0.103
and 172.18.0.100 using security parameters AH authentication and ESP encryption. Figure
2(b) shows the expanded network setup. An automated provisioning agent that ignores
configuration dependencies among different configuration elements would probably generate
the following configuration for the network device 130.92.70.102.

crypto map genbern 161 ipsec-isakmp

set peer 129.194.90.20

set transform-set ah-md5-hmacANDesp-des

match address 141

access-list 141 permit ip host 172.17.0.103 host 172.18.0.100

However, the intelligent agent enters the target device, reads the existing configuration, and
analyzes it using the knowledge base and detects that a tunnel already exists with the same
security parameters between the same peer routers although for different LANs. In doing
S0, it actually searches configuration elements in a cell having body tag crypto map whose
attributes are the same as the newly requested one. As one such already exists, it discovers
that adding the above configuration lines would be unnecessary. The mini agent, therefore,
pulls the existing traffic classifier number (i.e.access-1ist number 140), and simply adds the
line access-1ist 140 permit ip host 172.17.0.103 host 172.18.0.100 to the current
configuration.

5 Intelligent Device Auditing

When configuration faults occur on the network device, it is imperative that problems be
resolved quickly to decrease the negative impact on user productivity. Network managers

/* setting the values of source, dest address that would be
tunneled. O’Feeridaddr’ is the remote crypto endpoint for the
tunnel and the rest are ipsec tunnel authentication and
encryption parameters. */

string source = "172.17.0.103";

string dest= "172.18.0.100";

string peeripaddr ="129.194.90.20";

string AH_authentication="ah-md5-hmac";
string ESP_encryption="esp-des";

/* setting the regular expression search string */

string ipsectransformset=AH_authentication;
ipsectransformset +="AND";
ipsectransformset +=ESP_encryption;
string searchstr;
searchstr = "crypto map genbern \\d+ ipsec-isakmp.*\n";
searchstr += ".*set peer "+peeripaddr+".<\n";
searchstr += ".*set transform-set "+ipsectransformset+".*\n";
searchstr += ".*match address (\d+).*";

/* searching in configuration space for a similar tunnel. */
ConfigFile contains complete configuration information */
regx re(searchstr);
regx::iterator ipsec = re.find(ConfigFile);

if (ipsec == re.end()) { /* searching for all ACL Numbers */
regx re("access-list (\d+) .*");

No m_ctfch found. Code to proceed as usual. regx::iterator acl = re.find_n(ConfigFile);
: if (acl == re.end()) {

ot))) int StartACL = 100;
/* if match found re(1) contains traffic access list number. return StartACL;

Just generate the ACL config line and that’s enough for

tunnel configuration */ /* Vector V would contain all the ACL Numbers */
string configline; yector <int>V;
configline = "access-list *; int c=0;
configline += re[1]; for (regx::iterator i = re.begin(); i != re.end(); i++) {
configline +=" permit ip host "; if (1&c) V.push_back(atoi(re[c].c_str()));
configline += source; c=c+1;
configline += " host *; }
configline += dest; /* Searching for the Maximum ACL Number. *it is the highest

number, so return (*it +1) fo be used as the next ACL. */
vector<int>::const_iterator it = max_element(V.begin(), V.end());
return (*it+1);

@ (b)

/* send this configuration line down to the router */
ConfigRouter(configline);

Figure 6: (a) Partial Code for Smart Provisioning: Example 1 (b) Avoiding Device-Specific
Data in Repository: Example 2

must respond quickly and have procedures in place to reestablish lost service and maintain
beneficial service levels. Several reasons justify why such problems might occur. Services
configured by human administrators may lead to mis-configuration or cause conflict with
the existing services activated via the automated system. Also, if network devices crush due
to power failure or some other reasons, valuable configuration information thrown into the
devices might well be lost partially or fully. One cannot rule out the possibility of an inside
or outside intruder changing some configuration settings. Intelligent audit management
handles such problems to recover from any mis-configuration caused by any process other
than the automated system. Audit management ensures that the configuration State in
the policy repository is equivalent to actual device state as illustrated in Figure 7. Similar
to provisioning agents intelligence is built in the audit agents that gather and sort the
configuration data to quickly identify the cause and location of faults in a network device
and automatically fix the problem when it occurs. Depending on SLAs with customers, audit
agents can be periodically sent to the network devices to check the consistency of network
device configuration.

5.1 Audit Management Architecture

With the objective that the configuration state in the repository must be equivalent to the
actual device state, we have proposed intelligent audit management architecture (Figure
8). Audit management process is done periodically for each device under the control of
automated management system and basically goes through the following cycle of actions:

(R
B SORRG 5|

) o q
s o s

o b o o0 Y

o Body

A

o

__ g
{ ==_—

I I ‘E .ﬁ 1

I = I .

g %

l 3 © E

O

] [a]]

T T z

] O]
MM \:yﬂl il

w '-'LL w '. w

o T T T

3| Ill 3 I EE W W3

Figure 7: Objective of Audit Management for Device Configuration: Configuration State in
the repository must be Equivalent to Actual Device State

5.1.1 Audit Request Generation

The central repository system maintains records of all the service requests provisioned by
the automated system. For a specific device, the Audit Manager (i.e. audit agent) can
extract all service requests and generate expected configuration state for that particular
target device. This is done by the device-specific interpreter (DSI) which utilizes the same
knowledge base as used in a provisioning agent. This step, therefore, is quite similar to
original service provisioning of a new service request. However, unlike the latter case when an
intelligent provisioning agent actually configures a service, the DSI simply prepares expected
configuration for provisioned services and passes that to configuration violation detector
(CVD) to identify any unwanted modification in the physical device.

5.1.2 Problem Finding

At this stage the audit management agent first pulls the current configuration state from
the device and the CVD compares that with the expected configuration state received from
DSI. If any configuration violation is detected (i.e. expected configuration and actual device
configuration do not match) the violation detector signals that to configuration violation
locator (CVL). Since we map the whole configuration space by dividing them into clusters
of cells, the violation locator locates cells where one or more configuration elements may
have been changed.

5.1.3 Problem Fixing

For a specific service, changes or mis-configuration in one configuration element may easily
affect other attached elements that constitute the service. Therefore, to audit a service all
appropriate affected cells are located to be fixed by re-provisioning process. The Problem
fixing stage basically sets the configuration state in the device to the expected state by
making specific corrections in corrupted cells (of the the configuration map) located by
the CVL. Violation corrector determines what needs to be changed in the corrupted cells.
Usually some configuration elements might need to be added, modified or deleted. For these
actions to take place, cell-specific mini agents re-provisions the network device to bring the
configuration state of the device back to the desired state. Although not shown explicitly in
Figure 8, both in problem finding and fixing stages the knowledge base and other components
in the intelligent agent architecture needs to be invoked for the re-provisioning agents to take
appropriate actions.

Automated Audit Manager

&
N
Service Request d\\?\%\d‘
Repositor W
epository [y

Device Specific
Interpreter

9|
R
Configuration Violation Configuration Violation ‘60\
Detector Locator <
m - 0 .
correcllons \3
&
<

Confi: uranon vmlanun ReProv\sumng

Figure 8: Automated Audit Management Agent Architecture

6 Conclusion

In recent years, intelligent mobile agents have proven to be indispensable tools for providing
network management assistance. They will become even more indispensable as networks
continue to expand and companies continue to minimize their personnel requirements. For
ISPs and large enterprises, the capability to effectively and remotely provision large number
of network devices from a centralized or distributed locations becomes even more important.
‘We have proposed a new distributed architecture where highly mobile intelligent agents can
take the responsibilities of not only provisioning but also configuration audit management in
a timely fashion. Although recent research have focused on using mobile agents for network
monitoring or simple push-based device configuration in a distributed architecture, their
ability have not been exploited in dynamic IP service provisioning. In this paper, we have
taken a new approach to configuration modeling that is device neutral and based on which
any existing or emerging new IP services can be presented in abstract form by encapsulating
service semantics, including service-specific data. We have developed new mobile intelligent
provisioning and audit agent architectures that use the knowledge built upon configuration
dependency modeling. We have not addressed the issue secured delivery of configuration
by the agents. This can be easily achieved by establishing a secured management tunnel
between the agent and the network device using IPSec or SSH protocols. However, if the
devices do not support such protocols, a scalable new mechanism for secured configuration
delivery will be an interesting research issue. Performance evaluation in terms of provisioning
response time could be useful. Also, further investigation of advanced policy management
[23] [26] [16] in large scale environment would be interesting.

References

[1] M. Baldi, S. Gai, and G. P. Picco. Exploiting code mobility in decentralized and flexible network
management. First Int’l Workshop on Mobile Agents Mobile Agents‘97,Berlin, Germany, pages 13 —
26, April 1997.

[2] Paolo Bellavista, Antonio Corradi, and Cesare Stefanelli. An Integrated Management Environment for
Network Resources and services. IEEE Journal on Selected Areas in Communications, 18(5):686 — 701,
May 2000.

[3] Andrzej Bieszczad, Bernard Pagurek, and Tony White. Mobile Agents for Network Management. IEEE
Communications Surveys, 1(1):2 — 9, September 1998.

[4] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weis. An Architecture for Differentiated
Services, December 1998. RFC 2475.

[5] Torsten Braun, M. Gunter, and Ibrahim Khalil. Management of Quality of Service Enabled VPNs.
IEEE Communications Magazine, 39(5), May 2001.

(6]

(9]

[10]
[11]
[12]
13]
14]

18]

[16]

[17]

18]

[19]

20]

21]

[22]
[23]
[24]
[25]
[26]

27]

M. Cheikhrouhou, P. Conti, J. Labetoulle, and K. Marcus. Intelligent Agents for Network Manage-
ment: Fault Detection Experiment. Sizth IFIP/IEEE International Symposium on Integrated Network
Management (IM’99), Boston, USA, pages 63-83, May 1999.

S. Crane, N. Dulay, H. Fossa, J. Kramer, J. Magee, M. Sloman, and K. Twidle. Configuration Manage-
ment for Distributed Software Systems. Proceedings of the IFIP/IEEE International Symposium on
Integrated Network Management (ISINM 95),Santa Barbara, USA, pages 29 — 42, May 1995.

M. El-Darieby and A. Bieszczad. Intelligent Mobile Agents: Towards Network Fault Management
Automation. Proceedings of the Sizth IFIP/IEEE International Symposium on Integrated Network
Management, pages 611-622, 1999.

F. L. Faucheur, L. Wu, B. Davie, S. Davari, P. Vaananen, R. Krishnan, P. Cheval, and J. Heinanen.
MPLS Support of Differentiated Services. Internet Draft draft-ietf-mpls-diff-ext-09.txt, April
2001. work in progress.

G Goldszmidt and Y. Yemini. Delegated agents for network management. IEEE Communications
Surveys, 36(3):66 — 70, March 1998.

Alex L. G. Hayzelden and John Bigham. Agent Technology in Communications Systems: An Overview.
Knowledge Engineering Review, 1999.

M. Katchabaw, H. Lutfiyya, A. Marshall, and M. Bauer. Policy-driven Fault Management in Distributed
Systems. Proceedings of the The Seventh International Symposium on Software Reliability Engineering
(ISSRE), November 1996.

S. Kent and R. Atkinson. Security Architecture for the Internet Protocol, November 1998. RFC 2401.

Ibrahim Khalil and Torsten Braun. Edge Provisioning and Fairness in DiffServ-VPNs. IEEE Interna-
tional Conference on Computer Communication and Network (I3CN), Oct 16-18 2000.

Ibrahim Khalil, Torsten Braun, and M. Giinter. Implementation of a Service Broker for Management
of QoS enabled VPNs. In IEEE Workshop on IP-oriented Operations & Management (IPOM’2000),
September 2000.

T. Koch, B. Kramer, and G. Rohde. On a Rule Based Management Architecture. Proceedings of the
Second International Workshop on Services in Distributed and Networked Environment, Canada, pages
68 — 75, June 1995.

Thomas Koch and Bernd Krmer. Towards a Comprehensive Distributed Systems Management. Open
Distributed Processing, IFIP, pages 259 — 270, 1995.

Hanan L. Lutfiyya, Andrew D. Marshall, and Michael A. Bauer. Configuration Maintenance for Dis-
tributed Applications Management. Proceedings of the CAS Conference (CASCON), pages 43-57,
November 1997.

J.P. Martin-Flatin, S. Znaty, and J.P. Hubaux. A Survey of Distributed Enterprise Network and Systems
Management Paradigms. Journal of Network and Systems Management, 7(1), March 1999.

A. Puliafito and O. Tomarchio. Advanced network management functionalities through the use of
mobile software agents. In Proceedings of the 3rd International Workshop on Intelligent Agents for
Telecommunication Applications (IATA’99),Stockholm, Sweden, August 1999.

Morin C Sahai A. Towards Distributed and Dynamic Network Management. Proceedings of the
IEEE/IFIP Network Operation and Management Symposium (NOMS),New Orleans, USA, February
1998.

J. Schonwalder, J. Quittek, and C. Kappler. Building Distributed Management Applications with the
IETF script MIB. IEEE Journal on Selected Areas in Communications, 18(5):702 — 714, May 2000.

M. Sloman and E. Lupu. Policy Specification for Programmable Network. First Int. Working Conference
on Active Networks (IWAN99),Berlin, June 1999.

Morris Sloman. Policy Driven Management for Distributed Systems. Journal of Network and Systems
Management, 2(4), 1994.

William Stallings. SNMP and SNMPv2: The Infrastructure for Network Management. IEEE Commu-
nications Magazine, 36(3), March 1998.

Rene Wies. Policies in Network and Systems Management - Formal Definition and Architecture. Journal
of Network and Systems Management, 2(1):63-83, March 1994.

Y. Yemini, A. V. Konstantinou, and D. Florissi. NESTOR: An Architecture for Self-Management and
Organization. IEEE Journal on Selected Areas in Communications, 18(5):758 — 766, May 2000.

