
A Java API for Using a Native PGP Implementation

THOMAS JAMPEN, MANUEL GÜNTER, TORSTEN BRAUN
Computer Networks and Distributed Systems

Institute of Computer Science and Applied Mathematics
University of Bern

Neubrückstrasse 10, 3012 Bern
SWITZERLAND�

jampen � mguenter � braun � @iam.unibe.ch http://www.iam.unibe.ch/˜rvs/

Abstract: - This paper describes a Java API that provides the possibility of accessing a native implementation of PGP.
The interaction between C and Java is based on the Java Native Interface (JNI) which has been included in the Java
Development Kit (JDK) since version 1.1. The implementation allows to use available PGP implementations in C
and, therefore, provides significant performance and security benefits. The paper describes the implementation and
compares its performance with another approach based on invoking shell scripts.

Key-Words: - PGP, Java, JNI, Cryptography, Security, Secure Communication

1 Introduction

The work described is this paper has been motivated
by the need to transmit Java based software agents
(serialized byte code) over an IP network. In our ap-
plication, software agents are used by customers for
monitoring quality-of-service (QoS) provided by In-
ternet Service Providers (ISPs) [1, 2]. We assume that
users have to pay for those services and are, there-
fore, highly interested whether the service is really
provided. Thus, authorization is needed to protect
these agents from being modified. It is useful and
sometimes even necessary to encrypt the agents in or-
der to prevent them from being analyzed and attacked.
The same functionality is also required when agents
are used for negotiating, ordering and buying services
and/or goods.

The proposed solution is a Java API [3] that uses
JNI in order to provide access to a powerful and se-
cure PGP implementation developed in C.

The structure of the paper is as follows: In the
second section the involved technologies will be pre-
sented. The third section discusses a few aspects of
the implementation. Performance tests and results
will be presented in section 4. Finally, section 5 dis-
cusses open problems and concludes the paper.

2 Basic Technologies

2.1 PGP

PGP (Pretty Good Privacy) [5] is a well-known and
widely used public key encryption program originally
written by Phil Zimmermann in 1991. Now it is
distributed by Network Associated Technology, Inc.
(NAI) [7]. PGP is freeware for private and educa-
tional use, but it has to be licensed for commercial
use. PGP is the de-facto standard for email and file
encryption today, with millions of users worldwide.

The library used in this project is PGP Tools 1.0
[6]. PGP Tools is a crypto library that is based on the
PGP 2.3a source code and is compatible to all PGP
2.x versions. The reason for using version 2.3a is that
this is the latest version distributed under GPL (Gen-
eral Public License) which means that it can be used
and changed freely for own applications.

2.2 Java Native Interface (JNI)

The Java Native Interface (JNI) has been developed
by Sun Microsystems, Inc. and is the advancement of
the Native Method Interface (NMI) introduced in Java
Development Kit (JDK) 1.0.

According to Sun, “JNI is a standard programming
interface for writing Java native methods and embed-

1



Figure 1: The Java Native Interface [11]

ding the Java
���

Virtual Machine into native applica-
tions [. . . ]” [12].

JNI is a two-way interface. That means on the
one hand that JNI enables Java applications to access
native methods written in C, C++ or assembler lan-
guage. On the other hand it is also possible to embed
a Java VM within a native application (see Fig. 1).

The use of native code in Java applications provides
several advantages:
� Java does not support platform-dependent fea-

tures required by some applications.
� There are time-consuming calculations that are

processed faster in C/C++ than in Java.
� Some applications require time-critical code that

should be better implemented in C or C++ (real-
time applications).

� There are existing C or C++ implementations
one would like to access from Java applications.

The possibilities offered by JNI are manifold. Native
methods are able to create, access and change Java
objects (e.g. strings as well as arrays of objects), to
call Java methods and to catch and throw exceptions.
Furthermore, it is possible to load classes, to obtain
class information or to perform runtime type check-
ing.

2.3 Alternative Solutions

2.3.1 Script-based Solution

We implemented also an alternative solution that is
limited to Unix environments. It is a script-based so-
lution because the Java application calls PGP via a
shell script.

One problem of this solution is that the shell output
has to be parsed in order to determine whether the
message has been encrypted or signed, who signed
the message and whether the signature is valid.

2.3.2 JCE

Since the version 1.4 Java Cryptography Extension
(JCE) is a part of the JDK. This version has just
been released a few weeks ago and thus has not been
widely tested and analysed. Any solution that is en-
tirely based on Java has the problem that the ten years’
experience of the C implementation is missing. Many
security problems could have been analyzed, solved
and corrected in the C implementation during the last
few years, while the JCE API is still new and needs to
prove its security during the next decades.

JCE neither provides an implementation of the
PGP Message Exchange Formats (RFC 1991) [8] nor
an implementation of the OpenPGP Message Format,
defined in RFC 2440 [9]. It just provides a framework
for encryption, key generation and message authen-
tication code (MAC) algorithms. New functionality
(e.g. PGP Message Format) could be added using the
Provider interface. There is an existing provider im-
plementation from Cryptix [10], but this implementa-
tion is based on their own JCE because until a short
time ago, strong cryptography has not been allowed to
be exported from America. That is why the JCE has
not been a part of the JDK until version 1.4. Thus,
there will still be lots of compatibility problems.

3 The API

The Java PGP API has been implemented within the
Java class PGPi. This class provides the interface be-
tween Java applications and the C library. PGPi of-
fers five different types of methods that are explained
in more detail in the following sections:
� Constructors
� Native methods
� Control methods
� Status methods
� Error handling

An API documentation produced with javadoc can be
found on online [4].

2



3.1 Constructors

Our API provides two constructors. The default
constructor and a constructor where you can di-
rectly specify certain parameters like the data format
(ASCII or binary) and if compression is desired.

3.2 Native Methods

This group contains all the native methods, that means
all the methods implemented in the C library. These
are the PGP-specific methods, dealing with encryp-
tion, signature generation, decryption and key mana-
gement.

3.3 Control Methods

The control methods allow you to access and change
parameters like the input/output format and compres-
sion.

3.4 Status Methods

Status methods inform about the validity of a signa-
ture and the name of the signer. It is also possible to
determine whether a message was encrypted, signed
or encrypted and signed.

3.5 Error Handling

Every native method returns an error code. In order to
learn more about the error that occured, you have the
possibility to get additional information on specific
error codes.

4 Performance Evaluation

After programming the API a Java class has been im-
plemented that intends to compare the existing script-
based solution with the JNI solution. During this test
both solutions accessed the same PGP implementa-
tion (PGP Tools). That means that for the script-based
approach, PGP Tools has been compiled as an exe-
cutable. The performance test involves
� encrypting and signing a plaintext file,
� decoding the ciphertext file,
� verifying the signature,
� identifying the signer and
� reading the decrypted and verified message.

Figure 2: Performance of small file sizes.

Figure 3: Performance of larger file sizes.

This procedure has been repeated several times with
different input file sizes. In order to prevent falsifi-
cation of the results due to temporary overload of the
CPU caused by other processes, the whole test has
been repeated several times.

The computer used for this performance test is a
laptop with an Intel Pentium III 750MHz CPU and
256MB of RAM. The operating system is Debian
GNU/Linux “Woody” with a 2.4.x kernel. The JDK
used to compile and run the test classes was Sun’s
JDK 1.3.1.

Fig. 2 shows the results for small file sizes. The JNI
solution is significantly faster than the script-based
solution (27 - 34%). The results for larger file sizes
are visible in Fig. 3 where one can see the slight per-
formance advantage of the script-based solution over
the JNI solution for files larger than 500kB (1.7% for
500kB, 2.3% for 1000kB).

3



5 Conclusion

5.1 Summary

With this API we offer Java application develop-
ers access to a native implementation of the widely
used public key encryption application PGP. Our API
makes it possible to use an approved encryption im-
plementation not only for files and emails but also
for network traffic. For most uses this API provides
faster performance than the script-based solution be-
cause the encrypted and signed messages (software
agents) sent over the network will be mostly smaller
than 50kB. Furthermore, this API compiles and works
under Windows, too. So there is no need to adapt
the shell scripts and the output-parsing algorithm if
one intends to use it on a different platform. The
script-based solution needs to parse the output pro-
duced by PGP in order to determine whether a signa-
ture is valid, who is the signer and whether a message
has been encrypted or just signed. This output can
differ from platform to platform and it surely differs
between different PGP versions.

As a conclusion it can be emphasized that our Java
API provides a cleaner interface than a script-based
solution because of the standardized Java Native In-
terface. With our API it is even possible to use exist-
ing key rings if they have been generated with PGP
2.x, to decrypt and verify messages encrypted with
another PGP 2.x version or to encrypt and/or sign
messages intended to be decrypted and verified with
other PGP 2.x versions.

5.2 Open Problems

The only feature that has not been implemented yet
is the key maintenance. That means that it is not yet
possible to change the trust levels of public keys or
to change the passphrase of your private key with this
API. Of course it is possible to do so with a common
version of PGP (like the famous PGP 2.6.3i, the most
popular version of PGP).

Unfortunately, it seems that the JNI still needs
some performance improvement because the advan-
tage of the more direct access to the C implementa-
tion is less than expected. Hopefully, future version
of the JNI will be more powerful.

References:

[1] M. Günter. Management of Multi-Provider In-
ternet Services with Software Agents. PhD the-
sis, University of Berne, June 2001.

[2] M. Günter and T. Braun. Internet Service De-
livery Control with Mobile Code. In H. R. van
As, editor, Telecommunication Network Intelli-
gence, pages 3–19. IFIP, Kluwer Academic Pub-
lishers, September 2000.

[3] Java API for PGP.
http://www.iam.unibe.ch/
˜jampen/.

[4] Java API for PGP - API Documentation.
http://www.iam.unibe.ch/
˜jampen/pgpjava/PGPi.html.

[5] The International PGP Home Page.
http://www.pgpi.org.

[6] Programming Libraries for C/C++.
http://www.infonex.com/˜mark/
pgp/pgptools.html.

[7] Network Associates Technology, Inc.
http://www.nai.com/.

[8] PGP Message Exchange Formats.
http://www.ietf.org/rfc/
rfc1991.txt.

[9] OpenPGP Message Format.
http://www.ietf.org/rfc/
rfc2440.txt.

[10] Cryptix.
http://www.cryptix.org/.

[11] Java Native Interface Tutorial.
http://java.sun.com/docs/books/
tutorial/native1.1/.

[12] JNI - Java Native Interface.
http://java.sun.com/j2se/1.3/
docs/guide/jni/.

4


