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Abstract

Research in the field of Wireless Sensor Networks (WSNs) is driven by the severe
constraints and the challenges raised by the environments these networks operate
in: computational power, memory and energy are scarce and limited resources,
and the unreliable nature of the low power wireless channel causes difficulties
in all layers of the communication stack. WSNs often operate in dynamic envi-
ronments, where topologies, link qualities and traffic volumes are susceptible to
frequent changes at network run-time. In contrast to this, WSN nodes are usu-
ally statically configured for their intended deployment scenario at compile time,
which often leads to suboptimal parameter settings in case the discovered network
conditions deviate significantly from the expectations. In practice, it is rather im-
possible to predict a wide range of network parameters in advance, i.e., the different
link qualities inside the network, or the traffic shape and volume that the network
will face throughout its entire lifetime. Since the integration of countermeasures
for each of the these challenges inevitably causes more strain on the already lim-
ited energy budget, run-time adaptive mechanisms have recently been proposed,
which tune crucial protocol parameters at network run-time and allocate precious
resources only when and where it is necessary.

The main research contributions of this thesis are driven by the research question
how to design simple, yet efficient and robust run-time adaptive resource alloca-
tion schemes within the WSN nodes’ communication stack. The thesis addresses
several problem domains with contributions on different layers of the WSN com-
munication stack. We first survey the state of the art in MAC protocol design in
WSNs with respect to their adaptability to variable traffic. We then introduce our
own run-time adaptive MAC protocol, which stepwise allocates the power-hungry
radio interface in an on-demand manner when the encountered traffic load requires
it. We design and evaluate several Forward Error Correction (FEC) strategies to
adaptively allocate the correctional power of Error Correcting Codes (ECCs) to
cope with timely and spatially variable bit error rates. In the context of TCP-based
communications in WSNs, we evaluate distributed caching and local retransmis-
sion strategies to overcome the performance degrading effects of packet corruption
and transmission failures when transmitting data over multiple hops.

The thesis commences with illustrating two tailormade frameworks on which we
base our evaluation results. First, our testbed management solution for repeatable
experimentation on real-world WSN testbeds is presented, which permits config-
uration and automated execution of experiments and which served as the main
experimental platform for the majority of evaluations of this thesis. Second, we
describe our methodology for robust, reliable and accurate software-based energy-
estimation, which is calculated at network run-time on the sensor node itself.
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Chapter 1

Introduction

The superordinate topic that spans across the different parts of this thesis is driven
by the research question how to design simple, efficient and robust run-time adap-
tive resource allocation schemes within the communication stack of Wireless Sen-
sor Networks (WSNs). This chapter briefly introduces into the WSN field, portrays
the fundamental challenges faced in the different parts of the thesis, summarizes
the essential contributions and outlines the course of the subsequent chapters.

1.1 Overview

With decreasing cost of integrated circuitry and advanced microdevices, WSNs
have emerged as a novel technology for solving various tasks in science and indus-
try where there was no appropriate solution before. WSNs are autonomous net-
works consisting of a large number of inexpensive small electronic devices and are
equipped with sensors to measure a wide range of environmental conditions (e.g.,
temperature, acceleration, relative humidity, pressure, oxygen concentration).

Figure 1.1 depicts a typical setup of a WSN in an environmental monitoring appli-
cation. The WSN consists of several distributed nodes and a base station, which is
able to communicate with the sensor network over one or several gateway nodes
that are connected to the Internet. Nodes are usually deployed across a wide area
or around a particular point of interest, in order to monitor, gather and process
sensed data of interest, such as different environmental parameters in the forest
scenarios depicted in Figure 1.1. Nodes communicate using low power wireless
radio interfaces, and collaborate in sensing and forwarding sensed real-world data
towards one or more base stations, which may further trigger actions when pro-
cessing the received data. Since the nodes are equipped with various physical
measurement sensors, they can react upon sensed events also by initiating collabo-
rative actions (e.g., a distributed localization mechanism involving several sensors
nearby), which is indicated in the Figure 1.1 in the top right corner with a deer be-
ing detected or in the bottom with a fire being detected. A good introduction into
the operation characteristics of sensor networks, algorithmic issues of distributed
sensing systems, their potential applications and limitations can be found in Aky-
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1.1. OVERVIEW

Figure 1.1: Wireless Sensor Network Application Scenario

ildiz et al. [3] and Pottie et al. [149]. The survey studies [4][7] further discuss
properties and novel challenges of the emerging field of wireless multimedia sen-
sor networks (WMSNs).

For decades, measurements of physical values were carried out manually with
bulky and costly equipment, a tedious, time-consuming and error-prone procedure.
The convenient and automated manner of being able to gain real-time measure-
ment data from all kinds of distant locations and in a high resolution is the key
advantage that drives research and innovation on WSN technologies today. Mark
Weiser’s prominent Vision of the Computer of the 21st Century [181] or the vi-
sionary Smart Dust paper [100], which both describe a future where computing
resources are embedded ubiquitously into our environment yet only give an idea
where the journey leads. WSNs are more and more applied in different domains of
our everyday life. Applications have become numerous and cover a wide range of
problems. They contain but are not limited to the following categories:

• Environmental Monitoring in the Natural Sciences: WSNs have been ap-
plied to monitor various problems and phenomena in the natural sciences. A
well-known example is the study on the nesting and breeding behavior of storm
petrels conducted by Mainwaring et al. [118]. Pasztor et al. [138] and Dyo et
al. [54] examine the social patterns of European badgers during one year de-
ployment of an automated wildlife monitoring system in a forest environment,
using a mobile WSN attached to the badgers. Barrenetxea et al. [16] and Beutel
et al. [19] collect long-term high-altitude alpine temperature and other climate-
related data. Werner-Allen et al. [183] use a WSN to monitor the eruptions of
active and hazardous volcanoes.

• Event Detection and Tracking Applications: WSNs have been used for spe-
cific use cases related to tracking people or objects and localizing the event
of interest. Prominent examples of this class of applications is the sniper lo-
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1.1. OVERVIEW

calization use case PinPtr [165], which uses a WSN to detect muzzle blasts
and acoustic shockwaves and which, based on measuring the time of arrival of
the acoustic waves on different locations of the network, can localize the igni-
tion. Wittenburg et al. develop a collaborative event detection system built to
monitor fenced areas and prevent intrusion in [186]. A permanent 24/7 solar-
operated network for fire detection and localization has been recently installed
in the Asturias region in the north of Spain [98]. The covered area is about 210
hectares large and several tens of nodes are permanently attached to trees to
continuously measure temperature and humidity conditions.

• Disaster Aid and First Response Systems: Gao et al. [67] develop a system
facilitating collaborative patient care in emergency response and mass incident
scenarios. The system relieves the workload for each first response collabora-
tor, and delivers pertinent information to first responders in order to effectively
treat a large number of patients within a short time.

• Logistics, Business and Industrial Process Control: Logistics and supply-
chain management are more and more taking advantage of market-ready so-
lutions to visualize and keep track of warehouses and supply chains. Evers et
al. [61] study potential applications in this domain, where a simple and ready-
to use WSN platform SensorScheme has been proposed. Numerous companies
have evolved (e.g., Crossbow [37], Dust Networks [53], Micro Strain [125],
Ambient Systems [8] or SowNet Technologies [167] only to name a few exam-
ples) which are integrating WSN technologies into the manufacturing, ware-
house or supply-chain management processes in various industries.

• Health-care related Systems: WSNs are more and more applied in the con-
text of health-care. With the CodeBlue [119] architecture, the authors have
explored the applicability of WSN technology in a hospital environment to
monitor the vital signs (pulse, electrocardiogram data) of patients. Chipara et
al. [35] conduct a long-term study of a wireless clinical monitoring system col-
lecting pulse and oxygen saturation readings from patients. The system utilized
in the study reached an end-to-end event reporting reliability of more than 99%
and included 41 patients supervised over 7 months.

The above list is just an excerpt from many application domains which have been
proposed and sometimes developed into market-ready products in the past couple
of years. WSN technologies are furthermore increasingly applied in problem do-
mains related to military, police and border protection, for precision agriculture,
intelligent buildings (smart home environments) or civil engineering and structural
health monitoring applications (e.g., dam, bridge or tunnel surveillance).

Although the application domains may vary heavily, the challenges and the hard
restrictions the employed WSNs are subject to, are similar in each many of the use
cases. The subsequent Sections 1.2 and 1.3 briefly discuss the main challenges that
are typically faced in research and development of WSN systems and technologies,
and localizes the main contributions of this thesis in the context of the typical WSN
communication software stack.
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1.2 Problem Statement

In this thesis, we contribute to repeatable methodologies for experiment-driven
empirical research in the WSN field (Part I) and address several inherent challenges
in the context of WSN communication protocols (Part II). Our contributions tackle
issues relating to the following problem domains:

Experiment Methodologies: Experimental evaluations and verifications of WSN
mechanisms and protocols have since long been carried out with basically two
paradigms: network simulation or real-world prototyping followed by testbed-
based evaluation. With research in the WSN field growing more mature, the
latter has become increasingly important: researchers more and more aim at in-
vestigating the real-world feasibility of their proposed protocols and mechanisms
on real-world devices in experimental testbeds. The usual approach consists in
rapid-prototyping a WSN algorithm or application first by using a network sim-
ulator, testing and comparing it to existing approaches, and proceeding with im-
plementing a real-world prototype when the simulation results are promising. The
efficient and convenient operation of WSN testbeds and experimentation with the
latter requires management functionalities, for which off-the-shelf solutions are
yet missing. The representation of experimental data is another domain where dif-
ferent formats severely aggravate experimental research. Experiment results from
large-scale experimental WSN studies, which could be helpful for many other re-
searchers working in the same field, are often arbitrarily organized and formatted.
We contribute to this problem domain with our management software framework
for repeatable experimentation in WSNs testbeds (cf. Section 1.3.1), that integrates
a standardized notation of experiment results.

For years, experimental research in the field of energy-aware and energy-conserving
protocols in distributed systems has required weeks or even months of tedious and
time-consuming use of bulky cathode-ray oscilloscopes or high-resolution mul-
timeters for real-world evaluation. The recent establishment of software-based
energy-estimation techniques has been a significant contribution, yielding a simple
and painless, but yet accurate methodology for energy estimation on the running
systems themselves. The availability of such software-based estimations is fur-
thermore a cornerstone towards real-world applicability of many proposed energy-
aware protocols of the last decade, e.g., in the domain of energy-aware routing or
clustering algorithms, since such mechanisms often rely on having an indication
about the consumed and the residual energy resources on the nodes themselves at
run-time. We contribute to the proliferation of software-based energy estimation
by an in-depth analysis of their estimation accuracy (cf. Section 1.3.2).

Hardware Limitations: Several factors determine the technical restrictions and
physical constraints of wireless sensor nodes. One major decisive factor is the eco-
nomic costs per unit. The costs per unit has to remain low (in the magnitude of
less than 100 USD per piece) to make a wide range of applications in business
and industry possible. A sensor node is therefore usually a small sized device of
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a few square centimeters equipped with inexpensive low-power electronic compo-
nents, e.g., a 16-bit microcontroller with some 60 KBytes of ROM and 10 KBytes
or even less RAM, a cheap low-power radio chip and various inexpensive digital
sensors. To the best of our knowledge, however, there is yet no commercially avail-
able sensor node platform that reaches the often cited visionary per-unit costs of
“less than one US dollar”. The restrictions with respect to memory and processing
power pose inherent challenges to the development of sensor network software,
ranging from the application layer all the way down to the operating system and
the communication stack. Often enough, WSN mechanisms designed and evalu-
ated in simulators have to be downsized and simplified in order to realize them on
real-world sensor network platforms. The restrictions in memory and computa-
tional power have been encountered throughout all the contributions presented in
this thesis. Whether the contribution was targeting at MAC-layer or transport layer
issues, we have addressed these restrictions generally by keeping our systems as
functional as necessary but as simple as possible.

Limited Energy Resources: Sensor nodes should consume as little energy as pos-
sible, since real-world sensor networks should remain operable in an area of in-
terest over several days, weeks or even years, given an initial battery charge, e.g.,
of two AA batteries. However, when keeping the radio and the onboard sensors
permanently active, a typical sensor node drains out of energy after not much more
than a couple of days. In the past decade, mechanisms have been developed to
prolong the time a node can live on an initial energy charge, especially by design-
ing energy-conserving communication protocols on the MAC and routing layer.
We contribute to this problem domain with our contributions on flexible energy-
efficient medium access control, which eliminates the major portion of energy-
waste, yet taking Quality of Service goals into considerations.

Quality of Service Requirements: For a long time, the major research goal in
the MAC area consisted in minimizing the energy consumed by the sensor nodes at
any cost, even though essential service characteristics had to be sacrificed. In the
past couple of years, however, applications requiring higher Quality of Service and
low latency during certain intervals of intense activity have emerged, e.g., wire-
less multimedia sensor networks (WMSNs) transmitting a large image once in a
while or healthcare-related systems registering anomalies in their sensed values.
In order to meet the requirements of such applications, run-time adaptive mecha-
nisms have emerged across all layers of the communication stack. These adaptive
mechanisms generally attempt to find a fair balance between the design goals of
energy-conservation, energy-efficiency and the offered Quality of Service. We con-
tribute to this activity with our run-time adaptive MAC protocol, which bases on
established design principles of a decade of research on energy-efficient medium
access control, and which is capable of accommodating to variable traffic based on
a customizable and user-defined set of rules and parameters (cf. Section 1.3.3).

Unreliable Wireless Channel: A key factor for the proliferation of WSN tech-
nologies is the reliability of the communication: it is crucial for many applica-
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tions that the sensed data is delivered quickly and reliably across the network. The
low-power wireless channel used in sensor networks, however, is prone to a wide
range of wireless phenomena, which may ultimately result in packet corruption and
packet loss, such as high bit error rates due to multipath propagation, reflection and
scattering effects, interferences with nearby nodes or other devices. Tackling these
challenges requires sophisticated mechanisms integrated into the communication
stack, ranging from the medium access control layer, over error-resilient routing
and data dissemination layers, to intelligent mechanisms integrated into the trans-
port layer. All components further have to take the inherent challenges of unre-
liable and lossy links, but also the energy restriction and memory/computational
limitations into consideration. In this thesis, we tackle problems related to lossy
and unreliable links in two different contexts. First, by providing countermeasures
to bit errors on the link layer by applying sophisticated Forward Error Correction
schemes (cf. Section 1.3.4), and second, by means of a distributed caching and
local TCP regeneration mechanism operating across multiple hops in the context
of TCP/IP in WSNs with radio duty-cycled MAC protocols. (cf. Section 1.3.5).

1.3 Contributions

Part I of this thesis tackles the problem space of efficient and repeatable exper-
imentation methodologies. We inquire into issues related to WSN testbed design
and management, as well as accurate and robust software-based energy-estimation.
In Part II, we address the challenges related to communication in WSNs outlined
in Section 1.2, which are raised by the severe restrictions and the adverse circum-
stances of WSN environments. We introduce novel mechanisms in different layers
of the communication stack. Figure 1.2 schematically depicts the protocol stacks of
three nodes involved in a communication process: a source node, an intermediate
node and a destination node, and localizes the contributions of this thesis.

• Wireless Sensor Network Testbed Design and Management: We contribute to
testbed-based and experiment-driven research methodologies with our reusable
management architecture, which permits repeatable and automated experimen-
tation and makes the testbeds fully available over the Internet (cf. Section 1.3.1).

• Accurate and Robust Software-based Energy-Estimation: We contribute to the
proliferation of software-based energy-estimation methodologies, which have
become increasingly important in the field of energy-conserving protocol de-
velopment for wireless sensor and ad-hoc networks (cf. Section 1.3.2).

• Adaptive Medium Access Control: We thoroughly analyze the state of the art
in Energy-Efficient MAC (E2-MAC) protocols. We introduce a run-time adap-
tive MAC protocol, which allocates the power-hungry radio interface in an on-
demand manner when the traffic level requires it (cf. Section 1.3.3).

• Link-Quality-Aware Adaptive Forward Error Correction: We tackle the prob-
lem of bit errors caused by the error-prone low-power wireless channel by ap-
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Figure 1.2: Overview of Thesis Contributions

plying Forward Error Correction (FEC) mechanisms in an on-demand manner
when and where the channel circumstances require it (cf. Section 1.3.4).

• TCP Optimizations for Wireless Sensor Networks: We tackle the problems
raised by random link-layer packet loss due to the unreliable error-prone wire-
less channel, which causes significant strain on the energy resources and severely
deteriorates the end-to-end throughput and latency. (cf. Section 1.3.5).

1.3.1 Wireless Sensor Network Testbed Design and Management

In the past couple of years, numerous universities and research institutions have set
up real-world sensor network testbeds for teaching and research, i.e., the evaluation
of real-world behavior of developed protocol mechanisms. An increasing num-
ber of stationary WSN testbeds have been put into operation, with different node
hardware and sometimes significantly differing architectural testbed design. The
most prominent examples are Harvard University’s MoteLab, the TWIST testbed
of TU Berlin, or the Kansei testbed of Ohio State University. The management so-
lutions implemented for these testbeds have, however, often been tightly coupled
to one particular testbed deployment, and are hence not easily reusable for further
testbed setups. Still today, researchers setting up an own testbed are often start-
ing from scratch to implement testbed management features, which are as simple
as user account management, experiment resource reservation, configuration and
scheduling, or a consistent representation of experiment results.

We bridge this missing gap with our Testbed Management Architecture for WSN
Testbeds (TARWIS), which we describe in detail in Chapter 3. TARWIS is a
generic and reusable management framework for repeatable experimentation in
testbeds of WSNs, which has been kept independent from the underlying testbed
organization, the sensor node hardware and software. Our practical experience
with several researchers has shown that TARWIS is a powerful instrument for con-
trolled and repeatable experimentation in WSNs. We have conducted the major
part of experiments described in this thesis using TARWIS, among them most of
the results of Chapters 7, 8 and 9.
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1.3.2 Accurate and Robust Software-based Energy-Estimation

In order to examine real-world WSN communication protocols with respect to their
energy consumption, a simple, repeatable and reasonably accurate methodology
to assess the energy consumption of a sensor node is an important cornerstone,
since physical measurements using oscilloscopes or high-resolution multimeters
are time-consuming and costly. In the past couple of years, software-based energy-
estimation has become a widespread technique to quantify the energy consumption
in WSNs. Many prominent E2-MAC protocol studies have entirely relied their
experimental results upon software-based estimations. More and more research
papers employ this methodology, although no existing study has yet thoroughly
validated the accuracy of this approach with physical hardware-based energy mea-
surements. Software-based energy estimation techniques clearly have their advan-
tages and drawbacks: software-based estimation can only deliver estimates, and
introduces inherent side-effects, as the estimation mechanism itself causes compu-
tational costs, which are hard to account for. The advantages, however, are mani-
fold: with an energy estimation being present on the node at run-time, numerous
energy-aware algorithms can be put into practice in real-world deployments.

We contribute to the research field of software-based energy estimation by system-
atically studying their estimation accuracy on one of our employed sensor hard-
ware platforms. We have evaluated several energy estimation models with proto-
type implementations of four different wireless channel protocols, and have run
a large number of experiments. By varying the key parameters (e.g., traffic rate,
node instance) over a wide range, we were able to statistically describe their esti-
mation accuracy. Our proposed methodology requires careful calibration with prior
hardware-based energy measurement tools, which we describe in Section 2.3. The
software-based energy-estimation methodology and our evaluation results with re-
spect to the accuracies are then presented in Chapter 4.

1.3.3 Traffic-Adaptive Medium Access Control

Our first contribution related to traffic-adaptive MAC design is formed by the eval-
uation of the WiseMAC burst transfer mode. We propose an enhanced scheme,
which addresses the problem of tree-based scenarios where many nodes transmit
packets to one bottleneck node. In order to cope with higher traffic, we propose
to enhance the original scheme allowing bottleneck nodes to temporally abandon
their sleep-wake pattern. The enhanced scheme is shown in Chapter 5 in simulation
and by means of a prototype to increase throughput by roughly 20%.

Many of today’s Energy-Efficient Medium Access (E2-MAC) protocols have been
designed with the only goal of minimizing the energy conservation. As a result,
most of these protocols are able to deliver little amounts of data with a low energy
footprint, however, introducing severe restrictions with respect to the achievable
throughput and latency, and totally failing to adapt to varying traffic loads and
changing requirements of the imposed traffic load. The gain in energy-efficiency
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hence comes at the cost of severely restrained maximum throughput, as well as
massively increased end-to-end packet latency. Chapter 6 thoroughly examines the
design space of the six most frequently cited E2-MAC protocols and examines
their performance under variable traffic load. We then develop a tri-partite met-
ric to measure and quantify the traffic adaptivity. The metric takes into account
the crucial target variables maximum achievable throughput, latency and energy-
efficiency, and maps the protocol’s performance to a one-dimensional number.

With the introduction of the Maximally Traffic-Adaptive MAC (MaxMAC) protocol
in Chapter 7, we specifically target at alleviating the performance degrading impact
discovered in Chapter 6 of most of today’s E2-MAC protocols with respect to traf-
fic adaptivity. Relying on best practices of a decade of E2-MAC protocol research,
we base our investigations on adaptable protocol mechanisms on the most widely
applied class of asynchronous random-access and preamble-sampling based MAC
protocols. While MaxMAC operates with a low energy footprint at low traffic,
it is able to dynamically adapt to sudden changes in the network traffic load at
run-time. It integrates established design principles of asynchronous preamble-
sampling based MAC protocols with novel run-time traffic adaptation techniques
to allocate the costly radio transceiver truly in an on demand manner.

Chapter 7 compares MaxMAC against a selection of existing E2-MAC proto-
cols. By applying the metric defined in Chapter 6 to network simulation results
of MaxMAC, we show that the developed protocol mechanisms succeed in reach-
ing a high traffic adaptivity. The chapter then continues with thoroughly evaluating
our MaxMAC prototype implementation and comparing it against other wireless
MAC protocols. The evaluation is conducted using the TARWIS management ar-
chitecture presented in Chapter 3, using our distributed testbed facilities.

1.3.4 Link-Quality-Aware Adaptive Forward Error Correction

The low-power wireless channel of WSNs is prone to a wide range of wireless
phenomena. High bit error rates are caused by multipath propagation, reflection
and scattering effects, interferences with nearby nodes or other electronic devices
using the same or a nearby band. Forward Error Correction (FEC) mechanisms
are able to correct a certain number of errors without making a retransmission
necessary. FEC is based on Error Correcting Codes (ECCs), which encode data in
such a way that a certain number of random bit flips due to transmission errors can
be recovered. Applying FEC in WSNs yields the crucial design question to select
an appropriate ECC for a given network and application. While a too weak code
might not be able to correct many errors, a too strong code would constitute a waste
of time and energy spent for encoding and decoding. In Chapter 8, we therefore
propose to adaptively select among different ECCs at run-time rather than compile-
time, and to choose different codes for each individual link based on the individual
link reliability, instead of applying network-wide settings.

In Chapter 8 we explore the potential of FEC schemes in general, and run-time
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adaptive ECC selection schemes in particular, in the context of WSNs with links
of different transmission success rates and error occurrence patterns. We have
implemented eight different ECC codes in our library libECC and have proposed
three run-time adaptive Forward Error Correction strategies. The implemented
schemes were examined in several real-world experiments, including indoor and
outdoor links and taking into account single-hop and multi-hop topologies. The
evaluation is conducted using the TARWIS management architecture presented in
Chapter 3 with our distributed testbed facilities.

1.3.5 TCP Optimizations for Wireless Sensor Networks

Wireless sensor nodes and other small embedded devices become increasingly ac-
cessible over the Internet, typically using one or more gateway nodes which ne-
gotiate between the WSN and the IP-based Internet. The development and the
proliferation of the well-known µIP stack has made TCP/IP-based communication
possible within WSNs: single nodes can nowadays be accessed using common
TCP/IP-based tools and applications, as for example Telnet, SMTP or FTP. TCP/IP
has been shown to perform rather poorly in WSNs with multiple hops, due to the
unreliable nature of the wireless channel (higher bit error rates and packet losses),
particular properties of and interactions with the underlying wireless MAC proto-
cols (exponential backoff mechanisms, hidden node and exposed node problem),
and the design of the TCP congestion control mechanisms.

In Chapter 9, we tackle these deteriorating effects on the end-to-end TCP through-
put by introducing recently proposed distributed caching and local retransmission
mechanisms, as well as self-developed extensions of the latter. We introduce our
MAC- and application-layer independent Caching and Congestion Control (cctrl)
module, which situates just below the µIP stack. We show in a series of experiments
that cctrl is able to significantly increase the TCP throughput across multiple hops
when operating with various MAC protocols, among them three radio duty-cycled
E2-MAC protocols. The evaluation is conducted using the TARWIS management
architecture presented in Chapter 3 with our distributed testbed facilities.

1.3.6 Summary of Contributions

The main contributions of this thesis can be summarized as follows:
• We designed and implemented the generic and reusable Testbed Management

Architecture for Wireless Sensor Networks TARWIS. This testbed management
framework to date manages a testbed of 47 wireless sensor nodes located in
the two buildings of the Institute of Computer Science and Applied Mathe-
matics of University of Bern on the Engehalde Campus, making it available
over the Internet for other researchers. Besides our own testbed, TARWIS has
been deployed in eight other testbeds all across Europe, with node deployments
between few tens of nodes to over 100 nodes.
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• We systematically studied the estimation accuracy and limitations of software-
based energy estimation methodologies with various wireless MAC protocols
and wide range of traffic intensities. We proposed a model enhancement to
today’s most frequently used software-based model, and a methodology to cal-
ibrate the former, which is based on calculating the crucial model parameters
with statistical methods using empirical measurement data.

• We evaluated the performance of the WiseMAC burst transfer mode More Bit
and proposed an enhanced scheme, which addresses the problem of bottleneck
nodes in tree-based scenarios. The enhanced scheme is shown in simulation
and by means of a prototype to increase throughput by roughly 20%.

• We examined the behavior of a selection of the most well-known Energy-
Efficient MAC (E2-MAC) protocols under variable traffic conditions in a net-
work simulator environment. We introduced a formal notion to assess and
quantify the traffic adaptivity of wireless sensor MAC protocols using a tri-
partite metric, which takes into account the crucial variables of latency, energy-
efficiency and the maximum achievable throughput.

• We proposed the Maximally Traffic-Adaptive MAC (MaxMAC) protocol, which
provides support for scenarios with timely variable traffic conditions. We have
shown in simulation and by means of a real-world prototype implementation,
evaluated on our testbed facilities, that the protocol reaches the throughput and
latency of energy-unconstrained CSMA in situations of high traffic, yet exhibit-
ing a high energy-efficiency under sparse low-rate traffic.

• We studied the potential of (adaptive) Forward Error Correction in WSNs. We
further developed three run-time adaptive strategies to select suitable Error Cor-
recting Codes to efficiently tackle and alleviate the performance degrading im-
pact of spatially and temporally variable bit error patterns at network run-time.

• We evaluated the impact of distributed caching and local retransmission strate-
gies on the end-to-end throughput in TCP/IP-based WSNs. We have inte-
grated our proposed techniques into a MAC- and application-layer independent
module below the µIP stack in the Contiki OS, and could significantly increase
the end-to-end TCP throughput in numerous experiments.

1.4 Thesis Outline

Chapter 2 introduces and discusses the most important and most significant related
work we rely upon in our main contributions.

Chapter 3 portrays our management framework TARWIS we used for the major
part of the experiments, and the campus-wide 47-nodes WSN testbed it manages.

Chapter 4 discusses our contributions towards robust and accurate software-based
energy estimation mechanisms running on the nodes themselves.

Chapter 5 describes and evaluates our extension of the WiseMAC burst transfer
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mode in a network simulator and with a real-world prototype implementation.

Chapter 6 surveys the current state of the art of Energy-Efficient (E2-MAC) MAC
protocols with respect to their run-time traffic adaptability in a network simulation
environment, and motivates our subsequent contributions in this field.

In Chapter 7, we propose the novel Maximally Traffic-Adaptive MAC (MaxMAC)
protocol, which is an E2-MAC protocol aiming at run-time traffic adaptability.
We evaluate the protocol in simulation against a selection of E2-MAC protocols
and present a proof-of-concept implementation of MaxMAC on real-world devices.
We evaluate this real world prototype against other wireless MAC protocols and
thoroughly evaluate its advantages and drawbacks.

In Chapter 8, we explore the potential of FEC techniques in general, and adaptive
strategies in particular. After examining eight different ECCs applied for each
link in a static manner, the chapter studies three different run-time adaptive FEC
techniques, which vary the current ECC based on the current link quality.

Chapter 9 discusses the performance degrading impact of link-layer packet losses
on TCP/IP-based communication in WSNs. The chapter evaluates our proposed
countermeasures to improve TCP throughput in multi-hop WSN topologies.

Chapter 10 concludes the thesis, discusses the future outlook of ongoing work on
the discussed problem domains and motivates potential topics for future research.
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Chapter 2

Related Work

This chapter discusses the most important and most significant related work we
rely upon for our contributions presented in the subsequent chapters of the Parts I
and II of this thesis. The order in the discussion of the related topics in this chapter
corresponds to the order of the chapters that present our main contributions.

The chapter commences with Section 2.1 portraying the evaluation platforms and
WSN operating systems that were used for several real-world measurements and
evaluations. Section 2.2 then discusses architectural properties and issues related to
network and experiment management of the most well-known testbeds of WSNs.
Then, the chapter presents a collection of methodologies and tools to measure
the energy consumption of WSN nodes in Section 2.3. In order to evaluate our
contributions in Part II of the thesis, several methodologies for hardware-based
energy-measurement, and software-based energy-estimation have been employed.
Section 2.3 discusses both approaches, the physical hardware-based methodologies
basing on dedicated measurement hardware in 2.3.1 and 2.3.2, and recent literature
about software-based energy-estimation techniques in 2.3.3.
The chapter then discusses the research field of Energy-Efficient MAC (E2-MAC)
protocols for WSNs in Section 2.4 by categorizing the most well-known protocols
with their advantages and drawbacks, relating them to our contributions and giv-
ing an outlook about future trends and developments. The chapter continues with
outlining the fundamentals of a selection of Error Correcting Codes (ECCs) in Sec-
tion 2.5, on which we build upon for designing adaptive Forward Error Correction
(FEC) strategies. Section 2.6 discusses literature related to TCP/IP over multiple
wireless hops in wireless networks in general, and in sensor networks in particular.

2.1 Evaluation Platforms

In this section we briefly portray the sensor hardware platforms and sensor node
operating systems used for the various prototype implementations throughout this
thesis. The Embedded Sensor Board and the first version of the ScatterWeb Operat-
ing System presented in Sections 2.1.1 and 2.1.2 were only used for our preliminary
study on extensions of the E2-MAC protocol WiseMAC in Chapter 5. The succes-
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sor of this platform, the Modular Sensor Boards (MSB) along with the ScatterWeb2

Operating System are presented in Sections 2.1.3 and 2.1.4. The MSBs been used
for the major portion of experiments and evaluations of this thesis, in particular in
the Chapters 4, 7 and 8. Finally, Sections 2.1.5 and 2.1.6 discuss the prominent
TmoteSky/TelosB platform and the Contiki Operating System, which we used for
our contributions on TCP across radio duty-cycled multi-hop WSNs in Chapter 9.

2.1.1 Embedded Sensor Board

The Embedded Sensor Boards (ESB) [158] (cf. Figure 2.1) belong to the first sen-
sor hardware platforms of the European research community on WSNs. The ESBs
have been developed at Freie Universität Berlin and the spin-off company Scat-
terWeb GmbH [157]. Each ESB is equipped with a MSP430 microcontroller, a
TR1001 [156] radio transceiver, 32k EEPROM, RS232 port, a JTAG port to flash
and debug the CPU, an audible beeper, and a number of sensors (passive infrared,
vibration/tilt, microphone, temperature). The node is powered using three AA bat-
teries on the battery rack mounted behind the board.

Figure 2.1: Embedded Sensor Board (ESB)

2.1.2 ScatterWeb Sensor Operating System

The ScatterWeb (v.1) Operating System is a very small and simple sensor operating
system. This event-driven, single-threaded sensor node OS is entirely written in C,
is well documented and the source is open to a large extent. The control flow of
the ScatterWeb OS core is a simple never-ending loop function named superloop
that calls handler-functions if and event has to be processed (e.g., for timers, for
handling serial IO or radio transmissions) and lets the CPU enter the sleep mode
LPM1 for a certain time if not, until the next iteration of the superloop.

The superloop contains a function that resets the timer register of the watchdog. If
the program gets stuck in a loop during the following statements of the main-loop,
the watchdog timer runs out and causes the system to be reset. When all pend-
ing handler-functions of one superloop iteration have been called, the watchdog is
stopped and the microcontroller enters the low-power mode LPM1 again.
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2.1.3 Modular Sensor Board

The Modular Sensor Board (MSB430) node is the successor of the ESB node and
was also developed by Freie Universität Berlin and ScatterWeb GmbH [157]. This
modular node platform features the following main components on its core module:

• A Texas Instruments MSP430 series RISC CPU (MSP430F1612): this CPU
can be clocked with 100 kHz up to 11 MHz. The clock speed can be adapted by
a software configurable digital controlled oscillator (DCO). The MSP430F1612
has 55 KB flash memory and 5 KB RAM, and further 18-digital I/O pins con-
nected to analog-to-digital (ADC) and digital-to-analog (DCA) converters.

• A CC1020 Chipcon [173] configurable wireless radio transceiver using a low-
noise amplifier that operates in the ISM-band around 868 MHz. Its output
power reaches an amplitude up to 8.6 dBm (7.2 mW). The CC1020 uses 8
channels with a data rate of 19.2 kbit/s when using Manchester encoding. The
CC1020 would technically support a raw transmission rate of up to 153.6 kbit/s,
however, this modulation is currently not supported by ScatterWeb2 OS.

• A Secure Digital Memory Card (SD) Reader can store large amounts of data
on Secure Digital High-Capacity (SDHC) cards with a capacity up to 32 GB.

• A Temperature and Humidity Sensor Sensirion SHT11 [161] is capable of mea-
suring temperature and relative humidity.

• A Freescale MMA7260Q Accelerometer [66] is capable of measuring the ac-
celeration in 3 dimensions (x,y,z).

The MSB430 core module makes most of the digital IO ports accessible for the
extensions. Hence, on top of the core module, one or more board extensions can
be plugged in, as illustrated in Figure 2.2. The MSB430 sensor node can hence
be conveniently customized by the end user for certain special tasks, plugging in
additional modules, which renders a complete redesign of the board obsolete.

Figure 2.2: MSB430 Sensor Node Platform with pluggable Sensor Modules
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2.1.4 ScatterWeb2 Sensor Operating System

The MSB430 sensor boards can be run with the ScatterWeb2 OS. This rather simple
OS was developed at Freie Universität Berlin and ScatterWeb GmbH. ScatterWeb2

can be seen as the successor of the ScatterWeb OS (v.1) for the ESB nodes de-
scribed in Section 2.1.2. However, since there are no well-defined interfaces be-
tween network subsystem and MAC, any implementations related to MAC protocol
mechanisms turned out not to be portable to the newer MSB430 node.
The event-driven, single-threaded ScatterWeb2 OS is entirely written in C and in-
tegrates drivers for the CC1020 radio module, the onboard sensors and SD card
reader. The core of the OS consists again in the so-called superloop which is pre-
empted by interrupts. Interrupts are triggered by the components on the board, e.g.,
the radio chip, the sensors, or the UART serial interface. Handler functions called
in the superloop then process the events (e.g, Net rxHandler, Timers handler).
The ScatterWeb2 OS provides an intuitive user interface and a simple means to add
and define commands, with which the user can communicate with the sensor node
over the serial interface. The network stack is simple and by default consists in a
IEEE 802.11-like random backoff CSMA (without RTS/CTS) on the MAC layer,
and offers functions for acknowledged or unacknowledged unicast and broadcast.
The popular sensor node operating system Contiki has a port for the MSB430 sen-
sor boards since Contiki v.2.4.

2.1.5 TMote-Sky/TelosB Node

The TmoteSky/TelosB platform depicted in Figure 2.3 is one of the most popular
and most frequently used sensor node platforms. It was designed for low power and
high data-rate sensor network applications. It features the following components:
• A Texas Instruments MSP430 series RISC CPU (MSP430F1611) offering some

48kB of ROM and 10kB of RAM.

• A Chipcon CC2420 [174] radio transceiver, which is an IEEE 802.15.4 compli-
ant radio for wireless communications operating in the 2.4GHz ISM band. The
radio provides a faster data rate (250 kbps) compared to the MSB430 boards,
however, at a price of a lower range.

• The onboard temperature and humidity sensor Sensirion SHT11 [161] is capa-
ble of measuring temperature and relative humidity.

• An additional Numoniyx Forte M25P80 Flash memory [135] provides 1024kB
of external space, e.g., for code or for logging data.

Figure 2.3: TmoteSky/TelosB Sensor Node Platform
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2.1.6 Contiki Operating System

The Contiki Operating System [47] is an open source operating system designed
for networked embedded systems with small amounts of memory, supporting a
wide range of target platforms. Contiki to date supports various microcontroller
chips, ranging from 8-bit over 16-bit to 32-bit architectures. A typical Contiki
configuration’s size is 2 kilobytes of RAM and 40 kilobytes of ROM. Contiki fea-
tures an event-driven kernel, providing support for pre-emptive multi-threading
using protothreads [51]. Protothreads are lightweight threads that provide a linear,
thread-like programming style on top of Contiki’s event-driven kernel. Another
key feature of Contiki is its support for dynamic linking of code at run-time. This
facilitates over-the-air programming and integrating new functionalities without
the need of collecting and reprogramming the nodes offline.

A core component of Contiki is its modular and highly customizable network stack,
which has well-defined generic interfaces for various node platforms. In contrast
to, e.g., the ScatterWeb2 OS, which is limited to the MSB430 nodes and some
further developed successors of this node type, most components Contiki’s network
stack can be run on all ports supported by Contiki. The structure of this stack is
illustrated in Figure 2.4. The lowest component of the Contiki network stack is the
radio driver, which is platform-dependent, but which offers standardized services
for the layers above. On top of this lies the MAC layer, followed by the Rime layer.

Contiki Rime

Contiki Rime [49] is a collection of different node-to-node communication ser-
vices. These services are implemented in a hierarchical manner, with lower layer
services providing basic features, and more complex services building on top of
them. Figure 2.4 depicts the Rime services and their underlying hierarchy. Ser-
vices or applications on layers above Rime can invoke any Rime service. The
connection is usually established by copying the data to the so-called Rime buffer
and initiating the actual transmission. The Rime protocols that are supported to
date are the following:
• abc: Anonymous Best-effort Single-hop Broadcast protocol

• ibc: Identified Best-effort Single-hop Broadcast

• uc: Best-effort Single-hop Unicast protocol

• stuc: Stubborn Single-hop Unicast protocol

• ruc: Reliable Single-hop Unicast protocol

• mh: Best-effort Multi-hop Unicast

• rmh: Hop-by-hop Reliable Multi-hop Unicast

• polite: Polite (Anonymous) Single-hop Broadcast protocol

• ipolite: Polite (Identified) Single-hop Broadcast protocol

• nf: Best-effort Network Flooding
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Figure 2.4: The Contiki Network Stack

The service names basically describe the properties and features of these services.
More elaborate and detailed information can be found on the Contiki OS [47] web-
site and discussion board, which has a steeply increasing number of subscribers
and a remarkably active user and developer community.

Contiki µIP Stack

Contiki’s µIP Stack was first introduced by Dunkels et al. [45] in 2003, hence even
before the development of Contiki itself. The small µIP Stack is a minimalistic
implementation of the most important functionalities of the TCP/IP suite. Start-
ing from its initial support of IPv4, it has been augmented in the recent past to
support IPv6, as well as UDP and ICMP. To date, µIP implements the basic re-
quirements for hosts in the Internet as specified by RFC1122 [23]. Contiki’s µIP
Stack can be expected to seamlessly operate with almost any platform providing
a RFC-compliant TCP/IP stack, in fact it is already used in various embedded de-
vices in the industry today.

In a trade-off between code size and and RFC-compliance, some features of the
functionalities defined in RFC1122 had to be left out, e.g., the Address Resolution
Protocol (ARP) or the limitation of the µIP stack to not support the transmission of
multiple unacknowledged TCP segments, hence keeping a limitation of a conges-
tion window set to the value of 1 forever. This of course results in a limited maxi-
mum achievable throughput, but prevents nodes from allocating precious memory
for unacknowledged segments.

Contiki MAC Layer Protocols

Thanks to the large user community of the Contiki OS, a notable collection of
protocols and applications have evolved in the past years, which often work on
several of the Contiki-supported target platforms. In the course of this thesis, we
made use of Contiki’s selection of readily available MAC protocols of Contiki
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v.2.4 and Contiki v.2.5-rc (release candidate as of May 2011). We briefly discuss
the protocol implementations we used in the following:

• The X-MAC layer [170] implemented is the first radio duty-cycled E2-MAC
protocol available for Contiki. The X-MAC protocol algorithm, as proposed
by Buettner et al. [25], is discussed in detail in Section 2.4. In its original
implementation on top of the MANTIS OS [20], X-MAC additionally applies
a traffic estimation algorithm to adapt the wake-up interval to the traffic load.
The current Contiki X-MAC implementation, however, does not yet support
such an adaptation, the wake-up interval is statically defined at compile time
and kept unchanged at run-time.

• The ContikiMAC [48] protocol layer is the successor of X-MAC in Contiki
v.2.5 and combines key concepts used in various otherE2-MAC protocols. It is
further discussed in Section 2.4. Borrowed from X-MAC, ContikiMAC relies
on strobing to notify about an upcoming transmission, but directly uses data
packets as strobes. With ContikiMAC, nodes learn each neighbor’s wake-up
schedules for saving energy in future transmissions.

• The Low Power Probing protocol [130] layer is a receiver-based duty-cycled
E2-MAC protocol. All nodes periodically send out probe packets indicating
that they are ready to receive data. This behavior is especially beneficial for
broadcasting. LPP is discussed in more detail in Section 2.4.

• The NullMAC protocol layer is a minimalistic protocol that just passes data
packets from the network layer to the radio driver and vice versa. This implies
that NullMAC does not check the radio channel for activity before sending a
packet. Therefore, NullMAC should preferably be combined with Contiki’s
Carrier Sense Multiple Access (CSMA) layer to avoid collisions (c.f. Boano
et al. [21]), which we also did in Chapter 9. NullMAC does not duty-cycle
the radio to save energy. The resulting high energy consumption is, however,
compensated with a high throughput, as clearly demonstrated in Chapter 9.

2.2 Wireless Sensor Network Testbeds

For years, simulation has been the research methodology of choice in the major-
ity of studies on wireless ad-hoc and sensor networks. However, with discovering
wide gaps between simulation results and real-world prototype results, the appro-
priateness of simulation tools for evaluating wireless phenomena has more and
more been been questioned. Especially in the wireless sensor and ad-hoc network
community, inappropriate parameter settings and unrealistic radio, traffic and/or
mobility models have been identified and criticized as a general drawback of sim-
ulation studies, e.g., by Kurkowski et al. [105] and Andel et al. [11]. With the field
growing more mature, researchers have generally aimed at proofing the real-world
feasibility of their protocols on real-world devices. For evaluating protocol behav-
ior in practice, experimental WSN testbeds have become indispensable today [95].
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2.2.1 Existing Testbeds of Wireless Sensor Networks

In the past five years, numerous universities and research institutions have started to
set up real-world sensor network testbeds. In most cases, these testbeds have been
set up for research and teaching purposes, in order to enable testing and evaluation
of real-world behavior of developed protocol mechanisms. An increasing number
of stationary WSN testbeds have been put into operation, with different node hard-
ware, and very heavily differing architectural testbed design. Since most testbed
setups have been initiated as independent projects from single research institutions,
little attention has yet been devoted to coordination and standardization of the es-
sential testbed management functionalities. Such services comprise, but are not
limited to user account management, resource reservation mechanisms, provisions
for remote node reprogramming, and a consistent representation of the experiment
results. The European-Union WISEBED [162] project targeted at bridging this
gap by establishing an experimental federation of testbeds of WSNs with unified
and standardized interfaces, all of them made accessible over the Internet to the
European WSN research community. The management architecture presented in
Chapter 3 forms a central part of the WISEBED software architecture.

While there are certainly many more testbeds that would deserve to be mentioned,
we briefly portray and describe the most prominent wireless sensor network testbed
deployments and their most important properties and characteristics.
• MoteLab [182] is a sensor network testbed on the campus of Harvard Univer-

sity. It currently features roughly 190 TelosB [144] sensor nodes. The nodes
are wired to programming boards for reprogramming and communication.

• The TWIST testbed [75] is located in a building of TU Berlin and spans across
several floors. The total number of sensor nodes belonging to the testbed is
approximately 200, featuring two hardware types. The testbed is organized
hierarchically in 3 tiers, consisting of servers, super nodes and sensor nodes.

• Kansei [60] is a sensor network testbed located at Ohio State University, which
targets at research in large indoors sensor networks. Currently, approximately
200 sensor nodes are deployed, along with the same number of gateway stations
attached to each one of the sensor nodes.

• PowerBench [76] at Technical University of Delft is a testbed infrastructure
specifically designed for benchmarking power consumption. It includes hard-
ware and software components for capturing the power traces the nodes in the
testbed in parallel, which can be used for offline processing and debugging.

• TutorNet [176] at University of Southern California uses a 3-tier network topol-
ogy with testbed servers, gateway stations, and sensor nodes connected via
USB to the gateways. Currently, there are more than 100 nodes deployed.

• Sensei-UU [155] is a relocatable testbed designed to enable users to repeat ex-
periments with mobile, heterogeneous nodes in diverse environments, in con-
trast to using a static indoor testbed with predefined hardware and sensor equip-
ment. The testbed has been set up in different locations in and around the Uni-
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versity of Uppsala campus for various research activities related to mobility.

2.2.2 Testbed Management Solutions

Most of the abovelisted testbeds are managed by simple tailormade management
solutions, which allow for accessing the testbed, reprogramming the sensor nodes
and receiving the experiment results, e.g., in the form of some textfiles. How-
ever, most of these management solutions have generally been tightly coupled to
one particular testbed deployment and the employed hardware, and are not easily
reusable for further testbed setups. We briefly portray the different management
software toolkits along with their basic features.
• MoteWeb [128] is a simple management system including a web-interface for

Harvard’s Motelab. The webpage displays the list of available nodes and their
current status. In a restricted area, registered users can upload executable files,
assign those executables to the individual nodes to create a so-called job, and
schedule the job to be run on MoteLab. Only one job is allowed at the same
time. During the experiment run, output is streamed into the database and then
made available for the user to download. However, it is not possible for the user
to monitor the experiment output at run-time, neither is it possible to interact
with it, e.g., by sending commands to certain nodes.

• The management software of the TWIST testbed TWISTv1 [177] is available to
the public. The software has more or less the same features as MoteWeb and is
generally quite tightly coupled to the Ethernet-based wired setup of the testbed
and the 3-tiered-architecture of TWIST, which use NSLU2 [117] devices with
embedded Linux [134] to access and reprogram TelosB sensor nodes. The
tight interaction of TWISTv1 with specifics of these NSLU2 gateway nodes,
however, puts the re-useability of the software for different testbed setups with
differing architectures and node equipment into question. TWIST offers a web-
based user interface to submit jobs and allows for monitoring these at run-time.

• Kansei Software: Besides some indications about the Kansei software in [60]
stating that the Kansei software is “similar to Motelab in the underlying Open-
Source Linux-Apache-MySQL-PHP/Perl implementation technology”, there
is little information available about the Kansei testbed management software.
[60] claims that the testbed features a web-interface for submitting jobs to the
testbed and retrieving results, which at the time of editing this thesis was not
accessible. Real-time features such as monitoring the experiment output at run-
time and real-time user interaction are not known to be supported.

• The software of the TutorNet [176] testbed consists of a web-interface that
interacts with their 3-tier topology of TelosB motes and intermediate gateway
nodes. Authenticated users can connect to the testbed servers and then use
command-line tools to control the testbed nodes. Real-time features such as
monitoring the experiment output at run-time and real-time user interaction
are, however, not known to be supported as well.
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Thoroughly studying the related work on today’s existing wireless sensor network
testbeds, we come to the conclusion that without any doubt, a lot of work has been
dedicated to the setup of large and complex WSN testbeds, as well as for the de-
sign and implementation of tailormade software for network administration tasks.
However, although the software solutions for managing and administering experi-
mentation on these testbeds all fulfill similar or equal functionalities, none of the
encountered solutions offers is independent from the sensor node type or operating
system or certain architectural assumptions (e.g., a 3-tiered-topology with Ethernet
backbone). A consistent separation of the management functionality into compo-
nents with clearly defined interfaces, such as user administration, resource reser-
vation, experiment execution does not exist. Hence, all of the surveyed solutions
exhibit a lack of portability and reusability, since no standardized off-the-shelf
components have evolved. Therefore, it is hard for other research groups intending
to set up an own WSN testbed with a different kind of sensor nodes, since often,
basic testbed functionalities have to be (re)implemented from scratch.

We bridge this missing gap with the TARWIS testbed management architecture
presented in Chapter 3, which relies on cleanly separated modular components.
TARWIS has to date been successfully integrated with nine different WSN testbeds
throughout Europe, all of them with heavily differing architectural design and
equipped with heterogeneous sensor nodes and operating systems.

2.3 Energy Measurement and Estimation Techniques

This section discusses the most frequently applied hardware-based physical mea-
surement methodologies in the context of wireless sensor network studies, namely
the application of Digital Storage Oscilloscopes (DSOs) in Section 2.3.1 and the
usage of dedicated measurement devices in Section 2.3.2. Throughout the course
of this thesis, we have made use of the DSO-based methodology mainly for the
purpose of debugging and inspecting protocol behavior, since the current trace dis-
played in DSO’s is a convenient form of verifying that the current code implemen-
tation behaves as intended, and allows for tracking down bugs.

Thanks to our collaboration with the Karlsruhe Institute of Technology (KIT),
which developed an own dedicated measurement hardware (cf. Section 2.3.2),
we could conduct the majority of our measurements with the latter platform, which
turned out to be much more comfortable to operate, and which permitted us to make
continuous measurements over longer timespans, e.g., 10-15 minutes or even more,
as opposed to maximum 60 seconds with our HAMEG HM1508-2 DSO [73].

2.3.1 Digital Storage Oscilloscopes

An oscilloscope is an electronic test instrument that permits the observation of
varying signal voltages. Oscilloscopes usually plot a two-dimensional graph of
electrical potential differences as a function of time. Digital Storage Oscilloscopes
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Figure 2.5: HAMEG Oscilloscope Figure 2.6: Measurement Circuit

(DSO) further supply the obtained measurements as digital data streams. This
methodology has been applied to quantify the energy consumption of sensor nodes,
cellphones or mesh nodes in numerous studies, e.g., Feeney et al. [63] or Polastre
et al. [143].

We made use of the HAMEG HM1508-2 [73] digital oscilloscope (cf. Figure 2.5)
mainly for preliminary evaluations and for debugging MAC protocols on sensor
nodes. The software HMLab 1.06 permits to digitally read out the measurements
from the DSO with a sampling rate of up to 1 GS/s (= 109 samples per second). Fig-
ure 2.6 depicts the circuit used for measuring the small current of a sensor node.
A sensor node is sourced by a mains adapter and connected in series with a 1Ω
shunt resistor. The current flowing through the resistor is proportional to the re-
sistive voltage drop across the shunt, which can be measured using the DSO. With
knowing the resistance of the shunt in advance, the timely varying current flowing
through the measurement circuit can hence be derived. High-precision shunt resis-
tors with a resistance of 1Ω usually exhibit a tolerance (=maximum deviation from
the indicated value) in the range of ±1% to ±1h.

By measuring the voltage drop across the shunt resistor, we obtain Vshunt(t). The
measured voltage then varies with the different operation modes of the components
on the board of the sensor node (radio on/off, CPU frequency, LED state, etc.). Ap-
plying Ohm’s law (2.1) leads to the current draw over time I(t) that flows through
the measurement circuit (2.2).

V = R · I (2.1)

I(t) =
Vshunt(t)

Rshunt
(2.2)

To calculate the instantaneous power consumption of sensor node node Psensor(t),
we apply the power relationship (2.3)

P = V · I (2.3)

as well as Kirchhoff’s mesh rule, according which the sum of all electrical potential
differences around any closed circuit must be zero (2.4).

n∑
k=1

Vk = 0 (2.4)
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Applying equation (2.4) to the measurement circuit of Figure 2.6 yields

Vsupply = Vsensor + Vshunt

The instantaneous power consumption of the sensor node hence calculates as

Psensor(t) = (Vsupply − Vshunt(t)) · I(t)

With Vshunt being very small compared to Vsupply (< 1h), we can simplify the
above relationship to

Psensor(t) = Vsupply · I(t) = Vsupply ·
Vshunt(t)

Rshunt
(2.5)

The energy consumed by the sensor node over a time interval [tstart, tend] is the
integral of power consumption over time.

Esensor[tstart,tend]
=

∫ tend

tstart

Psensor(t) dt

Nesting the expression PS(t) of equation (2.5) into the above formula yields

Esensor[tstart,tend]
=
Vsupply
Rshunt

∫ tend

tstart

Vshunt(t) dt

Using the numerical values of Vshunt(t), the energy consumed by the node over in
a time interval [tstart, tend] can thus be numerically approximated as

Esensor[tstart,tend]
=
Vsupply
Rshunt

tend∑
tstart

Vshunt(t) ∆t

where ∆t equals the inverse of the sampling frequency (e.g., ∆t = 1 ms for a
sampling frequency of 1000 Hz).
In the current trace measured with a DSO depicted in Figure 2.7, the energy con-
sumed over 1 s hence corresponds to the area below the curve, times the voltage.

Figure 2.7: DSO-generated Current Trace of the WiseMAC Prototype
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2.3.2 Sensor Network Management Devices

The Sensor Node Management Device (SNMD) [77] depicted in Figures 2.8 and
Figure 2.9 has been developed by the Karlsruhe Institute of Technology (KIT). The
KIT has equipped its WSN testbed with these precise but cost-efficient hardware-
based energy measurement components. SNMDs have been specifically designed
to accurately measure currents and voltages of sensor nodes with a sampling reso-
lutions of up to 20 kHz, or even up to 500 kHz in the so-called buffered mode.
In analogy to the methodology described in Section 2.3.1, SNMDs measure the
resistive voltage drop across a 1 Ω shunt resistor. This voltage is then converted
to a raw value using an A/D converter, which is fed to the onboard Atmel mi-
crocontroller. The SNMD firmware allows for reading out this value with different
sampling rates over an USB interface. Each SNMD has been calibrated using high-
precision laboratory equipment for different current ranges. The SNMD firmware
corrects each sampled measurement by an error term, which was obtained during
evaluative testing in advance. This has been shown by Hergenroeder et al. [78]
to reduce the measurement error introduced by the measurement circuit below
± 0.5% for any current in the range of 0-100 mA, an accuracy range which is
definitely sufficient to rely any experimental and comparative analysis of sensor
network mechanisms upon.
The energy consumed by the sensor node within any time interval [tstart, tend] is
the integral of its power consumption Psensor(t) over time.

Esensor[tstart,tend]
=

∫ tend

tstart

Psensor(t) dt

Using the power relationship Psensor(t) = V (t) · I(t) and the numerical values
of I(t) and V (t) obtained by the SNMD, the energy consumed by the node over a
time interval [tstart, tend] can be numerically calculated as

Esensor[tstart,tend]
=

tend∑
tstart

V (t) · I(t) ∆t

where ∆t equals the inverse of the sampling frequency (e.g., ∆t = 1ms for a sam-
pling frequency of 1000 Hz).

Figure 2.8: SNMD with Node attached
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2.3.3 Software-based Energy-Estimation

Software-based mechanisms to estimate the energy consumption of sensor nodes
have yet often been applied in experimental WSN studies. In order to quantify
the energy consumption of a WSN testbed, it is often impractical, time-consuming
and probably too costly to hook every single node to a measurement device. Sim-
ple state-based energy-estimation models have already been used in the prominent
studies on S-MAC [190] and B-MAC [143]. However, as in most related studies,
the authors neglected to evaluate the accuracy of their energy estimation model.

Dunkels et al. [50] motivate the need for software-based on-line energy estima-
tion, because only on-line estimation mechanisms running on the node itself enable
the node to take energy-aware decisions about routing, clustering or transmission
power scheduling. The authors derive the state-based model (2.6) and experimen-
tally correlate the estimated energy with the sensor nodes lifetime.

E = (Imtm + Iltl + Irtr +
∑
i

Icitci) · V (2.6)

In this energy model, V is the supply voltage, and Im, tm are the current draw
of the node’s microchip and the time it has been fully active. The variables Il
and tl correspond to the current draw and time of the microchip in the low power
mode. Variables It and tt correspond to the current draw and time of the radio
transceiver in the transmit mode, and Ir and tr in receive mode. Furthermore,
Ici and tci denote current and time of operation of further onboard components.
Having evaluated their software-based model (2.6) in a range of experiments, the
authors of [50] note that their estimations are “sound” and that they correlate with
the measured node’s lifetimes, however underline that “further study is needed to
accurately quantify the error rate of the mechanism”.

In their PowerBench study, Haratcherev et al. [76] elaborate on the difference be-
tween their software-based energy estimations and the physically measured energy
consumption of sensor nodes running different energy-efficient MAC protocols.
The model (2.7) applied is the same as that of the studies on S-MAC [190] and
B-MAC [143]. The consumed energy E is calculated as the sum of the total time
spent in the receive state multiplied by the respective power level TrcvPrcv, and the
respective terms for the transmit and sleep states (TslpPslp and TtxPtx).

E = PrcvTrcv + PtxTtx + PslpTslp = (IrcvTrcv + ItxTtx + IslpTslp) · V (2.7)

When running B-MAC [143] and Crankshaft [71], this difference reaches up to
21% of the measurement values. Per-node calibration is shown to vastly reduce
this estimation error. With the deviations between software-based estimation and
physical measurements still ranging from 2% to almost 14% for some of the ex-
amined E2-MAC protocols, the software-based estimation approach still leaves
room for further improvements. The authors further note that frequency of state
transitions have a significant impact on the estimation accuracy.
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2.4 Medium Access Control

In order to make sensor networks a viable instrument for a broad range of real-
world (including outdoor) applications, the employed nodes need to satisfy various
constraints. Besides the limitations with respect to size, costs and physical robust-
ness, one of the major constraints is that of remaining operable without a wireline
infrastructure for a reasonable amount of time, preferably weeks or months. Since
most sensor nodes are initially equipped with some few AA batteries, reaching such
a lifetime is only possible if the node keeps its energy consumption limited to a few
milliamperes. Keeping all onboard sensors and radio interfaces constantly turned
on, most platforms drain out of power within not much more than a few days, as
recently pointed out by Nguyen et al. [132]. Intelligent mechanisms to make use of
the resources in an energy-efficient manner are hence required to reduce the overall
power consumption and hence prolong the sensor nodes’ lifetime.

2.4.1 Challenges in Medium Access Control Design

The onboard sensors for measuring physical values (e.g. temperature, humidity, lu-
minosity) can easily be operated in an energy-efficient manner. By turning them on
just before every sensing operation, and likewise turning them off afterwards, their
energy consumption can be minimized and no energy is wasted without use. How-
ever, the radio transceiver can not be handled in the same manner, since communi-
cation of data between two radio transceivers requires two of them being active at
the same time - one radio transceiver transmitting and the other radio transceiver
receiving. Naturally, a transmission attempt to a targeted receiver will remain un-
noticed if its radio transceiver is turned off at that time. Since nodes should perma-
nently uphold a connection to their neighboring nodes in order to handle incoming
traffic or be able to forward own sensed data, mechanisms had to be designed to
achieve the two goals at the same time: keeping the network connected but having
the radio transceiver turned off for most of the time.
This problem has generally been addressed in the last decade with the develop-
ment of various Energy-Efficient MAC (E2-MAC) protocols. Generally speaking,
E2-MAC protocols are a class of distributed algorithms running on the individ-
ual sensor nodes, which solve the communication problem and at the same time
satisfy the sensor nodes’ inherent constraints with respect to energy-efficiency by
duty-cycling the radio transceiver. An E2-MAC protocol typically addresses the
following problems, which are inherently raised by the communication problem it-
self, the duty-cycling of the radio transceiver or the nature of the wireless channel:

• Synchronicity: With nodes turning off their radio for most of the time, an
E2-MAC protocol must ensure that, when communication takes place, both
the transmitting node and the receiving node have their radio transceivers syn-
chronously turned on and in the correct mode. Various approaches have been
proposed throughout the last decade to reach this behavior: the proposed tech-
niques range from maintaining a synchronous sleep-wake schedule, where nodes
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exchange traffic or traffic-announcements, over busy-tone schemes to catch the
targeted receiver in a wake-up, to using external low-power wake-up radios op-
erating on a different channel, signaling the receiver to turn on its main radio
before transmitting the data over the main channel.

• Collision Avoidance: Most sensor node platforms only use one low-bandwidth
channel, in which they have to communicate in half-duplex mode. Their radio
transceiver permits them to either transmit or receive, but not both at the same
time. If two nodes transmit at the same time, receivers in their transmission
range will only receive noise, which renders both transmissions useless and
makes retransmissions necessary. E2-MAC protocols usually integrate mecha-
nisms ascertaining that this situation does not or only rarely occur. Some even
attempt to mitigate collisions that can not be detected at the transmitter alone
by checking the channel before transmission (i.e., the hidden node problem).

• Fairness: E2-MAC protocols have to make sure that the wireless channel is
allocated fairly among the participating nodes in the network, such that all
nodes can access the channel within reasonable access time. It is generally
desirable that, given that the channel is a limited resource, all nodes in the
network can deliver a similar share of their packets to the sink.

• Latency: With the radio transceiver alternating between wake and sleep peri-
ods, nodes often have to buffer pending packets and wait for the next transmis-
sion opportunity. This increases the latency between packet generation at a leaf
node, and packet arrival at the sink, especially if the packet has to travel across
several hops. Therefore, E2-MAC protocols generally apply short intervals
with which the radio transceiver is duty-cycled, usually in the magnitude of a
few 100 milliseconds. Nevertheless, duty-cycling the radio inherently increases
the latency, compared to energy-unconstrained MAC protocols.

• Throughput: The situation that more than one packet is buffered and has to
be transmitted to the same receiver is rather frequent in WSNs, e.g., because
the data to be transmitted is too large to fit into one frame. E2-MAC protocols
therefore usually integrate solutions for letting senders transmit several packets
in a row to targeted receivers in so-called burst transfers. Although this is an
effective means to transmit a rather large portion of data across one link, the
maximum achievable throughput compared to energy-unconstrained wireless
channel MAC protocols is still much degraded, especially over multiple hops.

The radio transceiver unfortunately has turned out to be the most power-hungry
component on most of today’s node platforms, which again highlights the impor-
tance of efficient and robust E2-MAC protocols. With the radio constantly turned
on, a customary TelosB node powered with two AA batteries depletes within a
few days, which is insufficient for many WSN applications. Applying state of the
art E2-MAC protocols with duty-cycles in the range of a few percent, a node’s
lifetime can be pushed to the order of a few weeks or months. This value, how-
ever, heavily depends on the volume of the received and transmitted traffic and the
computational load of the CPU, as demonstrated in Nguyen et al. [132].
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2.4.2 Sources of Energy Waste

The E2-MAC protocols designed throughout the last decade generally attempt to
reduce the major sources of energy waste of wireless channel MAC protocols.
There’s a widespread agreement on what the major sources of energy waste on
the MAC layer are. Many studies have pointed out the potential for energy savings
in wireless channel protocols, e.g., in the case of IEEE 802.11-based networks with
access-point-based scenarios (cf. Anastasi et al. [10]) or in (mobile) ad-hoc net-
work scenarios (cf. Zheng et al. [192]). In the context of WSNs, Ye et al. [189]
identified the main sources of energy waste to be Idle Listening, Overhearing, Col-
lisions and Protocol Overhead.
• Idle Listening refers to keeping the radio in the receive state in order to wait for

incoming traffic. The communication problem between any sender and receiver
generally consists in the information asymmetry concerning the message to be
exchanged and the time of transmission. Since nodes need to have their radio
turned on when the sender transmits the message, but can inherently not predict
the time of transmission, waiting periods where nodes have the radio turned on
without actually receiving data are unavoidable. As receiving data and listening
to an idle channel are almost equally expensive on most radio transceivers, idle
listening often constitutes a major source of energy waste.

• Overhearing refers to the reception of data frames that are not destined to the
receiving node. Since the wireless communication in wireless sensor networks
is of broadcast nature on the physical layer, frames will be received by all
nodes in the transmitter’s transmission range. [189] identifies idle listening and
overhearing to be the two topmost reasons for energy waste.

• Collisions of transmissions occur when two nodes concurrently use the same
channel by transmitting frames to the same or other nodes in the vicinity. By
introducing fine-grained rules for the medium access, e.g., the coordination of a
collision-free transmission schedule or contention mechanisms, collisions can
generally be reduced, but rarely fully prevented. In case of a collision, nodes
spend a significant amount of energy for the frame transmission itself and for
keeping the transceiver ready to receive an acknowledgement. Usually, MAC
protocols employ costly retransmission schemes in order to recover collisions.

• Protocol Overhead is a frequent source of energy waste in wireless chan-
nel MAC protocols. Some protocols require continuous and excessive signal-
ization, e.g., to maintain a collision-free schedule and a network-wide time-
synchronization. Since these message exchanges do not contain any applica-
tion payload data, they must be considered overhead.

2.4.3 A Taxonomy of Wireless Sensor MAC Protocols

In the past decade, a large number of energy-efficient MAC protocols for wireless
sensor networks have been proposed. Almost every wireless channel multiplex-
ing technique (i.e. SDMA, TDMA, CDMA, FDMA) and every medium access
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scheme has been evaluated. Since most of the sensor node platforms today are
equipped with one single low-power single channel radio transceiver, we focus in
this section primarily on related work in the area of single-channel MAC proto-
cols. The protocols proposed and used in single-channel wireless sensor networks
differ in the manner how the nodes organize the access to the shared radio channel.
Langendoen [109] distinguishes three classes of organization in today’s wireless
channel MAC protocols: frame-based access, slotted access, and random access
protocols. We briefly discuss the main characteristics of these protocol classes with
a few examples, starting from the most complex and most intensively provisioned
frame-based protocols moving towards the least complex class of the random ac-
cess protocols. Each protocol that was implemented and/or evaluated in one of the
subsequent chapters (in simulation and/or on a real-world testbed), is schematically
illustrated, cf. Figures 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, and 2.16.

Finally, we briefly discuss three protocols of the class of wake-up radio-based
medium access protocols, which follow a totally different concept of energy-aware
medium access control than the three classes discussed on the following.

Frame-based MAC Protocols

The class of frame-based MAC protocols pursues a TDMA-approach and generally
requires a network- or at least clusterwise synchronization scheme. Transmissions
take place during time slots that are allocated to single nodes or links. Slots for
single nodes can either be defined for transmission or reception, be segmented to
allow both directions (using disjoint windows), or be random-access/contention-
based inside the slots. Frame-based protocols have several inherent advantages
compared to the other classes of protocols. First, by partitioning the time into
slices and allocating them to senders and receivers, nodes can turn off the radio
when their slot is over. Second, collisions due to concurrent channel access are
prevented to a large extent, since the fine-grained scheduling of the channel pre-
vents nodes from attempting to access the channel at the same time. Third, minimal
Quality of Service and fairness can be guaranteed, which is a major advantage over
contention-based protocols.

Problems of frame-based MAC protocols generally arise when determining how
the slots are assigned to the nodes, since in sensor networks, there is usually no
central node administering the slot allocation. Since the MAC protocol must pre-
vent that overlapping time slots lead to concurrent medium access and collisions,
frame-based MAC protocols have a continuous need for rigid time synchroniza-
tion. It has been observed many times that the cost for maintaining a collision-free
schedule over a long period of time can easily outweigh the energy spent for the
actual data traffic. Another problem is that the resulting medium access scheme
becomes rather inflexible and may not correspond to the shape and the volume
of traffic generated by the application. While some nodes may need more slots for
transmission, many slots may be wasted for idle senders. This resulting lack of flex-
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ibility is often referred-to as overprovisioning. TRAMA [151] and LMAC [151]
are two of the most well-known protocols of this class.

In the Traffic-Adaptive Medium Access Control Protocol (TRAMA) [151], the
nodes regularly broadcast information about traffic flows as well as their local
neighborhood. By observing these reports, a node learns the identities of all its
2-hop neighbors. These identities are used to determine a collision-free schedule
by using a hash function that takes the node identifier and the number of the current
slot as arguments. By taking into account the 2-hop neighborhood, transmissions
are protected against hidden node interference.

The Lightweight MAC (LMAC) [33] protocol is similarly based on distributing
slots and taking into account the 2-hop neighborhood of the transmitting node. The
reduction of the costly radio state transitions, during which the radio can neither re-
ceive nor transmit, is a major design goal of LMAC. The protocol hence renounces
on intermediate frame acknowledgements after each frame-reception to avoid more
radio switches, and thereby shifts issues related to reliability to the upper layers.

Slotted Access MAC Protocols

In slotted access protocols, nodes are synchronized to a common sleep-wake pat-
tern. Nodes wake up at the beginning of each slot to exchange pending traffic or
traffic announcements. In contrast to frame-based access MAC protocols, the time
inside one slot is not uniquely assigned to nodes or links. No collision-free sched-
ule is calculated and assigned by central entities. The common sleep/wake pattern
is only utilized as rendez-vous scheme, which makes this class of protocols much
less complex than frame-based protocols. Collision avoidance is usually imple-
mented by contention inside each slot. The probability of collisions is much higher
than, e.g., with random access protocols, since all nodes attempt to transmit during
the brief designated common wake-up times at the beginning of each slot. A further
drawback of this class of protocols is the high overhead of the common sleep-wake
pattern: nodes constantly need to maintain a network-wide synchronized wake-up
schedule, which makes continuous SYNC message exchanges necessary. Given
that many monitoring sensor network applications generate only a few packets per
hour or even per day, this cost can not be considered negligible.

The Sensor-MAC (S-MAC) [190] protocol is the most prominent protocol of this
kind. S-MAC synchronizes the wake-ups of the nodes in so-called synchronization
clusters. In each wake-up slot, nodes stay awake for an active window of fixed
duration, as displayed in Figure 2.10. Nodes regularly broadcast SYNC packets at
the beginning of a slot, such that neighboring nodes receiving them can adjust their
clocks to the latest SYNC. Nodes joining the network first listen for SYNC packets
in order to follow to the propagated wake-up pattern of a synchronization cluster.
When not hearing any SYNC messages, they start alternating in their own wake-up
pattern and propagate it with own SYNC messages, hoping that other nodes will
join their cluster. When multiple clusters evolve in a multi-hop network topology,
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Figure 2.10: Sensor MAC Protocol (S-MAC)

bordering nodes between two clusters adopt the wake-patterns of both clusters,
in order to provide interconnecting links. Before every data frame transmission,
S-MAC applies an RTS/CTS handshake for collision avoidance. Due to the fixed
duration of the active window, S-MAC has been shown to be rather inflexible under
variable load in several studies, e.g., van Dam et al. [38] or our recent study [90].
The Timeout-MAC (T-MAC) [38] protocol has been proposed to enhance S-MAC
under variable load. The listening interval in T-MAC is is extended if nodes per-
ceive signs of pending transmissions. It ends when no so-called activation event
has occurred for a given time threshold, which is much shorter than the fixed lis-
ten interval in S-MAC. Collision avoidance is realized using the same RTS/CTS
handshake. As depicted in Figure 2.11, a packet can travel at least two hops per
wake-up interval. When node SRC transmits a packet to DST , the next node in
line DSTII overhears the CTS and is able to respond to the subsequent RTS.
An optional scheme is proposed to solve the so-called early sleeping problem.
This problem arises when a node intends to transmit a message across three links
A→B→C→D, with node D going to sleep too early because it has not been no-
tified of an upcoming transmission by an RTS. The solution consists in node C
sending a Future Request to Send packet to node D to keep it awake.

Figure 2.11: Timeout MAC Protocol (T-MAC)

Random Access MAC Protocols

Random access protocols are the most simple class of MAC protocols. They are in-
spired by classical best-effort CSMA/CA protocols and neglect the need for costly
(over-) provisioning of the channel through complex distributed algorithms. In-
stead, nodes access the channel whenever there are packets to be sent, sometimes
taking into account the wake schedules of the targeted receivers. Random backoff
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Figure 2.12: Berkeley MAC Protocol (B-MAC)

contention mechanisms are usually employed to avoid collisions with other nodes
intending to transmit at the same time, which does reduce but not eliminate the
collision probability. Random access protocols do not impose a common wake-up
schedule for the entire network or node clusters, hence there is no need for synchro-
nizing the nodes’ clocks. The low complexity makes this class of protocols rather
inexpensive with respect to the energy spent for the control message overhead. In
case of no data traffic, random access protocols usually exhibit the lowest energy
footprint. Another advantage of this class the high flexibility: since the medium is
not pre-allocated to certain nodes or links, random access protocols generally sup-
port variable load patterns better than slot-based or frame-based protocols. How-
ever, the challenge with random access contention-based protocols often consists
in finding ways to reduce the energy waste caused by collisions and overhearing,
and to some degree also idle-listening. Furthermore, random access protocols can
suffer heavily from congestion. Under elevated load conditions, Quality of Service
and fairness can usually not be guaranteed. The most prominent protocols of this
class are the Berkeley-MAC (B-MAC) [143] protocol, the Wireless Sensor MAC
protocol (WiseMAC) [57] and the X-MAC [25] protocol, which we briefly discuss
in the following, among a selection of other random-access MAC protocols that
influenced our contributions and/or were used as reference protocols in this thesis.

The Berkeley-MAC (B-MAC) [143] protocol depicted in Figure 2.12 employs a
constant static wake-up pattern, where the node briefly turns on its radio in each
interval to poll the channel, keeping it turned on if the busy tone is heard, and
turning it off if nothing is received. Since checking the channel can be done very
quickly with most radio transceivers, the time the radio is turned on can be min-
imized to a few milliseconds. This allows for very low idle duty-cycles, i.e., the
ratio between the radio receive time and the radio sleep time. Often, duty-cycles
are only at 1% or even below. When attempting to transmit a frame, a wake-up tone
is sent during the entire wake-up interval to alert receivers for the upcoming frame
transmission. This techniques is often referred-to as Low-Power-Listening (LPL)
or Preamble Sampling. B-MAC is one of the most widely used protocols, espe-
cially in deployment studies and real-world applications. To date, it is the default
radio duty-cycling MAC protocol in the TinyOS operating system [112]. Unlike
our contribution in Chapter 7, the B-MAC protocol neglects to take into account
knowledge of the wake-up schedules of its neighbors nor the currently encountered
traffic rate to adapt any of its parameters at run-time.
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Figure 2.13: Wireless Sensor MAC Protocol (WiseMAC)

The Wireless Sensor MAC (WiseMAC) [57] protocol shares many similarities
to B-MAC. It also consists of short periodic duty-cycles with a statically config-
ured interval to sense the channel for the presence of a preamble signal, a busy
tone that alerts nodes to stay awake for the upcoming frame transmission. As in
B-MAC, nodes sample the medium with the same interval, with sampling sched-
ules left independent and unsynchronized. A preamble is sent before each frame
transmission to alert the receiving node in its wake-up. In contrast to B-MAC,
WiseMAC learns the wake-up schedules of neighboring nodes by exchanging the
schedule offset in the frame header and the acknowledgement. WiseMAC saves
these schedule offsets in its schedule offset table, and henceforth minimizes the
length of the preambles in future transmissions, which notably pays off with re-
spect to the energy consumption. Figure 2.13 depicts this mechanism with the
second transmission, which only compensates for the clock drift, and adds some
small random duration for the medium reservation mechanism.

The X-MAC [25] protocol introduces a series of short preambles before every
packet transmission, allowing the receiver to reply in between with a so-called
Early-ACK. On average, it thereby halves the preamble transmission costs com-
pared to B-MAC, assuming uniform distribution of the sampling schedules over
time. Each preamble strobe contains target address information, which limits the
overhearing problem: non-targeted receivers simply turn off the radio and wait for
the next wake-up whenever they receive a preamble strobe containing a different
identifier. Eversince its implementation [170] in the Contiki operating system [47],
X-MAC is one of the most frequently used protocols in the WSN community.
Many deployment studies have since then used X-MAC as the default MAC proto-
col for Contiki on the link layer. Figure 2.14 depicts the strobing mechanism and
the Early-ACK indicating reception readiness for the frame transmission.

Figure 2.14: X-MAC Protocol (X-MAC)
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Figure 2.15: Low-Power-Probing MAC Protocol (LPP)

The Low-Power-Probing (LPP) [130] protocol introduces a receiver-initiated form
of duty-cycling. In contrast to WiseMAC, B-MAC, and X-MAC, where the sender
nodes announce frame transmissions to the targeted receivers using preambles and
busy-tones, the receiving nodes announce reception-readiness by transmitting a
small beacon probe frame in each wake period. If no subsequent frame is received
within a short timeout after the beacon, nodes turn off their radio until their next
wake period. Figure 2.15 depicts both nodes sending out beacon probes. When
attempting to transmit a frame to DST , the node SRC listens to the channel to re-
ceive DST ’s probe, and then immediately starts the frame transmission. A similar
approach is followed in the Receiver-Initiated MAC (RI-MAC) [187] protocol.
The Burst-Aware Energy-Efficient Adaptive MAC (BEAM) [12] protocol is an
improvement of the Contiki X-MAC protocol and was designed to operate under
variable load conditions. The integration of explicit acknowledgments allows for
supporting hop-to-hop reliability, lowering the overall energy expenditures of the
network for end-to-end transmissions. This makes the protocol particularly viable
for TCP/IP-based communication scenarios.
ContikiMAC [48] depicted in Figure 2.16 is the successor of X-MAC as the de-
fault MAC layer in Contiki v.2.5 and combines key concepts developed in various
preceding MAC protocols. Nodes wake up within static intervals to check the
channel for activity. Borrowing from X-MAC, ContikiMAC uses strobed pream-
bles to notify the receiver about an upcoming transmission. However, instead of
a simple bit sequence containing only the target address, ContikiMAC sends en-
tire data packets as strobes. Nodes turning on their radio and detecting an on-
going transmission stay awake to receive one complete packet and return an ac-
knowledgment. Building upon the schedule exchange mechanism of WiseMAC,
ContikiMAC learns the neighboring node’s wake-up patterns and saves them in a
schedule offset table in order to minimize the strobe transmission time in the future.

Figure 2.16: The ContikiMAC Protocol (ContikiMAC)
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The above list of examples of approaches from the classes frame-based, slotted
access and random access MAC protocols could be continued for almost arbitrar-
ily long. Langendoen’s MAC Alphabet Soup [108] is a web-based compendium
that lists and briefly characterizes the most widely cited protocols. Since protocol
schemes from each individual protocol class have been thoroughly evaluated and
improved in the last decade, Langendoen [109] conjectures that the future trend
in MAC protocol design will merely consist in combining different medium ac-
cess control schemes in order to create hybrid protocol approaches. Such hybrid
approaches shall combine the advantages of two classes, e.g., to alleviate the over-
provisioning problem of frame-based protocols by combining them with random
access patterns. Another hybrid approach could, e.g., improve the collision sus-
ceptibility of random access protocols by integrating guaranteed slots.
With our contribution in Chapter 7, we have not followed the strategy of mixing
two protocol classes, but have combined two widely used protocols with oppo-
site goals of the same random access class, in order to master variable traffic load
with a minimum of Quality of Service degradation. The basic operation principles
such as periodic wake-up schemes based on preamble sampling offer little room
for improvement, especially with respect to further increases in the (idle) energy-
efficiency. Room for improvement, however, still lies in alleviating the artificial
restrictions imposed by most of the classical E2-MAC protocols, namely the heav-
ily restrained maximum throughput, packet delivery rate and reliability, as well as
the significant increase in packet latency. E2-MAC protocols should ideally avoid
the well-known sources of energy-waste (e.g., idle-listening, overhearing or colli-
sions), but only to the point where the throughput and latency requirements of the
upper layers can still be met.

2.4.4 Traffic-Adaptive Medium Access Control

Energy-efficient MAC protocols duty-cycling the radio transceiver generally trade
off the targeted increase in energy-efficiency versus classical Quality of Service pa-
rameters, in particular throughput, latency and reliability. With the radio transceiver
being the most power-hungry component on most WSN platforms, researchers
have focused almost uniquely on minimizing this particular source of power con-
sumption, leaving other design goals aside. As a consequence, many of today’s
state of the art E2-MAC protocols discussed beforehand are able to deliver little
amounts of data at a much reduced energy cost, compared to energy-unconstrained
wireless channel MAC protocols. However, the price to be paid is that of severe
restrictions with respect to the maximum achievable throughput and the significant
increase in packet latency. Regrettably, most E2-MAC protocols fail to adapt to
varying traffic load, since their most crucial parameters (e.g., wake-up interval,
duty-cycle) are statically set at compile-time and remain independent of external
parameters encountered at run-time, e.g., the traffic volume.
With applications of sensor networks growing more diverse, the issue of E2-MAC
protocol adaptivity with respect to variable traffic load has become an increas-
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ingly important issue. Many applications have further been observed to exhibit a
heavily variable load over time, which is yet difficult to master for many MAC pro-
tocols. Researchers have hence started to combine different MAC approaches, in
order to combine advantages of different protocols or to alleviate the performance-
degrading impact of some E2-MAC protocols. A couple of studies therefore has
studied run-time adaptive MAC protocol behavior in the past few years. The term
adaptivity has been used eversince as an ambiguous, but popular buzzword in many
WSN studies, without a clear notion of how to assess or measure traffic adaptiv-
ity. In this section, we understand traffic adaptivity in the context of E2-MAC
protocols as the ability of the MAC protocol to dynamically and autonomously re-
act to changing traffic requirements with (de)allocation of the respective resources
needed to handle the imposed traffic with equally well Quality of Service at run-
time. This attempt to define the property still leaves room for improvement, which
we specifically target with our definition of a formal notion of a metric in Chapter 6.

In the following, we discuss several concepts in today’s literature on E2-MAC
protocols that tackle the design goal of traffic adaptivity. The protocols described
in the following all relate to our contributions on traffic-adaptive energy-efficient
MAC protocol design by sharing the goal of reaching a higher adaptability with
respect to variations in the traffic volume at run-time, and to achieve a sound max-
imum throughput and acceptable latency. Half of these contributions appeared
simultaneously or even later than MaxMAC in its initial appearance in [85] (i.e.,
the LWT-MAC [28], BEAM [12] or ZeroCal [124]).

In the Timeout-MAC (T-MAC) [38] protocol, an increased traffic adaptivity of
the S-MAC [190] protocol is achieved by prolonging the duty-cycles of the nodes
when so-called activation events occur. An activation event may be the sensing of
any communication in the neighborhood, the end of the own data transmission or
acknowledgement, the overhearing of RTS or CTS messages, which may announce
further packet exchanges. However, nodes do not communicate extended wake pe-
riods: if the sender receives a CTS in the transmission from DST to DSTII in
Figure 2.11, it knows that DST has remained awake and transmits the data frame.
However, simulations show that the adaptivity of the protocol is still very lim-
ited. T-MAC shuts down the radio too aggressively and introduces a high delay for
multi-hop transmissions. The performance gain of the traffic adaptivity enhance-
ment further only pays off for non-uniform bursty traffic patterns, since after the
rather short timeouts have expired, all nodes are turning off their radios. Packets
that are received from the upper layer in-between two T-MAC active periods, are
scheduled for the next regular common active period.

X-MAC [25] is based on asynchronous wake-up intervals, during which nodes poll
the channel for a preamble containing their address. Buettner et al. [25] derive a
formula for finding the energetically optimal sleep-wake interval, given that the
traffic is of Constant Bit Rate (CBR) with rate r that is unknown to the network
in advance. The proposed algorithm finds the near-optimal wake-up interval given
a traffic rate r, which is depends on the following relation: when increasing the
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wake-up interval of the nodes, they consume less energy on average for polling
the channel, but each frame transmission becomes more costly, since the expected
number of strobes needed to reach a receiver increases. The traffic adaptation
mechanism is, however, not implemented in Contiki’s X-MAC implementation
[170]. Since the basic medium access scheme of X-MAC using strobed pream-
bles requires a certain minimal interval between two wake-ups, and because of
the generally high per-packet overhead consisting in at least one strobe and Early-
ACK before every data frame transmission, the maximum throughput still remains
limited. It reaches only a fraction of that of energy-unconstrained wireless MAC
protocols. Chapter 7 presents a solution that goes much beyond the maximum
throughput of X-MAC, at the price of a temporally higher energy cost.

The AMAC [111] protocol relies on the S-MAC active window structure consisting
in SYNC, RTS and CTS windows. With low traffic, AMAC neglects the costly
RTS/CTS exchange and operates with a large sleep interval between two active
periods. With increasing traffic, it multiplies the amount of active periods by a
factor of 2n, thus increasing the net duty-cycle by the same factor. Applying this
adaptation strategy, the protocol increases throughput to some extent. With our
contributions of Chapter 7, we follow a similar adaptation strategy of multiplying
the active period frequency by factors of two, but even go a step further and let
nodes temporarily abandon any sleep-wake pattern. However, with choosing the
slotted S-MAC mechanism with a rather large static listen interval of 10% duty-
cycle, AMAC’s idle energy footprint remains considerably higher than that of many
other more recent E2-MAC protocols. Compared to state of the art preamble-
sampling approaches exhibiting idle duty-cycles below 1% (c.f. Chapter 7), an idle
duty cycle of 10% must clearly be considered inefficient.

Zero Configuration (ZeroCal) [124] is an optimization framework on top of the
Contiki [47] X-MAC layer, which chooses the crucial X-MAC parameter settings
(e.g., the wake-up interval) at run-time instead of compile-time, by calculating the
near-optimal wake-up frequency based on the encountered traffic rate. The current
settings are periodically recalculated and updated, but not communicated to the
neighboring nodes, as for instance in our contributions in Chapter 7. Communicat-
ing the current settings would generally not make sense, since ZeroCal is based on
X-MAC, which does not store and use information regarding the wake-up sched-
ules of the neighboring nodes. By taking into account the consumed energy of the
child nodes, parameters are set such that the energy consumption of the network
is somewhat balanced. The adaptation strategy has been shown to increase the
network lifetime by up to 50%, compared to static network-wide configuration.

Low Power Listening with Wake up after Transmissions (LWT-MAC) [28] is
a traffic-aware MAC protocol that attempts to combine the benefits of slotted pro-
tocols and asynchronous random access protocols. Under low load conditions,
the protocol employs the random access scheme of the B-MAC [143] protocol.
With increasing load, a scheduled access scheme is is adopted right after a B-MAC
transmission, which is similarly structured as that of the S-MAC protocol. With
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low traffic load, B-MAC shows slightly better performance with respect to energy
consumption and delay. With increasing traffic, however, LWT-MAC succeeds in
increasing throughput and decreasing latency, since collisions of the long pream-
bles significantly degrade B-MAC’s performance.

In the Burst-Aware Energy-Efficient Adaptive MAC (BEAM) [12] protocol, the
wake-up interval is adapted at run-time depending on the state of the packet queue.
In the current implementation of BEAM within the Contiki OS, a node duty-cycles
its radio with a wake-up frequency of 64 Hz at maximum, and 4 Hz at minimum.
In contrast to our contributions in Chapter 7, the currently used interval of a node is
not propagated to neighboring nodes. Similarly as done in ZeroCal, BEAM bases
on the X-MAC channel access technique, which simply sends out strobes whenever
a packet has to be sent without taking the neighboring nodes’ wake-up schedules
into account. A pairwise parameter exchange of the current wake-up frequency is
hence rendered obsolete, for the same reasons as discussed with ZeroCal.

Wake-up Radio Protocols

The authors of the Power Aware Multi-Access (PAMAS) Protocol [166], the
Berkeley PicoRadio [70] project and the Sparse Topology and Energy Man-
agement (STEM) [160] system have proposed to employ two types of radios
for solving the E2-MAC problems of a) idle listening and b) the need for inter-
node time-synchronization at the moment of data transmission. Their employed
node platform is equipped with the main radio for transmitting and receiving data
frames, and the wake-up radio, which is an ultra low-power transceiver of lower
complex circuitry. In PAMAS, the wake-up radio is used for exchanging RTS/CTS
packets and then waking up the main radio for the data transmission and reception.
In PicoRadio, the wake-up radio is assumed to be much simpler than in PAMAS
or STEM, and is always kept turned on. When a node has pending packets, the
wake-up radio transmits a simple signal that triggers the receiving stations to turn
on their main radios. The experimental dual-channel chip PicoRadioRF, however,
has been shown to be prone to interferences and noise in the channel. Often, nodes
wake up their main radios when in fact they are not targeted receivers. In STEM,
the wake-up radio is more complex and is capable to reliably encode the target des-
tination address. Due to its higher complexity compared to PicoRadio, however,
the designers of STEM have chosen to duty-cycle the wake-up radio, and propose
to run a simple low-power-listening approach for this radio as well.

To the best of our knowledge, there has not been too much research activity in this
class of protocols in the recent past. We conjecture that the research in this area
has come to limits that seemed difficult or even impossible to overcome.

2.4.5 Trends & Future Directions

An enormous amount of work has been dedicated to designing and prototyping
various wireless sensor MAC protocols in the past decade. A large number of pro-
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tocols has been developed for very specific application areas and use cases, where
they provide an added value compared to existing approaches, e.g., due to better
performance with respect to energy-efficiency, throughput, reliability or latency.
However, as research in the area of sensor networks progresses towards real-world
use cases and the development of consumer-oriented commercial and industrial
products, we are convinced that in the near future, fewer work will focus on iso-
lated topics such as medium access control or routing. As in many technologies
that in the end have to be applied by non-expert users in various other fields of
research or in business models of the economy, there is a need for standardization.

In the past couple of years, we have observed the undeniable trend that in the ma-
jority of deployment studies, especially where the MAC layer itself was not of
primary importance, random access protocols have made their way and have be-
come the predominantly applied class of protocols. With X-MAC/ContikiMAC
and B-MAC being the default MAC layers in Contiki and TinyOS, respectively,
preamble-sampling MAC protocols are nowadays by far the most widely used pro-
tocols in deployment studies. Since these concrete implementations, after years
of improvement and bugfixing, have proven robust and error-resilient, and further
exhibit low idle duty-cycles, they nowadays qualify for a very wide range of real-
world applications. Therefore, preamble-sampling MACs probably have become
one of the standards that the field was looking for throughout the last decade.

Evidence in Recent Related Work

In the following, we briefly describe a selection of application studies of WSNs
in real-world deployments, where the MAC layer issue itself does not play a cen-
tral role. All of these studies have been published at the scientifically most rep-
utable conferences in the sensor networks field, notably the ACM International
Conference on Embedded Networked Sensor Systems (SenSys) or the International
Conference on Information Processing in Sensor Networks (IPSN) and the Euro-
pean Conference on Wireless Sensor Networks (EWSN) between 2008 and 2010.
We have observed that the researchers carrying out these projects have all chosen
preamble-sampling protocols on the MAC layer for their software configurations -
although, especially for TinyOS and Contiki, other MAC protocol implementations
were also readily available.

• Ceriotti et al. [30] monitored the temperature and humidity conditions of me-
dieval frescoes in the Torre Aquila deployment, as well as the resulting defor-
mations of the tower. The deployment lasted for over 4 months. The authors
use the TeenyLime framework on top of TinyOS’ B-MAC implementation.

• The same authors have applied sensor network technology to adaptively control
the electric light in a highway road tunnel in [29]. They used wireless sensors to
sense the present natural light intensity at different locations within the tunnel
to minimize the additional energy spent for artificial light. Again, the authors
utilized the default TinyOS B-MAC implementation.
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• Pasztor et al. [138] and Dyo et al. [54] have studied the social patterns of bad-
gers during one year deployment of a wildlife monitoring system in a forest en-
vironment in Great Britain. Using TmoteSky nodes with Contiki and X-MAC,
the authors reached an effective net duty-cycle of 1%, and could hence prolong
the network’s lifetime in order to meet the requirements of their study.

• Chipara et al. [35] describe the design, deployment and empirical analysis of
a wireless clinical monitoring system that collects pulse and oxygen saturation
readings from 41 patients in a step-down hospital unit over 7 months. The
authors utilize TinyOS and its default B-MAC implementation. The end-to-
end reporting reliability achieved in this study was reported higher than 99%.

• Chang et al. [32] empirically study the oxygen concentration and temperatures
in differences depths of a small lake in Denmark using wireless sensor nodes
attached to several buoys. The authors use TinyOS and its default B-MAC
implementation.

This excerpt only serves to illustrate the undeniable trend towards application of
preamble-sampling protocols in all kinds of application scenarios. A vast number
of additional studies could undoubtedly be quickly identified in other venues. Un-
less researchers were interested in promoting their own proposed MAC protocols
by applying it in a field study, almost no study of the past three years could be
identified using a frame-based or slotted energy-efficient MAC protocol.

Why Asynchronous Preamble-Sampling?

We investigated the reasons why the class of asynchronous random-access and
preamble-sampling MAC protocols seems to have made its way to become the
most predominant class of MAC protocols in today’s sensor network communities.
We are certain that the following characteristics of this class of MAC protocols play
a major role and are often decisive when it comes to design the operating system
and network stack configuration for deployment studies:

• Asynchronous preamble-sampling protocols do generally not rely on assump-
tions and prerequisites, which might in reality turn out to be cumbersome to
achieve. One such example is the rigid time-synchronization requirement of
frame-based or slotted MAC protocols, which is not necessary in asynchronous
random-access based protocols. MAC protocols with a continuous slot or frame
assignment mechanism are prone to failure if the network connectivity within
the network becomes (temporarily) disrupted. Intermittent connectivity is of-
ten encountered in real-world deployments, often because of a slight change in
the environment, e.g., because of a new obstacle in between two nodes (like a
closed door), or because some nodes move and hence get out of each other’s
range, e.g., in a wildlife-monitoring application. Further problems relate to as-
sumptions concerning the clock drifts: synchronized MAC protocols rely on
constant drifts and periodically re-synchronize. However, in practice, clock
drifts can differ heavily from one node instance to another, since digital con-
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trolled oscillators (DCOs) can become affected by variations in temperature,
pressure or humidity conditions. Asynchronous protocols do not rely on the
assumption of a network-wide time-synchronization, which qualifies them for
scenarios where a temporal network partition can not be excluded.

• Preamble-sampling MAC protocols are general-purpose protocols, offering flex-
ible best-effort communication. Their energy footprint in the idle traffic case
is limited to a few channel checks. The per-packet overhead for contention
and channel acquisition is furthermore comparatively low. For many scenarios,
running these protocols hence result in the longest lifetimes, and the network
service characteristics they provide often suffice as well, although they can not
guarantee any minimal Quality of Service.

• Preamble-sampling MAC protocols are of low complexity, since no distributed
slot assignment or scheduling problems have to be solved. This usually results
in less complex and hence smaller code for the MAC layer. Since sensor node
microcontrollers are heavily limited in memory (e.g., 64 KBytes for the pop-
ular MSP430 [171]), this can be a decisive advantage, as developers are often
struggle to have enough memory left for their applications.

• Due to their general-purpose nature and good performance in many case stud-
ies, the preamble-sampling MAC protocols X-MAC/ContikiMAC and B-MAC
have been chosen as default MAC layers in Contiki and TinyOS, respectively,
although there were other prototype implementations of MAC protocols present
in the development repositories. Since the scope of researchers working in the
WSN field is more and more moving towards designing complex application-
oriented systems with WSN technologies, and the observation of real-world
phenomena, altering the MAC layer for slightly better in-situ performance is
in most cases not considered. Hence, the choice of the default MAC layer in
Contiki and TinyOS has probably set the direction for the standard of the next
decade of WSN studies and for many real-world use cases and applications.

There is evidence that the basic scheme of asynchronous wake-ups and preamble-
sampling will emerge as a standard for the MAC layer in many future studies, es-
pecially for WSN applications and deployment studies. The availability of reliably
working implementations has the effect of a de-facto standardization, and might
ultimately converge towards one MAC protocol solution. Just like IEEE 802.11
has competed versus HIPERLAN/2 by the earlier availability and thus higher mar-
ket penetration to become the standard for wireless broadband LANs, we expect
that, finally, some sort of asynchronous contention-based preamble-sampling MAC
protocol will dominate the market of industry-ready WSN technologies. Therefore,
with our contributions of in Chapter 7, we build upon the established design prin-
ciples of asynchronous preamble-sampling, instead of re-inventing the wheel of
MAC protocol design. However, we target at alleviating certain drawbacks of this
class of MAC protocols, especially their weak adaptability to variable and high
traffic volumes and the inherent limitation of throughput and latency compared to
energy-unconstrained wireless channel MAC protocols.
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2.5 Forward Error Correction

A key factor for the proliferation of wireless sensor network technologies is the
reliability of the communication. It is crucial for many applications that the sensed
data is delivered quickly and reliably across the network. The low-power wire-
less channel is, however, often prone to many hard-to-predict wireless phenomena.
Transmission errors can occur due to a variety of reasons, ranging from multipath
propagation effects, fading, scattering and reflection to interferences with other
ongoing transmissions. Often, the channel exhibits a timely and spatially variable
bit error rate (BERs) in the range of 10−4 or even higher, which results in packet
loss rates ranging from less than 1% to sometimes far more than 10%-20%, as
described by Zhao et al. [191]. In wired networks, BERs are usually several mag-
nitudes lower (e.g., at maximum 10−7, but usually in the range of 10−9 for DSL
networks, as explored by Starr et al. [168]).
In this thesis, we tackle the issue of unreliable and lossy links and their performance-
degrading impact on Quality of Service in several contexts, ranging from the MAC
layer to the transport layer. The techniques presented in this section relate to our
contributions on link-quality-aware run-time adaptive Forward Error Correction in
Chapter 8. A few selected figures were taken by courtesy of Sebastian Barthlomé
from his thesis presented in [17].

2.5.1 Automatic Repeat reQuest vs. Forward Error Correction

High error rates on the link level inevitably lead to a higher rate of corrupted pack-
ets, rendering the retrieved data unusable. The simplest and most naive way to deal
with transmission errors on the link layer is to retransmit the same packet again
until it has been correctly received or a maximum retry count has been reached.
RFC 3366 [62] describes different Automatic Repeat reQuest (ARQ) schemes that
are used today in different kinds of networks, ranging from various wireless net-
works to wireline and optical networks. In ARQ, the sender appends a cyclic redun-
dancy checksum (CRC) [141] to the transmitted packet and waits for the acknowl-
edgement (ACK) from the receiver. In order to reliably determine the integrity of
the packet, the receiver calculates the CRC across the received payload again and
compares it to the received checksum. If both CRCs match, the receiver confirms
the successful reception to the sender with an ACK. If the sender does not receive
an ACK within a certain time window, it assumes that the transmission attempt has
failed and invokes a retransmission.
A sophisticated mechanism to cope with packet corruption due to random bit er-
rors is the concept of Forward Error Correction (FEC), as described by Shannon
in [163]. FEC is used in a wide range of commercial and industrial products where
data is transmitted over erroneous channels and where, henceforth, bit errors are
likely to occur. FEC is based on Error Correcting Codes (ECCs), which can detect
and correct a certain amount of errors in a sequence of bits. In FEC, the sender
computes parity information according to the applied ECC over the data bits and
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adds this redundant information to the payload. At the receiver, the decoder of
the applied ECC checks the received data bits for errors by taking this parity in-
formation into account. FEC schemes hence generally introduce an overhead with
respect to computation (encoding/decoding) and the number of bits to be trans-
mitted. However, this overhead can pay off with an increased packet delivery rate
(PDR) and a reduction of the (re)transmission overhead and packet latency, since
in case an error occurs, the correction can take place right after packet reception.

2.5.2 Error Correcting Codes

The Error Correcting Code (ECC) is the key component of any Forward Error
Correction (FEC) mechanism. The literature basically distinguishes between two
basic types of codes: Block Codes and Convolutional Codes. Block codes split the
raw data to be encoded into a predetermined amount of bits (a block) and encode
it block after block. Convolutional codes work on bit streams of arbitrary length,
but are often converted into block codes in practice by defining a constant size
block unit. Error correcting codes can detect and correct bit errors - in contrast
to cyclic redundancy checksums (CRCs), which can only judge on the presence of
such errors. The number of detectable and correctable errors differs heavily among
the different ECCs. However, since the pure error detection capabilities of most
ECC codes are much below that of CRC, FEC are usually combined with CRC
schemes. FEC schemes can usually only detect one or a few more errors than they
can correct. In contrast, CRCs can reliably determine whether a decoded payload
is equal to the originally sent payload. The study [122] provides a detailed analysis
of the collision probability of CRC16 and CRC32, hence the probability that two
input sequences map to the same checksum, which equals to 1

216
= 1.5 · 10−5 and

1
232

= 2.3 · 10−10 for CRC16 and CRC32, respectively. Even with CRC16, it is
hence very unlikely that bit errors introduced into the payload is left undiscovered,
as it would have to map to the same checksum as the correct payload. CRC16 is the
16-bit variant of CRC, which is applied in many MAC protocol implementations
for WSNs, including those of this thesis. The CRC16 implementation we used is
based on a pre-calculated lookup table with 256 entries stored in the text segment,
which significantly speeds up the calculation of a CRC across a packet payload.

An important characteristic of the different ECCs is the way how the encoded in-
formation is represented. In a systematic code, the original unencoded bit sequence
is visible in an unchanged form within the encoded bit sequence. Systematic codes
have a decisive advantage over non-systematic codes: given that no bit errors have
occurred (which can be verified using a CRC), the decoding process is simple: the
original information can be decoded by just removing the parity information from
the received information. In non-systematic codes, the original data is not visible
as clear text in the encoded data. Hence, these codes always require decoding op-
erations, which can be time-consuming and costly, depending on the complexity of
the employed code. In the following, we briefly characterize four classes of Error
Correcting Codes, upon which we rely our further investigations in Chapter 8.
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Repetition Code

The Repetition Code [127] is probably the most simple and straightforward way
to achieve the capability to correct bit errors. It requires very few computational
power, however, at a price of a high parity overhead in the resulting encoded data.

Encoding: The encoding operation of the Repetition Code takes k bits from the
raw data and simply repeats them r times, with r being an odd number ≥ 3. When
implementing the repetition code, we chose to operate on the byte level, hence
taking units of 8 bits as input. The Repetition Code’s encoding function then simply
consists in copying each input byte three times to obtain the encoded data.

Decoding, Error Detection and Correction: The error detection and correction
procedure in the Repetition Code is straightforward. The parameters k and r used
for encoding define how many bits are used to encode one single bit. Hence, each
of the 0-bits and 1-bits of the encoded bits are counted one after the other. The
decoder then decides the value of the decoded bit according to the higher counter.
With r being an odd number, it is guaranteed that one of the counters will have a
higher value than the other. The decoding hence relies on the assumption that the
majority of the encoded bits have not been flipped - a mechanism which is often
referred-to as Majority Logic Decoding [184]. The error correction capability of
the repetition code is limited to b r2c, i.e., a repetition code with k = 1 and r = 3
can correct 1 bit error in every 3 bits of the encoded data.

Hamming Code

The Hamming Code is probably the most prominent and well-known ECC and
belongs to the systematic linear block codes. In a hamming code, the bit length of
an encoded word n is computed as n = 2m−1, wherem = n−k equals the number
of parity bits, which explains the commonly used notation of Hamming(n,k).
The calculations of the Hamming Code heavily rely on matrix operations, involv-
ing the two matrices Generator matrix G and the Parity check matrix H, which
have the following form:

Gk,n := (Ik| −AT ) =


i11 −a11 −a21 · · · −an−k1

i22 −a12 −a22 · · · −an−k2
. . .

...
...

. . .
...

ikk −a1k −a2k · · · −an−kk



Hn−k,n := (A|In−k) =


a11 a12 · · · a1k i11
a21 a22 · · · a2k i22

...
...

. . .
...

. . .
an−k1 an−k2 · · · an−kk in−kn−k


The matrix A is contained in both the generator matrix G and the parity check
matrix H, and is composed of the parity bits calculated over the data bits, cf. Ling
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d0 d1 d2 d3

p0 1 1 0 1
p1 1 0 1 1
p2 0 1 1 1

Figure 2.17: Relation of Data and Parity Bits

d0d1

d2

d3

p0

p1p2

Figure 2.18: Data-Parity Bit Coverage

et al. [116]. The basic idea of the Hamming Code is to calculate the parity bits
in such a way that each original data bit is covered with a different unique set of
parity bits. Since all calculations are performed on binary numbers, all the matrix
operations are computed in the Galois Field GF(2) using modulus 2. More details
on the construction of A and H and their properties can be found in the textbooks
of Ling et al. [116] and Moon [126].

Encoding: Based on the chapter on Hamming codes in [126], we give a brief
example of Hamming(7,4) and construct A from the parity bits calculated from a
block size of 4 raw input bits. The encoding uses the Generator matrix G4,7, which
has the following form:

G4,7 :=


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1


The generator matrix G4,7 contains the identity matrix I4 in the first four columns.
The subsequent three columns correspond to the transposed inverted matrix −AT .
Table 2.17 lists the data bits d0, d1, ..., d3 in the columns and the three parity bits
p0, p1, p2 in the rows. Each parity bit in each row can hence be calculated or
expressed as the sum of the listed data bits in the Galois Field GF(2). Note that
in GF(2), the expression 1 + 1 equals to 0, which can easily be achieved with the
XOR instruction. As the rows are linearly independent, each data bit di can be
represented as the sum of a unique set of parity bits.

Figure 2.18 illustrates this relationship: the data bit d0 can be calculated from the
set of parity bits {p0, p1} and the data bit d3 from the parity bits {p0, p1, p2}. Any
input bit sequence expressed as the vector u = u0u1...uk−1 can hence be encoded
as the matrix multiplication v = uG, which results in a sequence of n bits.

Decoding, Error Detection and Correction: The so-called minimum Hamming
distance dmin of the employed code determines its error correction and detection
capabilities. dmin is the minimum number of bits that have to be flipped in order to
transform one valid code word into another one, or the minimum distance between
any two code words of the Hamming Code. The error correcting capability t can
be calculated as follows:

t = bdmin − 1

2
c
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In the example of the Hamming(7,4) code, at least three bits have to be changed to
obtain a new code word, hence dmin = 3. Hamming(7,4) hence is able to correct 1
bit error per code word. The parity check matrix H for the Hamming(7,4) has the
following form, cf. [126]:

H3,7 :=

 1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1


In the Hamming code, encoding and decoding can likewise be modeled as vector
addition operations and matrix multiplications. The received encoded word r can
be written as the sum of the two vectors e + v, where the vector e models the bit
error positions introduced to the encoded code word v, hence r = v + e.

The so-called syndrome vector s, can be computed from the received data r, the
transposed parity check matrix HT, and the relation v = uG:

s = rHT = (v + e)HT = vHT + eHT = uGHT + eHT = eHT

since it can be shown that the following condition holds, cf. [126]:

HGT = GHT = 0

The syndrome vector s contains information with which the location of potentially
introduced bit errors can be derived. If all values of the vector are equal to zero, no
bit error occurred. In this case, no error has to be corrected. In case the syndrome
is not zero, errors need to be corrected. The bits which are equal to one indicate
which bits were flipped and need to be corrected.

Double Error Correction Triple Error Detection Code

The Double Error Correction Triple Error Detection (DECTED) proposed by Gul-
liver et al. [69] is a systematic block code from the class of the Hamming codes.
The DECTED(16,8) variant used in this thesis is able to correct up to two bit er-
rors and detect three adjacent bit errors. DECTED(16,8) encodes 8 input data bits
and creates an encoded word of 16 bits, of which the first 8 bits correspond to the
original input bits and the second 8 bits are the parity bits.

Encoding: The encoding and decoding process is analogous to that of the Ham-
ming(7,4) code and consists in an encoding operation using a generator matrix G
and decoding using the parity check matrix H to obtain the syndrome vector. The
DECTED(16,8) encoder takes 8 bits and computes the encoded word matrix using
G8,16, which has the following form, cf. [69]:
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G8,16 :=



1 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0
0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 1
0 0 1 0 0 0 0 0 1 0 0 1 1 0 1 0
0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 1
0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0
0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1
0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1
0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0


Encoding a byte u to obtain a 2-bytes code word v corresponds to a multiplication
of u with the generator matrix, hence v = uG.

Decoding, Error Detection and Correction: In the case of DECTED(16,8), the
matrix H has the following form:

H8,16 :=



0 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0
1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0
1 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 1 0 1 0 0 0 1 0 0 0 0
1 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0
0 1 0 1 1 0 0 1 0 0 0 0 0 1 0 0
1 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0
0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 1


In analogy to Hamming(7,4), the syndrome vector s is calculated using the parity
check matrix H and the received code word r = e+ v, and the relation v = uG:

s = rHT = (v + e)HT = vHT + eHT = uGHT + eHT = eHT

The syndrome vector s then again contains the location of the erroneous bits. If
all numbers within s are zero, there is no error to correct, and the decoder just
needs to chop off the green parity bits from the corrected code word. In case there
is a non zero value, s uniquely identifies a 1-bit error or a 2-bit error within the
received encoded data r. A more detailed description concerning the detection and
correction of bit errors in DECTED(16,8) can be found in [69].

Bose-Hocquenghem-Chaudhuri (BCH) Code

Bose-Hocquenghem-Chaudhuri codes were invented in 1959 by Hocquenghem [79]
and independently in 1960 by Bose and Ray-Chaudhuri [22] and have since then
been intensively studied in academic research, and likewise been adopted in many
commercial and industrial applications, e.g. in CD-ROM drives, where read errors
often occur due to scratches or dust on the disk, or in the Digital Video Broadcast-
ing Terrestrial (DVB-T) standard, where errors must be recoverable by the receiver
alone because of the unidirectional channel, which does not allow the receiver to
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request a retransmission or signal a reception failure by not sending an acknowl-
edgement. BCH codes belong to the class of systematic cyclic block codes, which
have convenient algebraic properties that qualify them to be extensively used in
the context of error correction coding. BCH codes are highly flexible and can be
tailored to correct any number of bit errors in a code word of a given length. BCH
are defined by the two parameters n and k. A BCH(n,k) code encodes k bits into a
code word of length n bits.

Encoding: The essential component for encoding in BCH is the generator polyno-
mial g(x), with which the data is processed in a block-by-block manner, similar to
the generator matrix mechanism in the Hamming code. In the BCH code, encoded
bit sequences correspond to polynomials in the Galois Field (GF). Each code word
can be represented as the sum of products of the generator polynomial with a data
block. Morelos-Zaragoza [127] and Lin [115] provide a detailed mathematical dis-
cussion of the generator polynomial. BCH relies on the operation of the modular
division of polynomials. A sequence of input bits u is first transformed into the
polynomial u(x). The encoded polynomial v(x) is then calculated as

v(x) = u(x) · xk − ((u(x) · xk) mod g(x))

where u(x) ·xk is a so-called cyclic shift of the original bit sequence of k positions,
with k representing the degree of the generator polynomial. Since the original input
is shifted by the k bits to the higher positions, it remains visible in clear text within
the code word, which qualifies BCH as a systematic code.

Decoding, Error Detection and Correction: In analogy to the Hamming code,
which calculates a syndrome vector, BCH computes a so-called syndrome polyno-
mial s(x) that locates the positions of the errors, if there are any. An encoded code
word r(x) can be written as

r(x) = v(x) + e(x)

with e(x) being the polynomial representing the occurred errors. The syndrome
polynomial s(x) is computed as

s(x) = r(x) mod g(x) = e(x) mod g(x)

If the resulting syndrome polynomial equals 0, hence s(x) = 0, no errors occurred
and hence there is no error to correct. Since BCH is a systematic code, the decod-
ing then just consists in retrieving the bits that represent the original input data. In
case of a non zero value of the syndrome, the BCH correction mechanism comes
into play: First, the erroneous bits in the received code word are determined. Two
algorithms have been proposed for this task, among them is the Berlekamp-Massey
algorithm [18][120]. Berlekamp-Massey calculates the unknown error polynomial
e(x) out of the syndrome polynomial s(x). When e(x) is known, the so-called
unique roots of the error polynomial have to be found to determine the error posi-
tions using the Chien Search algorithm [34]. A detailed mathematical discussion
of the BCH decoding and error correction process can be found in Hong et al. [81].
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Reed-Solomon (RS) Code

Reed-Solomon Codes have been proposed in 1960 by Reed and Solomon [154].
They belong to the class of cyclic systematic block codes, and share many sim-
ilarities with BCH codes. An RS code specified as RS(n,k) encodes k bits into
a code word of n bits. Just as BCH codes, RS codes be easily parametrized to
correct a specified amount of errors, they have been applied in various industrial
and consumer products and a wide range of networking technologies, e.g., DSL,
WiMAX, the Advanced Television Systems Committee (ATSC) standards, as well
as in commonly used data storage technologies. The error correcting capability t
of any given RS(n, k) code calculates as t = bn−k2 c.

Encoding: In Reed-Solomon, the original data is interpreted as coefficients of a
polynomial p(x) over the Galois Field GF(2m), where m specifies the amount of
bits denoting the symbol size. Just as in BCH, a generator polynomial g(x) for the
given RS(n, k) is used for the encoding operation. g(x) has the following form:

g(x) = g0 + g1x+ g2x
2 + g3x

3 + . . .+ g2t−1x
2t−1 + g2tx

2t

where 2t = n−k equals the number of parity symbols. The variable t denotes how
many errors the code can correct per block, and 2t (=the degree of the polynomial)
equals the number of parity bits per block. The coefficients g0, g1, . . . , g2t are
determined by n and k. The encoded data equals the coefficient of the output
polynomial s(x) that is obtained when multiplying p(x) with g(x) in GF(2m):

s(x) = p(x) · (x)

Decoding, Error Detection and Correction: The received code word that can
have been corrupted during transmission is again interpreted as the received poly-
nomial r(x), for which the following holds:

r(x) = s(x) + e(x)

where e(x) denotes the error location polynomial. For determining e(x), several
algorithms can be used, among them again the Berlekamp-Massey [18]. The so-
called unique roots of the error polynomial e(x) then again determine the error
positions, and can be determined using the Chien Search algorithm [34]. More
details on the Reed-Solomon encoding and decoding can be found in Moon [126].

2.5.3 Forward Error Correction in Wireless Sensor Networks

A recent analysis of related work on Forward Error Correction mechanisms and
run-time adaptive schemes in particular applied in WSNs, conveyed that the re-
lated work in this field is yet rather limited. Most studies have applied basic FEC
techniques and simple ECCs in the context of sensor and mobile ad hoc networks.
However, the chosen codes and the applied experiment methodologies clearly leave
room for further investigations. Run-time adaptive FEC schemes have yet only
been studied in network simulators and in rather different networking contexts
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(e.g., IEEE 802.11-based MANETs), other than static WSNs with low-power nar-
rowband channels.

Jeong et al. [99] study the performance of two rather simple ECCs. The study
evaluated Hamming-based SECTED and DECTED codes in an indoor and out-
door link scenario using the Chipcon CC1000 [172] radio in the frequency range
around 868 MHz and simple on-off-keyed modulation (OOK). However, the entire
analysis was conducted in the absence of any other ongoing concurrent traffic. The
authors of [99] conveyed that the most frequently occurring errors in their experi-
ment were 1-bit and 2-bit errors, and that occasionally, a few burst errors occurred
in their indoor experiment. The authors conclude that complex ECCs with a high
correctional power are hence not necessarily required, but that this trade-off needs
to be investigated in environments with higher error rates.

Busse et al. [27] similarly examine Hamming-based SECTED and DECTED codes
and a Reed-Solomon variant in an indoor testbed of the FU Berlin Embedded Sen-
sor (ESB) nodes, which use the RFM TR 1001 [156] radio chip that operates with
the same frequency and modulation as the CC1000. Reed-Solomon are briefly dis-
cussed in Section 2.5.2. The ESB nodes, which we also used in Chapter 5 for a pre-
liminary study on MAC layer mechanisms, are further described in Section 2.1.1
of this chapter. Unfortunately, the topology and the traffic pattern examined is far
from real-world environmental conditions: 16 nodes are placed in a corridor in a
line-of-sight with a distance of only 1m in between two nodes and a rather large
payload size of 255 bytes. The impact of signal distortions caused by the signal
penetrating concrete walls and floors is hence not taken into account. Similarly
as in [99], the effect of interferences from concurrent transmissions, which have
a crucial impact in real-world sensor networks, were neglected as well. In [99],
only one node is broadcasting packets, which are then logged by the remaining 15
nodes. The authors of [27] conclude that most errors were 1-bit and 2-bit errors,
but that burst errors occurred rather frequently. Henceforth, they propose to apply
code word interleaving as an effective strategy to cope with burst errors.

Willig et al. [185] also use the ESB platform and evaluate a very similar setup,
namely a chain of 10 nodes with a distance between two adjacent nodes fixed to
only 30 cm. However, the study is limited to evaluate the frequency and the occur-
rence patterns of transmission failures due to non-detection of the frame preambles
or because of the occurrence of bit errors. Once again, important crucial wireless
phenomena were not taken into account, e.g., signal attenuation through concrete
walls and floors or interfering transmissions of other nodes in the network.

Liang et al. [114] is the most recent study on ECCs in WSNs. It appeared during
our own evaluations on ECC mechanisms, cf. Chapter 8. The study examines
one Hamming and one Reed-Solomon variant to protect transmissions of a TelosB
network from interferences with an IEEE 802.11b/g wireless LAN, which operates
in the same 2.4 GHz ISM band. [114] shows that indeed, the packet delivery rates
could be improved by up to 70% using ECC, especially during phases of heavy
interferences caused by conference attendants using their IEEE 802.11 devices.

53



2.5. FORWARD ERROR CORRECTION

2.5.4 Adaptive Forward Error Correction

Since Forward Error Correction (FEC) schemes are able to correct bit errors with-
out making an entire retransmission necessary, they could potentially be employed
in WSNs, which are traditionally susceptible to high bit error rates and weak signal-
to-noise ratios. However, since their application comes at the cost of an increased
power consumption due to complex encoding and decoding operations, their appli-
cation is only justified when there is a real necessity. This basically motivates the
need for run-time adaptive FEC schemes, which adapt the level of error coding to
the encountered link quality. To the best of our knowledge, extensive real-world
experiences with adaptive FEC schemes applied in distributed low-power WSNs
do not exist to date. In Chapter 8, we bridge this missing gap with our thorough
evaluation of eight different ECCs and three adaptive ECC selection strategies in a
series of real-world experiments.

Ahn et al.[1] presents simulation-based study on adaptive FEC mechanisms. This
study examines three static BCH configurations and an adaptive approach, the so
called FEC-level adaptation (FECA) algorithm. In FECA, the parameters n and k
of BCH are adapted in three steps, in order to increase and decrease the amount of
parity bits depending on the channel conditions. FEC adaptations are activated by
either a packet loss or the timeout of a backoff timer. However, FECA [1] is not par-
ticularly designed for sensor networks, but rather for IEEE 802.11-based wireless
mobile ad hoc networks. The authors use the network simulator ns-2 [133] and ap-
ply a generic wireless channel error model. Their study concludes that FECA per-
forms better than the application of statically configured FEC mechanisms, given
that the error rates do not oscillate too rapidly.

Ahn, Hong et al. [2] introduce the adaptation algorithm AFECCC in their network
simulation-based study. This algorithm dynamically matches the FEC code size to
the low-frequency wireless channel bit error rate, which is assumed to be measur-
able by the sensor node. According to various simulations with different channel
models, AFECCC performs better than any static FEC setting.

In the recent past, the application of simulation tools have been identified as a
general drawback of many ad hoc and sensor network studies. Inappropriate pa-
rameter settings, unrealistic channel, traffic and error models of many simulation
studies have led to an erosion in trust in simulation results, cf. Kurkowski et al.
[105] and Andel et al. [11]. The trend in research on wireless sensor and ad hoc
networks has clearly shifted towards experimental feasibility studies of proposed
mechanisms and protocols on real-world devices, cf. [95]. Therefore, our contri-
bution in Chapter 8 clearly distinguishes from the related work presented above.
Instead of simulating ECCs with a user-defined wireless channel error model and
interpreting questionable simulation result data, the chapter evaluates eight differ-
ent ECCs, ranging from simple codes with a low correctional power to complex
and sophisticated codes with a high error correction capability in a wide range of
experiments performed under real-world sensor network conditions.
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2.6 TCP/IP in Wireless (Sensor) Networks

In this thesis, we tackle the problem of TCP/IP-based communication within WSNs
operating with radio duty-cycling energy-efficient MAC (E2-MAC) protocols. This
section presents works and studies that are related to our contributions in Chapter 9.
Selected figures were taken by courtesy of Ulrich Bürgi from his thesis [26].

2.6.1 Problems of TCP in Wireless Networks

TCP/IP in wireless ad hoc networks has long been observed to perform poorly,
especially with increasing network size and communication across multiple hops.
Reasons for this vital handicap have been intensively studied in the context of IEEE
802.11-based ad hoc networks [31][80][68], long before sensor networks emerged.
The main reasons for poor TCP performance in wireless multi-hop networks can
be summarized as follows:
• In wired networks, packet loss could be safely associated to congestion in the

network. With TCP developed over years or even decades for communication
in wired networks, most TCP variants (e.g., RENO, SACK) significantly re-
duce the congestion window when perceiving packet loss. The so-called AIMD
(Additive-Increase/Multiplicative-Decrease) algorithm lets the congestion win-
dow grow linearly, but reduces it exponentially when a congestive situation is
perceived. In RENO, the sender reduces the size of its congestion window
to half when a packet loss is detected. Together with the fast recovery and
fast retransmit mechanism described in RFC 2581 [6], this congestion control
strategy has proven highly effective in various wired networks.

• The wireless channel is prone to transmission errors caused by multipath prop-
agation, short-lived interferences, fading, scattering and reflection effects and
other wireless phenomena. Often, links in WSNs exhibit a timely and spatially
variable bit error rate (BER) in the range of 10−4 or even more, which results in
packet loss rates ranging from less than 1% to sometimes far more than 10%-
20%, as shown by Zhao et al. in [191]. In wired networks, where TCP/IP
was initially designed for, BERs are several magnitudes lower (e.g., DSL net-
works [168] exhibit BERs of maximum 10−7, but usually in the range of 10−9).
The default TCP congestion control mechanism interprets packet loss as a sign
of congestion in the network, and aggressively throttles the congestion win-
dow (multiplicative decrease), which has a vastly deteriorating impact on the
medium utilization and consequently on the end-to-end throughput. In wireless
networks, packet loss often occurs at random, e.g. because of short-lived inter-
ference or reflection effects, and not necessarily due to network congestion.

• Wireless networks applying contention-based random access MAC protocols
can only make collisions (and hence TCP packet losses) less probable, but
never fully prevent them. The reasons for this are manifold. First, nodes only
have a half-duplex channel: they can not receive and transmit at the same time.
Therefore, two nodes might concurrently sense the carrier idle and then start
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to transmit, without noticing the collision they caused. Second, the assumption
of symmetric links (if A is in the range of B, B can also reach A) does often
not hold. Collisions can therefore occur due to nodes interfering with transmis-
sions out of their range. Third, contention-based protocols access the channel at
random, often with low initial backoff windows (e.g., 7 slots in IEEE 802.11),
which renders collisions in the initial transmission attempts rather likely.

• In wireless networks, the so-called hidden node and exposed node problems
often lead to collisions of TCP data segments and, even more often, TCP ac-
knowledgements. Since data segments are much larger, ACKs are more likely
to collide with them, which results in a higher share of missing ACK segments
at the TCP sender. This in turn often lets the senders’ TCP timeout timer expire,
which then implies restarting the congestion window from the lowest level.

Most work on the topic of TCP in wireless multi-hop networks has been conducted
in IEEE 802.11-based ad-hoc networks. A frequently cited study is Snoop [15]
(cf. Section 2.6.2), upon which many further studies on TCP over multiple wire-
less hops rely. Snoop is, to the best of our knowledge, the first study to introduce
TCP caching and local retransmission techniques in intermediate nodes in a TCP
connection, which is the key mechanism of our contribution in Chapter 9. We ne-
glect to discuss other IEEE 802.11-based studies in this chapter, since in general,
the wireless channel and device constraints in IEEE 802.11-based networks are
rather different from those of sensor networks (i.e., channel bandwidth, computa-
tional power, memory and energy consumption constraints). Studies that explicitly
tackle TCP optimizations in WSNs have been rather rare. We briefly discuss the
most well-known studies Distributed TCP Caching (DTC) [46] and TCP Support
for Sensor Networks (TSS) [24] in Section 2.6.3 and Section 2.6.4, respectively.

2.6.2 Snoop

Snoop [15] addresses the TPC/IP performance in IEEE 802.11-based local area
networks with high packet loss. One endpoint of the examined scenario is a mobile
notebook computer connected to a WLAN access point over one wireless link. The
access point itself then communicates across an Ethernet-based local area network
with the second endpoint. The study hence tackles the most frequently used sce-
nario of IEEE 802.11-based devices, namely the case where only the last hop from,
e.g., a notebook to the access point is wireless. Figure 2.19 illustrates this scenario.

Figure 2.19: Experiment Scenario in the Snoop Study [15]
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In Snoop [15], the access point continuously monitors TCP connections and caches
all segments sent from the wired network to the notebook, until the respective TCP
acknowledgements (TCP ACK) are retrieved. If a packet loss is detected on the
wireless link, either due to a timeout or due to duplicate ACKs, the access point
retransmits the affected segments and drops duplicate ACKs that occur in the mean-
time. Therefore, the endpoint in the wired network is kept unaware of any trans-
mission errors on the wireless link to a large extent, since it would interpret these
packet losses as a result of network congestion. By letting the access point inspect
the IP packets and intervene on the transport layer - hence beyond the layer it is
traditionally working in - Snoop significantly improves the end-to-end throughput
by preventing that the TCP congestion control mechanisms are triggered.
Further features of Snoop are the support of Selective Acknowledgements (SACK),
which were not yet widely supported in TCP at the time Snoop was developed, and
which have since then been integrated into TCP with RFC2018 [121]. When the
access point detects a packet loss, it immediately replies with a SACK for request-
ing the missing segments, which reduces the amount of end-to-end retransmissions.
Furthermore, access points running Snoop forge SACKs when they do not receive
any packets from a mobile device for a certain amount of time. In case the mobile
device had sent packets to the access point that have not been correctly received,
periodically generated SACK packets from the access point reduce the waiting time
for the retransmission.

2.6.3 Distributed TCP Caching for Wireless Sensor Networks

Distributed TCP Caching for Wireless Sensor Networks (DTC) [46] is the first
contribution proposing TCP assistance mechanisms for TCP in sensor networks.
DTC proposes to cache TCP segments on forwarding sensor nodes in order to per-
form hop-by-hop retransmissions and minimize end-to-end retransmissions, with
the goal to increase end-to-end throughput, reduce latency and increase energy-
efficiency. The mechanism can be seen as a generalization of Snoop [15] across
multiple links, since Snoop only targeted at the single wireless link between an
WLAN access-point and a mobile wireless node, e.g., a notebook computer.
DTC is illustrated Figure 2.20, with one sender (cf. TCP Client), three intermediate
nodes A,B,C and one receiver. Each intermediate node forwarding packets of a
TCP connection maintains a cache entry for buffering one TCP segment. When
receiving and forwarding a TCP segment, each node caches it with a probability of
50%, given that the cache entry is not already full. A node participating in the TCP
connection checks the acknowledgment number of an incoming TCP ACK with the
sequence number of its cached segment. If the number is greater than the sequence
number of the cached segment, the cached segment is removed and the TCP ACK
is forwarded towards the sender node, cf. (a) in Figure 2.20. An acknowledgment
number smaller than or equal to the cached segment’s sequence number indicates
a packet loss: in case of an equal number, the node simply retransmits the cached
segment, cf. Figure 2.20 (b). In case of a smaller number, DTC makes use of
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Figure 2.20: Distributed TCP Caching and Local Retransmissions

TCP’s Selective Acknowledgment (SACK) option. In case the SACK block of an
incoming TCP ACK packet already contains the sequence number of the cached
segment, the node receiving the ACK knows that another node in-line with the
receiver node has cached the same segment as well, and thus empties its cache
and forwards the ACK towards the sender node, cf. Figure 2.20 (c). In case the
number of the cached segment is not already in the SACK block, the node receiving
the ACK retransmits its cached segment towards the receiver, adds the sequence
number of its cached segment to the SACK block and forwards this ACK towards
the sender, cf. Figure 2.20 (d). Besides observing TCP ACK packets, DTC also
makes use of MAC-layer ACKs: if a node does not receive a MAC-layer ACK for
a TCP segment it forwards, it schedules a timer for a retransmission.
The evaluation using OMNeT++ [178] in the DTC study [46] has shown that in a
scenario with 6 hops and a wireless channel of 10% packet loss, DTC significantly
reduced the amount of transmissions and increased the throughput by 450%.

2.6.4 TCP Support for Sensor Networks

TCP Support for Sensor Networks (TSS) [24] is an extension of Snoop [15] and
DTC [46] tailored for use in resource and especially energy-constrained sensor
networks applying TCP over multiple wireless hops. Similar to DTC [46], in-
termediate nodes within a TCP connection cache TCP segments to trigger local
retransmissions. After transmitting a segment, it is kept cached until the node can
be sure that the next node in line has correctly received it. This can be accom-
plished by receiving a TCP acknowledgement for the segment, or by overhearing
the next node transmitting the segment further on. This behavior makes sure that
a congestive situation is resolved quickly, since when one node stops forwarding
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Figure 2.21: Local ACK Recovery in TCP Support for Sensor Networks (TSS)

segments because of a packet loss on the next link in line, the preceding nodes will
stop transmitting segments as well.

Each node participating in the TCP connection continuously updates an estimation
RTTest of the round-trip time from the node itself to the TCP endpoints of each
TCP connection, using the original TCP Exponentially Weighted Moving Aver-
age (EWMA) filter discussed in RFC 793 [147]. If after a TCP segment transmis-
sion, the respective TCP acknowledgment has not arrived after 1.5 × RTTest, the
segment is regenerated from the cache, and a local retransmission is initiated. TSS
furthermore proposes local regeneration of TCP acknowledgments: An incoming
TCP segment that has already been acknowledged is not forwarded, but answered
with a locally generated TCP acknowledgement with the highest acknowledgement
number the node has ever received. In addition, TSS introduces the so-called Ag-
gressive TCP Acknowledgement Recovery mechanism, which consists in overhear-
ing the next node’s transmission of a previously forwarded TCP acknowledgement.
If the time between the own transmission of the TCP acknowledgement and the
forwarding transmission of the latter by the next node is larger than 2 times its av-
erage value, the TCP acknowledgement is sent again, as illustrated in Figure 2.21,
where node C’s transmission of the TCP acknowledgement is not received by B,
and hence regenerated and sent again by C.

TSS was evaluated in OMNeT++ [178] and has been shown to significantly reduce
the total amount of transmissions required to forward 500 TCP segments over a
chain of 10 nodes (-70%). The simulation settings assumed that nodes are con-
figured with an energy-unconstrained CSMA/CA MAC layer, which permits the
overhearing of the transmissions of the next nodes in line. In the presence of radio
duty-cycling E2-MAC protocols, however, some TSS features would not be gen-
erally applicable. Features that can only be accomplished when each node’s radio
transceiver is kept turned on continuously, or at least after each frame transmission,
would require substantial modifications on the MAC protocol. However, such mod-
ifications would most likely negatively impact on the overall energy-efficiency as
well. Due to this lack of real-world experiences with DTC [46] and TSS [24], we
study the performance of their basic concepts with several energy-unconstrained
and radio duty-cycling E2-MAC protocols in Chapter 9 in a series of real-world
experiments on our testbed facilities.
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Frameworks and Tools
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Chapter 3

Wireless Sensor Network Testbed
Design and Management

In this chapter, we present our management framework for WSN testbeds, the
Testbed Management Architecture for Wireless Sensor Networks (TARWIS). The
TARWIS system is one of the core contributions resulting from the involvement of
the Research Group on Computer Networks and Distributed Systems of the Uni-
versity of Bern in the European-Union WISEBED [162] project, which targeted
at establishing an experimental federation of testbeds of WSNs, all of them made
accessible over the Internet to the European WSN research community.

TARWIS has been used as a key tool in the major part of experimental evaluations
throughout this thesis and many other experimental studies that are yet to appear,
i.e. the studies [88][96][94]. TARWIS fundamentally improved our methodology
of controlled and repeatable experimentation in real-world WSN testbeds, which
is the reason why we discuss its key features and innovations in detail in this chap-
ter. Section 3.1 discusses the main rationale behind the development of TARWIS.
Section 3.2 then illustrates the design of TARWIS and its core components, the
workflow of using TARWIS to reserve testbed resources, schedule and execute ex-
periments on a WSN testbed, as well as the real-time experiment monitoring capa-
bilities. Section 3.3 discusses the data representation standards on which TARWIS
relies for the testbed description and the output of the results. Section 3.4 dis-
cusses the testbed facilities located at the University of Bern Engehalde Campus,
which was set up during the course of the WISEBED project, and which was used
throughout several chapters of this thesis. Section 3.5 concludes the chapter.

3.1 Motivation

For years, simulation has been the research tool of choice in the majority of wire-
less ad-hoc and sensor networks studies. However, with discovering wide gaps be-
tween simulation results and real-world results of many distributed algorithms, e.g.,
MAC and routing protocols, the appropriateness of simulation tools for simulating
wireless phenomena has more and more been been questioned. Especially in the
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sensor and ad-hoc network community, inappropriate parameter settings and unre-
alistic radio, traffic and/or mobility models have been identified and criticized as a
general drawback of simulation studies, cf. the studies of Kurkowski et al. [105]
and Andel et al. [11]. With research in this field growing more mature, researchers
have generally aimed at proofing the real-world feasibility of their proposed proto-
cols and mechanisms on real-world devices. For the purpose of evaluating protocol
behavior in practice, experimental sensor network testbeds have become indispens-
able in the WSN field today.

In the past five years, numerous universities and research institutions have started to
set up real-world sensor network testbeds. In most cases, these testbeds have been
set up for research and teaching purposes, in order to enable testing and evaluation
of real-world behavior of developed protocol mechanisms. An increasing num-
ber of stationary WSN testbeds have been put into operation, with different node
hardware and very heavily differing architectural testbed design. The most promi-
nent examples are Harvard University’s MoteLab [182], the TWIST testbed [75] of
TU Berlin or the Kansei [60] testbed of Ohio State University. The testbed manage-
ment software solutions implemented for these testbeds have, however, generally
been tightly coupled to one particular testbed deployment, and are hence not eas-
ily reusable for further testbed setups. Still today, researchers setting up an own
testbed of WSNs are often starting from scratch to implement testbed management
features, which are as simple as user account management, experiment resource
reservation, configuration and scheduling, or a consistent representation of results.

We intend to bridge this gap with the TARWIS management architecture presented
in this chapter. In contrast to almost all of the software employed for the testbeds
discussed in Section 2.2 of Chapter 2, TARWIS [92] has been kept independent of
the underlying testbed organization or the sensor node hardware and software.

3.2 Testbed Management Architecture TARWIS

In this section, we pinpoint the main advantages of TARWIS over existing testbed
management solutions for wireless sensor network testbeds, before we continue to
describe TARWIS in a more detailed manner in the subsequent sections.
• While most testbed management solutions have been implemented around a

specific testbed architecture and node type, TARWIS has been kept as inde-
pendent as possible of most crucial design questions of its underlying testbed
hard- and software. TARWIS can hence be used to control and manage testbeds
with a single server architecture (to which nodes are connected, e.g., over USB
cables), with a two- or three-tiered architecture where gateway mesh nodes
control the access to the individual mesh nodes, or to testbeds where no wired
control channel is present at all. TARWIS only requires that the sensor nodes
of the testbed can be remotely controlled and accessed from within a central lo-
cation, the so-called portal server. TARWIS makes no restrictions how this is
actually achieved. The TARWIS components communicate over standardized
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and programming-language independent APIs, which keeps the reusability and
generality of TARWIS on a high level.

• Most of the existing testbed management solutions interact with specific fea-
tures of the sensor node and its operating system (in most cases TinyOS [112]),
or intermediate gateway nodes, e.g., the popular NSLU2 devices [117] running
an embedded Linux [134], and thereby hence lose their generality. TARWIS
is totally independent from the sensor node type and sensor node operating
system. Besides our testbed at University of Bern, it has been deployed on
eight other testbeds throughout Europe, using at least five different node types
and operating systems. The universities of Lancaster, Lübeck, Braunschweig,
Berlin, Delft, Geneva, Patras and UPC Catalunya can all be accessed with
TARWIS, forming the pan-European testbed federation of WISEBED [162].

• Unlike in most other testbed management solutions, where experiments are
usually set up and run invisibly in batch-mode, TARWIS allows the testbed
user for monitoring and interacting with the ongoing experiment at run-time by
observing the output of the selected sensor nodes in a browser window. TAR-
WIS offers the same technical capabilities to the experimenting testbed user as
if the sensor nodes would be attached to its desktop computer: nodes can be
reprogrammed, reconfigured or hard-reset over the browser window at experi-
ment run-time. The TARWIS monitoring screen displays each node’s output in
a small dynamically reloaded HTML textbox, which permits the experimenting
user to observe the output of an entire network on one screen.

• TARWIS has been designed to integrate multiple testbeds from different uni-
versities or research institutions into the Shibboleth Federation [164] of the
WISEBED [162] project. TARWIS offers an integrated and federal approach
for user authentication, authorization and account management, and relieves
the testbed operators from designing user management solutions from scratch.
Each user account of the Shibboleth federation can be used for all testbeds that
are accessible over a TARWIS deployment, and for institutions deciding to join
the Shibboleth federation in the future, rendering a per-site registration obso-
lete. The federation approach massively reduces the overhead of bookkeeping
the federation users, which impacts directly on the administrative overhead to
maintain the testbeds operational and available.

• TARWIS integrates the proposed Wireless Sensor Network Markup Language
(WiseML) [40], an XML standard schema for describing experimental data in
WSNs. In an attempt to achieve compatibility of sensor network experimental
data with several simulation tools, the WiseML standard has been adopted by
the well-known COOJA [59] simulator in Li et al. [113]. WiseML is a corner-
stone towards a unified representation of experimental data in the field, may it
be from experiments on simulators or real-world data traces. TARWIS is the
first architecturally generic and fully WiseML-compatible testbed management
and experiment monitoring system. It uses WiseML for parsing the network
topology, and for representing the results after experiment completion.
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3.2.1 TARWIS Architecture

The architecture of TARWIS is illustrated in Figure 3.1. The figure displays the
portal server, on which the essential parts of TARWIS are hosted. Besides the
TARWIS server component (lower left corner), the portal server hosts the TARWIS
web interface (within an Apache web server), which is protected by the authentica-
tion and authorization system Shibboleth [164]. In this section, we briefly describe
the different components visible in Figure 3.1 along with the technologies applied
to implement and realize them.

Portal Server

The portal server can be any desktop PC with some minimum of 2 GB of RAM
and a broadband Internet connection. TARWIS comes with installation scripts to
simplify the setup, which have been optimized for Debian Linux [39] (v.5.0.0). Be-
sides the portal server, a Shibboleth Identity Provider needs to be prepared and con-
figured to interoperate with the WISEBED Where-Are-You-From (WAYF) server
located at University of Bern, which manages the authentication mechanisms.

TARWIS Web Interface

TARWIS offers an intuitive and easy-to-use web-based user interface. This inter-
face is implemented as a dynamic web page using PHP [142], offering the user
convenient access to the testbed via a web browser. A MySQL [131] Database
Management System (DBMS) is used to store personal configurations and exper-
iment definition data. In order to gain access to the TARWIS web interface, a
user has to log in using its Shibboleth credentials. Based on the user identification
credentials, TARWIS offers fine-grained access to the testbed resources - either
as visitor (only being able to observe public-declared experiments), as a normal
testbed user (being allowed to submit experiment jobs) or as a testbed adminis-
trator (a root-like account that, besides submitting experiments, is also capable of
adding nodes, schedule maintenance tasks, delete normal users’ experiments, etc.).

Figure 3.1: TARWIS System Architecture Testbed Generic Part (left) and Testbed
Specific Implementation (right)
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Federated Authentication and Authorization Infrastructure

The TARWIS architecture separates the concerns of authentication and authoriza-
tion to the resources. Authentication of users logging in to the portals is based on
Shibboleth [164]. When signing in to any TARWIS deployment, a user has to enter
its user name and password at the so-called home organization. Each user’s home
organization is responsible for authenticating its affiliated users.

Shibboleth is a standards-based, open source authentication and authorization sys-
tem used for Single-Sign On (SSO) and user/account management across organiza-
tional boundaries. To date, it is widely adopted in European education and research
networks (e.g., SWITCH [123], DFN [42], eduGAIN [55]). The computer science
libraries IEEE Xplore [97] and Elsevier ScienceDirect [58] support Shibboleth in
order to facilitate access from universities worldwide.

TARWIS Server Daemon

The TARWIS Server Daemon is the main process controlling the entire experi-
ment execution logic. It encapsulates the database access and all the logic opera-
tions defined in the WSDL description files. The TARWIS Server Daemon forks a
designated subprocess as soon as any new experiment is scheduled. This subpro-
cess then fetches the experiment description from the database, and checks with
the TARWIS Reservation System whether the submitted experiment has a valid
reservation. It determines which nodes have to be reprogrammed with which bi-
nary code image, then connects to the sensor nodes in order to reset and reprogram
them. Then, the TARWIS Server Daemon retrieves the run-time experiment data
from the sensor nodes, which is subsequently stored in the database.

It is important to point out that every interaction between TARWIS and the testbed,
e.g., the services for reprogramming or retrieving output, are based on well-defined
Web Service calls. This makes sure that TARWIS remains generic and reusable.

Web Services-based APIs/Interfaces

The Web Services standard [175] offers an unambiguous and machine-processable
notion to define software component interfaces, the so-called Web Services De-
scription Language (WSDL). Web Services interface descriptions are independent
from the programming language or operating system. There are Web Services
bindings for any major programming language on all major operating system plat-
forms, and they are more and more applied in business and industry today.

Figure 3.1 displays three examples of such API functions, which are invoked by
TARWIS: reprogramming a node using the flashPrograms, resetting nodes using
resetNodes, and retrieving output or status messages from a node with receiveStatus.
The implementation of these services can reside on the same computer as the
TARWIS components, or any other computer that is accessible with a high band-
width connection from the portal server machine.
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Resource Reservation System

The TARWIS Reservation System is used to prevent concurrent access to the re-
sources on the testbed, hence to guarantee uninterruptible experimentation of mul-
tiple users on the testbed. Reservations can be made for the entire testbed, or for
subsets of testbed resources, with a subset consisting of at least one node. The
TARWIS Reservation System exposes its primitives to the TARWIS Web Inter-
face, where it can be manipulated in a browser window. Apart from that, it can also
be queried and manipulated in a machine-driven manner (e.g., using a script call-
ing the reservation-related Web Service). A fully interoperable reservation client,
which communicates over the same WSDL functions, is furthermore available as
iPhone application, permitting to book timeslots from within a simple smartphone.

The ReservationSystem API consists in primitives to obtain a list of the current
reservation (e.g. getReservations, getConfidentialReservations) and to schedule or
manipulate reservations (e.g., makeReservation, deleteReservation).

Sensor Network Authentication Service (SNA)

Each TARWIS deployment further exhibits a Web Service for authorization. The
process of authorization - granting rights to authenticated users - is done locally
for each TARWIS testbed. Each testbed operating university can specify which
access right is granted for which specific user from any home organization in the
WISEBED federation. To ensure modularity and consistency, the so-called Sensor
Network Authorization Service (SNA) is hence present as a Web Service on the
Portal Server. It can additionally be queried by any other Web Services enabled
client, e.g., a Perl or Python script.

3.2.2 Experimentation using TARWIS

This section illustrates the workflow of using TARWIS to schedule, configure and
run an experiment on any TARWIS-administered testbed. The subsequent screen-
shots have been made at the TARWIS deployment of University of Bern. The
TARWIS Web Interface has four main tabs for actions related to Reservation, Ex-
periment Configuration, Experiment Monitoring, and Testbed Management, as de-
picted in the upper half in Figure 3.2. Depending on the role of the user in the
testbed (visitor, user, administrator), access rights are defined such that some tabs
are accessible and some are not (e.g., the testbed management tab is accessible for
administrators, but not for users or visitors).

Reservation

The Reservation tab offers a user interface for querying and manipulating the
Web Services-based TARWIS Resource Reservation system. The main reserva-
tion overview screen is depicted in Figure 3.2. The screen per default depicts the

68



3.2. TESTBED MANAGEMENT ARCHITECTURE TARWIS

Figure 3.2: TARWIS Reservation Screen

current day, but experiments can be scheduled at any time in the future. The screen
lists the node resources, sorted by the node types on the y-axis, versus the time on
the x-axis. The time is divided into indivisible units of 15 minutes.

Figure 3.2 depicts five scheduled reservations, of which two are already past, and
two are ongoing. One reservation in the lower right corner is about to be sub-
mitted. The experiments scheduled by the current user are colored in dark blue.
The user taking the screenshot obviously had scheduled two reservations on a sub-
set of 7 TmoteSky/TelosB nodes (listed on the left), and two reservations on the
MSB430 [14] sensor nodes. The free and unallocated time slots are colored green,
whereas the time that is already past and that has not been allocated is colored grey.
Past or partly-past reservations are colored with a grey shade, as clearly visible in
Figure 3.2 before 12.30 UTC. Clicking on a rectangle and dragging with the mouse
cursor selects a rectangle of nodes and time units, which define the time and the
affiliated resources of that particular reservation. The 7 MSB430 [14] nodes are
just about to be selected for a reservation starting at 19.00 UTC, as displayed in the
bottom right of the figure. After pressing the reserve button on the bottom of the
page, the selected resources are reserved for the subscribed user.

Experiment Configuration using TARWIS

The third tab in the TARWIS Web Interface implements the Experiment Configu-
ration process. All user-specific experiment and configuration data can be manipu-
lated in this tab. In the first sub-tab, the user can store sensor node code images, i.e.,
those binary images, which are usually compiled with the mspgcc toolchain [129]
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Figure 3.3: TARWIS Experiment Configuration Screen

for the majority of the sensor node platforms. The images are uploaded to the
database with a user-supplied name and a unique identifier.

The second sub-tab of the Experiment Configuration tab relates to the configura-
tion (or modification) of the scheduled reservations of the visiting TARWIS user.
Figure 3.3 depicts the screen where the user can define the experiment configura-
tion for the reservation he/she scheduled beforehand. On the left, each sensor node
has to be assigned a sensor node code image. One can assign one image to all
nodes, or configure nodes individually, assigning different images for each node.

In the middle of the screen, the experiment can be given a name and a brief de-
scription in the designated input and text fields. With the public checkbox, the user
can let other users observe his experiment at run-time, and also permit other users
to later download the experiment results. The node map on the right depicts the
selected nodes and their position within the testbed.

Experiment Runs

Experimental research is often driven by the need to obtain statistically significant
data. Researchers hence usually have to carry out the same experiments multiple
times in a row, preferably under the same or at least comparable conditions, in
order to obtain the statistically significant amount of data that is required for a
sound analysis. In order to simplify this procedure, TARWIS integrates the Runs
option in order to define how many experiment runs the experiment shall consist
of. The entire duration of the reservation is then split into this specified number
of runs. After each run, the output is written to a WiseML file and added to a zip
archive, which is then made available for download and sent to the user via email.
Given that the experiment had been declared public in the configuration tab, the
results are also accessible for download for all other users of the federation.
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Automated Commands

On the bottom of the page just below the experiment description box and the Runs
option, the user may add so-called automated commands. These commands are
issued after a specified number of seconds after the flashing operation finished. The
target destination of these automated commands can be specified in the dropdown-
box. A user may broadcast a command to all the sensor nodes in his selected set
of nodes, or select only one unicast command recipient. The option is particularly
useful in case an experiment needs to be started synchronously, e.g., by sending a
start command to all nodes at the same time in order to initiate an experiment with
a particular algorithm that relies on a certain synchronicity.

Experiment Configuration Templates

Entering the configuration data for an experiment in TARWIS can become exhaus-
tive and time-consuming, especially if there are many nodes that need to be repro-
grammed with different code images, if all the input text fields have to be edited
and if many automated commands need to be scheduled. Practice has shown that
these steps can become tedious and repetitive, especially when many different but
similar experiments need to be scheduled. In TARWIS, the user is hence given the
opportunity to save the experiment settings as a template. When later scheduling
another similar experiment, he/she may just select the previously saved template
and reload it with the load template button. The previously saved experiment con-
figuration is then loaded automatically (experiment description, run settings, public
settings, automated commands, assignment of images to the nodes, etc.) and the
user can just modify the changing parameters to reflect the intended settings of the
new experiment.

My Experiments/Finished Experiments

When the user has finished configuring the experiments, he/she presses the Finish
Experiment Configuration button. In the My Experiments sub-tab, he/she may still
edit its pending experiment configurations given that the experiment has not yet
started. The results of the finished experiments are available for download in the
Finished Experiments tab.

3.2.3 Experiment Monitoring

The Experiment Monitoring tab offers to monitor running experiments at run-time.
It is definitely one of the most crucial advantages of TARWIS over other testbed
management systems, which usually run experiments in batch mode without giving
the user the opportunity to monitor or even interact with them. Figure 3.4 depicts an
excerpt of a running experiment in the Experiment Monitoring tab. When different
experiments are running on different subsets of the testbeds, the user can choose
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Figure 3.4: TARWIS Experiment Monitoring Screen

the experiment to be observed by clicking on a link displaying its ID, and switch
between different experiments arbitrarily.

In the left part of Figure 3.4, an illustration of the testbed with the selected nodes
positioned in the building of the testbed is displayed. On the top of the figure,
the user can see the so-called Experiment Controller Output log. This text field
logs the status messages of the TARWIS Server Daemon experiment-dedicated
subprocess, which emits certain status information, e.g., at what time the nodes
where reprogrammed (flashed), whether the operation was successful, which run
is currently being executed, and much more.

On the right of the figure, the user can monitor the output of the selected sensor
nodes. The six displayed output windows list the last 20 lines of each node, which
were captured from the sensor nodes’ serial interfaces. This output information
is particularly useful for debugging sensor node applications. Our practice has
shown that with observing the output windows from the individual sensor nodes
concurrently at run-time, erroneous and unintended behavior and possible reasons
for the latter can be much easier identified when observing the experiment in real-
time, compared to tedious offline trace analysis in log files.

Below the output windows of the nodes, the user can enter commands to the sensor
nodes, which are subsequently sent to the sensor nodes via the backend implemen-
tation and written to their serial interfaces. The user can hence interact with the
nodes and, e.g., obtain status information using the TARWIS web interface in or-
der to get a clearer picture why the examined protocol is not behaving as expected.
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3.3 Experiment Results Representation in TARWIS

As soon as an experiment has been successfully scheduled and configured within
the TARWIS Web Interface, its definition is stored in designated MySQL tables.
When the scheduled experiment time is reached, the TARWIS Server Daemon sets
up a Web Service designated to retrieve the experiment output via the receive prim-
itive (cf. Figure 3.1) and subsequently stores this output in the database. When the
experiment expires, all the retrieved output is exported to a file adhering to the
Wireless Sensor Network Markup Language (WiseML). This WiseML file com-
prises all the significant information about an experiment, e.g., where the experi-
ment took place geographically, what kind of nodes were used, what their configu-
ration was, and most important the timestamped output of the nodes.

Using the Wireless Sensor Network Markup Language (WiseML) [40] standard for
the representation of the results further allows for making the experiment data pub-
lic to other research partners in a common well-defined language, giving them the
opportunity to repeat the same or similar experiment and, e.g., trying to improve
the results. WiseML is a cornerstone towards a unified representation of experi-
mental data in the WSN field, may it be from experiments on simulators or real-
world WSN testbeds. Three network simulators have to-date adopted the WiseML
standard: the popular Contiki simulator COOJA [59], as well as the simulators
Shawn [64] and WSNGE [101]. In addition, the mobility scenario generation and
analysis tool bonnmotion [13] further supports WiseML. Integrating WiseML into
the TARWIS testbed management system pushes experimental research on wire-
less sensor network testbed within the WISEBED testbed federation one crucial
step forward towards a transparent and repeatable notion of the setup and scenario
of sensor network experiments and their results.

Listing 3.5 shows an excerpt from a TARWIS-generated experiment trace in a small
experiment at the University of Bern testbed. The WiseML format (as specified
in [40]) first denotes general information about the testbed in the setup section, such
as the experiment time and duration, the testbed name (here: UBERNTestbed), an
unambiguous notion for the affiliated nodes and other details. In the trace section,
the file lists the node IDs and the captured raw output, along with timestamps rel-
ative to the experiment start time. The timestamps are given in fractional seconds
relative to the experiment start, with the precision depending on the time granular-
ity the testbed supports (e.g., seconds, milliseconds, or microseconds).

The WiseML-file generated by TARWIS describes with a high accuracy what has
happened at a particular time during the experiment. The experimenting user only
needs to make sure that he/she is supplying enough information to TARWIS. Sup-
plying information is as easy as using printf -like output on the serial interface
throughout the experiment time - all these statements will finally be captured and
integrated into the final WiseML experiment definition file.
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<wiseml version="1.0" xmlns="http://wisebed.eu/ns/wiseml/1.0">
<setup>
<timeinfo>
<start>2011-02-10T19:00:00Z</start><end>2011-02-10T20:44:59Z</end>
<unit>seconds</unit>
</timeinfo>
<description>UBERNTestbed</description>
<node id="urn:wisebed:node:ubern:msb1">
<position> <x>75</x> <y>30</y> <z>80</z> </position>
<nodeType>MSB430</nodeType>
<description>Server Room 3rd Floor</description>
</node>
<node id="urn:wisebed:node:ubern:msb2">
<position> <x>20</x> <y>90</y> <z>52</z> </position>
<nodeType>MSB430</nodeType>
<description>FKI Room 203 (Indermuehle)</description>
</node>
<node id="urn:wisebed:node:ubern:msb3">
<position> <x>12</x> <y>85</y> <z>80</z> </position>
<nodeType>MSB430</nodeType>
<description>RVS Pool 3rd Floor</description>
</node>
<node id="urn:wisebed:node:ubern:msb4">
<position> <x>42</x> <y>90</y> <z>22</z> </position>
<nodeType>MSB430</nodeType>
<description>CGG Pool 1st Floor</description>
</node>
<node id="urn:wisebed:node:ubern:msb5">
<position> <x>10</x> <y>70</y> <z>0</z> </position>
<nodeType>MSB430</nodeType>
<description>-111</description>
</node>
<node id="urn:wisebed:node:ubern:msb6">
<position> <x>25</x> <y>50</y> <z>80</z> </position>
<nodeType>MSB430</nodeType>
<description>Node 3 - Student Pool 1</description>
</node>
</setup>
<trace id="experiment_FEC_output"> [...]
<timestamp>814.013436</timestamp>
<node id="urn:wisebed:node:ubern:msb5">
<data key="text">setecc: DECTED168 payload 68 _num: 142 hop_count: 1
type: 7 packet#: 142 snd: 5 origin: 5 rcv: 7 data_bytes: 32 txpwr: 9
isRetransmission: 0 </data>

</node>
<timestamp>814.26796</timestamp>
<node id="urn:wisebed:node:ubern:msb7">
<data key="text">readecc: DECTED168 payload: 68 _num: 142 hop_count: 1
type: 7 packet#: 142 snd: 5 origin: 5 rcv: 7 data_bytes: 32 txpwr: 9
dec_buf_s: 34 rssi: 38 t_dec_s: 0 t_dec_m: 65 numBytes: 34
isRetransmission: 0 crc_ok data_ok min_err: 0 max_err: 0 blocks: 34
sum_err: 0 avg_err: 0 </data>

</node>
<timestamp>814.390311</timestamp>
<node id="urn:wisebed:node:ubern:msb7">
<data key="text">forwardecc: BCH6336 payload 72 _num: 22 hop_count: 2
type: 7 packet#: 142 snd: 7 origin: 5 rcv: 2 data_bytes: 32 txpwr: 9
isRetransmission: 0</data>

</node> [...]
</trace>
</wiseml>

Listing 3.5: Excerpt from a TARWIS-generated Experiment WiseML-Trace
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3.4 University of Bern Testbed

This section briefly portrays testbed facilities that were installed in the context of
the European-Union WISEBED [162] project, and which were used for a major
part of the evaluations conducted within this thesis. The evaluations described in
Chapters 7, 8 and 9 mainly base on results of experiments which were conducted
using the TARWIS testbed management framework.

The University of Bern testbed of wireless sensor nodes is located in the two build-
ings of the Institute of Computer Science and Mathematics at Neubrückstrasse 10
and Schützenmattstrasse 14 in 3012 Bern, Switzerland. The testbed to date consists
of the following types and quantities of sensor nodes:
• 40 TelosB [144] nodes from Crossbow Corporation

• 7 MSB430 [14] nodes from Freie Universität Berlin & ScatterWeb GmbH
The University of Bern testbed hence to date consists of 47 sensor nodes of two dif-
ferent types. The testbed spans across the four floors of the building Neubrückstrasse
10 and two floors in the building Schützenmattstrasse 14. Figure 3.11 depicts the
47 nodes embedded into a 3-dimensional skeleton of the two buildings. The 7
MSB430 nodes are placed indoors in different rooms. Out of the 40 TelosB nodes,
39 nodes are placed indoors, each of them in different rooms or corridors of the
building, as depicted in Figures 3.6 and 3.7 with two examples. One node is placed
outdoor on the windowsill of the building’s small tower, as depicted in Figure 3.8.

Ethernet-based Backbone Network

All sensor nodes are connected to the local area Ethernet network of the university
campus by means of small mesh nodes or barebone PCs. The TelosB nodes are
attached to mesh nodes of type WRAP from PCEngines [140]. A board of the
employed type is depicted in Figure 3.9. These mesh nodes are equipped with a
233MHz AMD Geode SC1100 CPU, 128 MB SDRAM, 4GB Compact FlashCard
and an IEEE 802.3 Ethernet interface. We have developed a generic build-system
and a small Linux flavor [169] tailored for use in memory-constrained wireless
mesh nodes. The result is a multi-purpose image that looks nearly like a standard

Fig. 3.6: Corridor Fig. 3.7: Server Room Fig. 3.8: Outdoor
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Fig. 3.9: ALIX WRAP mesh node Fig. 3.10: Asus EEPC

Linux system. The resulting image uses less than 20.0 MB in uncompressed form
in RAM and compressed uses less than 5 MB on the flash device. All function-
ality to access the TelosB nodes was implemented top of the small Linux flavor.
The MSB430 sensor nodes are attached to small inexpensive and i386-compatible
desktop computers of the type Asus EEPC, depicted in Figure 3.10. The MSB430
nodes need to be reprogrammed with a tailormade JTAG-flasher Device from Texas
Instruments, and can be accessed over the serial interface with an USB cable.

Both platforms, the ALIX mesh nodes and the Asus EEPCs, implement the follow-
ing functionalities for the TelosB and MSB430 sensor nodes, respectively:
• Receiving and executing high-level commands over TCP/IP sockets to trigger

actions such as rebooting the attached sensor nodes or flashing them with the
binary image which is also received over the socket.

• Synchronization with the University of Bern NTP server (time.unibe.ch).

• Reading output data from the serial interface of the sensor node, sending it
together with the current timestamp (in µs precision) to the TARWIS server.

Other than the ALIX mesh nodes, where most of the functionality is implemented
in C daemons (except for the python-based bootstrap loader of the MSP430), the
EEPCs are operated with a 32-bit Windows XP (SP3) and most functionality is
implemented in Perl.

Fig. 3.11: The University of Bern WISEBED [162] Wireless Sensor Network Testbed
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3.5 Conclusions

In this chapter we have described TARWIS, the Testbed Management Architec-
ture for Wireless Sensor Network Testbeds. We have conducted the major part of
the experiments described in this thesis using TARWIS, notably the experimental
evaluations of Chapters 7, 8 and 9.

TARWIS is a Web Services-based generic management system for the administra-
tion and management of research testbeds of wireless sensor networks. TARWIS
to date runs on nine different testbeds of the WISEBED [162] project, with node
deployments between a few 10 to more than 100 nodes. The TARWIS management
framework has been designed for federating testbeds of wireless sensor networks.
Using Shibboleth, users can access any testbed within the WISEBED federation
by using the same account credentials. The generic TARWIS web-based user
interface, the standardized and programming-language independent Web Service
interfaces of the TARWIS backend, as well as the node and testbed-architecture
independent design of TARWIS permit interested research groups to make use of
the framework for their own projected testbed. With the WISEBED project ending
in 2011, TARWIS has been made publicly available on the University of Bern’s
Research Group on Computer Networks and Distributed System’s website [83].

Our practical experiences have shown that using TARWIS, researchers working
in the field of WSNs have a powerful instrument for prototyping and evaluating
various sensor network protocols and mechanisms. The option to monitor exper-
iments and interact with the entirety of the sensor nodes at run-time using a web
browser is a powerful and unique feature of TARWIS and has not existed in any of
the reviewed testbed management solutions before. The availability of the system
notably expedited experimentation with our real-world distributed WSN testbed
facilities, and due to its integration with WiseML can be seen as a contribution
towards a controlled, repeatable experimentation methodology.

In this chapter, we have further described the University of Bern testbed that has
been set up throughout the course of the European-Union WISEBED [162] project,
and which was used for major parts of the thesis. The testbed to date consists of 47
sensor nodes, which are accessible over the campuswide Ethernet backbone. Using
TARWIS, the testbed can be easily accessed from anywhere in the world using a
simple web-browser. The WISEBED testbeds are to date regularly used by students
as well as international researchers. Research results from these testbeds have yet
been used for numerous scientific experiments, of which some have resulted in
scientific publications, or are under submission, cf. [94][96][88].
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Chapter 4

Software-based Energy-Estimation

In order to examine energy-conserving communication protocol mechanisms in the
field of wireless sensor networks, which is the subordinate topic that spans across
several chapters in Part II of this thesis, a simple, robust and reasonably accurate
methodology to assess the energy consumption of a sensor node is an important
cornerstone. Throughout this thesis, we have employed different methodologies
to measure or estimate the energy consumption of sensor nodes. The methodolo-
gies to measure the energy consumption of small embedded devices as well as the
physics behind them are described in detail in Section 2.3 of Chapter 2.

This chapter describes our own contributions to the research topic of software-
based energy estimation, which is a technique that has become widely applied in
the recent past. Section 4.1 motivates the need for reliable, robust and reasonably
accurate software-based energy-estimation mechanisms in large-scale experiments
of WSNs. Section 4.2 elaborates on the advantages and drawbacks of software-
based energy estimation mechanisms and relates them to physical hardware-based
energy measurements. Section 4.3 discusses our proposed software-based energy-
estimation methodology, which was developed, refined and empirically verified in
our study published in [86]. The section thoroughly elaborates on the model speci-
fication, model enhancement and the experimental validation of the accuracy of our
software-based energy estimation methodology. The evaluations of the MaxMAC
protocol prototype in Chapter 7 rely in part on the work presented in this chapter.
With Section 4.4, the chapter concludes and gives an outlook on current and future
work in the area software-based energy estimation in WSNs.

4.1 Motivation

While commonly used networking metrics such as packet delivery rate, source-to-
sink latencies or maximum throughput can easily be determined in real-world WSN
testbeds, measuring the power consumption of sensor nodes is much harder: costly
high-resolution digital multimeters or cathode-ray oscilloscopes need to be hooked
to the nodes in order to sample the varying low currents and voltages. For years,
experimental research in the field of energy-aware and energy-conserving protocols

79



4.2. ENERGY ESTIMATION VS. ENERGY MEASUREMENT

in distributed systems has required weeks or even months of tedious and time-
consuming use of bulky cathode-ray oscilloscopes or high-resolution multimeters.

Customized devices such as the Sensor Node Management Devices (SNMDs) [78]
have recently been developed as a cost-effective alternative to using high-frequency
multimeters or oscilloscopes for side-effect free high-resolution energy measure-
ment of sensor nodes (cf. Section 2.3.2 of Chapter 2). As SNMDs continuously
stream the obtained current and voltage values over their USB port, a totally wired
setup with reasonably powerful intermediate nodes (e.g., small desktop PCs or
mesh nodes) to read and process this data is necessary. Such a setup, however, is
usually not practicable and not economical in the case of large-scale experimental
testbeds, and clearly unfeasible in case of outdoor WSN deployments.

4.2 Energy Estimation vs. Energy Measurement

Software-based energy estimation has been proposed by Dunkels et al. in [50]
as a viable alternative to using costly hardware-based energy measurement equip-
ment. The mechanism applied in [50] consists in bookkeeping the time the radio
resides in the different transceiver modes and the time the CPU and the onboard
sensors are used, on the node itself. Multiplying these times with previously deter-
mined power levels then leads to rough estimates for the consumed energy. This
mechanism, along with similar studies on software-based energy-estimation, are
discussed in more detail in Section 2.3.3 of Chapter 2. Many prominent protocol
studies on Energy-Efficient MAC (E2-MAC) protocols have entirely relied their
experimental research results upon the same or a similar software-based approach
for estimating the energy consumption of their protocol prototypes, e.g., the studies
on S-MAC [190] or B-MAC [143]. More and more recent research papers utilize
the same methodology, e.g., the studies of Finne et al. [65] or Boano et al. [21].
Yet, as already pointed out in [50], no existing study has yet validated the accuracy
of this approach with physical hardware-based energy measurements.

Software-based energy estimation techniques clearly have their advantages and
drawbacks. A purely software-based approach can only deliver estimates, which
usually deviate more from the real energy consumption than hardware-based mea-
surements. Software-based mechanisms further introduce inherent side-effects, as
the estimation mechanism itself causes computational costs, which are hard to
account for. The advantages of software-based energy-estimation mechanisms,
however, are manifold: with an energy-estimation being present on the node at
run-time, many energy-conserving WSN algorithms can finally be applied in real-
world deployments. Many energy-conserving distributed algorithms rely on an
estimation of the used and the residual energy endowment in order to take optimal
decisions, e.g., in the context of routing, clustering or transmission power selection
algorithms. With the WSN field moving from simulation-based towards real-world
testbed-based research, finding a simple and painless, but yet accurate methodol-
ogy for quick and reliable energy-estimation can be a significant milestone.
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4.3 The Accuracy of Software-based Energy-Estimation

In the following, we discuss our approach to examine the estimation accuracy of
different software-based energy-estimation models and methodologies. We empiri-
cally evaluate several energy-estimation models and parameter calibration method-
ologies with prototype implementations of IEEE 802.11-like CSMA and the three
E2-MAC protocols S-MAC, T-MAC and WiseMAC on the MSB430 sensor nodes.
The MSB430 platform is discussed in detail in Section 2.1.3 of Chapter 2, the
MAC protocols in Section 2.4 of the same chapter. We ran a large number of ex-
periments under different traffic load levels and with different node instances, in
order to statistically describe the resulting estimation accuracies.

Section 4.3.1 describes the experiment setup utilized throughout the entire em-
pirical study. In Section 4.3.2, we discuss a discovered deviation effect among
different instances of sensor nodes of the same type, which heavily impacts on the
estimation accuracy. Section 4.3.3 then discusses the examined energy estimation
models and their refinements, the parameter calibration methodologies, and elabo-
rates on the accuracy of the resulting software-based energy-estimations using the
different wireless channel MAC protocols.

4.3.1 Experiment Setup

We kept the measurement setup as simple as possible, in order to be able to re-
peatedly perform a significant number of experiment runs with different wireless
channel protocols and traffic rates on the same experiment setup. We lay out nodes
A, B, C with a distance of 30cm on a table, as depicted in Figure 4.1. Node B is
hooked to an SNMD, which continuously measures its current and voltage. The
SNMD devices are discussed in detail in Section 2.3.2 of Chapter 2. In order to
determine the estimation accuracy, we needed to be able to simultaneously obtain
both the software-based estimations and the unaffected physical hardware-based
measurements of the same node B in each experiment. For this purpose, we had
to keep node B unplugged from any serial interface, as the node would otherwise
draw some small current from the powered USB serial interface cable. Hence,
in order to obtain the software-based estimations of node B without accessing the
node over a serial cable, we let node B write its energy estimation model data (time
in transmit mode, time in receive mode, etc.) into the packet payload.

Fig. 4.1: Node A generating packets, Node B hooked to SNMD
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Packets have a size of 50 bytes each (10 bytes header, 40 bytes payload). In each
experiment run, node A starts sending Constant Bit Rate (CBR) traffic of rate r
towards node B during Texp = 600s. Right after the reception of the first packet,
Node B starts keeping track of the time its transceiver resides in the different states.
After injecting its estimation model data into the packet, node B forwards the pack-
ets to node C, which decapsulates the packet and logs node B’s energy estimation
data to the serial interface, which is connected to a Desktop PC. During the entire
experiment, the current trace of node B is read from the SNMD’s serial interface,
which is connected to the same Desktop PC. As discussed later in the analysis, we
varied the traffic rate r at node A from very low rates (1 packet every 100s) to high
rates (max. 2 packets/s) with each different wireless MAC protocol. We measured
10 independent runs for each setting, and evaluated 8 different node instances.

4.3.2 Hardware-dependent Deviations

Applying software-based energy estimation inevitably introduces inaccuracies. The
differences between the estimated power consumption and the physically measured
power consumption can generally be explained by two reasons: it might either stem
from hardware effects, e.g., the slightly differing nodes’ electronic hardware com-
ponents characteristics, or from from the inherent imperfection of the software-
based model and the applied estimation methodology. This section elaborates on
the effect of the slight deviations of the power consumption of different node in-
stances of the same node type. As discovered in previous experimental studies by
Landsiedel et al. [106] and Haratcherev et al. [76], the power consumption of dif-
ferent instances often varies in the range of some few percent. [106] presumes that
this variation stems from deviations in the electronic components tolerances. We
hence first examined multiple instances of MSB430 nodes running different MAC
protocols, given a constant traffic rate of 1 packet each 20s over Texp = 600s. With
this evaluation, we quantify the estimation inaccuracies caused by the variation in
the energy consumption of different instances of the same node type - in our case
the MSB430 platform.
Figure 4.2 depicts the energy consumed by eight different instances of MSB430
nodes and the four examined protocols during 10 experiment runs. Each bar depicts
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the mean value and standard deviation measured during 10 independent runs - the
latter was low in most cases and is hence barely visible. The energy consumption
obviously varies heavily from protocol to protocol (eg. WiseMAC vs. CSMA).
The variation from node to node is also clearly visible, e.g., the energy consumed
by node 6 running CSMA is roughly 4% higher than that of node 2.

We investigated the reason for these differences in the current traces and found
that indeed, the current drawn from different nodes can vary to a certain degree,
and that the variation can even differ for each of the different transceiver states.
Figure 4.3 depicts the current traces of nodes 1 and 2 running CSMA and receiving
a data packet, and sending it further to another node. As one can clearly see,
node 1 draws approximately 2 mA less than node 2 when transmitting. Although
the transmission power settings were set identically for all nodes, the current levels
in the transmit state obviously varied to a certain degree. A further anomaly we
encountered is that some nodes drew more current in receive mode when actually
receiving data compared to listening to an idle channel, whereas in most cases, no
significant difference between these two cases could be measured. This effect is
visible in Figure 4.3 as well: node 1 consumes approximately 3 mA more when
receiving data, compared to node 2, which consumes more or less the same current
when receiving data or listening to an idle channel. As both nodes are running
the same interrupt service routine code and did not run any other computationally
intensive tasks during this time, the CPU can neither be held accountable for this
effect. We further discovered slight differences in the peak energy consumption as
well as in the duration of transceiver switches depending on the protocol, and even
depending on the traffic load.

We presume that these differences stem from the inaccuracies in the production of
the electronic components. Fast switching between the different operation modes
of the radio could probably also have a temporary impact on the behavior of active
circuit elements. Although the temperature is known to impact on the power con-
sumption of electronic devices, we can safely exclude this as an explanation for the
discovered deviations, as all experiments were run under room temperature in the
same laboratory environment.
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Statistical Characterization of Node Deviations

In an attempt to quantify the discovered differences between the eight measured
node instances, we a) determined the mean and standard deviation of the measured
energy consumptions of all measurement runs of all eight nodes for the CSMA
protocol in the experiment described in 4.3.1 (with Texp = 600s and a traffic rate r
of 0.05 packets/s), and b) compared each pair of nodes to determine the maximally
differing nodes. We chose CSMA because at examined traffic rates, no packet loss
occurred within all CSMA runs. Hence, the CSMA experiment runs were most
suited for examining the per-node differences.

The mean consumed energy of the eight different nodes throughout Texp was 57.55
Joules with a standard deviation of 1.54%. Hence, roughly two thirds of all node
instances exhibit a value in between 57.55 Joules± 1.54%, given that the variation
between different nodes follows normal distribution. We conjectured that the latter
is the case, as Jarque-Bera’s test on the normality of the measurement variation
(JB-value: 0.701) could not be rejected, cf. Draper and Smith [43]. The Jarque-
Bera test, cf. equation (Jarque-Bera), is a statistical test of whether empirical data
has the skewness and kurtosis matching a normal distribution. JB is defined as:

JB =
n

6

(
S2 +

1

4
(K − 3)2

)
(Jarque-Bera)

where the variable n denotes the number of samples. The variables S andK denote
the samples’ skewness and kurtosis, the third and fourth central momentums of the
samples’ distribution.
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The maximum deviation between the mean measured energy consumption of the
two maximally differing nodes was determined to be 4.24% (of the respective
higher value). We tested the claim that these two nodes do actually differ sig-
nificantly from each other, i.e. that the discovered deviations are not caused by
coincidence or the limited set of observations. We found that the null-hypothesis
of a two-sided t-test claiming that the two nodes exhibit the same mean energy
consumption (=on average consume the same amount of energy) could safely be
rejected at the 95% confidence level. However, this was not the case for all the
node pairs, as some groups of nodes obviously exhibit similar patterns in their
energy consumption, as clearly visible in Figure 4.2, e.g., in the CSMA bars. Ben-
jamin Nyffenegger provided a more detailed analysis of the pairwise deviations in
his thesis [136].
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4.3.3 Software-based Energy-Estimation Models

In this section we analyze the impact of the choice of the estimation model on
the resulting estimation accuracy, using experiments with different traffic load lev-
els and different wireless channel protocols. With the variation between different
nodes being in the range of more than 4% for the specified experiment scenario,
we decided to use exactly the same sensor node and also the same SNMD device
throughout the entire analysis in this section, in order not to introduce variations
caused by differing measurement hardware and measured sensor node hardware.

Three States Model (TSM)

The most frequently used model to date for estimating a node’s energy consump-
tion consists in modeling the latter as a function of the three states of the ra-
dio transceiver receive/idle listening, transmit and sleep, cf. [76][190][143]. We
henceforth refer to this model as the Three States Model. The Contiki OS’ energy
estimation mechanism models the radio’s power consumption using this model, but
separately tries to keep track of the CPU power consumption, which can vary de-
pending on the Low-Power-Mode (LPM) it is currently operating. The ScatterWeb2

OS used in this study puts the CPU to LPM1 as soon all events have been pro-
cessed, where the node’s current is approximately 1.8 mA, given that the radio is
turned off. With the CPU active and the radio off, the node current is roughly
3.5 mA. As our examined E2-MAC protocols generally do not incur intensive
computations, we neglected to account for the CPU costs separately, and con-
sidered the CPU’s power consumption to be integrated within the three states of
the transceiver. Estimating the CPU power consumption in software when ap-
plying E2-MAC protocols is anyway not easy to achieve, as most of the MAC-
related CPU activity takes place in interrupt service routines. Accounting for such
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may even cause more costs than the protocol-related computations themselves, cf.
Landsiedel et al. [106]. If the CPU activity does not vary much across state changes
of the radio transceiver, modeling the CPU and radio integrally safely holds. Fig-
ure 4.4 illustrates that for the given E2-MAC protocol, accounting for CPU in a
combined manner with the three different power levels of the radio is sufficient.

We henceforth modeled the energy consumption of our S-MAC, T-MAC, WiseMAC
and CSMA implementations using the abovementioned Three States Model. We let
the nodes keep track of the time differences between the transceiver switches, in
order to determine how much time has been spent in each state. Figure 4.4 de-
picts the current draw during the active interval of an S-MAC frame containing
an RTS/CTS handshake and a subsequent data packet transmission. Figure 4.5 il-
lustrates how this current draw is being approximated by the Three States Model.
The total energy consumed (denoted as E) corresponds to the area below the cur-
rent draw multiplied by the supply voltage, which is assumed to be constant in the
model. Analytically, the Three States Model can be formulated as equation (TSM).
The consumed energy E is calculated as the power level of the node in the receive
state Prcv multiplied by the total time spent in this state Trcv, and the respective
terms for the transmit and sleep states (PslpTslp and PtxTtx). This approach is
identical to the one applied in [76], [190] and [143].

E = PrcvTrcv + PtxTtx + PslpTslp = IrcvVrcvTrcv + ItxVtxTtx + IslpVslpTslp
(TSM)

The studies [190], [143], [25] and [76] calibrate the parameters of their energy
model by measuring the currents the nodes draw in the different states, and multi-
plying it with the supply voltage to obtain Prcv, Ptx and Pslp. They do so by using
either oscilloscopes or high-precision multimeters and by measuring the current in
each state over a certain timespan. In the first attempt, we pursued exactly the same
approach, and determined the mean values of Ircv, Itx, Islp by measuring each
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state of the measurement node using the SNMD for a couple of seconds. The sta-
ble mean values were determined to be 23.5353 mA, 37.4872 mA and 2.1495 mA
for Ircv, Itx, Islp, respectively. We further set the voltage according to the supply
voltage of the SNMD to Vrcv = Vtx = Vslp = 4.064V .

Figure 4.6 depicts the mean values of the energy measurements and the estimations
being computed with the Three States Model - using the parameters for Prcv, Ptx
and Pslp measured in the example trace. One can clearly see that the estimations
fit quite well for low traffic rates, but that the gaps between mean estimations and
mean measurements become larger with higher rates of packets being sent over
the measurement node. For most protocols - especially S-MAC and T-MAC - the
energy estimation over-estimates the energy consumed by the node with increas-
ing load. This increasing over-estimation stems from the fact that the Three States
Model does not account for the transceiver switches. As one can clearly see com-
paring Figure 4.4 with Figure 4.5, the current draw decreases to roughly 4 mA
when the transceiver is switched to receive or transmit - hence drawing less current
than estimated with the Three States Model. By defining parameters through exam-
ple measurement, the impact of the applied traffic load and the frequent transceiver
switches as well as the particularities of the MAC protocol are not being taken into
account at all. Extrapolating from a short example measurement of a node hence
leads to suboptimal parameters for the Three States Model, even when using the
same node for parameter calibration and the evaluation of the accuracy.

Parameter Definition through Ordinary Least Squares (OLS):

Being able to physically measure the current draw of a sensor node and at the
same time obtain the software-based estimation calculated by the node itself offers
the opportunity to relate the estimations to the real-world measurements. Using
the plethora of experimental data gained in the many experiments runs (in total
over 12 GB), we reflected upon a method to determine more resilient parameters
for the unknown variables Prcv, Ptx, Pslp of the Three States Model. Ideally, the
software-based energy estimation running on the node should neither rely on the
particularities of a specific MAC protocol, nor on the shape or intensity of the
traffic. Ordinary Least Squares (OLS) Regression Analysis yielded the most suit-
able technique to determine the unknown variables for a linear estimation model
with multiple unknown variables. OLS finds the model parameters that minimize
the sum of squared errors (SSE) between the estimations and observations (=the
real-world energy measurements captured with the SNMD devices).

We formulated a multivariate OLS regression model with the explanatory variables
Trcv, Ttx, Tslp (the times spent in the different transceiver states, calculated at run-
time), as well as the physically measured dependent variable E obtained using the
SNMD device. The resulting estimation equation (OLS-I) hence simply comprises
equation (TSM) and the error term ε for the residuals.

E = PrcvTrcv + PtxTtx + PslpTslp + ε (OLS-I)
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We define the matrix X containing all the observations of the explanatory vari-
ables, consisting in the three columns Trcv, Ttx, Tslp with a row for each mea-
surement. We further define the vector y containing the corresponding observa-
tions of the dependent variable, i.e., the energy measured using the SNMD. The
unknown parameters Prcv, Pslp, Ptx that are to be determined are defined as the
three-dimensional vector β = (Prcv, Pslp, Ptx).

X =


Tslp1 Trcv1 Ttx1
Tslp2 Trcv2 Ttx2

...
...

...
Tslpn Trcvn Ttxn

 y =


E1

E2
...
En

 β =

PrcvPslp
Ptx


With the variables above, the model can be specified in vector-matrix form as:

y = Xβ + ε (MVOLS)

The deviation of the estimation of the energy-consumption ŷ from the real-world
measured values (with the SNMD) y forms the vector of the residuals:

ε = ε̂ = y − ŷ
We intend to find the parameters β̂, for which the estimated energy consumption
values ŷ minimize the sum of squared errors from the measured values y. Trans-
forming (MVOLS) yields the following:

ε = y −Xβ

The sum of squared errors (SSE) can conveniently be written in vector form as:

ε′ε =

n∑
i=1

ε2i

Hence, the vector β we seek has to satisfy the condition

min
β

(ε′ε) = (y −Xβ)′(y −Xβ)

= (y′ −X ′β′)(y −Xβ)

= y′y − β′X ′y − y′Xβ + β′X ′Xβ

Setting the differential of d(ε
′ε)

dβ to zero is the condition the minimum has to satisfy:

d(ε′ε)

dβ
= −2X ′y′ + 2X ′X − 2X ′β = 0

⇒X ′Xβ = X ′y

The OLS estimator β̂ containing the parameters ( ˆPrcv, P̂tx, ˆPslp) that minimize the
sum of squared errors hence calculates as:

β̂ = ((X′X)−1X′)y
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We assessed the coefficient of determination R2 to measure the goodness of fit
of the multivariate linear regression model and obtained a surprisingly high value
of R2 = 0.9980. The coefficient of determination measures the proportion of
variability in a data set, which can be explained by the regression model. It is
defined as:

R2 = 1− SSR

TSS
= 1−

∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

(CoeffDet)

Estimation Accuracy of the Three States Model:

In order to determine the accuracy of the OLS-calibrated model, a cross-validation
with totally new experimental data is inevitable to omit overfitting effects, cf.
Draper and Smith [43]. The determination of the parameters Prcv, Ptx, Pslp using
OLS regression was hence achieved on a first set of experiment runs, the so-called
training set. The estimation accuracy results of this section were then gained with
a new set of experimental data, to which we will further refer as validation set.
We fed β̂ containing the OLS estimators of the unknown variables ˆPrcv, P̂tx, ˆPslp
into the node’s estimation model and estimated the energy consumption with the
validation set. We considered the so-called Mean Absolute Error (MAE), the av-
erage difference between the estimations and the measured values, cf. equation
(MAE) to be the best statistical measure for the accuracy of the employed Three
States Model. The MAE and its standard deviations calculated across all protocols
and traffic rates in the validation set (henceforth always given as percentage of the
SNMD-measured values) is depicted in Figure 4.7. For each traffic rate, the esti-
mation error using the OLS estimator parameters is 4.2% to 35.9% lower than the
corresponding error when using the model parameters defined through example
measurement. Across all measurements, the mean absolute estimation error and
standard deviation (denoted as µ± σ) of the Three States Model with the parame-
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ters defined by example measurement equals 3.77% ± 3.17%. When determining
the parameters by OLS, we obtain 3.00 %± 2.55% - hence achieving an overall re-
duction of the MAE by 21% only by altering the calibration technique. Taking into
account the entirety of experimental data by application of OLS to the calibration
set hence clearly pays off in the resulting estimation accuracy.

MAE =
1

n

n∑
i=1

|yi − ŷi| =
1

n

n∑
i=1

|εi| (MAE)

Three States Model with State Transitions (TSMwST)

With the mean absolute estimation error still in the range of 3% or more, we investi-
gated further means to improve the estimation accuracy. As Figure 4.8 exhibits, the
current draw temporarily drops to approximately 4 mA during the state switches.
These state switches remain unaccounted for in the OLS regression model speci-
fied in equation (OLS-I). We first attempted to sum up the transition times between
the transceiver states. However, this approach led to unsatisfactory results, as the
ScatterWeb2 OS only supports a clock in milliseconds precision. Yet, the approach
of simply counting the transceiver switches and integrating them into the OLS re-
gression model led to a significant improvement in the estimation accuracy. The
number of transceiver switches (from an arbitrary state) to the receive, transmit or
sleep state was accounted for with the additional regressands srcv, stx, and sslp.
We refer to this model as Three States Model with State Transitions hereafter, as
specified in equation (TSMwST). Figure 4.9 illustrates the model’s concept of a
node’s current draw.

E = PrcvTrcv + PtxTtx + PslpTslp + αsrcv + βstx + γsslp (TSMwST)

According to this enhanced model, the energy consumed by an arbitrary node is a
function of the total time it has its radio transceiver in the three different states (de-
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noted as Trcv, Ttx, Tslp) and the three adjustment terms αsrcv, βstx, and γsslp. The
parameters α, β, γ compensate for the transceiver switches to the states receive,
transmit and sleep.

Parameter Definition through Ordinary Least Squares (OLS):

We derived the OLS regression equation (OLS-II) to the model (TSMwST) with
the explanatory variables Trcv, Ttx, Tslp, srcv, stx, sslp, as well as the dependent
variable E (of which we obtain the measured value with the SNMD) as

E = PrcvTrcv + PtxTtx + PslpTslp + αsrcv + βstx + γsslp + ε (OLS-II)

The OLS estimator β̂ = ( ˆPrcv, P̂tx, ˆPslp, α̂, β̂, γ̂) is calculated in analogy to Sec-
tion 4.3.3. For this purpose, the matrix X in the OLS model in matrix form (cf.
equation (MVOLS)) has to be redefined, the vectors y and β remain unchanged:

X =


Tslp1 Trcv1 Ttx1 srcv1 stx1 sslp1
Tslp2 Trcv2 Ttx2 srcv2 stx2 sslp2

...
...

...
...

...
...

Tslpn Trcvn Ttxn srcvn stxn sslpn

 y =


E1

E2
...
En

 β =

PrcvPslp
Ptx


We obtained a coefficient of determination of R2 = 0.9998 for the multivariate
linear regression model (OLS-II), a slightly higher value than for OLS-I. However,
when comparing the goodness of fit of two regression models, the R2 indicator is
not a meaningful criterion, as it never decreases when adding more regressands.
The adjusted coefficient of determination R̄2 adjusts for the number of explanatory
terms in a model. Unlike R2, this coefficient only increases when the increase
of explanatory variables actually improves the model. An increase of R̄2 upon
addition of an explanatory variable to a multivariate OLS model is hence generally
understood as a proof that the new model delivers a better fit to the measured data.
Equation (CoeffDetAdj) defines the adjusted coefficient of determination R̄2. The
variable n denotes the number of the observations, the variable k the number of
explanatory variables, which increased from 3 to 6 in our case.

R̄2 = 1− SSR

TSS

(n− 1)

(n− k)
= 1−

∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

(n− 1)

(n− k)
(CoeffDetAdj)

An even better coefficient for comparing the goodness of fit of two regression mod-
els is the Akaike Information Criterion (AIC), as specified in (AIC). The variable
k denotes the number of parameters of the model, and θ the maximized likelihood
function for the estimated model, cf. Draper and Smith [43]. The lower the AIC
value, the better the fit of the empirical data to the specified model. We mea-
sured the R̄2 andAIC coefficients before and after adding the transceiver switches
srcv, stx, sslp, to the OLS model (OLS-I vs. OLS-II).

AIC = −2 ln(θ) + k (AIC)
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With R̄2 increasing from R̄2
I = 0.9801 to R̄2

II = 0.9980, and AIC decreasing
from AICI = 2.5036 to AICII = 0.2154, we can safely claim that the Three
States Model with State Transitions delivers a significantly better fit to the mea-
surement data than the today’s most widely used simple Three States Model.

Estimation Accuracy of the Three States Model with State Transitions:

We calibrated the OLS estimators for the parameters of the second model with the
training set, and examined the resulting estimation accuracy on the validation set.
Across all measurements, the MAE and standard deviation (denoted as µ ± σ) of
the software-based estimations using the Three States Model with State Transitions
(and the parameters determined by OLS) compared to the physically measured val-
ues equals 1.13%± 1.15%. Comparing this result to the 3.00 %± 2.55% obtained
with the Three States Model (and the parameters determined by OLS), our pro-
posed model enhancement led to an overall reduction of the MAE by remarkable
62.3%, as also illustrated in Figure 4.7.

The Impact of Calibration on the Estimation Accuracy

This section evaluates the impact of different possible granularities of calibra-
tion on the achievable accuracy of the software-based energy estimation technique.
Throughout this section we henceforth utilize the same multivariate OLS regres-
sion methodology and the Three States Model with State Transitions as described in
Section 4.3.3, as applying this model generally led to the lowest estimation errors.

Per-Node Calibration: Different wireless sensor node instances often exhibit a
slightly different behavior with respect to their power consumption levels in the
different transceiver states. This effect has been observed in previous studies [106]
[76], and has been quantified for the utilized MSB430 platform in Section 4.3.2.
We have encountered node pairs of the same node type that differed by more than
4% in their physically measured energy consumption. Hence, even the best node-
generic software-based energy estimation mechanism can be more than 4%, if its
underlying model parameters were not calibrated on a per-node basis.

Researchers intending to calibrate their energy estimation model with only one
particular sensor node instance must therefore be aware that their energy consump-
tion estimates will deviate from the real energy consumption by the unavoidable
hardware-based variation, unless each node has previously been calibrated indi-
vidually. However, calibrating on a per-node basis means that every single node
needs to be physically measured (e.g., with an SNMD or a high-resolution multi-
meter) ideally with different MAC protocols and different traffic rates. Only this
time-intensive calibration leads to the set of per-node but protocol-generic estima-
tion model parameters which has been shown in Section 4.3.3 to reduce the mean
absolute estimation error (µ± σ) to 1.13% ± 1.15%.
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Per-Node and Per-Protocol Calibration: In Section 4.3.3, we intentionally gen-
eralized from the particularities of the MAC protocol by running OLS over four
different MAC protocols. Hence, we obtained protocol-independent (but node-
specific) estimation parameters. In order to obtain per-protocol (and node-specific)
calibrated estimator parameter values, the methodology applied in Section 4.3.3
can be applied without much adaptation. Basically, the methodology has to be
applied four times independently for each protocol. In each case, only the obser-
vations of the specific protocol and node have to be chosen from the training set
in order to calculate the OLS estimator β = (Prcv, Pslp, Ptx, srcv, sslp, stx), which
results in four different estimators βWiseMAC , βS−MAC , βT−MAC and βCSMA.
For each different protocol, the estimation model then needs to be aware of the ap-
plied MAC protocol at run-time, and must be equipped with the numerical values
of all four parameter vectors β. The same specialization effect can also be achieved
by supplying more information to the OLS model by introducing dummy variables
that indicate the currently used protocol, cf. Draper and Smith [43] p.299ff.

We propose per-protocol calibration as an even more accurate estimation approach,
which might be useful if researchers know exactly what protocol they intend to use
on the MAC layer in advance. We calculated different OLS parameter sets for each
of the four protocols (S-MAC, T-MAC, WiseMAC, CSMA) and used the same
node (node 1 in Figure 4.2) used in Section 4.3.3 for calculating the resulting ac-
curacy on the validation set. The combined approach of per-node and per-protocol
calibration obviously leads to the highest accuracy. Across all four protocols and
traffic rates, we obtained a mean estimation error and standard deviation (µ ± σ)
of only 0.42% ± 0.72%. The combined calibration approach, however, has mul-
tiplicative impact on the overhead before network deployment, as all nodes need
to be equipped with tailor-made estimation model parameters for each protocol.
Figure 4.10 illustrates the different estimation errors when applying the per-node
and protocol-generic or the per-node and per-protocol calibration approach.
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4.4 Conclusions

In this chapter, we have described our efforts towards a reliable and robust method-
ology for software-based energy estimation. In this study, we identified and quanti-
fied the different factors, which cause deviations of the software-based estimations
from the real physically measurable energy consumption.

In Section 4.3.2, we have observed and quantified the impact of hardware-related
deviations in the energy consumption patterns, which impact on the accuracy of
software-based energy estimations when universal and generic parameters are used
instead of per-node calibrated values. In Section 4.3.3, we have thoroughly exam-
ined the accuracy of different software-based models and calibration techniques.
We have calculated the estimation errors in large set of experiments run across a
wide range of parameters, i.e., nine different traffic volumes, four different wireless
channel MAC protocols and eight different instances of the MSB430 platform.

Our main findings can be summarized as follows: We have conveyed that software-
based energy estimation can be a valuable alternative to using sophisticated mea-
surement hardware, especially in outdoor- deployments where the latter is impossi-
ble - at least for evaluating protocols where the CPU is used frugally, i.e., E2-MAC
or routing protocols. The inaccuracies in the production of the electronic compo-
nents have been shown to impact on different power consumption levels, which
led to nodes differing by more than 4% in their energy consumption over an ex-
periment duration of only 10 minutes. Enhancing today’s most widely used simple
Three States Model with information regarding the state transitions and applying
multivariate OLS regression to calibrate the model parameters has been shown
to remarkably reduce the estimation error. The mean absolute error (MAE) and
standard deviation (µ± σ) of the energy estimations by the software-based model
using protocol-generic but per-node calibrated parameters could be pushed to as
few as 1.13% ± 1.15%. Applying even more sophisticated parameter calibration
of per-node and per-protocol calibration has been shown to reduce the mean abso-
lute error and standard deviation to as few as only 0.42% ± 0.72% across the four
evaluated wireless channel MAC protocols S-MAC, T-MAC, WiseMAC, and IEEE
802.11-like CSMA. For both calibration methodologies, the protocol-generic/per-
node-calibrated and the per-protocol/per-node-calibrated approach, the resulting
MAE did neither depend on the employed traffic rate nor the MAC protocol, and
did not exceed 1.6% and 0.75%, respectively. The proposed methodologies are
hence robust against the choice of the MAC protocol and the traffic rate.

The library functions, as well as the developed estimation models and calibration
techniques for estimating the energy of a sensor node at run-time have been further
used for the evaluations of Part II of this thesis. Relying on the work presented in
this chapter and the TARWIS testbed management system (cf. Chapter 3), we could
reliably quantify the energy consumption of not only a single node, but the entire
testbed network running our energy-efficient and traffic-adaptive MAC protocol
prototypes in Chapter 7.
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Chapter 5

A Traffic-Adaptive Extension for
WiseMAC

In this chapter we evaluate the performance of the WiseMAC [57] burst transfer
mode and propose an enhanced scheme, which addresses the problem of bottleneck
nodes in tree-based scenarios. The study published in [87][91][89] ignited and
strengthened our interest on throughput-maximizing but at the same time energy-
efficient mechanisms on the MAC layer, which finally led to the more sophisticated
traffic adaptivity mechanisms designed, implemented and evaluated in Chapter 7.

We thoroughly analyze the WiseMAC mechanism to cope with packet bursts called
More Bit, as well as our proposed extension, both in simulation and on a real-world
sensor node platform. Section 5.1 motivates our investigations by outlining the
problem we address. Section 5.2 describes the basic WiseMAC protocol with the
existing More Bit mechanism. Section 5.3 then introduces our proposed Extended
More Bit mechanism. Section 5.4 evaluates both approaches in simulation (Sec-
tion 5.4.1) and by means of small-scale real-world experiments with a prototype
(Section 5.4.2). Section 5.5 concludes the chapter.

5.1 Motivation

WiseMAC [57] is to date one of the most established asynchronous preamble-
sampling energy-efficient MAC (E2-MAC) protocols, and has had a big influence
on its successors (e.g. X-MAC [25], ContikiMAC [48]). The sound performance
and high efficiency of WiseMAC under various traffic conditions has been indepen-
dently pointed out in Langendoen et al. [107] and our own contributions [85][90].
Among the preamble-sampling-based protocols, it must be seen as the most effi-
cient approach, since it only employs a minimal preamble for collision avoidance
and clock drift compensation, as opposed to B-MAC [143] or X-MAC [25], which
send out long preambles before every payload frame transmission. The recent
survey of nine E2-MAC protocols [107] points out that “the WiseMAC protocol
showed a remarkable consistent behavior across a wide range of operational condi-
tions, always achieving the best or second-best performance”. With sparse traffic,
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Fig. 5.1: Bottleneck Fig. 5.2: WiseMAC More Bit

WiseMAC comes close to the theoretically achievable lower bounds of energy-
efficiency in case of unicast point-to-point transmissions, cf. El-Hoiydi [56]. How-
ever, the high energy-efficiency of WiseMAC comes at the cost of a limited maxi-
mum throughput and packet loss occurring with rather low traffic rates already, e.g.
due to congestive situations where multiple nodes intend to transmit to the same
gateway node. If many sensors simultaneously detect and report data to the base
station, gateway nodes receiving traffic from several sources become throughput-
restraining bottleneck nodes, as depicted in Figure 5.1 with nodes A,B,C forward-
ing packets from large subtrees to the grey shaded bottleneck node.

5.2 WiseMAC More Bit Scheme

WiseMAC suggests an optional fragmentation scheme called More Bit in [56],
which succeeds in increasing the maximum achievable throughput across one link.
The scheme consists in setting a flag (the More Bit) in a unicast MAC frame when-
ever the sender has more packets to send to the same destination. The More Bit in
the frame header signals to the receiving node not to turn off the transceiver after
receiving the frame, but to switch to receive again after transmitting the frame ac-
knowledgement in order to receive the next packet in line (cf. Figure 5.2). When a
sender node has multiple packets to send to the same destination, it hence does not
need to wait for the next wake-up of the receiver for each frame, but can transmit
all packets in one burst, which increases the achievable WiseMAC throughput.
The scheme proved to be effective in scenarios with varying traffic, especially with
packet bursts generated by single nodes. However, the more bit scheme only in-
cludes one sender and one destination. Basically, it only attempts to improve the
traffic adaptivity along one link. The improvement in traffic adaptivity is there-
fore rather limited to point-to-point scenarios. In large multi-hop WSN topologies,
however, the typical situation is that nodes closer to the base station need to forward
data from large sub-trees. As schematically depicted in Figure 5.1, such bottleneck
nodes have to forward messages received by many other child nodes and their sub-
trees, e.g., nodes A, B and C. The More Bit scheme does not help at all if several
nodes aim to simultaneously transmit packets to the same bottleneck node. If each
node has one or a few packets pending for the bottleneck node, one node after the
other will have to wait for one particular wake-up of the bottleneck node. The More
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Bit scheme achieves that one node after the other can transmit a burst of packets,
but the duty-cycle of the receiving bottleneck node is left untouched.

5.3 Extended More Bit Scheme

In order to increase the effectiveness of the More Bit in scenarios of multiple
sources transmitting to one bottleneck node, we developed the Extended More Bit
scheme. We extended the semantics of the More Bit to become a promise for stay-
ing awake for a full base interval T . When a node hence receives a frame with the
More Bit set, it promises to all nodes waiting to forward traffic to remain awake by
setting the Extended More Bit in the acknowledgement.

Figure 5.3 depicts both schemes, the WiseMAC More Bit 5.3 (a) scheme as well
as our proposed Extended More Bit 5.3 (b). The figure compares how the mecha-
nisms react in a situation where two sources SRC1 and SRC2 simultaneously need
to transmit some packets to the same node DST, possibly because an event has
occurred in their vicinity. If SRC1 and SRC2 both attempt to reach DST in the
same wake interval, the contention mechanism of WiseMAC will decide who is
first. SRC1 wins the contention and sends its first two frames with the More Bit
set. With the Extended More Bit displayed in Figure 5.3, the destination node ac-
knowledges the More Bit in the acknowledgement and stays awake for at least one
base wake interval T . As SRC2 has lost the contention, it will wait and overhear
the transmission from SRC1 to DST. By hearing the Extended More Bit in the ac-
knowledgement, SRC2 knows that it can start sending its own data frames right

(a) WiseMAC More Bit Mechanism

(b) Extended More Bit mechanism

Fig. 5.3: WiseMAC More Bit and Extended More Bit
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after SRC1 has finished its transmissions. The advantage of the Extended More Bit
scheme is that no time is wasted with DST switching to sleep while other nodes
are still buffering packets destined to it. Notice that the transmission of SRC2 can
start immediately after the transmissions of node SRC1. If a node requests its des-
tination to stay awake for one next packet (as done in the More Bit scheme), the
receiver node treats this request as an indication of increased load. The scheme
is not applied after every unicast transmission, but is activated whenever bursts of
packets occur, as transmissions of single packets are frequent in WSNs and do not
yet indicate increasing load.

5.4 Experimental Evaluation

5.4.1 Simulation-based Evaluation

We simulated the two illustrated mechanisms More Bit and Extended More Bit in
a scenario of 90 nodes uniformly distributed across an area of 300m x 300m in
the OMNeT++ Network Simulator [178]. We used the default wireless channel
model (Free Space) of the Mobility Framework [44]. As done in most simula-
tion studies on the energy consumption of MAC protocol-related mechanisms, we
calculated the energy consumption of the sensor nodes with a state-based energy
model according to time spent in three operation modes sleep, receive and trans-
mit, weighted with the respective energetic costs taken from the transceiver specs,
as usually done in network-simulator based evaluations of WSN MAC protocols,
e.g., the frequently cited studies [38][72][107].

We applied the transceiver parameters of the TR1001 radio transceiver [156] (trans-
mission rate, state transition delays, power consumption), which is the radio of our
prototype node platform. The parameters of the simulation environment, energy
consumption model and transceiver specific settings, as well as WiseMAC-specific
parameters are listed in Table 5.1. Traffic is generated during 1 hour at each node

Path Loss Coefficient α 3.5 Sensitivity -101.2 dBm
Carrier Frequency 868 MHz Carrier Sense Sensitivity -112 dBm
Transmit Power 0.1 mW Communication Range 50 m
SNR Threshold 4 dB Carrier Sensing Range 100 m
Transceiver Parameters [156]:
Supply Voltage 3 V Recv to Transmit 12 µs
Transmit Current 12 mA Transmit to Recv 12 µs
Recv Current 4.5 mA Sleep to Recv 518 µs
Sleep Current 5 µA Recv to Sleep 10 µs
WiseMAC Parameters:
Base Interval T 250 ms Maximum Retries 3
Duty-Cycle 5% Packet Size 20 bytes
Packet Queue Length 15

Table 5.1: OMNeT++ Simulation Parameters
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Fig. 5.4: Energy Consumption
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Fig. 5.5: Throughput

(except for the sink) according to a Poisson process with increasing traffic inten-
sity λ, and sent towards one single sink in the lower left corner. Nodes apply static
shortest path routing, and are assumed to know their hop-count optimal gateway.
They forward their packets over the latter during the entire simulation run, picking
one at random in case more than one convey the same hop distance to the sink.
Figure 5.4 depicts the aggregated energy consumption of the entire network at the
end of the simulation, and Figure 5.5 the payload throughput received at the sink
station. As one can clearly see in Figure 5.4, WiseMAC (without the More Bit)
is both energy-efficient and somewhat traffic-adaptive for rates of λ in between
[0, 0.05]. With no traffic, the energy consumption remains very low. With linear
increase of traffic, WiseMAC reacts with a more or less linear increase of the en-
ergy consumption. Throughput stalls at a traffic rate of λ = 0.05 already. Without
the More Bit, nodes only transmit one packet per wake-up, the throughput hence
depends on the duration of the basic wake interval T .
As one can clearly see in Figure 5.5, the introduction of the WiseMAC More Bit
option improves the throughput by a factor of roughly 2. The ability to transmit
a burst of buffered packets to the intended receiver allows for reaching a much
higher throughput. The More Bit somewhat improves the traffic awareness of the
WiseMAC protocol, as it allows for achieving a higher maximum throughput with
a still reasonably high efficiency for rates of λ in between [0, 0.1], but remains
efficient for low traffic. Figure 5.5 further conveys that an increase of the maximum
throughput is possible with the Extended More Bit. As nodes stay awake for a
certain time interval after receiving a packet burst, even if no other node needs to
transmit packets, the improved throughput comes with slightly increased energy
costs. Considering the ratio of throughput and energy, the Extended More Bit,
however, performs even better than the More Bit scheme for high traffic (λ ≥ 0.1).

5.4.2 Evaluation on Embedded Sensor Boards

In order to examine and compare the real-world feasibility of the simulated MAC
mechanisms and WiseMAC extensions, we implemented the WiseMAC protocol a)
without More Bit, b) with More Bit and c) our proposed Extended More Bit scheme
on Embedded Sensor Boards (ESB) [158] on top of the ScatterWeb (v1.0) OS [159].
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Base Interval T 500 ms Medium Reservation Preamble uniform [0,6] ms
Duty-Cycle 1% MAC Header 13 bytes
Baud Rate 19’200 Payload 12 bytes
Bit Rate 9’600 bps Packet Queue Length 20
Minimum Preamble 5 ms Maximum Retries 3

Table 5.2: WiseMAC on ESB nodes: Prototype Parameters

The ESB is equipped with the MSP430 microchip [171], various sensors and the
868.35 MHz transceiver TR1001 [156]. The platform is discussed in more detail
in Chapter 2. Sensors and radio transceiver can be turned on and off, which results
in different levels of energy consumption. The parameters listed on Table 5.2 led
to robust functioning of WiseMAC on the ESBs.
Preamble Sampling and Frame Transmission: The ESB WiseMAC prototype
implements the main features of the protocol as described in [57]. In each wake-
up, the node senses the channel. If it does not recognize a preamble byte within its
duty-cycle of 4t = T × 1% = 5 ms, it turns its radio off until the next wake-up.
If it recognizes the preamble byte, it keeps the radio on until preamble and frame
are correctly received. When a packet has to be sent, the so-called network handler
determines whether the receiver is already known and its schedule offset is already
stored in the WiseMAC schedule offset table. If this is the case, the node waits for
the receiver’s wake-up and then transmits preamble and frame. In case the receiver
is yet unknown, transmission immediately starts with a preamble of duration T .

Evaluation of Throughput

We measured the throughput of WiseMAC without More Bit, with More Bit and
our proposed Extended More Bit when generating constant traffic of equal rate
from two senders (SRC1, SRC2) towards one receiver (DST), basically the same
scenario as depicted in Figure 5.3. When both senders concurrently forward pack-
ets to the receiver, the receiver with its limited wake-ups becomes a bottleneck.
The Extended More Bit alleviates the impact of this problem.
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Figure 5.6 depicts the mean throughput measured in 10 experiment runs for each
setting. Obviously, the WiseMAC protocol without the More Bit can only deliver
one packet per wake-up, and therefore, the packet transmission rate is limited to
two packets per second (= 1

T ). When increasing the rate, packets are subsequently
queued in the buffer and dropped when the buffer is full. When two stations ap-
ply the More Bit scheme, they can alternately empty their transmit buffers with a
burst of packets. The sending station receives packets from its application layer
and buffers them until the receiver node’s next wake-up. The sender then transmits
frames with the More Bit set, listens for the acknowledgement and continues send-
ing the next packet in line, until its buffer is empty. Applying the Extended More
Bit scheme increased the throughput to much higher values. Figure 5.6 clearly
conveys that the Extended More Bit scheme is superior to the original WiseMAC
More Bit with respect to the achieved throughput by more than 25%. The superior
performance of roughly 20% has been found similar in both simulation and real-
world experiments, although the topology setup was much simpler. Yet, the effect
of the bottleneck nodes became clearly measurable in both scenarios, and delivered
astonishingly similar results.

5.5 Conclusions

In this chapter we evaluated the WiseMAC burst transfer mode More Bit and our
proposed Extended More Bit in simulation and on a real-world sensor platform.
The results confirm that the Extended More Bit basing on the receiver promising to
remain awake after a packet burst performs better than the original WiseMAC More
Bit scheme with respect to the achievable throughput. The superior performance of
20%-25% has been found similar in both simulation and real-world experiments.

The evaluation of the results presented in this chapter basically form a starting
point in our investigations on throughput-maximizing but at the same time energy-
efficient mechanisms on the MAC layer, which are discussed in depth in Chapter 7.
In terms of time, this chapter by far describes the oldest results among the contri-
butions presented in this thesis. When experimenting with the radio duty-cycling
MAC protocol mechanisms on ESB nodes in the context of this rather preliminary
study, we realized that indeed, the average energy consumption could be dras-
tically reduced when applying preamble sampling and a duty-cycle of only 1%.
However, the price to be paid was that of severely degraded Quality of Service:
while sending shell commands to sensor nodes was practicable with ScatterWeb’s
simple CSMA protocol, manual interaction with the WiseMAC prototype across
several hops became a cumbersome and tiring issue. We investigated whether
there were yet mechanisms proposed that would allow nodes to temporally aban-
don their wake-up pattern when services with higher Quality of Service constraints
(e.g, real-time interaction) had to be handled. However, we found that no existing
protocol targeted at such scenarios and that in general, research had focused solely
on energy-efficiency, leaving any Quality of Service aspects aside.
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In the subsequent chapter, we examine a selection of the most frequently cited
E2-MAC protocols with respect to their ability to handle traffic with variable load.
With this evaluation, we intend to profoundly clarify which mechanisms, and which
class of protocols seemed to be the best starting point to accomplish the traffic-
aware behavior on the MAC level we have just discovered to be missing.
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Chapter 6

Energy Efficient MAC Protocols
under variable Traffic Conditions

In this chapter, we evaluate today’s most well-known Energy-Efficient Medium
Access Control (E2-MAC) protocols under variable traffic patterns, in order to
obtain a first impression how the state of the art in MAC protocols behaves in
these situations. In almost any study on E2-MAC protocols published in the recent
past, traffic has been assumed to be low and at constant rate, e.g., the studies on
S-MAC [190], B-MAC [143], T-MAC [38] or WiseMAC [57] all evaluate their pro-
tocols under low and Constant Bit Rate (CBR) traffic. The study on X-MAC [25]
varies the number of transmitters, but not the traffic rate over time.

As pointed out in Section 5.5 of Chapter 5, the issue of adaptivity and flexibility
of MAC protocols with respect to timely variable traffic has yet only been superfi-
cially studied. There has been no clear notion yet how to assess or measure traffic
adaptivity in the literature. The quote of Lord Kelvin, the inventor of the abso-
lute thermodynamic temperature scale saying that “if you can’t measure it, you
can’t improve it” is still valid in almost any problem domain. In order to improve
traffic adaptivity in E2-MAC protocols, we first require a consistent notion of this
property. A comparative analysis of the state of the art in E2-MAC protocols with
respect to their adaptability towards variable traffic is definitely yet missing. With
the evaluation presented in this chapter and published in [90], we close this missing
gap and thoroughly evaluate the energy-throughput and energy-latency trade-offs
of a selection of today’s most prominent E2-MAC protocols. Based on our find-
ings, we motivate the need for traffic-adaptive MAC protocol mechanisms.

In Section 6.2, we experimentally examine the most well-known E2-MAC proto-
cols for WSNs proposed between 2002 and 2008 in scenarios with variable traffic
conditions. Sections 6.2.1-6.2.2 first outline the preliminaries of our simulation
analysis, i.e., the examined protocols and their parameters, the simulator environ-
ment, the wireless channel model and its parameters, the experiment setup and the
shape of the varying traffic under which the protocol models have been evaluated.
Section 6.2.3 analyzes how the throughput and the energy-consumption of today’s
most well-known protocols react to variable load. Section 6.2.4 then examines
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the energy-throughput and energy-latency trade-offs of each protocol. Section 6.3
introduces an intuitive definition for the ability of a protocol to adapt to varying
traffic load at run-time - defining our understanding of traffic adaptivity with an
unambiguous notion of a formal three-partite metric. By applying this metric to
experimental results of Section 6.2.4, we can finally compare the state of the art
in today’s E2-MAC protocols with respect to their run-time traffic adaptivity and
motivate our future contributions in this area. Section 6.4 concludes this chapter.

6.1 Motivation

Energy-efficiency is a major concern in the design of WSN communication pro-
tocols. As the radio transceiver typically accounts for a major portion of a WSN
node’s power consumption, E2-MAC protocols attempt to maximize the time the
radio is kept turned off, in order to minimize the overall energy expenditures.
However, with duty-cycling the radio, these protocols trade off a higher energy-
efficiency versus classical Quality of Service parameters (e.g., throughput, latency,
reliability). Today’s E2-MAC protocols are able to deliver little amounts of data
with a low energy footprint, but introduce severe restrictions with respect to through-
put and latency. Often, throughput is reduced to a fraction of that of energy-
unconstrained MAC protocols.
With WSNs growing in popularity in industry, applications and use cases have
emerged where higher throughput and reasonable Quality of Service are required
during periods of intense network activity - e.g., in the case of Wireless Multime-
dia Sensor Networks (WMSNs) transmitting an image when an event is detected,
cf. Akyildiz et al. [4] and Almalkawi et al. [7]. Further use cases can be found in
health-care related sensor networks registering anomalies in patient’s sensor read-
ings that need to be transmitted to a central node, cf. the studies on CodeBlue [119]
and Chipara et al. [35]. As pointed out in [7], an E2-MAC protocol for such ap-
plications should “maximize network throughput”, but “be energy-efficient” for
most of the time. It should therefore reduce the major sources of energy-waste,
but still offer reasonable Quality of Service (high throughput, low delay) in case of
increasing network activity. Similar concepts of adaptive resource allocation have
been successfully implemented in many other domains of distributed computing,
often with the goal of conserving energy, e.g., dynamic frequency/voltage scaling
implemented in the CPU chips of most of today’s mobile devices.

6.2 Simulation-based Evaluation

In order to examine the behavior of the current state of the art inE2-MAC protocols
under variable traffic load, we went on to filter out the most frequently cited proto-
cols in the E2-MAC field. We chose to implement the S-MAC [190], T-MAC [38],
B-MAC [143], WiseMAC [57] and X-MAC [25] protocol, along with the reference
protocols IdealMAC and simple energy-unconstrained IEEE 802.11-like CSMA in
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the OMNeT++ Network Simulator [178]. More detailed information about the pro-
tocols can be found in Section 2.4 of Chapter 2. We used the OMNeT++ extension
Mobility Framework (MF) [44], which supports simulations of wireless ad hoc and
mobile networks on top of OMNeT++.

6.2.1 Simulation Model

In the following, we briefly discuss the particularities of the simulation setup and
the examined protocol models with the most crucial parameters settings.

IdealMAC

The concept of an ideal MAC protocol for WSNs, to which we refer to as IdealMAC
hereafter, plays a key role in our approach to measure and quantify the E2-MAC
protocol run-time traffic adaptivity. This concept of an idealized MAC layer has
been used by El-Hoiyidi [57][56] to show where the lower bounds of E2-MAC
protocol efficiency are. IdealMAC models the physical constraints of E2-MAC
protocols, such as the channel bandwidth, the delays and costs of the transceiver
switches. The key point of the concept is that IdealMAC assumes that there is no
information asymmetry between sender nodes and receiver nodes. Nodes always
know when they need to switch to receive/transmit in order to handle transmissions.
IdealMAC is depicted in Figure 6.1 where a source node A transmits a frame via
an intermediate node B to a destination node C.

In IdealMAC, nodes are always asleep in case of no traffic. At the same instant a
sender node receives a packet from the upper layer, such as node A in Figure 6.1,
the receiver node B instantly switches its radio transceiver from sleep to receive,
because it also knows that the source node wants to transmit. After frame recep-
tion, the intermediate node B forwards the frame to destination node C in the same
manner. By assuming perfect global knowledge among all participating nodes,
IdealMAC has the lowest-possible delay any E2-MAC protocol, and the highest
possible energy-efficiency. It exhibits no overhead for periodic duty-cycling, peri-
odic synchronization. As nodes immediately turn their transceivers to sleep after
frame transmissions, they do not suffer from overhearing or idle listening. It is fur-
ther assumed that nodes can always avoid collisions without introducing an RTS-
CTS exchange. Nodes always know whether their targeted receivers are ready to
receive messages or whether their neighbors are currently occupying the channel.

Fig. 6.1: IdealMAC Reference Protocol
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Wireless Propagation Model

In the recent years, network simulation tools and simulation studies in general
have been heavily criticized, mainly because of oversimplified simulation model
assumptions and inadequate parameter settings [105][11]. Unit-Disk-Graph (also
referred-to as Flat-Earth) based simulation models, as well as the deterministic
Free Space Model have been shown to even produce misleading results, cf. Kotz
et al. [103]. The Free-Space model, as specified in Rappaport [153], calculates
the received power Pr at a distance d from the sender according to the transmis-
sion power Pt, the antenna gains of the transmitter and the receiver Gt,Gr, the
wavelength λ and the so-called system-loss factor L.

Pr(d) =
PtGtGrλ

2

(4π)2d2L

Even though the model parameters can be varied, the resulting received power
is completely deterministic. Two nodes with a certain distance are either within
each other’s transmission range or not, given that there are no concurrent transmis-
sions. In order to more realistically reflect the characteristics of wireless propaga-
tion (high packet error rate due to signal attenuation, multipath propagation, shad-
owing, fading and similia), we applied the Log-Normal Shadowing Model [153],
which has been recently introduced into OMNeT++ [104]. This channel model al-
lows for a more realistic simulation of wireless channel properties and phenomena.
It models small-scale shadowing and fading effects for each frame transmission by
adding a random perturbation factor to the reception power. The perturbation factor
follows a log-normal distribution with a user-selectable deviation σ. The received
power PrLogNormal at a distance d is a random variable following the log-normal
distribution:

PrLogNormal(d;σ2) ∼ ln(Pr(d), σ2)

The specified SNR thresholds then determine whether a packet arriving with a
received power of PrLogNormal is correctly received or not. Figure 6.2 depicts

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100

P
a

c
k
e

t 
D

e
liv

e
ry

 R
a

te
 (

P
D

R
)

Distance [m]

Free Space Model                          
Log-Normal Shadowing σ = 1 db   
Log-Normal Shadowing σ = 2.5 db
Log-Normal Shadowing σ = 5 db   

Fig. 6.2: Free Space vs. Log Normal Shadowing

108



6.2. SIMULATION-BASED EVALUATION

the packet delivery rate (PDR) (y) versus the distance (x) between a sender and a
receiver, applying the default OMNeT++ Free Space Model and comparing it to
the Log-Normal Shadowing Model with different values of σ. With the Free Space
Model, the received power is a simple deterministic function of the distance. When
having only one sender at a time, the reception probability immediately drops from
100% to 0% when the distance between the sender and the receiver exceeds 50m
(with the given transmission power and SNR threshold settings). Using the Log-
Normal Model, the PDR decreases gradually with the distance, exhibiting different
slopes with different values of the deviation σ of the random perturbation factor.

Still, any simulation environment for WSNs must be considered incomplete, since
crucial wireless phenomena and hardware-related properties are only modeled ar-
tificially and many side-effects are left out. However, with choosing an adequate
channel model and suitable environment settings, we intended to at least stick to
the best practices of wireless network simulations.

Energy Model

We modeled the power consumption of the sensor nodes with a state transition
model with respect to the time spent in three operation modes sleep, receive and
transmit, weighted with the respective energy costs, as usually done in network-
simulator based evaluations of WSN MAC protocols, e.g., [38][72][107]. We fur-
ther used a simple linear battery model, which does not take self-discharge into
account. Table 6.1 lists current, voltage and transmission rate of the CC1020
[173], a byte-level radio transceiver in the 804-940 MHz ISM frequency band.
The CC1020 is used by the MSB430 sensor nodes platform [14], which we later
use in Chapter 7 as the main platform for prototyping maximally traffic-adaptive
E2-MAC protocols on real-world sensor nodes. Table 6.1 further lists the parame-
ters of the wireless channel model of the OMNeT++ Network Simulator [178], as
well as experiment-specific settings (e.g., header size, payload, simulation time).

Transceiver CC1020 [173]:
Transmit Current Itx 21.9 mA Supply Voltage U 3 V
Recv Current Irx 17.6 mA Transmission Rate R 115’200 bps
Sleep Current Isleep 1 µA
OMNeT++ Parameters:
Path Loss Coefficient α 3.5 Transmit Power 0.1 mW
Log-normal Deviation σ 2.5 db SNR Threshold 4 dB
Carrier Frequency 868 MHz Sensitivity -100.67 dBm
Carrier Sense Sensitivity -112 dBm
Simulation Settings:
Simulation Runs 100 Simulated Time 1000 s
Maximum ARQ Retries 3 Frame Header Size 14 bytes
Payload 50 bytes

Table 6.1: Simulation and Experiment Parameters
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CSMA Contention Window CW 10 ms
S-MAC Listen Interval [100, 200, 300, 500, 1000, 2000] ms

Duty-Cycle 10%, 20%
T-MAC Frame Length [50, 100, 200, 300, 500, 1000] ms

Contention Window CW 5 ms
SYNC size DSY NC 14 bytes
RTS size DRTS 14 bytes
CTS size DCTS 10 bytes
Timeout 1.5× (CW +DRTS/R+DCTS/R)
SYNC period 10 s

B-MAC Base Interval [25, 50, 100, 200, 500] ms
Duty-Cycle [8, 4, 2, 1, 0.4] %
Medium Reservation Interval uniform (0,10) × trx−tx

WiseMAC Base Interval [25, 50, 100, 200, 500, 1000] ms
Duty-Cycle [8, 4, 2, 1, 0.4, 0.2] %
Medium Reservation Interval uniform (0,10) × trx−tx

X-MAC Max Interval [100, 200, 500] ms
Min Interval 10 ms
Early-ACK size DEACK 10 bytes
Inter-Strobe-Interval DEACK/R
Listen Interval DEACK/R+ trx−tx + ttx−rx

Table 6.2: E2-MAC Protocol Parameters

Protocol Simulation Models

Table 6.2 displays the main simulation parameters of the simulated E2-MAC pro-
tocol models. As the protocol behavior often heavily depends on the choice of the
essential protocol parameters (e.g., basic wake interval, duty-cycle, etc.), we stud-
ied the protocols with different configurations of those parameters, by varying the
parameters over a wide range. Instead of only comparing single parameter settings
of two protocols, we choose multiple parameter sets for each protocol, which gives
a deeper insight into each protocol algorithm’s advantages and disadvantages.

For the slotted protocols S-MAC and T-MAC, we assume that the nodes’ wake-up
intervals are synchronized at the beginning of the experiment (as assumed in many
MAC studies, e.g., in the study [57] examining WiseMAC and comparing against
T-MAC). In X-MAC [25], we integrated a simple traffic adaptation algorithm that
sets the duration of the wake/sleep intervals as the inverse of the incoming packet
rate, but remains in between the parameters [Max Interval, Min Interval] specified
in Table 6.2. This adaptation algorithm specified in [25] has been implemented in
the initial X-MAC prototype on top of the MANTIS OS [20], but not in the widely
used Contiki X-MAC layer [170]. WiseMAC [57] implements a cheap collision
avoidance and hidden node prevention mechanism that relies on each node hav-
ing an extended carrier sensing range (∼ 2×transmission range), i.e., each node
is assumed to be able to perceive transmissions of nodes are outside of its trans-
mission range by observing an increase in the noise level of the channel. Such a
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Fig. 6.3: Chain Scenario with 8 Nodes

mechanism is assumed to be implementable on most of today’s radio transceivers,
e.g., by observing the Received Signal Strength Indication (RSSI) value and setting
appropriate thresholds. RSSI is an indication of the power level being received by
the antenna. Most of today’s radio transceivers provide an RSSI value in order to
give an indication of the received signal strength to the link layer.

In order to allow for a fair comparison, we implemented a packet burst transfer
mode for each simulated E2-MAC protocol, such that nodes can transmit queued
packet trains in a burst. Nodes can signal that they have pending packets to the
receiver and continue transmitting packets in a burst, receiving an acknowledgment
for each frame.

6.2.2 Experiment Setup

We simulated a chain consisting of 8 nodes with the source node A generating
load, which is then forwarded hop-by-hop towards the sink node H , similarly as
done in the studies on S-MAC [190] and B-MAC [143]. Almost any study on
E2-MAC protocols applies Constant Bit Rate (CBR) traffic during one simulation
run. In contrast to this, we varied the offered traffic from low rates to high rates
and back during each simulation run, as the major interest in this chapter consists
in quantifying the adaptivity of the examined protocols at run-time.

Figure 6.4 displays the offered load generated at the application layer of the source
node A. Traffic is low (0.1 packets/s) for most of the time, but there are load
peaks during which the packet rate is linearly increased up to 22 packets/s and then
again linearly decreased to the low level. We chose 22 packets/s as the load max-
imum as this had proved to be the maximum throughput that CSMA could handle
without major packet loss across the 8 nodes chain with the parameters specified
in Tables 6.2 and 6.1. When increasing the rate above the rate of 22 packets/s,
throughput stalls and all additional packets are either dropped due to buffer over-
flows or are lost due to collisions with competing transmissions. As depicted in
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Figure 6.4, the load is increased linearly, with three different slopes for the load
increase. In the first peak, the load is increased from 0.1 packets/s to 22 packets/s
within 60s, and decreased over the same time period, hence giving the protocols
some time to continuously adapt to the change in traffic volume. In the second
peak, load is increased and decreased faster (20s), and in the third peak almost
instantaneously (5s). Using these different slopes for the variation in the offered
load, we study how the existing E2-MAC protocols react to slowly and/or rapidly
varying traffic conditions. Numerically, the slopes for the three load peaks amount
for ± 0.36, ± 1.1 and ± 4.4 packets/s2 for the load increase and decrease periods,
respectively.

6.2.3 Network Throughput and Network Power Consumption

Figures 6.5 and 6.6 displays the rate of received packets at the sink nodeH vs. sim-
ulation time. All subsequent curves are averaged from 100 simulation runs for each
protocol. As one can clearly see comparing the received packets in Figures 6.5 and
6.6 with the offered load in Figure 6.4, IdealMAC manages to handle all packets
from source to the sink. CSMA only suffers minor packet loss at the load peaks.
The S-MAC protocol with its static fixed-duration listen interval only manages to
handle up to roughly 3 packets/s. T-MAC, B-MAC, WiseMAC and X-MAC reach
higher throughput rates at the load peaks, but their throughput stalls at maximum 8
packets/s, which corresponds to 35− 40% of that of CSMA.

Figures 6.5 and 6.6 clearly convey that the current state of the art in E2-MAC pro-
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tocols is not yet sufficiently adaptive with respect to varying load conditions, as the
protocols generally do not manage to adapt their behavior to the load conditions.
Although there is sufficient channel capacity, they do not manage to respond to
the increased load with allocation of the respective resources needed to handle this
imposed load. The radio transceiver is still turned off too aggressively and/or used
inefficiently by the E2-MAC protocols in case of load peaks. In contrast to this,
many other adaptive resource allocation mechanisms in computing systems suc-
ceed in alternating between the minimum and the maximum performance that the
underlying hardware offers. For example, in dynamic voltage/frequency scaling,
adaptive mechanisms stepwise alternate between a low voltage/frequency mode
and the maximum voltage/frequency the CPU supports.

Figures 6.7 and 6.8 depict the aggregated power consumption of all eight sensor
nodes’ radio interfaces versus simulation time. One can clearly see the big gap
between the E2-MAC protocols and energy-unconstrained CSMA. With low traf-
fic, CSMA wastes a lot of energy on idle listening. The load peaks are hardly
visible at all, as the transceiver does not use much more power when sending and
receiving data, compared to idle listening. In contrast to CSMA, the IdealMAC ref-
erence protocol illustrates the ideal behavior of an E2-MAC protocol, allocating as
much energy as needed to handle the imposed load, and immediately deallocating
it with decreasing load. The figures convey that the examined E2-MAC protocols
already exhibit an adaptive behavior with respect to the power consumption. They
all consume less power with low traffic rates, and more at the load peaks. How-
ever, they clearly differ in the level of power consumption and thus their energy-
efficiency in the sparse-traffic case (cf. S-MAC vs. WiseMAC), but also in the
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reaction to the linearly increasing and decreasing load level. The slotted E2-MAC
protocols S-MAC and T-MAC exhibit a much higher power consumption at r=0.1
packets/s, due to their overhead to keep their sleep-wake intervals synchronized.
With WiseMAC or B-MAC, nodes do not maintain common sleep-wake sched-
ules. Nodes only wake up briefly to check for the presence of a preamble signal,
and do not periodically distribute common schedule information. Thus, these pro-
tocols exhibit a much lower power consumption with low traffic rates. WiseMAC
applying preamble sampling and renouncing on costly synchronization schemes
has a very low per-packet overhead, as it minimizes preambles by learning the
neighboring nodes’ schedules. The protocol thus manages to remain close to the
ideal curve, but its power consumption and its throughput stalls at∼ 35% of that of
CSMA. Interestingly, all protocols react to the linearly increasing and decreasing
load level in a symmetric manner. The increase of power consumption during the
load increase is symmetric to the decrease in power consumption during the load
decrease, which is in general a desirable property.

6.2.4 The Energy-Throughput and Energy-Latency Trade-offs

AllE2-MAC protocols trade off Quality of Service versus higher energy-efficiency,
and hence introduce higher delays and restrain the maximum achievable through-
put in order to conserve energy. In this section, we examine these trade-offs with
the simulated E2-MAC protocols. By running each protocol with different pa-
rameter settings, we thoroughly investigated the behavior of each of the simulated
E2-MAC protocol mechanisms, and not just the behavior of one particular param-
eter choice. We refer to one parameter tuple per protocol as a configuration here-
after, e.g., one configuration for WiseMAC would be [Base Interval=200 ms, Duty-
Cycle=1% (2 ms)], another one [Base Interval=500 ms, Duty-Cycle=0.4% (2 ms)].

Figure 6.9 and 6.10 illustrate the energy-throughput and energy-latency trade-offs
of the simulated E2-MAC protocols. Each dot represents the results of one partic-
ular protocol configuration in the simulation experiment outlined in Section 6.2.2.
In Figure 6.9, the trade-off between maximum achieved throughput and energy-
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efficiency of the simulated E2-MAC protocols becomes very well visible. CSMA
being energy-unconstrained has a very high maximum throughput. However, with
CSMA not turning off the transceiver during the low-traffic phases, its energy-
efficiency remains very low. The protocol efficiency is measured in in kBit/J, hence
calculating how many useful (payload) bits have been transmitted from source to
sink for each consumed Joule. Ammer et al. [9] have termed a similar concept as the
energy-per-useful-bit (EPUB) metric. In contrast, we use the reciprocal coefficient
in order to obtain a metric where more is better. The IdealMAC protocol, in which
a receiver node always knows when to switch the transceiver to the receive mode
to receive packets, has both a high throughput and a very high energy-efficiency.
IdealMAC illustrates where the theoretic lower and upper bounds of the E2-MAC
protocol problems are - it is not possible to reach a higher throughput nor a higher
efficiency than IdealMAC. No E2-MAC protocol will ever get beyond the rectan-
gle that is spanned by IdealMAC in Figure 6.9.

The different choices of the frame length and Base Interval parameter values visu-
alize the trade offs between the two goals throughput and efficiency. When moving
from the top leftmost dot towards the lower rightmost dot of the WiseMAC proto-
col, one can see how that the configurations with a higher achievable throughput
come at the cost of a lower energy-efficiency: if WiseMAC is being operated with
a long interval between two wake-ups, the protocol almost reaches the energy-
efficiency of IdealMAC, but then only achieves a rather limited throughput. On the
other hand, T-MAC can be tuned to reach almost the same throughput as CSMA,
but at the cost of a decreasing energy-efficiency. X-MAC applying the wake-up
interval adaptation algorithm reaches a fair throughput and tolerable delay at a rea-
sonable efficiency, but its performance clearly lags behind that of WiseMAC. The
main reason for this is the high per-packet overhead of the preamble strobes. One
crucial advantage of X-MAC’s strobed preamble mechanism is the possibility to let
nodes adapt their sleep-wake interval to the traffic rate. Nodes with short wake-up
intervals will respond earlier with an Early-ACK than nodes with a long wake-up
interval. Hence, the protocol offers self-configuration and adaptation capabilities,
while with other protocols, e.g., WiseMAC and T-MAC, the interval between two
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wake-ups remains constant and does not adapt to the traffic rate.

Figure 6.10 similarly depicts the trade-off between the average delay and energy-
efficiency. CSMA exhibits a low average delay at the cost of a low energy-efficiency.
IdealMAC reaches both, a low delay at a very high energy-efficiency. IdealMAC
again illustrates the lower bounds of the E2-MAC protocol problem. While it is
not possible to reach a higher throughput than IdealMAC, it is neither possible to
reach a lower average delay. The energy-latency trade-off with the different config-
urations of T-MAC and WiseMAC becomes visible: when increasing the energy-
efficiency of the protocol configurations by increasing the interval between two
wake-ups, the delay accordingly increases, too. While T-MAC achieves a lower
delay, WiseMAC exhibits a higher energy-efficiency.

6.3 Measuring Traffic Adaptivity

We investigated to find a means to measure and quantify the property of traffic
adaptivity of an E2-MAC protocol under varying traffic conditions, in order to
compare the current state of the art in MAC protocol design and locate a starting
point for investigations on further improvements. A traffic-adaptive E2-MAC pro-
tocol should allow for using the radio-transceiver truly in an on-demand manner. It
should use it as much as necessary to transmit and receive, whenever traffic needs
to be handled, and turn it off when nothing has to be sent or received. We find that
the question how well a protocol is able to adapt to varying traffic conditions can be
rephrased by the question how the Quality of Service parameters throughput and
delay behave under heavily varying traffic, and how energy-efficient the protocol
remains under such conditions.

We developed a tri-partite metric that quantifies the ability of anE2-MAC protocol
to adapt to varying traffic conditions, based on a comparison with the IdealMAC
reference protocol. The metric incorporates the energy-efficiency, the maximum
achievable throughput, as well as the average delay, hence we refer to it as tri-
partite. We briefly remind the mathematical properties a metric function d(x, y)
needs to fulfill: A metric d is a mapping d : X × X → R on any set X , with R
being the set of real numbers. For all x, y, z inX , this function is required to satisfy
the following conditions:
• d(x, y) ≥ 0 (non-negativity)

• d(x, y) = 0 if and only if x = y (identity of indiscernibles)

• d(x, y) = d(y, x) (symmetry)

• d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)
Our proposed metric for the traffic adaptivity of an E2-MAC protocol under vary-
ing traffic measures the minimal distance between the different configurations of
the protocol and the IdealMAC reference protocol. This distance is measured in
the vector space spanned by the energy-efficiency (x), the maximum throughput
(y) and the delay (z) measured in the above experiment of varying traffic. Hence,
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we actually measure how much worse the protocol performs in comparison with
IdealMAC. We represent the results of each configuration Pi of the simulated
E2-MAC protocol P as a tuple (xpi , ypi , zpi) ∈ X × Y × Z where X is the
energy-efficiency (measured in kBit/Joules), Y the maximum achievable through-
put (packets/sec) and Z the average measured delay that the protocol exhibited in
the varying load scenario. We further refer to Id = (xId, yId, zId) as the tuple rep-
resenting the results of the IdealMAC protocol hereafter. The Euclidean distance d
between IdealMAC and any configuration Pi of the E2-MAC protocol denoted as:

d(Pi, Id) =
√

(xpi − xId)2 + (ypi − yId)2 + (zpi − zId)2

measures how much worse the configuration Pi behaves under the examined exper-
iment conditions compared with IdealMAC. Figure 6.11 illustrates this difference
between configurations of WiseMAC and T-MAC and the reference protocol Ideal-
MAC (black vectors).
Applying the Euclidean metric to the measured values yields distances that are
dependent of the scale of the axis. However, any metric assessing the adaptivity
of E2-MAC protocol should take the energy-efficiency, the maximum achievable
throughput as well as the latency into account at equal ratios, and should not depend
on the axis scale. A trivial change in the measurement units (e.g., kbps instead of
bps) should not have an impact on the metric itself. Hence, we normalize the x, y
and z-axis to take values in between the interval [0, 1] and obtain the normalized
distance dnorm:

dnorm(Pi, Id) =
√

(
xpi−xId
xId

)2 + (
ypi−yId
yId

)2 + (
zpi−zId
zmax−zId )2

For the energy-efficiency and throughput, the upper bounds are determined by the
efficiency of IdealMAC (xId) and the maximum throughput of IdealMAC (yId).The
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value zmax corresponds to the worst measured delay of the simulated E2-MAC
protocols that does not exceed 10s. Note that in contrast to the efficiency and the
throughput, this particular choice of the maximum value for the delay has an influ-
ence on the metric itself.

We define the traffic adaptivity of every simulated E2-MAC protocols as the dis-
tance of its best configuration Pi from IdealMAC. The best configuration of every
E2-MAC protocol P is its configuration Pi = (xpi , ypi , zpi) with the minimal dis-
tance to the IdealMAC reference protocol. The traffic adaptivity TA of a protocol
P denoted as a set of its configurations P0, P1, · · · , Pk then yields as:

TA(P ) = min dnorm(Pi, Id) (Pi ∈ P )

Obviously, the TA-metric based on the normalized Euclidean distance fulfills the
mathematical properties of a metric function. IdealMAC describes the best possible
behavior of a MAC protocol with respect to adaptability under variable traffic. Fig-
ures 6.7 and 6.5 illustrate how an optimally traffic-adaptive MAC protocol should
behave, allocating as much resources as necessary to handle the imposed traffic,
and saving as much as possible. We hence consider the distance from a MAC pro-
tocol to IdealMAC to be the best characterization for its ability to deliver Quality
of Service and high energy-efficiency under variable load.

Applying the Metric to today’s E2-MAC protocols

Applying this metric to simulated E2-MAC protocol yields the results depicted in
Figure 6.12. The figure depicts the protocols’ TA-value measured in the above-
mentioned experiment on the y axis. With taking the normalized distance function
dnorm, the TA value is in between [0,

√
3] for every protocol.

WiseMAC [57] proved to be the protocol offering the best traffic adaptivity of the
simulated set of protocols. The preamble sampling mechanism and the learning of
the neighboring nodes’ schedules leads to a high energy-efficiency, and choosing
suitable values for the basic listen interval leads to reasonable multi-hop delays.
Demirkol et al. [41] pointed out that WiseMAC performed better than S-MAC
“under variable traffic conditions”, and that its base mechanism exhibits a good
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“adaptivity to changes” - a conjecture for which we have just delivered a proof.
Langendoen et al. [107] point out that WiseMAC shows a “remarkable consis-
tent behavior across a wide range of operational conditions, always achieving the
best or second-best performance”. However, as the WiseMAC protocol does not
yet integrate any self-configuration and self-adaptation mechanisms, the protocol
performance is very much dependent of choosing suitable parameter settings for
any given scenario. WiseMAC restrains the maximum achievable throughput quite
heavily, compared to energy-unconstrained CSMA.
The protocol T-MAC [38] has proven to achieve the highest throughput at load
peaks and a low latency. Its traffic adaptivity measured using the TA-metric de-
picted in Figure 6.12 is lower, since the TA-value is roughly 20% above that of
WiseMAC. The T-MAC time-out mechanism that prolongs the T-MAC duty-cycle
noticeably pays off, as T-MAC achieves a much higher throughput than its prede-
cessor S-MAC, and - given a short frame length and contention window - comes
closest to the throughput of CSMA. The drawback then consists in the decreas-
ing energy-efficiency, since T-MAC does not apply similarly brief duty-cycles as
WiseMAC, but keeps the radio on for at least the duration of the contention period
and a CTS frame in every interval.

Weighted Metric

There is an infinite number of mappings between any three-dimensional space
X×Y ×Z and the real numbers R. For certain scenarios and applications, it might
make sense to define a metric where throughput and latency is more important than
the energy-efficiency and thus has a larger weight. The metric proposed in this sec-
tion can easily be adapted for such purposes. One can redefine dnorm(Pi, Id) and
introduce weight factors ωx, ωy, ωz ∈ (0,∞), which account for the importance of
the energy-efficiency, throughput and delay, and hence obtain the weighted metric
dnorm(Pi, Id, ωx, ωy, ωz) defined as:

dnorm(i, j, ωx, ωy, ωz) =

√√√√ωx(
xpi−xId
xId

)2 + ωy(
ypi−yId
yId

)2 + ωz(
zpi−zId
zmax−zId )2

ωx + ωy + ωz

Setting different values for the weight factors ωx, ωy, ωz hence yields different or-
derings of the examined protocols. Dividing through the sum of the weight factors
ωx, ωy, ωz maps the applied metric back to an interval between [0, 1] for each
protocol. Hence, the only thing that matters is the ratio between the weights -
e.g., weight factors ωx = ωy = ωz = 1 map to the same value as weight factors
ωx = ωy = ωz = 3. Figures 6.13 and 6.14 illustrate the weighted metric for values
of ωx = 1, ωy = 1, ωz = 1 and ωx = 1, ωy = 3, ωz = 3, respectively. One
instantly notices that with the second set of values, the ordering of the protocols
changed significantly. When assigning a higher importance to throughput and la-
tency, the protocols T-MAC and CSMA conveying a higher maximum throughput
and lower latencies overtake the WiseMAC protocol.
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6.4 Conclusions

In this chapter we have explored the design space of today’s most frequently cited
E2-MAC protocols, the current state of the art in MAC traffic conditions. We have
defined a metric to quantify the ability of a protocol to operate under variable traffic
load. The metric compares a MAC protocol’s performance with respect to through-
put, latency and energy-efficiency against an idealized concept of an E2-MAC
protocol named IdealMAC. The metric shows how far a E2-MAC protocol is from
being able to truly allocate the radio transceiver in an on-demand manner. Many
of todays E2-MAC protocols exhibit a very high energy-efficiency, some of them
yet come close to the theoretic lower bounds of IdealMAC. This gain in efficiency,
however, comes at the cost of severely restrained maximum throughput, as well as
massively increasing end-to-end packet latency.
With the observations summarized above, we motivate our contributions and our
investigations on traffic-adaptive MAC mechanisms in the subsequent Chapter 7. A
general-purpose E2-MAC protocol with a high energy-efficiency under low traf-
fic, which is capable to adapt its behavior in case of higher traffic is definitely
yet missing. Such a protocol should ideally exhibit an energy-footprint such as
WiseMAC, but offer stable Quality of Service under higher load. Another impor-
tant observation and conclusion we draw from the evaluation in this chapter is that
the choice of essential protocol parameters has shown to have a vast impact on the
resulting protocol characteristics, in particular the ratio between energy-efficiency
and throughput. Intelligent design of mechanisms that alternate between differ-
ent tuples of protocol parameters is therefore a promising option to achieve higher
run-time traffic adaptivity on the MAC layer. We follow exactly this strategy in
Chapter 7, and design a MAC protocol that bases on a combination of WiseMAC
and X-MAC for the low/idle traffic case. WiseMAC has shown in this chapter
to come close to the theoretic lower bounds of energy-efficiency in the low/idle
traffic case, but suffers from severely restrained maximum throughput and sharply
increasing latency under higher load (cf. Figure 6.11), which disqualifies it for a
wide range of throughput- and latency-sensitive applications with temporally high
traffic, e.g., classical event-based alarming applications or WMSNs, cf.[4][7].
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Chapter 7

The Maximally Traffic-Adaptive MAC
(MaxMAC) Protocol

In this chapter, we present our contributions towards flexible and traffic-adaptive
medium access control mechanisms in wireless sensor networks, a gap we have
observed to be yet missing in our initial evaluation of the WiseMAC burst trans-
fer mode in Chapter 5 and in particular in the analysis of the six different MAC
protocols in Chapter 6. With the introduction of the Maximally Traffic-Adaptive
MAC (MaxMAC) protocol in [85] and [88], we have targeted at designing MAC
mechanisms that achieve two goals: to support energy-efficient operation at times
of sparse network activity, but provide measures to operate with sound Quality of
Service at times of increased traffic load. We have integrated established design
principles for MAC protocols developed over the last decade with novel run-time
adaptation techniques to effectively allocate the radio truly in an on demand man-
ner: turning it on when traffic has to be handled, keeping it off when not.

The chapter is organized as follows: Section 7.1 motivates our contribution and
relates them to the work presented in Chapters 6 and 5. Section 7.2 describes the
basic design and operation principles of the MaxMAC protocol. Section 7.3 dis-
cusses particularities of the network simulation environment, which are basically
the same as in Chapter 5. Section 7.3.2 then discusses simulation results of the
MaxMAC protocol and relates them to those of a selection of reference proto-
cols. The chapter continues with discussing the functionality of the first prototype
implementation of MaxMAC in Section 7.4. Sections 7.4.3 and 7.4.4 discuss mea-
surement results of our MaxMAC prototype implementation obtained in a series of
distributed real-world experiments. Section 7.6 concludes the chapter and gives an
outlook on future work and promising features that yet remain to be examined.

7.1 Motivation

In Chapter 6, we have observed that today’s most widespread Energy-Efficient
MAC (E2-MAC) protocols generally reduce the energy consumption spent for the
radio transceiver at the cost of deteriorating Quality of Service, in particular by an
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increase of the packet latencies and a sometimes massive decrease of the achievable
throughput and reliability. In the MAC protocol domain, researchers have concen-
trated almost exclusively on the energy aspect, often leaving aside any Quality of
Service considerations. The maximum throughput of today’s E2-MAC protocols
is limited to only a fraction of that of energy-unconstrained MAC protocols.

Tight restrictions with respect to throughput and latency may be tolerable in many
WSN applications, especially when the main focus of the operated network con-
sists in monitoring a large area or an object of interest with a few measurement sam-
ples per day or per hour. However, besides such classical environmental monitor-
ing applications, numerous rather event-based applications have recently emerged,
which have more demanding requirements with respect to Quality of Service pa-
rameters during certain operation periods. Event detection, localization, tracking
and alarming applications require good Quality of Service during short periods of
increased network activity, as well as a high efficiency during longer periods of
inactivity in order to prolong network operability to more than a few days.

Concrete examples for such use cases can be found, e.g., in monitoring systems
for health-care (cf. CodeBlue [119] and/or Chipara et al. [35]), or in disaster-aid
and first-response systems, cf. Gao et al. [67]. Potential use cases can definitely be
found in the broad area of event-based environmental monitoring systems. Wher-
ever sensor nodes need to monitor environmental values, but have to be able to
instantly react when certain events have been recognized (e.g., the volcano moni-
toring [183] or forest fire prevention system [98]), Quality of Service can become
an important issue. Wittenberg et al. [186] develops a collaborative event detec-
tion system built to monitor fenced areas and prevent intrusion, which requires fast
response times when an event is being sensed. Varying, temporarily high traffic
can further be expected in the emerging field of Wireless Multimedia Sensor Net-
works (WMSNs) [4][7], e.g., when from time to time, a rather large image has to
be transmitted. Once an event has been detected, a traffic-adaptive MAC proto-
col’s primary objective should shift from saving energy towards delivering good
Quality of Service (high throughput, low delay). Reasonable Quality of Service
provided on demand facilitates manual real-time interaction of network operators
with WSNs. In such scenarios, Chapter 6 has clearly conveyed that most E2-MAC
protocols do not provide reasonable flexibility, as they fail to exploit the capacity
of the wireless channel and massively increase end-to-end latencies compared to
energy-unconstrained MAC protocols.

7.2 MaxMAC Design

Since the first appearance of the E2-MAC protocol S-MAC in 2002 [190], enor-
mous progress has been made in this field, especially in decreasing the idle duty-
cycle. The idle duty-cycles have come down from 100% with energy-unconstrained
CSMA, over 10% with the first E2-MAC protocols (S-MAC [190], T-MAC [38])
to less than 1% in today’s state of the art preamble-sampling based approaches
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Fig. 7.1: Preamble Sampling with Embedded Target Address in MaxMAC

(e.g., B-MAC [143], WiseMAC [57] or X-MAC [25]). The reduction of the duty-
cycles from 100% to less than 1% has boosted lifetimes of sensor nodes equipped
with a pair of AA batteries by an order of two magnitudes, while still preserving
network connectivity. With respect to minimizing the idle power consumption and
duty-cycle of the radio, Langendoen [109] concludes in its survey study on MAC
protocols that there is probably not much more room for improvement.

7.2.1 Basic Media Access Mechanism

MaxMAC takes advantage of the substantial work carried out on E2-MAC pro-
tocols in the last decade, especially the asynchronous contention-based protocols
B-MAC [143], WiseMAC [57] and X-MAC [25]. This section briefly discusses the
basic media access mechanisms used in MaxMAC, while Section 7.2.2 discusses
its run-time traffic adaptation and dynamic resource allocation mechanisms.

Preamble Sampling

With Preamble Sampling (also referred-to as Low-power-Listening) introduced in
B-MAC and WiseMAC, nodes keep their radios off for most of the time and only
wake up for brief periodic duty-cycles to poll the channel for a preamble signal
once every Base Interval T (cf. Figure 7.1). We chose the WiseMAC preamble
sampling and pairwise schedule learning mechanism as entry point and default be-
havior for MaxMAC due to the resulting low per-packet overhead and low idle
power consumption. The sound performance and high efficiency of WiseMAC un-
der various conditions has been independently pointed out in [107] and [85][90],
before and after MaxMAC’s initial appearance in [85] (cf. Chapter 6). Among the
preamble-sampling-based E2-MAC protocols, it must be seen as the most efficient
approach, since it only employs a minimal preamble for collision avoidance and
clock drift compensation, as opposed to B-MAC or X-MAC, which send out long
preambles before every payload frame transmission. Unsurprisingly, the recently
developed ContikiMAC [48], which integrates concepts from several E2-MAC
protocols, also applies the WiseMAC preamble minimization to reduce the trans-
mission overhead. Section 2.4.3 of Chapter 2 discusses the different preamble
sampling techniques of B-MAC and WiseMAC in detail.
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Overhearing Avoidance

The preamble sampling technique of WiseMAC is already quite efficient in avoid-
ing costly overhearing. With sparse traffic, chances are high that the wake-ups of
non-targeted receivers do not coincide with those of the targeted receivers. How-
ever, with higher traffic and transmissions of queued packet trains, overhearing
of preambles and frames can also become an increasing source of energy waste.
MaxMAC minimizes overhearing by enriching preambles with target ID informa-
tion, as illustrated in Figure 7.1. Target nodes turn their radio transceiver on, sense
the carrier for their particular preamble to receive preamble and frame. Non-target
nodes turn their radios on, extract the target information in the ongoing preamble
transmission, notice that they are not targeted and immediately turn the radio off
again. This concept has been applied in X-MAC [25], where nodes send pream-
ble strobes in between which receiver nodes can signal reception readiness with a
so-called Early-ACK. MaxMAC is the first protocol that merges this concept of in-
tegrating a target address identifier into the preamble in order to reduce overhearing
with the highly efficient preamble minimization technique of WiseMAC.

7.2.2 Run-Time Traffic Adaptation Mechanisms

In contrast to most of today’s E2-MAC protocols, which operate with rather static
parameter settings, MaxMAC introduces traffic-adaptation features to instantly re-
act to changing load conditions by altering its behavior at run-time. Similarly as in
dynamic frequency/voltage scaling, where the CPU reacts to higher computation
load with an increase of the frequency/voltage, a traffic-adaptive E2-MAC proto-
col should react to changing load by correspondingly tuning the radio: turning it
on more frequently when more traffic has to be handled, keeping it permanently on
during load peaks, and turning it off again when the load level permits it.

Allocation/Deallocation of Extra Wake-Ups

With E2-MAC protocols alternating between statically configured sleep in each
interval, given that no traffic adaptation mechanisms are integrated. Latency typ-
ically increases sharply, as forwarding nodes need to buffer incoming frames and
wait for the next wake-up of their intermediate gateway node, which often sums
up to several seconds in multi-hop scenarios. The first traffic adaptation feature
and essential novelty of MaxMAC tackles this very decisive E2-MAC protocol
drawback. In MaxMAC, nodes change their state (and hence, their behavior) and
allocate so-called Extra Wake-Ups when the rate of incoming packets reaches pre-
defined threshold values, and de-allocate them when the traffic rate drops below
these thresholds again, falling back to their initial channel sampling behavior. Fig-
ure 7.2 illustrates the state-based adaptivity mechanism with a source node (SRC)
sending packets to a receiver node (DST) with increasing rate. Nodes operate in
the Base Interval state per default, polling the channel periodically each Base In-
terval T. They alter their state (and behavior) by switching to states S1, S2 when
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the corresponding thresholds T1, T2 are reached. Thresholds T1 and T2 are set to 2
and 6 packets/s in the illustration in Figure 7.2, but only serve to illustrate the basic
concept - different values will be chosen in the subsequent evaluations in Sections
7.4.3 and 7.4.4. Each node keeps estimating the rate of incoming packets, using a
sliding window of 1s (cf. rate estimation graph of DST in Figure 7.2).

With the rate of incoming packets reaching the threshold T1, the DST schedules
one additional Extra Wake-Up in between each Base Interval, effectively doubling
the amount of duty-cycles over time. The receiver node DST communicates its
increased wake-up frequency in the ACK. SRC receives this announcement and
marks the increased wake-up frequency of node DST in its schedule offset ta-
ble. With the notification sent by DST in the ACK, DST promises to remain in
the new state and keep its increased wake-up frequency for a predefined times-
pan S1 LEASE. For each state in MaxMAC, the LEASE timespans (S1 LEASE,
S2 LEASE, CSMA LEASE) define how long a node promises to remain in the
new state when announcing the state change in the ACK. LEASE timespans can be
extended in any new ACK transmission. By remaining in a higher state for at least
the LEASE duration, fast oscillation between the different states can be mitigated.

With the rate of incoming packets reaching the threshold T2, DST changes to state
S2, doubles the amount of wake-ups again and announces its state change in the
ACK (cf. Figure 7.2). As soon as these timespans expire, nodes having received
prior state change announcements will assume that the corresponding node has
fallen back to its default behavior, polling the channel with the Base Interval T,
which prevents them from transmitting when the target is not awake.

As observed in Chapter 6, increasing the amount of wake-ups is an effective, yet
considerably cheap means of increasing network throughput and decreasing end-
to-end latency. If SRC needs to forward other packets, the time to wait for the next
wake-up of DST is halved with DST being in state S1 or even quartered with DST
being in state S2. If the additional wake-ups scheduled by DST are not used for
transmissions, the waste of energy remains limited, as some few additional channel
polls are energetically inexpensive, as they are de-allocated after the LEASEs.

Fig. 7.2: Rate Estimation, Extra Wake-Ups and CSMA mode in MaxMAC
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Exploiting the Channel Capacity by switching to CSMA

Most E2-MAC protocols have been designed under the assumption of sparse low-
rate traffic, and hence take into purchase a severe degradation of the maximum
throughput compared to non duty-cycled MACs. As discussed in Chapter 6 and
likewise in El-Hoiydi et al. [56] or the T-MAC study [38], they only reach a fraction
of that of CSMA. MaxMAC has been specifically designed to achieve a through-
put similar as CSMA in situations of increased network activity, which can be
seen as best case for the class of contention-based random-access MAC protocols.
While the allocation of Extra Wake-Ups helps to achieve a somewhat increased
throughput and reduces the latency, the characteristics of CSMA can still not be
reached. MaxMAC thus carries the concept of changing the behavior one step fur-
ther: when the rate of incoming packets reaches a further threshold TCSMA (with
TCSMA > T2 > T1), MaxMAC switches to energy-unconstrained CSMA and an-
nounces this state change to the sender node (and potentially overhearing nodes) in
the ACK. Figure 7.2 illustrates node DST measuring the rate of incoming packets to
reach TCSMA = 10 packets/s in the right part of the figure. DST hence switches to
the CSMA state, announcing the state change to SRC in the ACK, hence promising
to remain in the CSMA state for at least the predefined timespan CSMA LEASE.
Within this timespan, SRC can transmit packets without having to wait for a wake-
up of DST, as it knows that DST keeps its transceiver on for at least the timespan
CSMA LEASE. With CSMA LEASE expiring, all nodes having received the prior
state change announcement of DST assume that DST has fallen back to the Base
Interval state, which prevents them from transmitting at times when DST is asleep.

Figure 7.3 illustrates the state-based adaptivity concept of MaxMAC with the state
transitions as a finite state machine. Nodes switch from the Base Interval state
to a higher state S1, S2, CSMA when the rate reaches the associated thresholds
T1, T2, TCSMA. When switching from the Base Interval state to S1 or S2, nodes
schedule Extra Wake-Ups and double or quadruple their wake-up frequency. When
the rate reaches the threshold TCSMA, nodes switch to energy-unconstrained CSMA
and keep their radio transceivers turned on. With the traffic load falling below
TCSMA and the timeout CSMA LEASE expiring, nodes switch again to states S1

Fig. 7.3: Finite State Machine-based Traffic Adaptivity Concept of MaxMAC
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or S2 and restart alternating between brief channel polls and long sleep intervals.
Nodes completely de-allocate all Extra Wake-Ups and fall back to the Base Interval
state when the packet rate drops below T1 and all LEASE timespans have expired.
The MaxMAC traffic adaptation mechanism scales well for multi-hop topologies,
as each node measures and reacts upon a given rate increase in a decentralized
manner. State changes are communicated efficiently in the data frame header and
the ACK frames, neglecting the need to introduce new costly control messages.

Threshold Values and Parameters

We have illustrated the MaxMAC adaptivity concept with four states so far in this
chapter. However, the number of intermediate states between the Base Interval
State and the CSMA state can generally be chosen arbitrarily, and would typically
depend on the transmission rate of the radio transceiver of the used target plat-
form. The thresholds and LEASE parameters allow for fine-tuning the MaxMAC
protocol and its properties. Choosing low values for the thresholds makes sense in
delay-sensitive applications, since the thresholds would quickly be exceeded and
the protocol would quickly allocate more resources. Higher values make sense
in rather energy-sensitive and delay-tolerant applications. The threshold values of
the subsequent Section 7.3.2 were chosen according to the results of unmodified
WiseMAC with different wake-up frequencies of Chapter 6.
In an attempt to augment the MaxMAC concept to become more generally applica-
ble, we explored the feasibility of self-configuration approaches for finding optimal
values for the threshold parameters at run-time. However, after preliminary simu-
lations, we came to the conclusion that integrating such mechanisms would raise
more questions and problems than they would solve. First, one has to face the fact
that the threshold settings have an immediate impact on the trade-off between the
resulting Quality of Service and energy-efficiency. Per definition, there is never
an optimum in any trade-off, since the improvement of one design goal naturally
leads to depreciation of the other. Second, a run-time calibration of the thresh-
old settings would require a network-wide parameter negotiation scheme. Since
MaxMAC relies on promises of the wake-up frequencies, nodes need to operate
with the same parameters as their neighbors or at least know what parameters the
neighboring nodes apply, in order to be able to predict their next wake-ups. Pa-
rameter changes would then impose the need for telling the neighboring nodes
what parameters were just chosen, which would massively impact on the commu-
nication overhead. We hence decided to choose the different sets of parameters,
between which MaxMAC switches at run-time, in an offline manner at compile-
time, as done in basically every other E2-MAC protocol. A distributed approach
where Quality of Service target goals are defined by the network operator, which
are then translated by the nodes in the network to individual parameter sets using a
distributed algorithm, would be certainly the most elegant solution. To design and
evaluate such an algorithm, however, seemed too ambitious before any real-world
prototype had yet verified that the initial protocol design fulfilled our expectations.
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7.3 Simulation-based Evaluation

In order to investigate the effectiveness of our proposed traffic adaptation mech-
anisms, we implemented MaxMAC in the same OMNeT++[178] environment as
outlined in Chapter 6. We intended to compare the MaxMAC simulation model to
our small library of MAC protocol models in OMNeT++ in a series of simulation
experiments before actually prototyping it on a real-world platform, an approach
that is often pursued in the WSN community today.

Section 7.3.1 lists the parameters of the OMNeT++ simulation environment. Sec-
tions 7.3.2 and 7.3.3 evaluate the MaxMAC simulation model in two different sim-
ulation scenarios, and compare it against a selection of the most frequently cited
E2-MAC protocols. Section 7.3.3 takes up the notion of the tree-partite metric
defined in Chapter 6 to classify MaxMAC in the design space of the simulated
E2-MAC protocols and examines its advantages and disadvantages.

7.3.1 Simulation Model and Parameters

Radio Transceiver and Energy Consumption Model: We modeled the radio
transceiver with a finite state machine model consisting in the states sleep, receive
and transmit, weighted with the respective energy costs, the same model that is
usually applied in network-simulator based evaluations of WSN MAC protocols,
e.g., [38][72][107]. Although we have shown in Chapter 4 that taking into account
the transceiver switches into the energy model increases the accuracy, we consider
the abovementioned Three States Model’s degree of realism sufficient for prelim-
inary simulator-based evaluations. The MSB430 platform [14], which we used
for our real-world prototype implementation of MaxMAC, is equipped with the
CC1020 radio [173]. Table 7.1 lists its current, voltage and transmission rate. Un-
fortunately, the applied transmission rate of 115’200 bps later turned out not to be
supported by the employed ScatterWeb2 Operating System, which is why we had
to use the default transmission rate of the ScatterWeb2 OS of 19’200 bps instead.

MAC Protocol Simulation Models: We compared MaxMAC against theE2-MAC
protocols S-MAC, T-MAC, B-MAC, WiseMAC and X-MAC, as well as the refer-
ence protocols IdealMAC and energy-unconstrained CSMA, the same models as
described in Chapter 6. Table 7.2 again lists their main parameters. As the protocol
behavior often heavily depends on the choice of the essential protocol parameters
(e.g., Base Interval, Duty-Cycle), we studied the protocols with different config-
urations of those parameters, by varying the parameters over a wide range, and
not just one particular parameter choice. The examined protocol configurations are
essentially the same as those described in the evaluations of Chapter 6, except for
MaxMAC, which was introduced in this chapter.

In order to speed up computations, we used the University of Bern UBELIX High-
Performance Computing Cluster [36] to let the simulation runs be executed in par-
allel on the many available CPU cores.
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Transceiver CC1020 [173]:
Transmit Current Itx 21.9 mA Supply Voltage U 3 V
Recv Current Irx 17.6 mA Transmission Rate R 115’200 bps
Sleep Current Isleep 1 µA
OMNeT++ Parameters:
Path Loss Coefficient α 3.5 Transmit Power 0.1 mW
Log-normal Deviation σ 2.5 db SNR Threshold 4 dB
Carrier Frequency 868 MHz Sensitivity -100.67 dBm
Carrier Sense Sensitivity -112 dBm
Simulation Settings:
Simulation Runs 100 Simulated Time 1000 s
Maximum Retries 3 Frame Header Size 14 bytes
Payload 50 bytes

Table 7.1: Simulation Model and Experiment Parameters

CSMA Contention Window CW 10 ms
S-MAC Listen Interval [100, 200, 300, 500, 1000, 2000] ms

Duty-Cycle 10%, 20%
T-MAC Frame Length [50, 100, 200, 300, 500, 1000] ms

Contention Window CW 5 ms
SYNC size DSY NC 14 bytes
RTS size DRTS 14 bytes
CTS size DCTS 10 bytes
Timeout 1.5× (CW +DRTS/R+DCTS/R)
SYNC period 10 s

B-MAC Base Interval [25, 50, 100, 200, 500] ms
Duty-Cycle [8, 4, 2, 1, 0.4] %
Medium Reservation Interval uniform (0,10) × trx−tx

WiseMAC Base Interval [25, 50, 100, 200, 500, 1000] ms
Duty-Cycle [8, 4, 2, 1, 0.4, 0.2] %
Medium Reservation Interval uniform (0,10) × trx−tx

X-MAC Max Interval [100, 200, 500] ms
Min Interval 10 ms
Early-ACK size DEACK 10 bytes
Inter-Strobe-Interval DEACK/R
Listen Interval DEACK/R+ trx−tx + ttx−rx

MaxMAC Base Interval [50, 100, 200] ms
Duty-Cycle (idle) 4, 2, 1%
S1 LEASE 1 s
S2 LEASE 1 s
CSMA LEASE 1 s
T1 4 Packets/s
T2 8 Packets/s
TCSMA 12 Packets/s

Table 7.2: E2-MAC Protocol Parameters
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7.3.2 Traffic along a Multi-Hop Chain

We evaluated two different scenarios with the selected E2-MAC protocols and our
proposed MaxMAC protocol. The first simulation scenario consists in a simple
chain of nodes, exactly the same scenario setup as evaluated in Chapter 6. The
second scenario discussed in Section 7.3.3 models an event-based scenario in a
larger-scale grid network of 49 nodes.

In the chain scenario, the source node A located on one end of the chain gener-
ates traffic, which is then forwarded hop-by-hop towards the sink node H on the
other end. A similar scenario setup is chosen in the studies on S-MAC [190] and
B-MAC [143]. Again, we varied the offered traffic from low rates to high rates
during each run, as our major interest is the protocol adaptivity at run-time. Fig-
ure 7.4 displays the offered load generated at the application layer of the source
node. The load is low (0.1 packets/s) for most of the time, but there are peaks
where the packet rate is increased, up to a maximum rate of 22 packets/s. We again
chose 22 packets/s as the maximum as this had proved to be the maximum through-
put that CSMA could handle without major packet loss. When increasing the rate
above this rate, throughput stalls and additional packets are dropped due to buffer
overflows or are lost due to collisions. Numerically, the slopes for the first four and
the subsequent four load peaks amount to ± 0.16 packets/s2 and ± 3.0 packets/s2

for the respective load increase and decrease periods, respectively.

Throughput and Power Consumption

Figure 7.5 displays the rate of received packets at the sink node versus simulation
time. The curves are averaged from 100 simulation runs for each protocol. As one
can clearly see comparing the received packets in Figure 7.5 with the offered load
in Figure 7.4, IdealMAC manages to handle all packets from source to sink. CSMA
only suffers minor packet loss at the load peaks. The throughput of WiseMAC
and T-MAC stalls at maximum 8 packets/s and 9 packets/s, respectively, which
corresponds to roughly 35-40% of that of CSMA. Figure 7.5 clearly shows that
MaxMAC with its state-based run-time traffic adaptation mechanism reaches the
same throughput as energy-unconstrained CSMA. As the protocol allocates more
duty-cycles or even totally switches to CSMA-like behavior at high traffic rates,
the protocol manages to handle the load peaks without major packet loss.
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Figure 7.6 depicts the aggregated power consumption of all eight sensor nodes’
radio interfaces versus simulation time. One can clearly see the big gap between
the E2-MAC protocols and energy-unconstrained CSMA. With low traffic, CSMA
wastes a lot of energy on idle listening. The load peaks are hardly visible at all, as
the transceiver does not require much more power when transmitting, compared to
idle listening, cf. the CC1020’s radio specs [173]. The IdealMAC reference pro-
tocol illustrates the ideal behavior of an E2-MAC protocol, allocating as much en-
ergy as needed to handle the imposed load, and immediately deallocating it with de-
creasing load. WiseMAC renouncing on costly synchronization schemes has a low
per-packet overhead, minimizing preambles by learning adjacent nodes’ schedules.
It exhibits a low power consumption during the low traffic phases. Its throughput,
however, stalls at roughly 35% of that of CSMA. T-MAC achieves a slightly higher
throughput, but its idle power consumption is above that of WiseMAC, mainly due
to the SYNC overhead to keep the nodes’ wake-ups synchronized.
Thanks to the run-time traffic adaptivity mechanisms of MaxMAC, it reaches the
same energy-efficiency in the low-traffic-phases as WiseMAC, but is able to han-
dle the load peaks with much lower packet loss. As MaxMAC switches to the
CSMA-state with the rate reaching TCSMA = 12 packets/s (cf. Table 2), the power
consumption of MaxMAC accordingly jumps to the level of CSMA at this rate,
too. Figure 7.6 further illustrates that the on-demand resource allocation scheme
of MaxMAC further succeeds astonishingly well when the packet rate decreases.
With traffic rates decreasing towards 0.1 packets/s after the load peaks, MaxMAC
quickly falls back to the states S2 and S1 and finally the Base Interval state, where
it again exhibits a very low energy footprint, since it only samples the channel once
in each Base Interval.
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Energy-Throughput and Energy-Latency Trade-offs

We thoroughly examined the different MaxMAC protocol configurations with re-
spect to the energy-throughput and energy-latency trade-offs. Figures 7.7 and 7.8
illustrate the measured trade-offs in the aforementioned experiment and compares
MaxMAC with theE2-MAC protocols discussed in Chapter 6. Each dot represents
the results of one particular protocol configuration in the node chain experiment.
In Figure 7.7, the trade-off between maximum achieved throughput and energy-
efficiency of the simulated E2-MAC protocols becomes well visible. The proto-
col’s energy-efficiency is measured in in kbit/J, hence calculating how many useful
(payload) bits have been transmitted from source to sink for each consumed Joule,
exactly as done in the evaluation of Chapter 6. CSMA obviously achieves a high
maximum throughput, its energy-efficiency, however, remains very low.

The rectangle spanned by IdealMAC in Figures 7.7 and 7.8 again illustrates the
lower bounds of the E2-MAC protocol problem: while it is not possible to reach
a higher throughput or a higher efficiency coefficient than IdealMAC, it is neither
possible to reach a lower delay. WiseMAC with its short channel polls achieves
a high energy-efficiency, however, at the cost of a massively restrained maxi-
mum throughput and increasing end-to-end latency. Thanks to its run-time traf-
fic adaptation mechanisms, MaxMAC reaches the same throughput as energy-
unconstrained CSMA, but exhibits a much higher energy-efficiency. Although
MaxMAC switches to CSMA-like behavior in the high traffic phases, its efficiency
coefficient is higher than that of most of today’sE2-MAC protocols. The advantage
of achieving the high throughput of CSMA and a much better energy-efficiency
than most E2-MAC approaches is a clear novelty in the design space of today’s
E2-MAC protocols. Figure 7.8 similarly depicts the trade-off between average
packet delay and energy-efficiency. Thanks to the scheduling of Extra Wake-Ups,
which reduces the interval between two wake-ups, and the switch to CSMA-like
behavior at even higher rates, MaxMAC reaches a far lower average end-to-end
latency as other E2-MAC protocols. MaxMAC achieves a delay which is - given
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the best examined configuration - only 70% higher than that of CSMA (compared
to some 1000% with other E2-MAC protocols), but achieves an energy-efficiency
that is more than three times better than that of of CSMA.

Figure 7.9 represents the results of each configuration of the simulated E2-MAC
protocols as a tuple in the vector spaceX×Y ×Z whereX is the energy-efficiency,
Y the maximum achievable throughput (packets/s) and Z the average measured
delay - in analogy to Section 6.3 of Chapter 6 - illustrating the design space and
the potential for optimization in current E2-MAC protocols. In Chapter 6, we have
concluded that most protocols are not sufficiently adaptive, as they do not alter their
behavior with respect to the load conditions. Although there is sufficient channel
capacity, most existing protocols still turn their radio transceivers off too aggres-
sively. MaxMAC is clearly distinguishable from the examined reference protocols
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by its ability to reach the same throughput and a similarly low latency as energy-
unconstrained CSMA, while still exhibiting a good energy-efficiency during the
considerably long periods of sparse network activity. The three examined configu-
rations of MaxMAC hence exhibit the shortest distance to the IdealMAC protocol
in the lower right corner in Figure 7.9, due to the high throughput, low delay and
good energy-efficiency measured in the experiment.

7.3.3 Random Correlated Event Traffic

With our second experiment we examine the behavior of MaxMAC and the ref-
erence protocols in a larger scenario with a correlated event workload model, as
proposed by Hull et al. [82]. We simulate a 49-node grid network (7x7) with the
center node forming the sink, exactly the same scenario setup as applied by Yanjun
et al. [188], which also use the RCE model. The distance between two adjacent
nodes is 30m. With our parameters of the Log-Normal channel model [153], packet
error rates are 1% and 15% on a straight link (30m) and a diagonal link (42.42m).

We apply a simple event traffic model that mimics the effects of spatially corre-
lated events, in the same manner as in [82] and [188]. Spatially-correlated events
are expected to occur in many event-based scenarios for WSNs, e.g., in the before-
mentioned monitoring applications in health-care systems, disaster-aid systems or
tracking applications. The traffic model picks a uniform random (x,y) location for
each event. Every node within the event sensing range R of this location then re-
ports data packets with a rate of revent during tevent towards the sink. We chose
values of R = 30m, revent = 6 packets/s and tevent = 10s for the events being
triggered each 30s at a uniformly distributed random location (x,y) of the network.

In large event-based scenarios (e.g., a monitoring application), the packet delivery
rate (PDR) is usually given higher priority than the throughput per second. We
hence measured the packet delivery rate, the average source-to-sink packet delay
and the energy-efficiency (in terms of kBit/J) during 100 runs of 3600s. Packets
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are routed along the shortest path. Nodes select their parent node randomly in the
initiation phase of the experiment if there are multiple nodes exhibiting the same
hop count. Figure 7.10 depicts the packet delivery rate (PDR) vs. energy-efficiency
of the different configurations of the E2-MAC protocols in the random correlated
event experiment. Energy-unconstrained CSMA and IdealMAC reach a PDR of
almost 100%. Some packets are lost due to buffer overflows, as the transmit buffer
is assumed to be limited to 10 packets. Thanks to its run-time adaptation mecha-
nisms, MaxMAC reaches a similar PDR as CSMA, while still exhibiting a much
higher energy-efficiency. Although the protocol switches to CSMA in the high
traffic phases, its overall efficiency is still higher than that of most other E2-MAC
protocols. The combination of a high PDR and energy-efficiency achieved by
MaxMAC’s adaptation mechanisms is well-visible in Figure 7.10 and constitutes a
clear benefit and novelty compared to the other E2-MAC protocols.

Figure 7.11 depicts the trade-off between average source-to-sink packet delay and
energy-efficiency in the random correlated event experiment. Thanks to the schedul-
ing of Extra Wake-Ups and switching to CSMA at higher rates, the three examined
configurations of MaxMAC reach a far lower average source-to-sink latency as all
the other E2-MAC protocols. The adaptivity concept of MaxMAC further fits to
the event-based traffic: with an event being triggered at a random location, nodes
start reporting data along the shortest path to the sink. With the load reaching the
MaxMAC thresholds T1, T2, TCSMA, nodes alter their behavior in order to deliver
the pending load. After the event has been processed and the packet stream ends,
the LEASE timespans time out and MaxMAC again falls back to the default be-
havior in the Base Interval state.

A drawback of the MaxMAC adaptivity concept is the fact that the protocol re-
quires a certain adaptation time, during which the adaptation mechanisms are trig-
gered. In multi-hop scenarios, all nodes forming a route from the event source to
the sink first need to reach the given thresholds. During this adaptation phase,
packets are lost mainly due to buffer overflows, as the PDR in Figure 7.10 exhibits.
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Thereafter the traffic adaptation strategy achieves a high throughput and low av-
erage delay. We explored a scheme where the application layer triggers an initial
packet that paves the way for upcoming traffic. In such a packet, the application
layer would specify information regarding the amount of data which needs to be
transmitted. In case of a large bulk data transfer (e.g., a low-resolution image, cf.
the scenario in the subsequent Section 7.4.4), such a single initial packet could then
signal to all the nodes to remain in the CSMA state until completion of the transfer.
In Chapter 9, we will indeed show that this approach leads to a better net efficiency
than keeping the nodes duty-cycling the radio. However, we finally omitted to fur-
ther investigate such a scheme, since we wanted to avoid a tight coupling of the
involved communication protocol layers and wanted to move on with prototyping
MaxMAC on real-world sensor nodes.

Measuring Traffic Adaptivity

In order to fully close the gap between the state of the art analysis of the most
widely known E2-MAC protocols conducted in Chapter 6, and the evaluation of
MaxMAC in this chapter, we apply our proposed metric for traffic-adaptive be-
havior defined in Chapter 6 to the results of this section. The Traffic Adaptivity
metric TA(P ) given in equation (TA) measures the traffic adaptivity of a protocol
by computing the minimum distance between the performance of its evaluated con-
figurations (the tuples forming the set P = {P1, . . . Pk}) and that of IdealMAC.

dnorm(i, j, ωx, ωy, ωz) =

√√√√ωx(
xpi−xId
xId

)2 + ωy(
ypi−yId
yId

)2 + ωz(
zpi−zId
zmax−zId )2

ωx + ωy + ωz

TA(P ) = min dnorm(Pi, Id, ωx, ωy, ωz) (Pi ∈ P ) (TA)

In order to measure the impact of the adaptation mechanisms, we applied the TA-
metric to all the results of the Random Correlated Event experiment described
and evaluated in Section 7.3.3. This yields the TA-values depicted in Figures 7.12
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and 7.13. One can clearly see that the property of adaptivity as defined in Chapter 6
has been improved significantly with the introduction of MaxMAC. The TA-value
of WiseMAC, which used to be the best-performing protocol in Chapter 6, could
be reduced by roughly 30%. The two figures depict the normalized distance with
different ratios for the weight factors (cf. Section 6.3 of Chapter 6). The impact of
the improvement does slightly change with altering the weight factors. However,
when assigning a three times higher importance to both the maximum throughput
and the latency (cf. Figure 7.13), the improvement of MaxMAC over the other
protocols still remains in the same range (27.2% and 32.7% for the different weight
factor sets).

Rethinking the Traffic Adaptivity Metric

The metric defined in equation (TA) calculates how far the best configuration of
an examined E2-MAC protocol is from IdealMAC. The IdealMAC protocol is a
concept that demonstrates how an optimally traffic-adaptive MAC protocol should
ideally behave, allocating as much resources as necessary to handle the imposed
traffic, and saving as much as possible. However, we have observed that one major
aspect of traffic-adaptivity is not reflected with the metric in equation (TA). In
Figures 7.9, 7.10 or 7.11, it is clearly observable that the three configurations of
MaxMAC convey almost the same results with respect to the measured maximum
throughput, latency and energy-efficiency. The ability of the protocol to converge
towards the same consistent behavior with different parameter settings should also
be taken into account in a traffic adaptivity metric. MaxMAC configured with the
initial Base Intervals of 50 ms, 100 ms and 200 ms converged to almost the same
behavior, compared to e.g. WiseMAC with the same Base Interval parameters.

The ability to converge towards a consistent behavior with similar Quality of Ser-
vice parameters is wiped away in the metric defined with TA by taking the minimum
distance of the different results of the different protocol configurations. However,
the sheer distance between the different protocol configurations themselves, with-
out taking into account the distance to IdealMAC, can neither be considered as a
meaningful metric. We hence redefined the traffic adaptivity metric TA to TAmod,
which averages the distance to IdealMAC of each MAC protocol configuration,
instead of calculating the minimum distance.

TAmod(P ) =
k∑
i=0

dnorm(Pi, Id, ωx, ωy, ωz)

k
(Pi ∈ P ) (TAmod)

By averaging the distances to IdealMAC in the three-dimensional space, the met-
ric penalizes those protocols that convey heavily differing results for different pa-
rameters sets. Figures 7.14 and 7.15 depict the modified traffic-adaptivity met-
ric TAmod with the same weight factors and simulation results as Figures 7.12
and 7.13. Again, the improvement of MaxMAC over the other protocols remains
in the same range for the different weight factor sets. However, the improvement
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Fig. 7.14: Traffic Adaptivity Metric TAmod
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Fig. 7.15: Traffic Adaptivity Metric TAmod
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over the next-best protocol is even higher. The TAmod value of MaxMAC is 35.5%
and 37.9% lower than that of the next better MAC protocol. The downside of the
modified metric TAmod is the fact that TAmod depends much more from the choice
of the parameter sets, with which the protocols are examined. While a very bad
configuration has no impact in the initial definition (TA), since only the minimum
distance is computed, a configuration leading to very bad results can massively
deteriorate the modified metric TAmod (TAmod).

Conclusion

Although we have managed to describe the problem of traffic-adaptivity in the
three dimensional space spanned by the throughput, latency and energy-efficiency,
finding a formal metric that delivers an unambiguous notion has proven to be harder
than expected.

The application of the initial TA-metric to MaxMAC specified in (TA), and the
modified TA-metric specified in (TAmod) are an attempt to formally describe and
quantify the improvement in traffic adaptivity achieved with MaxMAC. Clearly,
the MaxMAC protocol is unlike most other E2-MAC protocols able to find a fair
balance between energy-efficiency under low or mediocre traffic load, while still
being able to achieve the maximum throughput that can be expected for contention-
based random access MAC protocols. This property must be seen as a clear novelty
in the design space of the evaluated E2-MAC protocols. The simulation results
of this section hence confirm our expectations that the MaxMAC concept effec-
tively succeeds in combining the advantages of energy unconstrained CSMA (high
throughput, high PDR, low latency) with those of classical E2-MAC protocols
(high energy-efficiency).
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7.4 Prototype-based Evaluation

Inspired by the sound results of MaxMAC in the simulation environment, we went
on to implement a prototype of the protocol on a real-world sensor network plat-
form. We chose the MSB430 [14] sensor node platform using the ScatterWeb2

Operating System [157]. The MSB430 platform has a CC1020 [173] byte-level ra-
dio transceiver operating in the 804-940 MHz ISM frequency band. We specifically
chose this platform due to its byte-level oriented transceiver chip, since preamble-
sampling mechanisms can generally be easier implemented on byte-level radios
than packet-oriented radios such as the CC2420 [174].

We first implemented the WiseMAC [57] protocol to form a starting point for our
implementation and investigation of the MaxMAC concept in real-world environ-
ments. In the subsequent evaluations of this section, we compare our MaxMAC
protocol to WiseMAC, and to a slightly altered version of the default IEEE 802.11-
like CSMA MAC protocol in ScatterWeb2 OS [14], which does not duty-cycle the
radio in any form, and avoids collision using a random-backoff mechanism.

While the maximum raw bit rate of the CC1020 is 153.6 kbit/s, the ScatterWeb2

OS currently only supports a data rate of 19.2 kbit/s. The simulation results can
hence only partly be compared to the results of the real-world implementation.

Table 7.3 lists the packet and header format used for all of the MAC protocol im-
plementations. Table 7.4 then lists the main MAC protocol parameters. The upper
half in Table 7.4 lists general settings that apply for all examined MAC protocols,
as well as the common WiseMAC and MaxMAC parameters. In the lower half,
the table lists the MaxMAC-specific parameters, e.g., the state thresholds or the
LEASE timeouts. The Base Interval T with which nodes sample the channel was
set to 500 ms, the time for a channel poll to 3 ms. We experimentally determined
that the MSB430 sensor node with its CC1020 [173] radio driver requires roughly
3 ms to turn the radio on and to reliably determine if the preamble byte is being
received. The duty-cycle, calculated as the fraction of the time the radio is kept on

Field Bytes Description
Preamble variable predefined bit sequence (0xAA)
Start Delimiter 3 indicates the beginning of the data
Size 1 packet size, including payload
Address Target 1 address of the receiver (0 - 254)
Flags 1 MaxMAC flags (e.g., state info)
Address Source 1 address of the sender (0 - 254)
Number 1 packet sequence number
Type/More Bit 1 packet type, containing more-bit
Millis 1 milliseconds until next wake-up
Payload 28 bytes payload data
CRC 2 CRC-16 checksum

Table 7.3: MaxMAC Prototype Packet Format
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General Parameters
Bitrate 19’200 bps
Baudrate 38’400 bps
Packet size 40 byte (incl. header)
Packet Queue size 7 packets
WiseMAC & MaxMAC Parameters
Base Interval T 500 ms
Duty-Cycle 0.6 % (3 ms)
MaxMAC-specific Parameters
Threshold T1 1 packet/s
Threshold T2 2 packets/s
Threshold TCSMA 3 packets/s
S1 LEASE 3 s
S2 LEASE 3 s
CSMA LEASE 3 s

Table 7.4: MAC Protocol Parameters

(receive / transmit) during each Base Interval T hence amounts to 0.6 %, given the
node is idle and neither receives nor transmits any packets. The threshold param-
eters in Table 7.4 have been experimentally determined in a small scale scenario,
e.g., the parameter TCSMA=3 packets/s was configured according to the observa-
tion that the throughput of WiseMAC stalls at a rate of 3 packets/s across 2 hops
(cf. Figure 7.21 in the next section).

In order to allow for a fair comparison, we implemented a packet burst mode for
each MAC protocol, such that nodes can transmit queued packet trains in a burst.
Nodes can signal pending packets to the receiver using a so-called More Bit in the
header, and continue transmitting packets in a burst, receiving an acknowledgment
for each frame, exactly as in the simulation models of Section 7.3.2.

In case a sender does not receive the respective acknowledgement after a frame
transmission, the retry mechanism is invoked. The number of retransmissions for
each frame is set to 1 for all protocols. In CSMA, the sender again contends for
the medium and - given the channel is sensed free - transmits again. In WiseMAC,
the node attempts again at the subsequent next wake-up. In MaxMAC, the retrans-
mission mechanism depends on the adaptivity state of the receiver, waiting for the
next wake-up in case of the base interval, S1 and S2, and immediately attempting
to retransmit in case the receiver is in the CSMA state.

7.4.1 Run-time Traffic Adaptivity in the MaxMAC Prototype

This section describes the implementation of the run-time adaptivity features of
MaxMAC in the real-world prototype. According to the state-based concept de-
picted in Figures 7.3 and 7.2 of Section 7.2, MaxMAC allocates so-called Extra
Wake-Ups when the rate of incoming packets reaches the predefined threshold
values. In that way, MaxMAC stepwise shifts from the objective of energy con-
servation towards the objective of providing higher Quality of Service, which is

140



7.4. PROTOTYPE-BASED EVALUATION

 0

 10

 20

 30

 40

 50

 60

 0  1  2  3  4  5  6  7  8  9  10  11  12

C
u

rr
e

n
t 

[m
A

]

Time [s]

Channel Polls

Receive
Packet

Forward
Packet

State S1 Receive and Forward
3 Packets (each 500ms)

State S2 Receive and Forward
4 Packets (in a burst)

State CSMA Dropping Back to
Base Interval State

Fig. 7.16: Node forwarding Packets in different MaxMAC States

basically driven by the demand of the layers above the MAC. The threshold values
T1, T2, TCSMA listed in Table 7.4 were chosen to suit for the targeted behavior of
our MaxMAC prototype on the MSB430 sensor node platform. As in any MAC
protocols, there are no globally optimal values. Manipulating the threshold val-
ues allows the network operator to fine-tune the MaxMAC protocol to reach its
targeted behavior and performance. Choosing low values would particularly make
sense in delay-sensitive applications, since the thresholds would be quickly ex-
ceeded at the price of a higher energy footprint. Section 7.3.2 elaborates in more
detail on threshold values and parameters.
Figure 7.16 displays an excerpt from the current trace (sampled at 1000 Hz) of
a node running MaxMAC and receiving and forwarding packets with increasing
rate, using the SNMD devices, which are discussed in detail in Section 2.3.2 of
Chapter 2. Two packets are received and subsequently forwarded at t=1.5s and
t=2.5s. Further three packets are received and forwarded at t=3.5s, t=4s, t=4.5s and
a burst of 4 packets in a burst is received and forwarded starting at t=7.25s. The
node measures the received rate of packets using a sliding window over 1 second.
It operates in the Base Interval state per default, polling the channel each 500 ms,
and switches to the states S1, S2 when the corresponding load thresholds T1, T2
are reached. With the rate of incoming packets reaching the threshold T1, the node
switches to the state S1 and schedules one additional Extra Wake-Up in between
each Base Interval. This state change is well visible in Figure 7.16 after t=2s,
after the node has forwarded the received packet. With exceeding T2 (between
t=4s and t=5s), it switches to the state S2 and again doubles its wake-up frequency.
Increasing the amount of wake-ups is an effective, yet energetically cheap means
of increasing network throughput and decreasing end-to-end latency. The decrease
in latency is well visible in Figure 7.16: the time difference between the reception
of the first packet and its transmission to the next node is much shorter at higher
rates. Packets can be forwarded faster with the receiver being in state S1, S2, or
even CSMA, as the time gaps between packet receptions and the receiving nodes’
next wake-ups decreases, which massively reduces the end-to-end packet latencies.
MaxMAC has been specifically designed to maximize throughput in situations of
increased network activity, however, still sticking to the contention-based random
access nature. The scheduling of Extra Wake-Ups somewhat increases the achiev-
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able throughput, but still it remains much below that of CSMA. Hence, when the
rate of incoming packets reaches the threshold TCSMA, MaxMAC switches to the
CSMA state, where it completely abandons any sleep-wake pattern. The node in
Figure 7.16 switches to the CSMA state at t=7.5s after the reception of the packet
burst. With the LEASE timeouts expiring, MaxMAC falls back to its default be-
havior, where nodes poll the channel with the Base Interval T . The fallback mech-
anism is well visible in Figure 7.16 at t=11s where the node leaves the CSMA state
and falls back to the Base Interval state, sampling the channel every 500 ms.

7.4.2 Implementation Pitfalls

When implementing the MaxMAC concept on the MSB430 sensor node platform,
several challenges and pitfalls have been faced, which we did not anticipate during
our prior investigations based on the OMNeT++ network simulator. This section
briefly describes some of the encountered issues and - where it was possible - our
workarounds or countermeasures to cope with the encountered difficulties.

Inaccuracies of the Software-based Timers

The ScatterWeb2 operating system offers to schedule functions to Timers, which
are then executed after a specified interval. However, the execution of the timers
unfortunately comes with some inaccuracies, since the CPU is handling timers and
events one after the other in a linear manner in the operating system’s superloop
(cf. Section 2.1 of Chapter 2). When certain events currently use the CPU, e.g.,
because a received packet has to be read from the incoming receive buffer and
passed to the application, or because some other timer is currently using the CPU,
a ScatterWeb2 timer might be executed later than specified. This is generally not a
big problem, since most WSN applications usually do not use the CPU for intensive
computations, including our traffic generators used in this chapter. However, the
inaccuracies turned out to play a crucial role in the MaxMAC and WiseMAC pro-
totypes, because these protocols rely on very exact timings of the receiver’s wake-
ups. The shortened preambles do not span across an entire wake-up Base Interval,
as e.g, in X-MAC or B-MAC, but are transmitted just before the receiver’s adver-
tised wake-up, and hence require more precise timing. When simply scheduling
a timer each 500 ms to implement the duty-cycling, the timer inaccuracies would
lead to the node’s wake-ups drifting apart by several milliseconds within only few
tens of seconds, rendering the WiseMAC schedule offset table useless.

We addressed this problem by scheduling the timers slightly before the advertised
wake-up times, and then waiting in a busy-wait loop running the NOP instruction
for some few milliseconds and checking the current time in each loop, in order
to precisely turn the transceiver on at the wake-up time. For the transmission,
the timing issue was less of a problem, since the entire transmission and recep-
tion mechanism is handled within designated interrupt service routines, which are
executed prioritized and which do not rely on the same sort of timers.
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Embedding Target ID into Preamble

In the first ScatterWeb v.1.0 WiseMAC prototype on the ESB nodes, which is dis-
cussed in Chapters 2 and 5, the radio transceiver TR1001 [156] applied a synchro-
nization mechanism that assured correct interpretation of the byte bounds while
receiving data. The overhearing avoidance mechanism discussed in Section 7.2
could hence be accomplished by repetitively transmitting the node identifier as
preamble byte, and letting receiver nodes only listen to frames that are announced
with their identifier as preamble byte.

With the CC1020 [173] transceiver, however, the received byte bounds are not au-
tomatically determined. The ScatterWeb2 operating system therefore integrates a
rather complex mechanism that finds the beginning of a frame and the correct byte
bounds based on a series of frame delimiter bytes, which are received after a vari-
able number of 0xAA (or 0x55) symbols (= an alternating sequence of ’1’ or ’0’).
In order to implement a preamble sampling mechanism with a minimal idle duty-
cycle, we prolonged this byte sequence to represent the preamble tone. A receiver
hence only has to turn on its radio transceiver, listen whether the 0xAA (or 0x55)
byte is being received, and can turn off the radio if this is not the case. However, we
failed to integrate the node identifier due to the missing synchronization of the byte
bounds. We did attempt to alter the preamble byte sequence to integrate the node
identifier after a series of 0xAA (or 0x55) bytes, but found that the full integration
of the proposed ID embedding mechanism would significantly increase the idle
duty-cycle. Finally, we chose to keep the lower idle duty-cycle, which in the cur-
rent WiseMAC and MaxMAC implementation only accounts to 0.6%, and omitted
the integration of the overhearing avoidance mechanism proposed in Section 7.2.

Carrier Sensing Range

El-Hoiydi et al. propose in [57][56] to apply an Extended Carrier Sensing Range
of roughly two times the transmission range, in order to not only avoid collisions,
but also the effects of the hidden node problem. Figure 7.17 depicts this concept:
when node C is transmitting a packet to D, the nodes within its carrier sensing
range (A, B, D, E) should all remain silent and defer pending transmissions in
order not to interfere with the receiver of C’s transmission. We have implemented
this mechanism in the simulation model of WiseMAC and MaxMAC, but had to

Fig. 7.17: Extended Carrier Sensing Range in WiseMAC [57]
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omit it in our real-world prototype for several reasons. First, the recognition of
the medium occupancy on the CC1020 relies on the measured RSSI value. This
value is, according to the radio specs datasheet [173], compared against a “pro-
grammable threshold” and saved to a certain register. Due to insufficient knowl-
edge of the internal operation of this transceiver, we failed in finding a way to alter
this “programmable threshold”. Second, the digital RSSI value of the CC1020
turned out to vary heavily among the different node instances, rendering the def-
inition of RSSI thresholds impossible. Since we are rarely dealing with circular
transmission ranges in real-world, we omitted to further investigate the Extended
Carrier Sensing Range mechanism, which has anyway only been evaluated in sim-
ulation in [57].

7.4.3 Tabletop Experiments

In this section, we evaluate our prototype implementation of the MaxMAC protocol
in two small-scale experiments conducted on top of an office table. We compare it
against the implementation of unmodified WiseMAC [57] and the ScatterWeb2 op-
erating system’s energy-unconstrained IEEE 802.11-like CSMA variant. The setup
of the experiment on top of a table allows us to conveniently measure the current
draw of one node with an SNMD and run a series of controlled and repeatable
experiments without unpredictable interferences or reflection effects. The results
further allow for an in-depth analysis of the current draw and throughput over time.

Three Nodes Chain Scenario

The first experimental results of the MaxMAC prototype were gained using three
nodes A, B and C aligned on a table with a distance of 50 cm between them, hence
with all nodes being in each other’s transmission range (cf. Figure 7.18). We let
node A generate traffic of variable rate towards node B forwarding it to node C, ac-
cording to the load curve depicted in Figure 7.20. The load alternates between no
traffic and load peaks of increasing intensity, ranging from 0.5 packets/s to 6 pack-
ets/s. Figure 7.21 depicts the rate of received packets at the sink node C, filtered
with a Central Moving Average Filter of 1s and averaged across 20 experiment
runs. During the entire experiment duration, node B was attached to a SNMD
device and the node’s current draw was sampled at 1000 Hz. Before every mea-
surement run, an external node was used to broadcast a SYNC frame to all nodes
on the table. Immediately upon reception of this frame, all nodes on the table re-
set their DCO clocks back to zero. Since this is done inside the interrupt service

Fig. 7.18: Three Nodes Chain Scenario Fig. 7.19: Contending Nodes Scenario
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Fig. 7.20: Offered Load in the Three Nodes Chain Experiment
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Fig. 7.21: Packet Reception Rate at Sink Node C in the Three Nodes Chain Experiment
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Fig. 7.22: Average Current of Node B in the Three Nodes Chain Experiment

routine that is called for every received byte (each 416 µs), we can safely assume
that the accuracy of the synchronization remains within less than 1 ms. Having the
DCOs of the nodes synchronized, we measured the delays by subtracting the time
the packet is received by the sink from the packet generation time.

As one can clearly see comparing the received packets with the offered load,
CSMA manages to handle almost all packets from A to C. It only suffers minor
losses at the load peaks. WiseMAC’s throughput stalls at a maximum of 3 packet-
s/s, which corresponds to roughly 50% of that of CSMA. Figure 7.21 clearly shows
that MaxMAC with its state-based run-time traffic adaptation mechanism reaches
the same throughput as the energy-unconstrained CSMA. As the MaxMAC pro-
tocol adaptively allocates more duty-cycles and switches to CSMA at a rate of
TCSMA = 3 packets/s, it manages the load peaks without major packet loss.

Figure 7.22 depicts the mean current draw of node B, averaged over 20 measure-
ments and filtered using a Central Moving Average Filter of 1s. One can clearly
see the big gap in the current draw between the E2-MAC protocols WiseMAC
and MaxMAC versus the energy-unconstrained CSMA protocol. With low traffic,
CSMA wastes a lot of energy on idle listening. The load peaks are hardly visible
at all, as the transceiver does not consume much more power when transmitting,
compared to idle listening. As MaxMAC switches to the CSMA state with the rate
reaching TCSMA = 3 packets/s, the power consumption of MaxMAC accordingly
jumps to the level of CSMA, too. Thanks to the run-time traffic adaptivity mech-
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Fig. 7.23: PDR, Energy Consumption, Energy-Efficiency and One-Way Delay
in the Three Nodes Chain Experiment

anisms, MaxMAC reaches the same energy-efficiency in the low-traffic-phases as
WiseMAC, but is able to handle the load peaks with lower packet loss. The on-
demand scheme of MaxMAC further succeeds well when the packet rate decreases,
where MaxMAC quickly falls back to the Base Interval state.

Figure 7.23 depicts the packet delivery rate (PDR), the overall energy consump-
tion of node B, the energy-efficiency and the one-way delay from A to C in the
Three Nodes Chain experiment. One can easily see that MaxMAC with a PDR of
more than 92.2% achieves a slightly lower PDR than energy-unconstrained CSMA
(96.9%), but a far higher PDR than WiseMAC (58.7%). Most of the losses in the
MaxMAC experiment runs occurred right at the beginning of the load bursts. As
the load exceeds the predefined threshold values, some initial time is necessary to
change from the duty-cycling states to the CSMA state, during which most pack-
ets were lost. Since the load thresholds have to be exceeded on all the nodes in
the chain, congestion effects can occur in the beginning of a load burst, where the
nodes close to the sink have not yet changed the state, which finally may result in
buffer overflows or collisions with transmissions on the second link.

With MaxMAC allocating the radio transceiver on demand, and quickly falling
back to the Base Interval state when the load decreases, the total energy consumed
by node B amounted to just 33.1 J, as opposed to 98.5 J for CSMA. The energy-
efficiency is measured as the total amount of bytes transmitted across node B per
consumed Joule of node B, since only node B is measured by the SNMD device.
The measured values reveal that MaxMAC achieves an even better efficiency ratio
than WiseMAC. Keeping the radio on during the high-traffic phases obviously pays
off with respect to the overall efficiency as well, since the higher energy costs are in
such situations legitimized by the higher achievable throughput. The evaluation of
the one-way delay revealed that WiseMAC sticking to its strict duty-cycling pattern
with sampling the channel each T=500 ms exhibited a far higher average one-
way delay (2.1s) than MaxMAC (261 ms) or CSMA (171 ms). With WiseMAC,
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incoming packets are buffered in the transmit queue in every node, and transmitted
in a burst as soon as the channel contention has been won, which has a deteriorating
impact on the end-to-end latency. CSMA and MaxMAC (at rates ≥ 3 packets/s)
can rely on the next node constantly being awake and hence immediately transmit
any incoming packet. Thus, they do not need to wait for the next wake-up of the
intermediate node and can neglect to transmit long preambles, which generally
keeps the end-to-end latency low.

Contending Nodes Scenario

In a second small-scale experiment, we examined the protocol’s behavior under
variable traffic from two contending nodes. The nodes A1, A2 were configured
to generate variable load, which is forwarded via node B to the sink node C (c.f
Figure 7.19). All nodes were again kept on a table, and node B’s current was
measured with an SNMD device. The shape of the offered load generated at nodes
A1,A2 is depicted in Figure 7.24. It was chosen to illustrate the behavior of the
protocols during phases where neither A1 nor A2 is generating load, where one
of the source nodes is generating load, and when both nodes are generating load
and hence have to contend for the medium access. Figure 7.25 depicts the rate
of received packets at the sink node C over time, filtered with a Central Moving
Average Filter of 1s and averaged across 20 experiment runs.
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Fig. 7.27: PDR, Energy Consumption, Energy-Efficiency and One-Way Delay in the
Contending Nodes Experiment

Figure 7.26 depicts the average current draw of node B (mean of 20 measure-
ments captured with an SNMD). One can again see the large gap in the average
current draw between the E2-MAC protocols WiseMAC and MaxMAC and the
energy-unconstrained CSMA protocol. Since receiving and transmitting are sim-
ilarly expensive, the load peaks do not have a large impact on the CSMA curve.
As Figure 7.25 clearly exhibits, WiseMAC does not exceed a rate of 1.5 packets/s.
Its performance degrades in case of high contention at higher traffic rates. Dur-
ing the load peaks with both nodes sending at increased rate (i.e., at t=200s and
t=375s), the effective throughput degrades, as transmission attempts from A1,A2,
but also B forwarding received packets to C, increasingly cause collisions. Since in
WiseMAC, transmission opportunities are limited to two wake-ups per second, col-
lisions are more likely to occur than in the case of MaxMAC, where the additional
wake-ups of node B alleviate its role as a throughput-restraining bottleneck.

Figure 7.27 depicts the PDR, the average energy consumption of node B, the
energy-efficiency measured at node B and the one-way delay from A to C, in
analogy to the results of the former experiment. The results exhibit a similar
picture: MaxMAC with a PDR of roughly 90.3% achieves a slightly lower PDR
than energy-unconstrained CSMA (94.5%), but a far higher PDR than WiseMAC
(54.9%). Most of the losses within the MaxMAC runs proved to occur at the start
of the load bursts and during the contention phases where both source nodes A1,
A2 generated traffic. The evaluation of the energy consumption of node B and the
one-way delays exhibited similar results as the previous experiment. MaxMAC
reaches a similar PDR and latency as CSMA, however, at the energy cost of less
than 50% of the latter. It also exhibits the highest energy-efficiency in terms of
transmitted bytes per consumed Joule at node B. WiseMAC wastes a lot of energy
on retransmissions caused by competing medium access. In contrast, MaxMAC
delivers the major portion of packets from the two sources to the sink during the
load peaks, which positively impacts on its efficiency metric.
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Simulation Results vs. Tabletop Experiments

A general observation from the first two experimental scenarios is the astonishing
similarity between the simulation results and the real-world results gained in the
tabletop experiments. When comparing Figures 7.22 and 7.26 with Figures 7.4,
7.5, 7.6 of the simulation experiment, where a similar experiment with timely
variable traffic is conducted, the similarities between the throughput and power
consumption curves become obvious. Although the parameters of the simulation
were different (115’200 bps in simulation vs. 19’200 bps in the real-world envi-
ronment), the resulting ratios between the achieved maximum throughput of the
protocols WiseMAC, MaxMAC and CSMA are in a comparable range. The be-
havior of MaxMAC with respect to triggering the adaptation mechanisms are well
recognizable in simulation and in the real-world experiment.

7.4.4 Distributed Testbed Experiments

The major advantage of MaxMAC is its ability to switch between the primary
objective of energy conservation and the throughput and latency characteristics
of energy-unconstrained CSMA, depending on the load conditions. In order to
examine and verify this property across more than two hops, nodes need to be
physically separated, such that transmissions from one node do not impact too
heavily on all other nodes, e.g., on nodes exchanging packets on the far other end
of the network. In order to achieve a certain spatial reuse of the channel, not all
nodes should hence be located within each other’s transmission range.

We hence set up an indoor distributed testbed with 7 MSB430 nodes distributed
across four floors of our institute building, as schematically depicted in Figure 7.28.
All nodes were placed in different rooms of the building to obtain a network where
nodes communicate across concrete walls and floors. Figure 7.28 depicts the links
that were used throughout the evaluation, which yielded a high packet delivery rate

Fig. 7.28: Indoor Distributed Testbed Scenario
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(≥95%) in case of no other ongoing traffic. It was naturally impossible to perfectly
shield the links from each other, but a certain spatial reuse could nevertheless be
achieved. For all the subsequent experiments and evaluations of this section, we
made use of our testbed management architecture TARWIS, which is discussed
in detail in Chapter 3. TARWIS allows for repeatedly running a large number of
experiments without having to be physically present and without any continuous
interaction with the testbed, which massively facilitated and expedited experimen-
tation, not only for the evaluations of this chapter.

Multi-Hop Chain Scenario

In a first experiment, we evaluated the maximum achievable throughput of the
three MAC protocols across a chain of 4 nodes (SA to D) and 5 nodes (SA to
IB2). Traffic was generated at different load levels at node SA at t=90s during 60s.
Figure 7.29 depicts the seven different load curves of node SA with the examined
load peaks of 0.5, 1, 2, 3, 4, 5 and 6 packets/s. Before the load peak starting at
t=90s, the source node SA sends one packet each 10s towards the destination. After
the load peak, the load falls back to zero until the experiment ends at t=260s. This
experiment was designed to examine the run-time behavior of the protocols when
peaks of different intensities in the network load occur, and to determine maximum
throughput and end-to-end latency of the three protocols across multiple hops.

Each offered load setting was examined with 20 independent runs. During each
experiment run, each node estimates its energy consumption using our software-
based energy estimation framework [86], which is discussed in detail in Chapter 4.
Nodes print their energy consumption estimation to the serial interface every 5s,
which are collected by TARWIS (cf. Chapter 3). Every node in the network was
measured and calibrated individually in advance of deployment, which permitted
us to apply the per-node calibrated parameter values determined in [86]. With
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these values, the mean absolute estimation error (MAE) across all examined traffic
rates remained in the range of 1%, which we consider sufficient for evaluating and
comparing our MAC protocol prototypes’ performances. Figure 7.30 depicts the
resulting average current draw of node IA1 over the experiment duration, using
the results of the 4-nodes experiment runs with the peak load rate of 3 packets/s.
The curves of the three protocols very much resemble the former curves from the
small-scale experiments in Section 7.4.3. The step-like shape of the curve stems
from the much lower resolution of only one sample obtained each 5s (=0.2 Hz), as
opposed to 1000 Hz with the SNMD. The software-based methodology in general
is not well-suited to examine protocol traces over time with a high resolution, but
it suffices well for estimating the total energy consumption over an experiment
period or an interval of several seconds. Using the software-based estimations, the
impact of the load peaks generated during 60s starting at t=90s and the reaction of
the protocols become clearly visible. MaxMAC is able to deliver the same load as
CSMA, and falls back to the default behavior after the load peak. WiseMAC has a
lower average current draw during the load peak, but only delivers a fraction of the
offered load of that of CSMA or MaxMAC. With WiseMAC and MaxMAC, the
initial full-preamble broadcast along the node chain is well visible in the node’s
energy consumptions. As nodes do not yet know each other’s schedule offsets, the
first packet traversing the chain triggers a series of broadcasts with long preambles
(500ms) in all participating nodes, which are overheard by some of the nodes in
the chain. This causes the significant spike in the average current at the experiment
start, which is well-visible roughly at t=10s in Figure 7.30.

Figure 7.31 depicts the obtained throughput during the load phase at the sink nodes.
One can clearly see that CSMA and MaxMAC both succeed in delivering almost
the full offered load up to a rate of 4.5 packets/s for the 4 nodes experiment, and
3.5 packets/s for the 5 nodes experiment. Due to the fact that all nodes transmit and
listen to the same channel, and imperfect spatial reuse in the indoor testbed (e.g.,
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Fig. 7.32: One-Way Delay dependent on Traffic Rate

transmissions from IB2 to D impact to a non-negligible extent also on the nodes
IA2 and IA1), the maximum throughput across the 60s load peak reaches only 3.5
packets/s. Figure 7.32 depicts the latency measured from source to sink vs. traffic
rate in the 4 nodes and 5 nodes scenario. MaxMAC’s latency decreases for rates
0.5 to 4 packets/s. With increasing rate, the protocol allocates Extra Wake-Ups and
switches to CSMA, which pushes the delay into the range of that of CSMA. With
rates above 4 packets/s, congestion effects lead to a significant increase of the one-
way delay. CSMA suffers from the same congestion effects at high rates as well,
however, exhibits a much lower delay at low traffic rates. The one-way delay of
WiseMAC significantly increases with the increasing traffic rate. Since WiseMAC
is limited to few transmission opportunities (two wake-ups per second), the wait-
ing time for forwarding packets is higher than in MaxMAC/CSMA. Additionally,
failing contention attempts and collisions are more probable and frequent than in
MaxMAC/CSMA. At higher load rates, WiseMAC tends to hopwise queue packets
and transmit them in a burst, which significantly increases the end-to-end latency.
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Figure 7.33 depicts the average energy consumed by each node of the chain sce-
nario. While the energy consumption of CSMA remains constantly high at a level
of 25 J, independent of the traffic load, the total energy consumption of MaxMAC
increases with the load rate, but peaks at roughly 10 J. This peak is not exceeded,
as MaxMAC falls back to the default Base Interval state after the load peak, where
it only samples the channel every T=500 ms and hence saves a major portion of
the energy spent in CSMA. WiseMAC consumes less energy for all load rates,
however, at the cost of massively degraded maximum throughput and latency.

Variable Traffic from Leaf Nodes Scenario

In our second experiment, we evaluated the behavior of the three protocols with
variable and contending traffic from different areas of the network, using the entire
V-shaped network consisting in 7 MSB430 nodes depicted in Figure 7.28. The
two leaf nodes SA and SB generate variable load across their subtrees towards the
sink node D. The shape of the offered load is similar to that of A1, A2 in Fig-
ure 7.24 of the smaller tabletop experiment, with the minor difference that the rate
during the second and third load peaks were reduced to 1.5 and 2 packets/s, cf. Fig-
ure 7.34. Due to interferences of the concurrent transmissions within the building,
more generated traffic had a vastly deteriorating impact on the resulting end-to-end
throughput for all protocols. We specifically chose the shape of the offered load to
illustrate the behavior of the three examined protocols during phases where neither
branch of the tree is generating load, where one leaf node is generating load or
when both leaf nodes are generating load.
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Figure 7.34 depicts the resulting rate of received packets by the sink node D. The
displayed rates were again calculated using a Central Moving Average filter of 1s
and computing the average of 20 independent experiment runs. One can clearly
see that WiseMAC’s maximum throughput stalls at slightly more than 1 packet/s,
and fluctuates heavily because of the previously discovered effect of queuing and
burstwise transmitting. CSMA reaches a throughput of roughly 3.5 packets/s, and
MaxMAC up to 3 packets/s. Figure 7.35 clearly exhibits that MaxMAC’s perfor-
mance degrades with increasing contention in the distributed testbed. In larger
multi-hop networks, collisions are generally more likely to occur in contention-
based protocols, since a random backoff mechanism can never prevent collisions
but only make them less probable. Reasons for this include, but are not limited to
the transceiver switches, during which the nodes can neither receive nor transmit
anything, and which can hence lead to concurrent medium access. Furthermore,
the hidden node problem is not addressed at all in none of the examined protocols.

The PDR of MaxMAC in Figure 7.36 conveys a massive improvement compared to
WiseMAC: applying MaxMAC’s run-time traffic adaptation mechanisms seems to
pay off dramatically. The PDR of MaxMAC (84.5%) in the distributed experiment
involving all nodes of the testbed is significantly higher than that of WiseMAC
(53%). MaxMAC’s performance, however, clearly lags behind CSMA (96%),
which managed to deliver the major portion of the packets across the busy net-
work. We observed that main reason behind this performance degradation was the
phenomenon that MaxMAC LEASE timeouts sometimes expired due to a series of
timely-correlated collisions. When intermediate nodes in the chain fall back to the
default behavior during a high-traffic phase, some time is necessary to exceed the
thresholds and re-establish the fully active chain of nodes, during which most of
these losses occurred. Besides the PDR, the bars of the average node’s energy con-
sumption and the energy-efficiency displayed in Figure 7.36, convey a similar im-
provement as in the small-scale experiments. Note that in contrast to Figures 7.23
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and 7.27, where the efficiency is measured as the amount of bytes transmitted by
node B per consumed Joule, Figure 7.36 depicts the transmitted bytes from source
to sink per consumed Joule of all nodes in the network. Since we do not employ
SNMDs in the testbed distributed environment, the consumed Joules and the effi-
ciency in Figure 7.36 are calculated based on the software-based estimations, and
hence the results of this section can not be compared to those of Section 7.4.3. The
analysis of the average end-to-end latencies in the same figure indicates that Wise-
MAC is suffering more from congestion effects than MaxMAC or CSMA. Due to
heavy channel usage and the few transmission opportunities of WiseMAC, nodes
have to buffer packets for a long time until they can transmit them in a burst, which
heavily impacts on the average end-to-end latency. In contrast, MaxMAC exceed-
ing the thresholds and operating in the CSMA state can transmit queued packet
trains as soon as the channel is found idle.

Figure 7.37 depicts the energy consumption estimations of the seven nodes in the
network. Each group of bars depicts the seven nodes’ estimations for the pro-
tocols WiseMAC, MaxMAC and CSMA, with the sink node in the middle and
the subtrees to the left and to the right. The figure conveys that, across the node
chains that participate in forwarding the generated load SB→IB1→IB2→D and
SA→IA1→IA2→D, the energy estimations of the nodes decrease with WiseMAC,
but tend to increase with MaxMAC and CSMA. This interesting observation can be
explained as follows: WiseMAC and other preamble-sampling based approaches
generally shift the cost from the receivers to the senders. A sender has to catch
the receiver in one of its short channel polls, using long preambles to compensate
for clock drifts, for the contention and medium reservation mechanism and for fur-
ther implementation-related inaccuracies. In WiseMAC, the further away a node
is from the source node, the lower is hence its energy consumption, as the rate
of received packets generally decreases with every hop because of the rather high
packet loss rate. The sink then inherently exhibits the lowest energy consump-
tion, as it does not forward any of the received packets, cf. Figure 7.37. With
MaxMAC, the energy estimations tend to increase across the chain. This increase
can be explained as follows: first, the closer the nodes are to the sink, the more
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they need to apply costly retransmission attempts due to the increasing contention
in this area. Second, as the sink node receives packets from both subtrees, it ex-
ceeds the MaxMAC thresholds earlier and hence switches to energetically more
expensive states (S1, S2, SCSMA), which explains that its energy consumption is
highest. With CSMA, the energy estimations exhibit a very slight increase towards
the sink, which we explain with the increasing contention for the channel and over-
hearing in the sink area. Since transmitting is only slightly more expensive than
receiving, the increase is barely measurable and may be exceeded by the measure-
ment variation, or even the variation among the energy consumption patterns of
different node instances (cf. Chapter 4).

Intruder Detection Use Case Scenario

Our third evaluation scenario is inspired by recent work on artificial-intelligence
and neural-network-based intrusion detection and office monitoring systems. The
proposed event detection system presented by Wälchli et al. [179] can, based on
the data of the passive infrared sensor and the noise sensor of the employed node
platform, detect the intrusion of a thief into an office. One main difficulty in the
study [179] consisted in distinguishing between normal office conditions, where
people are working in the office and producing background noise, and the anoma-
lous case where the office is searched through by an intruder. The system finally
managed to raise an alarm in every case of a simulated office intrusion with a con-
siderably low rate of false positives. We considered this application scenario a
perfect match for evaluating the MaxMAC protocol and comparing it to the two
reference protocols WiseMAC and CSMA. One main requirement for the system
proposed in [179] is the capability of long-term operation, probably for months or
even years. Since an event is only signaled by a small alarm message, this system
does does not necessarily require a high throughput, but rather a short latency and
high reliability. However, with the emergence of wireless multimedia sensor net-
works (WMSNs) [4][7], such a system could easily be augmented by equipping
nodes with small Complementary Metal Oxide Semiconductor (CMOS) cameras.
WMSNs in general have gained remarkable attention in the recent past: the cyclops
node platform proposed by Rahimi et al. [150] integrates a low resolution CMOS
camera with the well-known MicaZ motes. Issues related to efficient compression
techniques on resource-constrained embedded devices have been studied by Lee et
al. [110]. In scenarios where nodes have to transmit image data across the network
after an event is detected, e.g., in order to let the surveillance staff decide whether
the detected event is a false positive or not, the provision of reasonable throughput
on demand clearly becomes a necessity. This justifies our efforts towards Quality
of Service-aware, but at the same time energy-efficient MAC protocol mechanisms.

Figure 7.38 illustrates our application-oriented scenario: the figure displays the
testbed with the V-shaped network topology. The nodes in the testbed network
are assumed to be part of a distributed office monitoring and intrusion detection
system. Each node is assumed to be equipped with a small CMOS camera and an
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Fig. 7.38: Intruder breaking into Offices of Nodes SA, IA1, SB , IB1

infrared sensor. Based on its sensor values and prior calibration, it detects anoma-
lous behavior as proposed in [179]. The sink node D is again located in the top
right corner, and is assumed to be connected to the Internet to contact the facility
management staff. The events we simulate are the following:
• All nodes except for the sink are generating status messages each 20s to

inform the sink about their alive status (background traffic). In each experi-
ment run, the initial idle period lasts for 100s.

• At t=100s after experiment start, an intruder enters the surveyed building in
the ground floor and enters the office of node SA, as displayed in the bottom
right corner of Figure 7.38.

• Node SA notices the intruder and generates an image, which is split into
100 packets (same as in the previous experiments) and sent towards the sink.
The node is configured to send at a rate of 2 packets per second, hence the
process takes roughly 50s.

• The intruder moves up the stairs into the first floor, where he breaks into the
office of node IA1, exactly 40s after visiting the first office. Node IA1 notices
the intruder and also sends an image towards the sink

• Another 40s later, the intruder breaks into the room of node SB located on
the same floor, where the same procedure is triggered.

• Yet another 40s later, the intruder breaks into the room of node IB1 located in
the second floor, where the same procedure is triggered. Finally, the intruder
leaves the building.

• Every node, after transmitting its image data, falls back to its default be-
havior, generating status messages each 20s and sending them across the
intermediate nodes towards the sink.

Figure 7.39 illustrates the shape of the offered load generated by the four sensor
nodes in the different rooms of the building over experiment time. Each node
starts transmitting its series of packets when the intruder is in its office. There are
overlaps of duration of 10s where two nodes are concurrently attempting to send
their packets towards the sink, as illustrated in the aggregated offered load curve.
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Fig. 7.39: Offered Load from Nodes SA, IA1,SB and IB1
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Fig. 7.40: Packet Reception Rate at Sink Node D

Since experimental evaluations of WSN mechanisms usually have a high variation,
we ran the described experiment with 20 independent runs for each of the three
MAC protocols and calculated the same metrics as in the previous experiments.

Figure 7.40 depicts the rate of received packets by the sink node D. The rates were
calculated using a Central Moving Average filter of 1s and computing the average
across the results of the 20 experiment runs. In general, the results of the use case
oriented experiment convey similar results as the previous experiments: WiseMAC
obviously manages well to deliver its periodic alive status messages to the sink.
However, it suffers from major packet loss when the nodes have to transmit the 100
payload messages at a rate of 2 packets/s. With the wake-up interval T=500 ms,
each node only wakes up twice per second. Since packets have to be forwarded
across multiple hops, the rather limited channel contention mechanism and the
hidden node problem lead to high packet losses. These are most likely caused
by collisions and buffer overflows after failed transmission attempts. The rate of
successfully delivered packets from the nodes SA, IA1, SB , IB1 during the image
transmission period does not exceed 1 packet/s on average, with the major share of
packets being lost. After the triggered events, the periodic alive status packets sent
every 20s are again received at the sink without major losses.

In contrast to WiseMAC, CSMA and MaxMAC succeed in delivering the periodic
alive status messages, but also the major share of the 100 packets which are trig-
gered by the intruder. The small time periods where two nodes are delivering their
series of packets at the same time is managed best by CSMA. MaxMAC’s rate of
received packets reaches a slightly lower maximum throughput, and also tends to
drop some packets when only one event is being handled. We have observed that
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at a rate of 2 packets/s, nodes running MaxMAC tend to oscillate between the two
states S2 and CSMA. The different wake-ups patterns, as well as omitted transmis-
sions due to failed contention attempts, can lead to nodes buffering 2 or 3 packets.
When transmitting these in a burst, the CSMA threshold is exceeded and the node
changes to the CSMA state. They may fall back again to S2 after the LEASE
timeout when the flow of packets has stabilized again.

Figures 7.41, 7.42 and 7.43 depict the share of packets from each originating node
SA, IA1,SB ,IB1 coming in at the sink node D. Figure 7.44 lists the most crucial
metrics PDR, the average energy consumed by each node, the efficiency (measured
as received bytes per consumed Joule) and the average end-to-end latency. Fig-
ure 7.41 conveys the superior performance of CSMA with respect to the achieved
PDR (96%). MaxMAC is able to deliver the major portion of packets (89%), but
suffers some losses during the load peaks, cf. Figure 7.42. Another interesting
observation in this figure is that the overlapping load peaks do not impact on the
fairness. When two nodes deliver their load towards the sink, both succeed in
transmitting a similar share of their packets, despite the increased contention. In
contrast, WiseMAC suffers heavily from congestion during the load peaks. The
rate of 2 packets/s across a couple of hops is not manageable by the protocol, and
results in buffer overflows and collisions. Nevertheless, it succeeds equally well as
MaxMAC or CSMA in delivering the major portion of the periodic alive messages.
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Fig. 7.41: CSMA: Packet Reception Rate from Nodes SA, IA1,SB and IB1
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Fig. 7.42: MaxMAC: Packet Reception Rate from Nodes SA, IA1,SB and IB1
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Fig. 7.43: WiseMAC: Packet Reception Rate from Nodes SA, IA1,SB and IB1
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Fig. 7.44: PDR, Energy Consumption, Energy-Efficiency and One-Way Delay
in the Intruder Detection Use Case Experiment

Figure 7.45 depicts the energy consumption estimations of the seven nodes in the
network, in analogy to Figure 7.37 of the previous experiment. Each group of bars
depicts the seven nodes’ estimations for the protocols WiseMAC, MaxMAC and
CSMA, with the sink node in the middle and the subtrees to the left and to the
right. Again, the energy consumption across the node chains SB→IB1→IB2→D
and SA→IA1→IA2→D tend to decrease with WiseMAC, but clearly increase with
MaxMAC. The explanations for this behavior are basically identical to those of
the previous experiment: WiseMAC shifts the transmission costs to the senders.
In our scenario, IA1 and IB1 have the highest load to transmit, because they for-
ward the packets from SA and SB , but at the same time also generate and forward
own packets, which is different from the prior experiment. In MaxMAC, the energy
costs gradually increase towards the sink. Nodes receiving packets react with Extra
Wake-Ups and temporal switches to the CSMA state, and hence the nodes handling
most traffic exhibit the highest overall energy expenditures. With CSMA, a barely
measurable increase is visible but is again exceeded by the measurement varia-
tion and the variation among the different nodes’ energy consumption patterns, cf.
Chapter 4.
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7.5 Real-world Results vs. Simulation Results

We have observed in Section 7.4.3 that there are undeniable similarities on the
tabletop experiments compared to the simulation results. These similarities con-
cern the shape of the rate of received packets over time, the average power con-
sumption, and the relation between the different protocols’ results. The maximum
packet rate supported by WiseMAC evaluated to roughly 40% of that of CSMA in
both simulation and the tabletop experiments, whereas MaxMAC was able to reach
a similar throughput as CSMA. The same basically holds for the testbed-based re-
sults as well.

In our early case study on experiments with the first WiseMAC prototype published
in [95], we have pointed out that simulation environments can be parametrized in
such a way that results from small-scale real-world evaluations can be somewhat
reproduced with network simulators. In contrast to the evaluation in this chap-
ter, however, we had only conducted tabletop experiments, and have further only
measured latencies and lifetimes under sparse traffic conditions, where the major
shortcomings of most simulation models do not yet play a major role. These short-
comings have been pointed out for simulations in the wireless networking area in
general by Kurkowski et al. [105] and Andel et al. [11], and in the sensor network
MAC context in particular by Ali et al. [5]. They result from idealistic assumptions
concerning wireless communications, such as circular transmission ranges, perfect
symmetry in both directions, stable bit error rates, the availability of reliable clear-
channel assessments, no processing delays due to software, and much more. For
multi-hop networks, many assumptions made in network simulators do not hold
anymore, which leads to a large gap between simulation results and testbed results.

When looking at the absolute values of the throughput and energy-consumption
results obtained in the real-world testbed, we must acknowledge that the expecta-
tions raised by the simulation model could not be met. Taking into account that
the bandwidth parameters of the simulations were different (115’200 bps in sim-
ulation vs. 19’200 bps in the real-world environment) by a factor of six, much
higher throughput would have to be expected e.g., in the 5 nodes chain experi-
ment. While the application of CSMA resulted in a throughput of 22 packets/s
(which corresponds to roughly 3.66 packets/s when linearly taking the bandwidth
reduction into account), MaxMAC and ScatterWeb2 CSMA only reached slightly
more than 3 packets/s across a chain of 5 nodes. Similarly, the efficiency coeffi-
cient of the simulation reached roughly 1800 bytes/Joule, whereas in the testbed
experiment, only 10% of this value could be reached. The different factors ex-
plaining these deviations are manifold, and have been pointed out in various stud-
ies. In [95], we have shown that the scare information taken from transceiver data
sheets do not realistically reflect the run-time behavior, i.e., when trying to model
the transceiver switching times. Furthermore, most simulation studies only take
the radio transceiver into account, a simplification which we also applied in our
simulation model. However, we have observed that with the radio turned off and
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the CPU in LPM1, our platform still consumes more than 2 mA, a value which al-
most doubles when the CPU is active and is used for computations, cf. Chapter 8,
and which is definitely not negligible.

Because pinpointing the factors that cause the sometimes massive gaps between
simulation results and real-world results does not form a core topic of this thesis,
and since in comparison with CSMA and pure WiseMAC, the MaxMAC concept
succeeded in meeting the expectations raised by the simulation results to a major
extent, we neglected to further investigate the important but far-reaching research
question how to bridge the gap between wireless sensor network simulation models
and real-world environments.

7.6 Conclusions

In this chapter we have introduced the MaxMAC protocol, an E2-MAC proto-
col aiming at high run-time traffic adaptability. We have evaluated the protocol
in a networking simulator environment in different scenarios in Section 7.3. We
have compared the protocol against a selection of today’s most frequently cited
E2-MAC protocols under different operational traffic conditions (variable traffic
with different load rates, random correlated event traffic, etc.). In Section 7.4, we
have studied the real-world feasibility of the MaxMAC protocol, and compared
it against two other wireless channel MAC protocols: the well-known WiseMAC
protocol, and ScatterWeb2 OS’ energy-unconstrained CSMA. The evaluation relies
on a series of small-scale benchmarking experiments and several experiments with
different traffic patterns and networking conditions, carried out on our distributed
testbed facilities operated with TARWIS, cf. Chapter 3.

Both experimental evaluations demonstrated that MaxMAC reaches its goal of
being clearly distinguishable from existing preamble-sampling based approaches
by reaching nearly the same throughput and a similarly low latency as energy-
unconstrained CSMA, while still exhibiting the same energy-efficiency during pe-
riods of sparse network activity. The MaxMAC protocol hence succeeds in com-
bining the advantages of energy unconstrained CSMA (high throughput, high PDR,
low latency) with those of classical E2-MAC protocols (high energy-efficiency).
Like most contention-based MAC protocols, MaxMAC is a general-purpose proto-
col, and does not rely on assumptions which are cumbersome to achieve (e.g, rigid
time-synchronization across the entire network). It can hence be applied without
changes in scenarios where constant low-rate traffic is expected, and where in most
cases B-MAC and X-MAC are being used today.

With B-MAC [143] and X-MAC [25] / ContikiMAC [48] being the default MAC
layers in TinyOS and Contiki, respectively, preamble-sampling MAC protocols
are nowadays by far the most widely used MAC layers in deployment studies.
MaxMAC targets at improving the most significant drawbacks of such preamble-
sampling MAC protocols, namely their poor performance under variable load. We
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envision substantial benefits when applying MaxMAC in event-based sensor net-
works where at certain instants, the provision of high throughput and fast end-to-
end response times becomes more important than the conservation of energy. Such
applications can be found already today for instance in health-care, where nodes
attached to patients need to rely on the provision of higher throughput and fast re-
sponse times when critical values have been sensed, in order to communicate with
central entities. The protocol furthermore facilitates real-time human interaction
with sensor nodes, e.g., when querying nodes or transmitting large chunks of pro-
gram code or data across several links. Chapter 9 will show that in such a case, the
application of MaxMAC could yield substantial advantages.

In the following Chapter 8, we focus on a different aspect other than the energy-
consumption that often plays a crucial role in WSNs. We tackle the problem of bit
errors occurring as a result of degraded link qualities, e.g. because of low Signal-
to-Noise (SNR) ratios, signal reflection or multipath propagation effects, or inter-
ferences with other technologies using the same or a nearby band. A key factor for
the proliferation of WSN technologies is the reliability of the communication: it is
crucial for many applications that the sensed data is delivered quickly and reliably
across the network. Forward Error Correction (FEC) is a promising countermea-
sure to overcome problems related to lossy and unreliable links. However, since
FEC also incur inherent and significant costs (with respect to the consumed energy
and the introduced delays), their application should be limited to situations where
there is a real necessity. Chapter 8 basically applies the state-based concept of
stepwise allocating precious WSN resources, which was evaluated in depth in the
MAC context in this chapter, to the dynamic resource allocation problem of FECs
in WSNs. In this context, a run-time adaptive algorithm has to decide when and
where to apply which kind of FEC, given an environment with timely and spatially
variable link qualities.
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Chapter 8

Link-Quality-Aware Adaptive
Forward Error Correction Strategies

Forward Error Correction (FEC) is a mechanism for error control in data transmis-
sion over erroneous links. FEC is based on Error Correcting Codes (ECCs), which
can detect and correct a certain amount of bit errors in a sequence of bits, without
making a retransmission necessary. FEC schemes are used today in a wide range
of commercial and industrial products, where data is transmitted over erroneous
channels and where, henceforth, bit errors are likely to occur. They are applied in
various contexts and in many commercial consumer products: applications range
from CD-ROM drives, NAND flash memory devices, mass storage devices to satel-
lite communications and digital terrestrial broadcasting. In the WSN area, research
faces several challenges, where FEC schemes could be employed as an effective
countermeasure, namely the inherently unreliable wireless channel, which is prone
to higher bit error rates than wireline communication channels.

The contributions of this chapter published in [94][17] are basically threefold: we
study the performance of a wide range of ECCs initially preconfigured in a stat-
ical manner in several real-world WSN experiments. We implemented a library
of eight different ECCs, ranging from simple repetition schemes over Hamming-
based codes to complex and powerful Bose-Chaudhuri-Hocquenghem (BCH) codes.
The fundamentals of the implemented codes are discussed in detail in Chapter 2.
Second, we investigate the potential of run-time adaptive FEC selection strategies.
We developed three adaptive FEC strategies, which adapt the correctional power of
the underlying ECCs depending on changes in the link quality, according to a sim-
ilar state-based concept as employed in Chapter 7. We search for a strategy that fits
best to cope with the particularities of WSNs, where link qualities are expected to
vary over time and across different parts of the network. Third, we make the library
of ECCs libECC tailored for the most frequent microchip on WSN platforms, the
TI MSP430 [171], publicly available on our research group’s website [93], since
an open source ECC library for WSN nodes has to date been missing.

All experiments were carried out on our distributed testbed facilities that are oper-
ated by TARWIS, the testbed management system discussed in detail in Chapter 3.
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Section 8.1 motivates our investigations on the potential of FEC in WSNs in gen-
eral, and adaptive FEC schemes in particular. Section 8.2 discusses the selected
implemented ECCs within libECC. Section 8.3 illustrates the proposed adaptive
FEC schemes, which are - together with the static ECC schemes - evaluated in
different real-world experiments in Section 8.4. Section 8.5 concludes this chapter.

8.1 Motivation

WSNs are growing in popularity for various applications: they are increasingly
used in healthcare, in business automation and logistics, the automotive industries
or as central technology in various research projects of the natural sciences. A key
factor for the proliferation of WSN technologies is the reliability of the communi-
cation: it is crucial for many applications that the sensed data is delivered quickly
and reliably across the network. The low-power wireless channel used in WSNs
is, however, prone to a wide range of wireless phenomena. High bit error rates are
often encountered due to multipath propagation, reflection and scattering effects or
interferences with nearby nodes or other devices. High error rates on the link level
inevitably lead to a higher rate of corrupted packets, rendering the retrieved data
unusable and making costly (probably even end-to-end) retransmissions necessary.

Automatic Repeat reQuest vs. Forward Error Correction

The simplest and most naive way to deal with transmission errors on the link layer
is to retransmit the same packet again until it is received without errors or a pre-
defined maximum retry count is reached. RFC 3366 [62] describes different Au-
tomatic Repeat reQuest (ARQ) schemes, that are widely used today in all kinds
of networks, ranging from wireless networks to Ethernet, wireline and optical net-
works. In ARQ, the sender appends a cyclic redundancy checksum (CRC) [141] to
the transmitted packet and waits for the acknowledgement (ACK) from the receiver.
In order to reliably determine the integrity of the packet, the receiver calculates the
CRC across the received payload again and compares it to the received checksum.
If both CRCs match, the receiver confirms the successful reception to the sender
with an ACK. If the sender does not receive an ACK within a certain time window,
it assumes that the transmission attempt has failed and invokes a retransmission.

A sophisticated mechanism to cope with packet corruption due to bit errors is the
concept of Forward Error Correction (FEC) introduced in the pioneering paper by
Shannon in [163]. FEC is used in in a wide range of commercial and industrial
products where data is transmitted over erroneous channels and where, henceforth,
bit errors are likely to occur. As discussed in more detail in Section 2.5 of Chap-
ter 2, FEC mechanisms generally consist in the sender computing parity informa-
tion according to the applied ECC over the data bits, and adding this redundant
information to the payload. At the receiver, the decoder of the applied ECC checks
the received data bits for errors by taking this parity information into account. FEC
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schemes hence generally introduce an overhead with respect to computation and
data to be transmitted. However, this overhead can pay off with an increased packet
delivery rate (PDR) and a reduction of the (re)transmission overhead and latency,
since the correction can immediately take place after packet reception. This vital
advantage is also appealing in WSNs, but has yet been studied only superficially.
Our recent analysis of related work and literature on FEC mechanisms conveyed
that studies in this field are rather limited (cf. Section 2.5 of Chapter 2), which
motivated us to design and thoroughly evaluate several FEC strategies. Liang et
al. [114] is the most recent study on ECCs, and appeared during our own evalua-
tions on this topic. The study examines one Hamming and one Reed-Solomon vari-
ant to protect transmissions of a TelosB network from interferences with an IEEE
802.11b/g wireless LAN, which operates in the same 2.4 GHz ISM band. The
study however does not introduce a sophisticated adaptivity concept that adapts
the redundancy to the encountered error rate.

Towards Run-time Adaptive Forward Error Correction Strategies

WSNs are typically configured for their intended deployment scenario at compile-
time, which can lead to suboptimal parameter settings if the discovered network
conditions deviate significantly from the expectations prior to network deployment.
In practice, it is rather impossible to predict the frequency and severity of signal
distortions, and hence the probability of bit errors and the patterns with which they
occur. Therefore, it is also impossible to choose an adequate ECC code that ex-
hibits “just enough” correctional power in advance of network deployment. The
application of powerful ECCs makes sense when the channel exhibits a high BER,
but it constitutes a waste of resources in case the network’s link qualities are good.
By facing the challenge of selecting the best ECC for a given link and channel in
our own indoor WSN testbed, we found that the application of run-time adaptive
FEC mechanisms for WSNs operating under timely and spatially variable channel
conditions has generally not been studied at all. Dynamic FEC schemes allocating
the correctional power of ECCs in an on-demand manner could be a viable alterna-
tive to static FEC with network-wide ECC configuration, where the link conditions
are not taken into account at run-time in any form.

Related work to the topic of FEC in the WSN context is discussed in more detail
in Section 2.5 of Chapter 2. To the best of our knowledge, extensive real-world
experiences with adaptive FEC schemes applied in sensor networks operating with
short range low-power wireless channels do not exist to date. Some work on adap-
tive FEC schemes was conducted by Ahn et al. [1], however, in the context of
IEEE 802.11 mobile ad hoc networks, using the network simulator ns-2 [133] and
a generic wireless channel error model. A few other studies have been conducted in
the WSN context, but none of them in real-world environments, cf. Section 2.5 of
Chapter 2. In the recent past, however, the application of simulation tools has been
identified as a general drawback of many ad hoc and sensor network studies. The
trend in the research field of WSNs has matured and has clearly shifted towards ex-
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perimental feasibility studies of proposed mechanisms and protocols on real-world
devices. We hence analyzed our contributions consisting of eight different ECCs
and several adaptive FEC strategies in various scenarios in a WSN testbed with
realistic deployment topologies.

8.2 Forward Error Correction Library libECC

Our library of ECCs libECC [93] implemented during this study consists of eight
different ECCs from four basic classes of codes, each with different degrees of
redundancy and different block sizes. Figure 8.1 illustrates the block size, the
correctional power per block and the amount of redundancy of these ECCs. The
parameters in brackets define the particular ECC configurations, but their semantics
may differ among the classes (e.g., payload/parity bits, repetition factor):
• The Repetition Code [127] is the most simple and naive method to introduce an

error correction capability, since it simply stretches the number of input bits and
then decodes using majority logic decoding. We refer to our implementation
of the repetition code as REP(3,8) throughout this chapter, because it stretches
the input bits by a factor of 3 and operates on a block unit of one byte. The
advantage of REP(3,8) is the low computational overhead, which comes at the
cost of the resulting large portion of parity information, in particular when
comparing with more complex codes.

• The Hamming code is a linear error-correcting code invented by Richard Ham-
ming in 1950 [74]. This simple code can be seen as a cornerstone for the de-
velopment of modern ECCs. libECC contains the popular Hamming(7,4) code,
which encodes 4 data bits into 7 encoded bits, which equals its block size.

• The Double Error Correction Triple Error Detection (DECTED) proposed by
Gulliver et al.[69] is similar to Hamming. DECTED is able to correct up to
two bit errors and can detect up to three adjacent bit errors per block. The
DECTED(16,8) code implemented in libECC takes 8 bits as input and creates
an encoded word of 16 bits, hence exhibiting comfortable block size units of 1
byte for the raw data and 2 bytes for the encoded data.

• The Bose-Chaudhuri-Hocquenghem (BCH) codes, invented in 1959 by Hoc-
quenghem [79] and independently in 1960 by Bose and Chaudhuri [22], are the

Fig. 8.1: libECC Codes: Block Size, Correctional Power, Redundancy
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most complex ECCs within libECC. BCH codes belong to the class of cyclic
block codes. BCH(n, k) encodes k data bits into n encoded bits. libECC
implements BCH codes with 63 bits block size, allocating 64 bits for prac-
tical reasons, since 64 bit blocks nicely fit into the long long datatype.
BCH(63,57), BCH(63,51), BCH(63,45), BCH(63,39), and BCH(63,36) imple-
mented in libECC can correct 1,2,3,4 or 5 errors per block.

Memory Footprint

WSN nodes are heavily restrained with respect to the available computational
power and memory resources. Having this restriction in mind, we cautiously kept
the memory footprint of libECC as low as possible. Although many of the im-
plemented ECCs require large matrices, syndrome value lookup tables and poly-
nomials, the current version of libECC consumes only roughly 10 KBytes for the
text segment and 326 bytes for the data segment. libECC allocates one statically
allocated data structure, where detailed information about the decoding and cor-
rection procedures is stored after each encoding and decoding operation, e.g., the
number of corrected errors, the size of the decoded payload, the duration of the
decoding. libECC uses the basic data types of the mspgcc compiler [129], but
could easily be ported to other platforms, e.g., 32-bit AMD Geode CPUs, which
are frequently used in wireless mesh networks (WMNs) [139]. We have success-
fully tested the library on different MSP430-based WSN platforms and operating
systems, such as the MSB430 [14] using ScatterWeb2 OS [157] and TelosB [144]
using Contiki OS [47].

8.3 Adaptive Forward Error Correction

WSN nodes are typically preconfigured with the most crucial parameter settings at
compile-time, hence much before the actual network deployment. As pointed out
in Section 8.1, this can result in suboptimal performance in case the actually en-
countered environment differs much from the conditions expected during planning.
When deciding to apply FEC, a crucial design question consists in selecting the ap-
propriate ECC. While a too weak code might not be able to correct many errors, a
too strong code would waste precious time and energy for encoding/decoding and
transmitting the additional parity data. With energy and processing power being
limited resources in WSNs, this decision is of particularly high importance. The
channel quality is almost certain to exhibit variations over time and can differ heav-
ily across the different links, which renders the choice of a network-wide “optimal”
ECC prior to network deployment impossible.

With our proposed adaptive FEC approaches, we address this crucial design prob-
lem of choosing an appropriate ECC code by adaptively selecting the different
ECC codes for each individual link at run-time instead of applying network-wide
settings prior to network deployment. In each of the adaptive FEC schemes we in-
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troduce in the following, the sender decides which ECC to use based on past trans-
missions to the particular target node, since the channel quality and transmission
success probability is usually tied to a particular link. Optimally, the selected ECC
adds as little overhead as possible, but provides just enough correctional power
to overcome the encountered error patterns. Figure 8.2 illustrates the finite-state-
machine based concept of selecting different ECCs at run-time. The states are
kept in a table for each neighbor and denote the current ECC that is used on the
link to that neighbor. The ECCs contained in this chain of states are increasing
in their correctional power from the leftmost to the rightmost state, and similarly
with respect to computational and parity overhead. In the default OFF state, the
node does not encode the payload at all. Hamming(7,4), can correct one error per
block, DECTED(16,8) up to two errors per block, and BCH(63,45), BCH(63,39),
and BCH(63,36) can correct up to 3,4, and 5 errors per block, respectively. The
ability to correct multiple adjacent errors per block is a crucial advantage of the
BCH variants, because random bit errors tend to occur temporally correlated, e.g.,
during the transmission of the same byte.

Stateful Adaptive FEC (SA-FEC)

SA-FEC is the most simple adaptive FEC mechanism one can basically think of.
It selects the ECC for the next transmission to the specified destination according
to the success of the last one. This means that if the last transmission of an ECC
packet has been successful, SA-FEC selects the next less powerful ECC. If not,
SA-FEC selects the next more powerful ECC, cf. Figure 8.2. The decision depends
only on the success of the last transmission, i.e., whether a subsequent ACK has
been received or not. Hence, SA-FEC only takes the very recent past into account,
and reacts immediately to packet losses. The mechanism is illustrated in Figure 8.3.

Stateful History Adaptive FEC (SHA-FEC)

SHA-FEC is similar to SA-FEC, but maintains a variable denoting the currently
used ECC and a history of entries representing the recent past transmissions, which
are manipulated in a FIFO-manner, cf. Figure 8.3. In case a transmission succeeds
and an ACK is received, SHA-FEC stores an integer value representing the next
lower ECC into the history, since it assumes that a lower ECC would have sufficed
as well. In case the transmission fails and no ACK is received, SHA-FEC stores a
value representing the next higher ECC, assuming that more correctional power is

Fig. 8.2: Adaptive Forward Error Correction: ECC Selection Sequence
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necessary. We sticked to a history size of five entries throughout all our evaluations.
The selection of the ECC used for the next transmission is based on calculating
the rounded average of the values stored in the history. As soon as the majority of
entries represents the lower ECC, the node switches back one step in the state chain
depicted in Figure 8.2. SHA-FEC reacts less quickly to link quality changes than
SA-FEC, but avoids oscillation effects, i.e., switching to different ECCs after each
single transmission. The history-based selection mechanism provides a means to
cope with longer-term interferences, since the mechanism does not immediately
fall back to a less powerful ECC after one successful transmission, but waits until
a couple of transmission have succeeded and then only stepwise shifts back in the
state chain illustrated in Figure 8.2.

Stateful Sender Receiver Adaptive FEC (SSRA-FEC)

SSRA-FEC extends SHA-FEC by taking into account an additional history con-
taining receiver information into the ECC selection process. The entries in this his-
tory denote the maximum number of corrected errors per block emax of each of the
previous successful frame transmissions. Given that a packet payload consists of n
blocks b1, b2, . . . bn, the receiver calculates for each block the number of occurred
and corrected errors e1, e2, . . . en during the decoding process. In case the all the
blocks could be correctly decoded, the receiver sends emax = max(e1, e2, . . . en)

Fig. 8.3: Overview of the Adaptive FEC Concepts SA-FEC, SHA-FEC, SSRA-FEC
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back to the sender in the ACK. If the frame could not be correctly decoded (which
can be verified using a CRC checksum calculated over the data payload), the num-
ber of errors in the corrupted frame can obviously not be reliably determined. In
order to signal packet corruption, the receiver hence neglects to send back an ACK.
Just as in SHA-FEC, the sender then stores a value representing the next higher
ECC into the history, because more correctional power is obviously necessary to
cope with the current error rate in the channel.

To determine the ECC for the next transmission, the sender computes the rounded
average of the unrounded averages of both histories. Basically, SSRA-FEC is an at-
tempt to implement a closed-loop parameter adaptation, where not only the sender
knowledge is taken into account, but also the feedback from the receiver. The
mechanism involving two histories was designed to find a “suitable” ECC quickly
by integrating receiver information, yet retaining a certain robustness against os-
cillation effects. Figure 8.3 illustrates and puts into relation the three designed
adaptive FEC selection strategies we have just discussed, and which are examined
in a series of experiments in the subsequent section.

8.4 Experimental Evaluation

We evaluated all implemented ECC codes of libECC in a statically configured
manner and compared them with the three proposed adaptive FEC mechanisms
SA-FEC, SHA-FEC and SSRA-FEC on the MSB430 [14] sensor node platform
on top of the ScatterWeb2 Operating System [157]. The MSB430 platform has
a CC1020 [173] byte-level radio transceiver operating in the 804-940 MHz ISM
frequency band. While the maximum raw bit rate of the CC1020 is 153.6 kbit/s,
the utilized ScatterWeb2 OS only supports a data rate of 19.2 kbit/s using simple
on-off keying (OOK) as modulation scheme. On the MAC layer, we employed the
default IEEE 802.11-like ScatterWeb2 OS CSMA variant, which does not duty-
cycle the radio in any form, cf. Section 2.1.4 of Chapter 2. We explicitly chose
a non duty-cycled MAC in order to safely exclude the potential influence of radio
duty-cycling on the resulting PDRs of the different ECCs examined in this section.

8.4.1 Computational Complexity

We first evaluated the ECC implementations of libECC with respect to computa-
tional complexity. We therefore measured the time needed for encoding different
payload sizes, ranging from 3 to 52 bytes of data and for decoding the correspond-
ing code words. Figure 8.4 depicts the encoding and decoding times for the given
payload sizes. The figures display the mean values and standard deviations of 1000
encoding/decoding operations for each code in libECC. Obviously, the encoding
and decoding durations grow linearly with the amount of payload bytes for each
ECC examined. The figures clearly display a trade-off between the correctional
power of the ECCs and the required computational complexity. The repetition
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Fig. 8.4: Encoding and Decoding Time vs. Payload Bytes

code REP(3,8) for example is by far the fasted ECC, since it requires few compu-
tation and mainly consists of memory copying operations. The hidden costs of the
repetition code, however, lie in the resulting large size of the parity data, which can
significantly impact on the energy consumption when transmitting the frame. The
BCH code exhibits a characteristic step-shaped pattern in the encoding and decod-
ing times, which can be explained by the blockwise encoding and decoding process
of the BCH code and the comparatively large block size units. The complex BCH
variants with higher correctional power that add more parity information clearly
exhibit longer encoding/decoding times.

8.4.2 Energy Cost Estimation

In an attempt to quantify the energy cost of the application of ECC codes, we
measured the current draw of the MSB430 sensor nodes with the CPU in the two
operation modes of the MSP430 [171] chip used by the ScatterWeb2 OS, namely
the fully active mode and the Low Power Mode 1 (LPM1). In LPM1, the CPU and
master clock (MCLK) are disabled, but timers and peripheral interrupts are still
enabled. We measured the node’s current draw to account to 3.75 mA for the fully
active operation mode and 1.92 mA for LPM1. Figure 8.5 depicts the measured
traces and their different levels. This difference might vary by a few percent de-
pendent on the node chosen for the measurement, since different nodes can exhibit
small variations, cf. our study [86] discussed in Chapter 4. With the measured
current draws, we derive a cost function to quantify the energy costs of the imple-
mented ECCs, taking into account the time it takes to encode or decode a payload.
We define PDefault(t) as the power consumption function of the node without us-
ing FEC, and PFEC(t) as the respective function of the node applying FEC. We
define the cost of the application of FEC as the additional power consumed while
encoding and decoding. The power cost function Pcost(t) can then be denoted as

Pcost(t) = PFEC(t)− PDefault(t)
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Integrating the measured values of the MSB430 into the equation yields:

Pcost(t) = (IFEC − IDefault) · Usupply = 1.83 mA · 4 V = 7.3 mW

IFEC corresponds to the average current used with the CPU in the active mode,
while IDefault is the average current used in LPM1. The encoding and decoding
durations depicted in Figure 8.4 can hence be linearly mapped using the cost func-
tion Pcost(t) to corresponding energy cost functions. For example, the energy cost
Eenc/dec of an encoding and decoding operation at sender and receiver of, e.g., a
BCH(63,45) encoded payload of 32 bytes, which takes roughly Tenc =30 ms for
encoding and Tdec =100 ms for decoding, calculates as

Eenc/dec = Eenc + Edec = Tenc · Pcost + Tdec · Pcost = 0.95 mJ

However, we also have to take into account the parity overhead to be transmitted
when applying ECC. We assume that a retransmission consists in a 50 ms frame
Tf and a 20 ms ACK transmission Tack. With BCH(63,45) encoding, the payload
is increased by 28%. However, since the frame header, preamble and postamble
overhead remains constant, the entire frame size usually does not increase by more
than 15%, given that the payload is in the range of 30-50 bytes. We hence assume
that Toh = Tf · 15%. Based on values measured in [86] of the mean currents of a
MSB430 with the radio receiving (Ircv =23.53 mA) and transmitting (Itx =37.48
mA) the cost Eoh of the data overhead transmission and reception amount to:

Eoh = Eohsnd
+ Eohrcv = Toh · (Itx + Irx) · Usupply = 1.83 mJ

The subsequent evaluations of this study exclusively focus on reliability measures
(link-level PDRs and end-to-end PDRs) and leave aside the energy-efficiency as-
pect. Nevertheless, we briefly illustrate the potential benefit of applying ECCs
with respect to the energy consumption, continuing the exemplary calculation of
Eenc/dec noted above: we again assume Tf = 50 ms and Tack = 20 ms. The en-
ergy costs Ere of a retransmission consisting of the costs Esnd at the sender and
Ercv at the receiver account to:

174



8.4. EXPERIMENTAL EVALUATION

Ere = Esnd +Ercv = (Tf · (Itx + Irx) +Tack · (Itx + Irx)) ·Usupply = 17.08 mJ

This cost Ere of an entire retransmission is hence more than six times higher
than the cost of applying ECC, consisting in the encoding and decoding opera-
tions Eenc/dec and the energy overhead Eoh for transmitting the parity data. In
the presence of unreliable links with bit errors corrupting a significant share of the
packets, the application of FEC may hence even make sense from an energy point
of view alone. A general judgment on this question can, however, not be answered
without an assumption about the channel quality and hence the frequency of bit
errors, and would generally require substantial further investigations.

8.4.3 Single-Link Scenario - Indoor and Outdoor Links

This section evaluates the different ECCs of libECC in the two single-link scenar-
ios, which are displayed in Figure 8.6 as links A→B and A→C. Nodes A and
B are placed in the two most distant offices on the same floor of the Institute of
Computer Science and Applied Mathematics’ main building. Node A is placed on
the windowsill in one office, and the signal from its antenna has to pass five con-
crete walls in order to reach node B, with a distance of roughly 25m. The second
link between A and C is an outdoor link with a line of sight, since both nodes are
placed on the windowsills of office buildings facing each other. The line of sight
distance between these two nodes is 48m.

In the single-link experiments, we study and compare the real-world performance
of the different ECCs under comparable conditions without any interference from
other ongoing transmissions. All measurements were captured during the night
and on the weekends, in order to ensure repeatability and comparability of the ex-
periments with the different parameter settings under equal circumstances. The
use of GSM cellphones, IEEE 802.11 devices, wireless headphones, microwave
ovens, or other potential sources of interference, might affect the channel quality
and hence call the comparability of the results into question. Running the experi-
ments overnight and on weekends minimizes the probability of irregular interfer-
ences caused by people working in the building, which could deteriorate the results

Fig. 8.6: Indoor and Outdoor Link
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of one particular parameter setting, and hence call the comparability of the individ-
ual FEC approaches’ results into question. Since fog or increased humidity absorb
radio signals, the measurements of the outdoor link A→C were gained under dry
weather conditions. We chose 1000 packets of 32 bytes (+2 bytes CRC) as the
base configuration. Each three seconds, the sending node generates and encodes
one packet and unicasts it to the receiver node B or C. We evaluated 15 different
transmission power settings of the CC1020 chip, ranging from 1 tick (≈ -25 dBm)
to 15 ticks (≈ -3.5 dBm), since we are interested in particular in the performance
of the ECCs under different signal strengths. Figure 8.7 depicts the resulting output
power of the CC1020 [173] with the different settings of the PA POWER register.

An issue that is closely linked to the resulting ECC performance is the question
what error patterns actually occur, and whether there are substantial differences in
the error patterns discovered on the indoor and outdoor link. We therefore counted
the number of errors per packet and examined the probability distribution of the
number of errors occurring across the 32 bytes payload. We achieved this by send-
ing an unencoded payload consisting of a predefined random bit sequence of 32
bytes that is known to the sender and the receiver and bitwise checking for er-
rors after reception. Figure 8.8 depicts the resulting histogram of the probability
distribution of 0 to 10 errors per payload, calculated across all measured transmis-
sion power settings and displayed in logarithmic scale. As one can expect, most
packets did not exhibit any errors (94.31% and 93.39% on the indoor and outdoor
link). The most frequently encountered error patterns were 1-bit errors (2.04% and
3.11%) - i.e., 1 error across the entire 32 bytes payload. 2-bit errors were less than
half as frequent (0.88% and 1.08%), and the probability of even more bit errors oc-
curring across the 32-bytes payload was gradually decreasing on both links, which
is well observable in Figure 8.8.

Figure 8.9 depicts the PDR for each examined ECC vs. the transmission power
setting for the indoor and the outdoor link. When comparing against unencoded
transmission (OFF), the PDR could be increased with every examined ECC. The
impact of applying FEC, however, depends heavily on the transmission power:
it has significant advantages in case of lossy links with low signal strengths where
errors are more frequent to occur, but does not constitute a benefit in case the signal
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Fig. 8.9: Packet Delivery Rate vs. TX Power - Indoor and Outdoor Link

strength is strong enough to cope with minor interferences. We further observed
that the most powerful ECCs did not necessarily result in a higher PDR. The most
powerful codes within libECC did not significantly increase the PDR compared
to the most simple ECCs. This indicates that the most frequently corrected errors
were again 1-bit or probably 2-bit errors - an observation that was also made by
Jeong et al. [99] and Busse et al. [27] using a similar radio and the same modulation
scheme in comparable scenarios. A general observation is that the PDRs in the
outdoor link with a line of sight connection are higher than those of the indoor
link. This observation can be explained by the fact that the signal does not need
to penetrate concrete walls and does not suffer from multipath propagation and
reflection effects as in the indoor scenario.

Figure 8.10 depicts the PDR of the different ECCs of the outdoor link with the
transmission power set to 3 ticks (≈ -17dBm) in more detail, in order to allow for
a more fine-grained analysis. Again, the more powerful ECCs did not necessarily
result in a higher PDR - the increment in PDR of applying FEC compared to trans-
mitting unencoded packets is significant. Figures 8.9 and 8.10 clearly convey that
the adaptive FEC mechanisms designed in Section 8.3 performed astonishingly
well, since for every transmission power setting, the three proposed mechanisms
achieved comparable PDR values as the static ECCs - although they only apply
FEC in an on demand manner.

Figure 8.11 depicts the share of packets that are successfully received for each
ECC scheme in the three adaptive approaches. The bars hence depict the results

0

20

40

60

80

100

O
FF

H
AM

D
EC

TED

BC
H
6345

BC
H
6339

BC
H
6336

BC
H
6357

BC
H
6351

R
EP

P
a

c
k
e

t 
D

e
liv

e
ry

 R
a

te
 (

%
)

Outdoor Link Scenario - CC1020 TX Power Settings (PA_POWER) = 3

49.5

82.4 85.5 85.3 84.3 85.4
79.0

83.4 81.7 80.7

88.5
85.2

SA-FEC

SH
A-FEC

SSR
A-FEC

Fig. 8.10: Outdoor Link: PDRs per ECC with TX Power = 3 (≈ -17dBm)

177



8.4. EXPERIMENTAL EVALUATION

Stateful Adaptive FEC - Indoor Stateful History Adaptive FEC - Indoor

OFF
HAM DECTED BCH6345 BCH6339 BCH6336

Stateful Sender Receiver Adaptive FEC - Indoor

4 5 6 7 8 9 10 11 12 13 14 151 2 3 4 5 6 7 8 9 10 11 12 13 14 151 2 3 4 5 6 7 8 9 10 11 12 13 14 151 2 3

4 5 6 7 8 9 10 11 12 13 14 151 2 34 5 6 7 8 9 10 11 12 13 14 151 2 3

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

4 5 6 7 8 9 10 11 12 13 14 151 2 3

Stateful Adaptive FEC - Outdoor Stateful History Adaptive FEC - Outdoor Stateful Sender Receiver Adaptive FEC - Outdoor

Pa
ck

et
D
el

iv
er

y
Ra

te
(%

)
Pa

ck
et

D
el

iv
er

y
Ra

te
(%

)

Fig. 8.11: ECC Selection of the Adaptive FEC Mechanisms: PDRs vs. TX Power

of only the three adaptive approaches of Figure 8.9 with the indoor link in the top
graphs and the outdoor link on the bottom graphs. One can clearly see that the
selection pattern of the three adaptive approaches are similar on both examined
links, but that the three approaches differ among each other in the share of the
applied different ECCs. SA-FEC reacts to packet loss quite quickly by changing to
more powerful ECCs, which explains its larger share of Hamming(7,4) across all
transmission power settings. SA-FEC changes to a stronger code as soon as it does
not receive an ACK for the last packet, whereas in SHA-FEC and SSRA-FEC, one
or more histories of items representing the transmission failures with the employed
ECC has to be filled, before the code is finally changed. Since in SSRA-FEC,
the decision to change to a more powerful ECC also depends on the reception of
a subsequent acknowledgement indicating the amount of errors, the SSRA-FEC
does not switch the code as quickly as SA-FEC and SHA-FEC, which makes its
ECC selection generally more robust against oscillation.

In general, Figure 8.11 conveys that the targeted behavior of the adaptive ap-
proaches has been accomplished: the proposed run-time adaptive ECC selection
schemes apply FEC more when the link is lossy (low power settings ≤ 6 ticks)
and less when the link is strong (high power settings ≥ 7 ticks). For transmission
power values above 7 ticks, the vast majority of packets is sent unencoded. The
application of ECC has been limited to short time intervals where, probably due to
random short-lived interference, packet errors were more probable to occur. Few
energy and time is generally wasted for unnecessary encoding and decoding.

8.4.4 Distributed Multi-Hop Scenario

In order to examine the different ECCs and the adaptive FEC approaches in an en-
vironment that comes close to real-world conditions, we evaluated each static ECC
setting and each adaptive FEC scheme in our distributed testbed of seven MSB430
nodes in a multi-hop topology. We used our fully automated testbed and experi-
ment management system TARWIS [92] for reprogramming the sensor nodes and
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Fig. 8.12: Indoor Distributed Multi-Hop Scenario

collecting the results, cf. Chapter 3. The examined network topology is depicted
in Figure 8.12. The nodes are distributed across four floors in one building, form-
ing a V-shaped network with the sink node 3 in the top left corner. The evaluated
scenario has been chosen to examine the impact of a somewhat elevated traffic in a
network, but which is still far away from being congested: each sensor node except
the sink node 3 generates and sends packets to its gateway node towards the sink
node. The same transmission power settings (5 ticks≈ -12.5 dBm) are statically set
for every link. Static routes are further set in the beginning of the experiment, the
respective links are depicted in Figure 8.12. We evaluated 1000 packets generated
on each node for each run, once with the ECCs set in a static and network-wide
manner, and once with each of the three adaptive FEC selection strategies. The de-
lay between two generated packets follows uniform random distribution between
5 and 7 seconds, hence exhibiting a mean packet generation interval of 6s. Since
packets generated at nodes 5, 7, 1 and 4 are transmitted over multiple hops to the
sink node 3, the total amount of transmissions within the network amounts to 12
transmissions every 6 seconds, or 2 transmissions per second. Since the raw trans-
mission time of one packet and the subsequent ACK takes roughly 50 ms + 20 ms
(depending on the utilized ECC), we obtain a channel utilization of roughly 14%
across the entire testbed. With this level of channel utilization, interferences due to
other ongoing transmissions are likely to occur, which may render the application
of ECC to be a valuable countermeasure.

We investigated the error patterns in the multi-hop scenario in the same manner as
in the single-hop indoor and outdoor link evaluation. 1-bit and 2-bit errors were
again the most frequently occurring errors in the multi-hop case. Figure 8.13 de-
picts the histograms of the probability distribution of 0 to 10 errors of the packets
arriving at nodes 1,2 and 6,7 when applying no ECC. The figure clearly shows that
the number of errors and the error pattern differs from link to link. Packets arriv-
ing at node 6 and 7 generally contain more errors and are more likely to contain
more than 1-bit and 2-bit errors than those arriving at nodes 1 and 2. The most
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Fig. 8.13: Error Patterns: Strong Links (top) and Weak Links (bottom)

probable explanation for this observation is that the links 5→7 and 1→6 are prone
to a higher absorption of the signal through walls and floors, since node 5 is in the
basement of the building and has to penetrate a thicker floor than on the links 4→1
and 7→2 and 1→6 has to penetrate 5 concrete walls. The figure clearly shows that
the encountered error patterns differ on each link, and that as a consequence, the
decision whether an ECC should be applied should be taken on a per-link basis on
the node itself. Clearly, pinpointing which links would turn out to be weak and
error-prone and which ones would be strong and reliable would have been impos-
sible in advance of network deployment, which renders the application of adaptive
schemes particularly useful.

Figure 8.14 depicts the PDR bars of the examined ECC and the adaptive FEC
approaches, leaving out the ECC codes that are never selected in the adaptive ap-
proaches (cf. Figure 8.2). The figure depicts for each examined setting the PDRs
of the different links and the overall source-to-sink PDR. As one can clearly see
in the top-left corner in the case of unencoded transmissions, the links 1→6 and
5→7 have a much lower success rate, which confirms the findings of Figure 8.13.
When comparing with the case of unencoded transmissions (top left corner of Fig-
ure 8.14), one can clearly see that the application of FEC made transmissions along
the error-prone links more reliable, especially on 5→7. The application of ECCs
has clearly paid off with respect to alleviating the deteriorating impact of the lossy
links 1→6 and 5→7: the improvement in the achieved PDR reaches up to 15% of
the total generated packets (cf. Figure 8.14, DECTED and BCH).

Comparing the results of Hamming(7,4), DECTED(16,8) and the BCH-variants
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Fig. 8.14: PDRs per Link and Overall Source-to-Sink PDR

with the adaptive approaches, we can conclude that the adaptive FECs achieved as-
tonishingly good results. The three strategies SA-FEC, SHA-FEC and SSRA-FEC
outperformed almost every other static and network-wide setting of any of the im-
plemented ECC codes. Since the adaptive schemes have only employed FEC on
weak links and in periods of elevated BER, the majority of packets could be sent
unencoded, which may also have led to fewer interference due to shorter transmis-
sion times, compared to static FEC settings. The major advantage of the adaptive
approaches is the on-demand nature of using the correctional power of ECCs: with
simple state-based concept, the adaptive approaches have managed to reach the
same or better PDRs. Since the application of ECC comes at the cost of time and
hence energy spent for encoding and decoding, ECCs should be limited to weak
and error-prone links and/or time periods where the link quality suffers from dete-
riorating influences. Throughout the evaluation of this chapter, the obtained perfor-
mance of the three approaches SA-FEC, SHA-FEC and SSRA-FEC with respect
to the achieved PDR were in the same range, and hence determining a “winner”
is difficult. Taking into account the energy consumption, the history-based ap-
proaches should probably be favored, since they are less prone to oscillation and
do not immediately apply FEC after a single transmission failure.

8.5 Conclusions

In wireless networks, transmission errors appearing as bit flips in the received
frames are more likely to occur than in traditional wireline networks, due to rea-
sons ranging from signal absorption through concrete walls and floors, signal at-
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tenuation due to long distances, reflection from obstacles or interference by other
ongoing wireless transmissions. In this chapter, we have explored the potential
of (adaptive) FEC techniques in the context of WSNs with lossy links. We have
implemented eight different ECC codes in our library libECC and have proposed
three run-time adaptive forward error correction schemes SA-FEC, SHA-FEC and
SSRA-FEC, which react to deteriorating link quality by allocating the correctional
power of ECC codes in an on demand manner.
We have analyzed the different codes in experiments conducted on single indoor
and outdoor links and in a multi-hop network topology in a real-world sensor net-
work testbed. We have gained valuable insight into the occurrence patterns of bit
errors on indoor- and outdoor links, and different links in multi-hop networks. We
chose to rely our entire investigation on real-world experiments, since simulation
tools are inherently unreliable when dealing with wireless phenomena, which are
as tightly linked to channel characteristics as FEC schemes. Phenomena such as
random bit flips due to reflection effects, multipath propagation, or interference due
to other concurrent transmissions are hard to model with network simulator envi-
ronments, and have hence generally been put into question in the recent past, cf.
Kurkowski et al. [105] and Andel et al. [11]. Our results conveyed that 1-bit and 2-
bit errors across one transmitted frame were the most frequently encountered error
patterns, but that frames containing more errors were also likely to occur on weak
and lossy links. The occurrence pattern of transmission errors has hence turned out
to be a rather local and spatially and also temporally variable issue, which in turn
should be tackled on a per-link and not a network-wide basis.
By analyzing the results of the single and multi-hop experiments discussed in
this chapter, we come to the conclusion that our proposed run-time adaptive FEC
schemes have the following three major advantages:
• Adaptive FEC approaches qualify to cope with timely variable error rates, since

they adapt the level of correctional power based on the success of the recent
past transmissions. In case of timely correlated interferences (e.g., because of
a device that is temporarily using the same or a near channel), adaptive FEC
approaches can temporally switch to more powerful ECCs, and switch back
again if the channel quality suffices to transmit packets unencoded.

• The occurrence pattern of transmission errors is a rather local phenomenon,
which can differ heavily from link to link. Link qualities in turn are almost
impossible to predict in full depth before network deployment. Our proposed
adaptive FEC approaches adapt their correctional power used for each link indi-
vidually by switching between simple and complex codes. Statically selecting
the strongest ECC code in a network-wide manner may achieve a high success
rate, but does also introduce the highest latencies, since transmissions across
several hops require multiple encoding and decoding operations.

• By adaptively allocating the correctional power of different FEC codes, and ad-
justing the former to the currently encountered error rate, the effective payload
data to be transmitted is minimized. In contrast to static FEC application, a ma-
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jor share of packets is sent unencoded (cf. Figure 8.11), which also decreases
the probability of interferences and collisions with other transmissions.

• The energy aspect favors the adaptive approaches: our evaluations of SA-FEC,
SHA-FEC and SSRA-FEC have conveyed that when using these simple state-
based adaptive FEC schemes, the major share of packets was still sent unen-
coded. The mechanisms succeeded well in deciding when and where to apply
FEC in a totally distributed manner. In contrast to network-wide application
of ECCs, precious resources for useless encoding and decoding operations on
strong and reliable links can be saved, which likewise limits the overall energy
overhead for both receivers and senders.

In this chapter, we have proposed and evaluated simple, yet effective state-based
concepts of allocating the correctional power of Error Correcting Codes (ECCs)
based on the encountered rate of successfully acknowledged packet transmissions
over time. These concepts can generally be seen as a continuation of the state-
based concepts of run-time traffic-adaptive medium access control mechanisms,
which are discussed in Chapters 5 and 7, however, in a different problem domain.
In both scenarios, WSN nodes attempt to allocate precious resources (i.e., battery
power) in an on-demand manner when registering an increased requirement to do
so, i.e., by observing Quality of Service metrics. In both evaluations, the simple
state-based concepts have proved effective in increasing the network service char-
acteristics (higher PDR, throughput, lower latency) while keeping the increase of
energy consumption limited. Thanks to their simplicity, the discussed concepts
further have the crucial advantage of exhibiting a low memory footprint, thereby
satisfying further inherent WSN constraints.

By running the experiments overnight and on the weekends, we minimized the
probability of irregular interferences caused by people working in the building,
which could deteriorate the results of one particular parameter setting, and hence
call the comparability of the individual FEC approaches’ results into question. Our
study hence particularly examines the potential of (adaptive) FEC mechanisms to
cope with low signal-to-noise ratios, and high bit error rates due to multipath prop-
agation, reflection or scattering effects, using a platform in the 804-940 MHz ISM
frequency band. An evaluation of libECC and the proposed adaptive FEC strategies
on IEEE 802.15.4-compliant radio chips would most probably convey different re-
sults, since bit error patterns in wireless communications often heavily depend on
the modulation scheme and the radio frequency. Generalizations and conclusions
drawn from this study can hence not safely be applied to other platforms, especially
for those operating in a different frequency and using a different modulation.

In the subsequent Chapter 9, we present our contributions on reliable transport
protocols operating on top of radio duty-cycled MAC layers in WSNs with different
link qualities and the presence of interfering transmissions. We show that indeed,
the concepts developed in 7 also make sense with respect to the transport layer
performance, and that different duty-cycling algorithms have a significant impact
on the overall TCP performance.
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Chapter 9

TCP Optimizations for Wireless
Sensor Networks

This chapter discusses our investigations and contributions on optimizations for
the Transmission Control Protocol (TCP) in Wireless Sensor Networks (WSNs).
As discussed in Chapter 2, the performance of TCP in wireless networks has been
observed to perform poorly, especially across multiple hops. The reasons behind
this performance degradation have been studied long before, in particular in the
context of IEEE 802.11-based (mobile) ad hoc networks [31][80][68][15]. The
reasons mainly lie in the unreliable nature of the wireless channel (higher bit er-
ror rates and packet loss), specific properties and interactions with the underlying
wireless channel MAC protocols (exponential backoff mechanisms, hidden node
and exposed node problem), and the design of the TCP congestion control mech-
anisms, which, due to historic reasons, erroneously interprets packet loss as an
indication for network congestion.

In this chapter, we examine a series of TCP performance optimizations based on
TCP segment caching and local retransmission strategies of intermediate nodes
on the route of a TCP connection, and propose and evaluate own extensions to
these strategies. We further particularly examine the impact of different radio
duty-cycling energy-efficient MAC (E2-MAC) protocols on the end-to-end TCP
performance. The contributions of this chapter relate to the superordinate topic of
the thesis, which deals with adaptive communication architectures, by the adaptive
nature of the distributed caching and retransmission strategies presented in the fol-
lowing. Based on the perception of signals of service degradation by intermediate
nodes (i.e., the observation of packet loss by a timed-out RTO, or the observation
of the channel remaining idle for an unusual long time), the mechanisms proposed
in this chapter attempt to cope with the adverse circumstances of low-power and
error-prone wireless links in WSNs. By immediately reacting to timely and spa-
tially variable packet loss with dynamic allocation of precious resources (i.e., local
retransmissions), yet in a totally distributed manner, our proposed strategies at-
tempt to prevent further TCP service degradation.

Unfortunately, it proved to be impossible to fully link our investigations on the
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traffic-adaptive MAC protocol MaxMAC presented in Chapter 7 with the TCP opti-
mizations contained in this chapter. The employed ScatterWeb2 Operating System
used for prototyping MaxMAC unfortunately does not offer an integrated µIP stack.
Due to the tight integration of the MaxMAC implementation with the ScatterWeb2

OS and the byte-level oriented radio, porting the ScatterWeb2 MaxMAC imple-
mentation to Contiki on TelosB nodes turned out to be impracticable.

The results of this investigation were published in [96][26]. In the following, the
chapter is structured into four sections. In Section 9.1, we motivate the need for ro-
bust operation of TCP on top of radio duty-cycledE2-MAC protocols in WSNs. In
Section 9.2, we present various suggestions for TCP optimization across multiple
hops, which we then examine in Section 9.3 in a series of real-world testbed-based
experiments. Section 9.4 concludes the chapter.

9.1 Motivation

The TCP/IP protocol suite is the undisputed standard for communication in the
Internet today. With the emergence of distributed systems and small networked
embedded devices, such as WSNs, researchers have successfully downsized and
simplified TCP/IP networking stacks to be capable of interoperating with “nor-
mal” and fully RFC1122 [23]-compliant TCP/IP implementations on hosts in the
Internet. With the development of the µIP Stack [45], a large number of devices
on different platforms can nowadays be directly accessed over TCP/IP with com-
monly used tools and applications (e.g., Telnet [148] or SMTP [145]), instead of
using protocol proxies or other kinds of middle-boxes in between the WSN nodes
and the Internet. Furthermore, reliable transport is increasingly important in WSNs
for message exchanges where random packet loss e.g., when disseminating pro-
gram code, configuration updates or highly important status notifications. Among
the issues discussed in Section 2.6 of Chapter 2, which especially hold for IEEE
802.11-based networks, the application of TCP/IP in WSNs faces additional chal-
lenges, which are related to the inherent WSN constraints, i.e., the limited memory
and computational power, and the energy restrictions. In order to prolong WSN
lifetimes to more than a few days, the application of radio duty-cycling E2-MAC
protocols has become common sense in today’s WSN communities.

Yet, except for the implementation of bulk-transfer schemes, the issue of optimiz-
ing TCP in the context of WSNs with lossy links has not attracted too much atten-
tion in the recent past. Duquennoy et al. [52] have recently modified the µIP Stack
to implement such a bulk-transfer protocol on top of ContikiMAC. In [52], large
bursts of TCP segments are sent in a hop-by-hop manner towards the other TCP
endpoint, assuming that each node can buffer significant amounts of data (∼ 1 MB)
on external flash memory. However, the approach significantly increases the end-
to-end latency, which qualifies it for transport of large data portions (e.g., code or
configuration updates), but which disqualifies it for applications with tight latency
requirements (e.g., manual real-time interaction with remote sensors).
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The studies DTC [46] and TSS [24], which are discussed in detail in Sections 2.6.3
and 2.6.4 of Chapter 2, propose mechanisms based on packet inspection in in-
termediate nodes, i.e., distributed TCP caching in [46] and, in addition, TCP ac-
knowledgement regeneration in [24]. However, both studies base upon evaluations
on network simulations with rather simple channel assumptions, and rely on hav-
ing an energy-unconstrained CSMA/CA on the MAC layer, in order to overhear
neighboring node’s transmissions. Thus, the implications of radio duty-cycling
E2-MAC protocols on the performance of distributed caching and local retrans-
mission schemes proposed in [46][24] have generally not yet been studied.

9.2 TCP Performance Optimizations

The starting point of our investigations is formed by the TCP segment caching
strategy proposed in DTC and TSS, which perform so-called local retransmis-
sions of TCP segments and regeneration of TCP acknowledgements. Based on
ideas of these two studies, we iteratively designed, tested, and combined a num-
ber of TCP performance optimizations, which we discuss in the following. Our
optimizations are to a large extent independent from each other, consist in either
new functionalities or modification of previous suggestions. We implemented all
our modifications and TCP optimizations in a modular manner into our so-called
Caching and Congestion Control (cctrl) module. The module can be integrated
into the µIP stack [45] of the Contiki OS [47], which serves as our main platform
for implementation and evaluation in this chapter, yet remaining transparent to the
underlying MAC layer and the application layer above. The transparency to the
underlying network stack was a major design goal of the cctrl module, since it
allows for using all its implemented features on top of every MAC protocol layer
currently available for the Contiki OS. The only prerequisite of the cctrl module to
effectively interact with the flow of TCP packets is to have symmetric routes in the
WSN, such that TCP acknowledgements are sent across the same paths back to the
sender as the corresponding TCP data segments. Since this is not ascertained in the
default configuration of Contiki, we implemented simple commands to statically
configure routes of the µIP layer at run-time.

The remainder of this section is structured as follows: we describe the integration
of our proposed Caching and Congestion Control (cctrl) module into the Contiki
OS network stack in Section 9.2.1. We then discuss the fundamentals of the initial
caching strategy of the cctrl module in Section 9.2.2, which applies the basic dis-
tributed caching and local retransmission features from DTC [46] and TSS [24].
Sections 9.2.3 and 9.2.4 then introduce our proposed extensions, which rely on
the integration of MAC-layer specific information about the current channel uti-
lization (9.2.3), or the introduction of multiple concurrent TCP sub-connections to
overcome the µIP’s limitation of one single segment in flight per socket (9.2.4).
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9.2.1 The Caching and Congestion Control (cctrl) Module

In order to locally cache TCP segments in intermediate nodes in between two TCP
endpoints, the cctrl module has to be aware of all TCP packets that are forwarded.
Figure 9.1 depicts a packet traversing the different layers of the Contiki network
stack - Figure 9.1(a) the unmodified stack, and Figure 9.1(b) the stack with our
cctrl module integrated. A TCP packet, encapsulated in a Rime [49] packet, is
received by the radio and passed to the MAC layer, which copies it to Rime’s
packet buffer. From here, it is processed by the various Rime modules responsible
for sending and receiving unicast traffic. Rime is a collection of different node-to-
node communication services, with simple services providing basic features, and
more complex services building on top of them, cf. Section 2.1.6 of Chapter 2.

The Rime layer then copies the payload to the µIP layer’s packet buffer, where the
µIP over mesh module is notified. µIP over mesh implements the routing func-
tionality in networks across multiple hops, and finds the gateway for a given target
destination. Throughout all our experiments, however, we altered this layer to set
statically configured routes, since the mechanisms outlined in this chapter rely on
the assumption of symmetric routes. As the node in Figure 9.1 is an intermediate
node and not the final recipient of the packet, the packet is sent out again, travers-
ing the aforementioned layers in reversed order. The cctrl module intercepts the
packet flow right before the packet is again passed to the µIP over mesh module, cf.
Figure 9.1. One single file of the Contiki µIP stack has to be slightly altered, such
that the cctrl module gets access to process the outgoing packet while it resides
in the IP buffer. We intentionally intercept outbound packets instead of inbound
packets, since at this stage packets have already been processed and validated.

To be able to cache TCP segments, the cctrl module needs to allocate memory.
The allocated buffer has to be large enough to hold at least the content of two
TCP/IP packets per observable connection, one for each direction. Since at least

(a) Unmodified Contiki Network Stack (b) Contiki Network Stack with cctrl

Fig. 9.1: Packet traversing Layers in Contiki Network Stack - with and without cctrl
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one host is assumed to be running the µIP stack, which is restrained to only one
single unacknowledged segment per TCP connection, the cctrl module allocates
two times the size of µIP’s packet buffer per observed TCP connection.

9.2.2 Initial Strategy: Segment Caching and Local Retransmissions

In our initial design of the cctrl module, we implemented the basic distributed
caching features from DTC [46] and TSS [24] that are independent from the under-
lying MAC protocol. We generally avoided to rely on the overhearing assumption
and to tightly intertwine our cctrl module with the MAC layer, since we intended
to examine the former with all available MAC layers of the Contiki OS, in par-
ticular with the radio duty-cycled E2-MAC protocols. The TCP segment caching
and local retransmission strategy of our initial design of the cctrl module is de-
picted in Figure 9.2, and will be denoted as initial cctrl hereafter in the graphs of
Section 9.3.

• In each intermediate node between two TCP endpoints, the cctrl module pro-
cesses each IP packet received and forwarded. IP packets without a TCP pay-
load (e.g., UDP packets) are ignored. Only packets with TCP payload data are
cached. The cctrl module therefore copies the entire content of the µIP buffer
to one of its empty buffer slots, and schedules a retransmission timer. In case
of a TCP acknowledgement, only the TCP/IP header is cached, and no retrans-
mission timer is scheduled. Caching is omitted for out-of-sequence packets
and retransmissions, such that the connection status of the cctrl module always
holds valid sequence and acknowledgement numbers.

• When the retransmission timer of a forwarded TCP segment expires before a
TCP acknowledgment has returned, the cctrl module assumes that the segment
has been lost, releases it from the cache and sends it out again, as displayed
with label (a) in Figure 9.2, with node C initiating a local retransmission.

• Each TCP segment is checked according to the state of the TCP connection it
belongs to. In case the current packet is a TCP acknowledgement of a cached
TCP segment, the cctrl module checks whether the current segment’s acknowl-
edgement number is greater than the cached segment’s sequence number, and
removes this segment’s cache entry if this is the case.

• If the packet is a retransmission of a TCP segment, for which a TCP acknowl-

Fig. 9.2: Local TCP Retransmission (a) and TCP Acknowledgement Regeneration (b)
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edgment has already been received, it is discarded and a TCP acknowledge-
ment is sent towards the packet’s sender. This is displayed with label (b) in
Figure 9.2, where node A responds to a TCP retransmission by regenerating
the previously received TCP acknowledgement. The regeneration of TCP ac-
knowledgements is not linked to a timer, in contrast to the approach followed in
TSS [24]. It is only triggered when the aforementioned condition of an already
acknowledged TCP segment arriving at an intermediate node is encountered.

The cctrl module distinguishes between two reasons for packet loss that make a
retransmission necessary: a data packet containing a TCP data segment that is lost
on its way from the sender towards the recipient, or a TCP acknowledgment getting
lost on the same path in the opposite direction. In contrast to DTC or TSS, which
overhear the next node’s transmissions in order to obtain an implicit acknowledge-
ment for the success of their own transmission, we assume that packet losses on the
link layer are not detectable on the IP layer, because E2-MAC protocols generally
do not support continuous overhearing. The retransmission scheduling is similar
to that of DTC and TSS: for each cached TCP segment, cctrl schedules a timer,
upon expiry of which a retransmission is initiated, i.e. in the case when it takes
considerably more time than usual for the TCP acknowledgment to arrive. In each
intermediate node participating in a TCP connection, the cctrl module henceforth
calculates for each TCP connection the TCP retransmission timeout (RTO), using
the original TCP Exponentially Weighted Moving Average (EWMA) filter [147]:

RTTestnew = RTTest × α+RTTest × (1− α) (EWMA-RTT)

The initial value of the retransmission timeout RTTest was set to 2 seconds, which
proved to be high enough to ensure that the first cached segment successfully gets
acknowledged by the destination, and no intermediate node triggers an early re-
transmission for our examined MAC protocols and route lengths. When a cached,
but not yet retransmitted segment is acknowledged, the cctrl module’s round trip
time estimation RTTest to the receiver of the cached segment is updated with
α = 0.25. The retransmission timeout is then set as trto = n ∗ rtt, with n = 3.
We experimentally determined the values α = 0.25 and n = 3 in a preliminary
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investigation with a series of experiments across 2, 3 and 4 hops. Figure 9.3 vi-
sualizes one run of such an experiment, where a node continuously sends TCP
segments across 2 hops during 10 minutes using X-MAC. The figure depicts the
single RTT measurements, the resulting RTT estimation rtt obtained with applying
the EWMA filter (cf. equation EWMA-RTT), and the retransmission timeout trto
set to 3∗RTTest. The figure conveys a rather high variability of the RTT measure-
ments in the upwards direction. Most values are between 0.5s and 1s, but there is
a rather large portion of outliers up to the value of 2.5 seconds. With choosing the
RTT multiplier n = 3 for the calculation of the RTO, we minimize the probability
of triggering early retransmissions. When using the value of n = 1.5 proposed in
TSS [24], early retransmissions lead to interferences and collisions with returning
TCP acknowledgments on their way back to the sender, and generally deteriorate
the end-to-end TCP throughput rather than improving it.
Another series of preliminary experiments then supported the choice of the values
n = 3 and α = 0.25 as well: Figure 9.4 depicts the total number of transmitted
TCP segments during 10 minutes, running our initial TCP caching strategy with
X-MAC and values of α ∈ {0.1, 0.25, 0.5}. As Figure 9.4 clearly conveys, the
best results were achieved with α = 0.25. We therefore sticked to n = 3 and
α = 0.25 for the entirety of our evaluations.
To prevent the cctrl cache to run full of stale TCP connection entries, maintenance
timers periodically check each observed connection for their liveness. These timers
are initially set to expire after 60 seconds, but are reset every time a TCP packet
from their TCP connections is forwarded. Upon expiry of a maintenance timer, the
corresponding connection information and any remaining cached segments entries
are removed. The same is done when forwarding TCP FIN or TCP RST packets,
which indicate that the TCP connection has either been terminated or timed out.

Multiple Retransmissions and Duplicate Segment Dropping

In DTC and TSS, each intermediate node removes the segment from the cache af-
ter it has retransmitted it once. This strategy is depicted in Figure 9.5, where nodes
C and B both remove the cached segment from the cctrl cache after their first re-
transmission. In preliminary tests, we have experienced that limiting the number of
retransmissions to only one single attempt can be disadvantageous. When the first
transmission of a packet is lost and, shortly after, the retransmission as well, the
“burden” of retransmitting the segment again is moved towards the sender, render-
ing successful reception by the TCP server less and less likely. This is illustrated
in Figure 9.5, where node C’s original transmission and the subsequent retransmis-
sion both get lost. Such behavior is rather probable in WSNs, where packet loss
rates tend to fluctuate over time, e.g., because of timely correlated transmission
attempts and collisions, or environmental influences, e.g. weather conditions or
mobile obstacles (e.g., animals). If each node can only retransmit once, the bur-
den to successfully retransmit is moved further and further away from the targeted
receiver, rendering the success less and less probable.
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Fig. 9.5: Failing Retransmissions move the Burden towards the Sender

Fig. 9.6: Multiple Retransmissions (a) and Duplicate Segment Dropping (b)

We hence modified our caching strategy by increasing the maximum number of
retransmissions. After a first retransmission, the segment remains cached and the
retransmission timer gets rescheduled with the same value of trto = 3∗RTTest, as
illustrated in Figure 9.6 with node C retransmitting again after the first two trans-
mission attempts have been lost. We limited the total amount of TCP segment
retransmissions to 3 attempts. Upon failure of these 3 attempts, the TCP segment
is removed from the cache and dropped definitively. However, the drawback of in-
creasing the retransmission limit is that after a packet loss, all intermediate nodes
repeatedly retransmit the segment, which increases the channel utilization in the
network with often redundant retransmissions. Our countermeasure for this prob-
lem is a slight modification of the TCP segment forwarding policy depicted in
Figure 9.6 labeled (b), according to which a retransmission of a cached segment
is dropped, in order to reduce the load on the subsequent links. We will refer to
the segment caching and retransmission strategy outlined in this section, including
the aforementioned retransmission limit set to 3, as well as the duplicate segment
dropping policy, as the initial cctrl approach in the evaluation of Section 9.3.

9.2.3 Channel Activity Monitoring

Numerous WSN protocols and frameworks have yet proposed to take advantage of
the broadcast nature of omnidirectional wireless transmissions, in order to gain ad-
ditional information about ongoing transmissions in the vicinity. DTC and TSS use
overhearing of forwarded packets of their neighboring nodes as implicit acknowl-
edgment for successful packet reception. In CODA [180], the channel conditions
of the recent past and the amount of buffered packets in the TinyOS internal send
queue are used to calculate the so-called channel loading factor, which is used as
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an indicator for congestion. Most features of CODA, however, again rely on the
assumption of energy-unconstrained CSMA, similarly as DTC and TSS.

When a radio duty-cycling E2-MAC protocol is used on the MAC layer, contin-
uous overhearing of every transmission of the neighboring nodes is not possible.
Transmissions can only be overheard when the radio is currently turned on, e.g.
because the E2-MAC protocol has scheduled a wake-up of the radio. However,
even the coincidental reception of frame transmissions of other nodes can provide
valuable information. With preamble-strobing MAC protocols, e.g., X-MAC, the
overhearing of a strobe indicates that there are currently ongoing transmissions in
the vicinity. A large amount of overheard packets over the recent past always indi-
cates a situation in which it would be beneficial for a node to withhold a scheduled
transmission to avoid further collisions, independent from the MAC layer that is
used. We therefore designed a solution that a) remains independent from the MAC
protocol, but that b) still permits to feed information about the current channel
utilization and channel conditions to the cctrl module.

The MAC Proxy Module

In order to get access to the MAC layer, where overheard packets are dropped and
not passed further in the Contiki network stack, we implemented a simple hook
for the cctrl module to the MAC protocol’s packet buffer, however, keeping the
MAC protocol completely unmodified and replaceable. Our solution consists in the
so-called MAC Proxy module, which implements the MAC layer interface of the
Contiki OS, but does not provide any functionality on its own, except for notifying
the cctrl module upon reception of every packet. The MAC protocol proxy module
initializes a real MAC protocol layer of the Contiki OS (e.g., the NullMAC, X-
MAC, or LPP layer), and simply forwards every function call. Figure 9.7 illustrates
the modified packet reception workflow with the newly introduced MAC Proxy.

Fig. 9.7: Processing Overheard Packet using MAC Proxy Module
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When a frame is received by the radio in Contiki, the radio driver calls the MAC
layer’s receive() function. The MAC then informs the Rime layer about this
event by calling input(). Rime then calls the MAC protocol’s read() func-
tion to start the actual parsing. Using our MAC Proxy situated in between the
Rime layer and the real MAC protocol (e.g, X-MAC in Figure 9.7), Rime calls the
read() function of the MAC Proxy instead of that of the real MAC protocol, cf.
Figure 9.7 label (a). The MAC proxy forwards this call to the actual real MAC
protocol, cf. Figure 9.7 label (b), which parses the packet and copies the received
data to the Rime buffer. In case of an error, e.g., a CRC checksum mismatch, or
a wrong target address, the return value is zero and the packet is dropped. Even
in this case, though, the MAC protocol proxy becomes aware of the overheard but
corrupted packet, and notifies the cctrl module about the overheard packet by stor-
ing a timestamp into its newly introduced activity history, c.f. Figure 9.7 label (c).
This data structure stores the timestamps of the 20 most recent activity notifications
received from the MAC proxy. It is used to calculate the current channel activity
level, which we define as the amount of overheard packets registered by the MAC
proxy that are not older than one average RTT estimation RTTest of the observed
TCP connection. Relating the activity level calculation to RTTest compensates
for the large differences among the MAC protocols’ latencies. Static values would
have to be inconveniently configured for each MAC protocol.

Idle Channel Periods

In a preliminary evaluation, we investigated whether the calculation of the activity
levels has any informative value, especially when overhearing is only possible to a
minor extent due to the application of radio duty-cycling E2-MAC protocols. We

Fig. 9.8: Different Nodes’ Activity Levels with X-MAC vs. Experiment Time. Dashed
Line indicates Traveling Time for Data Segments (yellow) and Acknowledgments (blue).
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evaluated the obtained activity values in a scenario using X-MAC, where one TCP
sender at the beginning of a 7-nodes linear chain sends TCP segments to the re-
ceiver at the end of the chain. Five nodes with cctrl modules hence forward the TCP
data segments and TCP acknowledgements between these two nodes. Figure 9.8
depicts the activity levels registered by the cctrl modules of the five intermediate
nodes versus the experiment time. Each node is represented by one specific color,
the reception of data packets at the end node and the corresponding sequence num-
ber are displayed along the x-axis. During most of the time, all nodes register rather
high activity levels: 6-8 packets are overheard within each node’s RTTest on aver-
age, since with X-MAC sampling the channel each 125 ms per default, chances are
high that some preamble strobes of currently ongoing transmissions are overheard
by non-targeted nodes. Between t=100s-130s and t=250s-300s, the flow of TCP
segments and acknowledgements is continuous. However, some TCP segments
(e.g., sequence numbers 27, 31, 45, 47 etc.) need significantly longer to be deliv-
ered. During these time periods (e.g., t=150-160s), little or no channel activity is
registered by all the nodes. We investigated the problem for these interruptions in
the TCP flow, during which precious bandwidth remained unallocated.

An in-depth analysis of the trace files revealed that there are two common prob-
lems that caused these rather long idle periods, which are visualized in Figures 9.9
and 9.10. The first problem consists in the loss of a TCP segment on one of the
first hops in the connection. In such a case, the segment has not yet been cached
by many intermediate nodes (e.g., only one in Figure 9.9), and hence, the network

Fig. 9.9: Packet Loss close to the Sender results in long idle Period

Fig. 9.10: TCP Acknowledgement lost close to its Destination results in long idle Period
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remains idle for at least trto = 3 × RTTest. During this potentially long idle pe-
riod, all nodes in the chain have to wait for the RTO to occur. A second frequently
encountered problem occurs when a TCP acknowledgment is lost close to its final
destination. The retransmission of the TCP acknowledgement can then only be
triggered by the reception of a retransmitted data packet, which has to come from
one of the first nodes in the route, as depicted in Figure 9.10, because all other
intermediate nodes traversed by the TCP acknowledgement have already emptied
their cache. The more nodes the TCP acknowledgement has already passed, the
higher the resulting idle waiting time.

Activity Dependent Early Retransmissions

We searched for a means to exploit the additional channel knowledge gained with
the employed MAC protocol proxy and channel activity history, in order to re-
solve or alleviate the discovered problems of the long idle periods and further
improve the end-to-end TCP throughput. According to our observation that the
activity values of all the nodes equal to zero in the discovered situations of an
idle waiting period (cf. Figure 9.8), we altered the cctrl module’s retransmis-
sion mechanism to retransmit earlier when the channel was found idle for a long
time. The retransmission timer of cached TCP segments was hence split into two
parts: trto = trto1 + trto2. The first timer times out at 2

3 of the usual RTT es-
timation value RTTest, hence trto1 = 3 × RTTest × 2

3 , and the second timer
trto2 = 3 × RTTest × 1

3 . When the first retransmission timer expires, the cctrl
module checks its activity history, and initiates an early retransmission given that
the activity level equals zero. Otherwise the retransmission is deferred again by the
second timer trto2. With this retransmission strategy, we targeted at reducing the
occurrence probability and the duration of the discovered long idle periods.

Since the value of RTTest decreases towards the nodes closer to the destination of
the TCP data segments, the channel activity level value (calculated as the number
of packet receptions within [tnow − RTTest, tnow]) decreases as well, and is more
likely to equal zero than at the beginning of the chain. Therefore, the outlined
strategy triggers the retransmissions of the nodes closer to the destination earlier
than those at the beginning of the node chain, given that they have yet received the
initial transmission of the segment. This generally renders re-transmissions close
to the destination more likely, which is a desirable property. The absolute value
of the activity level has no particular deeper meaning. Our outlined retransmission
strategy is only triggered when its value is zero, a situation in which it is probable
that the channel has not been used and has hence been left idle for 2×RTTest.

9.2.4 Multiple Connections

Since the Contiki µIP stack only allows the transmission of one unacknowledged
TCP data segment at any time per TCP connection, precious bandwidth could prob-
ably remain unallocated, especially on long routes, where transmissions on one
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end of the route would not necessarily interfere with transmissions on the far other
end. We searched for a means to spatially reuse the wireless channel and to allow
the transmission of multiple segments in flight. However, sticking to our initially
described design decisions, we decided to keep the cctrl module modular, indepen-
dent from the MAC layer and from modifications within the established µIP stack
itself. We hence designed a simple solution that simultaneously establishes multi-
ple TCP connections between TCP client (sender) and TCP server (receiver). This
allows an application to send out a new data packet over a second TCP connection,
although the previously transmitted packet has not yet been acknowledged, per-
mitting a maximum of two TCP segments or ACKs in flight. This solution could
also alleviate the impact of the long idle periods noticed beforehand, since after a
packet loss of one TCP connection and the subsequent retransmission timeout, the
second TCP connection could still operate and use the available bandwidth.

The effective implications of this approach were yet unforeseeable at the time of
designing it: instead of an improvement of throughput, it could also result in a
deterioration, since more TCP segments being transmitted could also lead to con-
gestive situations and an increasing number of collisions. We modified the client
application in the application layer to open exactly two TCP connections to the
same server instead of only a single one, and to let the application send two TCP
data segments at a time. Fragments arriving in wrong order are rearranged with a
buffer holding a couple of segments in the receiver’s cctrl module, as depicted in
Figure 9.11 in the network stack of the TCP server. Our implementation of this
strategy remains fully transparent to the application and the µIP stack. Whenever
the TCP client sends data, it is tunneled by the cctrl module over either of the two
connections, without the µIP stack being aware that the two opened connections
actually belong to the same socket on the application layer.

Fig. 9.11: Multiple TCP Connections between TCP Endpoints
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9.3 Experimental Evaluation

For all the subsequent experiments and evaluations of this section, we used our dis-
tributed indoor testbed facilities operated by our testbed management architecture
TARWIS [92][84], which is discussed in detail in Chapter 3. TARWIS allowed us
to repeatedly run a large number of experiments without having to be physically
present and without any continuous interaction with the testbed, which massively
facilitated and expedited experimentation. Section 9.3.1 discusses the experiment
resources, the topology setup and further experiment settings, which are followed
by the discussion of the experiment results in Sections 9.3.2 and 9.3.3.

9.3.1 Experiment Setup

The two topologies used for experimentation are depicted in Figure 9.12. We used a
subset of the currently deployed 40 TelosB [144] sensor nodes. The used topology
is located in the Institute of Computer Science and Mathematics’ main building at
Neubrückstrasse 10 in Bern, cf. Section 3.4 of Chapter 3. More details about the
TelosB platform can be found in Section 2.1.5 of Chapter 2.

We examined the following two different experiment scenarios, each with differ-
ent lengths of the employed routes: in the first scenario, which is discussed in
Section 9.3.2, data was transmitted over 2, 3, 4, 5 and 6 hops on one single path,
depicted as the red route in Figure 9.12. In each of these single route experiment
configurations, node 1 formed the TCP server (the receiver of the TCP data seg-
ments), and nodes 5, 6, 7, 10, 13 were the TCP clients (the senders of the TCP data
segments) for the experiments with the different route lengths.

In the second scenario, which is discussed in Section 9.3.3, we examined the case
where TCP traffic is being handled across two routes at the same time, with the

Fig. 9.12: Single Route Scenario (red) and Cross Traffic Scenario (red and blue)
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routes being intertwined, i.e., sharing a common node (cf. node 3 in Figure 9.12).
Again, we examined 5 different configurations, with the two routes being either
2,3,4,5 or 6 hops long. In each configuration, nodes 1 and 2 formed the TCP
server. The TCP clients varied, depending on the route length, from nodes 5-13 for
the red route and 4-11 for the blue route. As one can clearly see in Figure 9.12,
nodes are located in different rooms of the building, with the configured route
spanning across three floors. Nodes hence communicate across concrete walls and
floors. The links of the employed routes exhibit a rather high success rate in case
of no other ongoing transmissions (≥ 75%). Besides the links displayed in the
figure, some close node pairs physically were within each other’s transmission
range (e.g., nodes 5 and 7). However, for many node pairs, direct communication
failed because of the signal attenuation from obstacles (e.g., walls, floors) and/or
the distance (e.g., 1, 6, 13 and 11 were out of each other’s transmission range).

We used each of the four currently available Contiki OS MAC protocol layers,
which are discussed in more detail in Sections 2.4 and 2.1.6 of Chapter 2. By
running all the experiments with four different wireless channel MAC protocols,
among them three radio duty-cycling E2-MAC protocols, we thoroughly investi-
gate the impact of the MAC layer on the end-to-end performance of the distributed
caching schemes proposed by DTC [46] and TSS [24]. To the best of our knowl-
edge, distributed caching approaches applied in WSNs have not yet been studied by
means of real-world prototypes. In particular, no existing study has yet investigated
the impact of E2-MAC protocols on these mechanisms. The examined Contiki OS
MAC layers taken from the Contiki OS’ source repository are the following:

• the NullMAC layer, which, combined with the Contiki CSMA layer operates as
simple energy-unconstrained CSMA with a random backoff contention,

• the prominent X-MAC [25] protocol layer applying asynchronous preamble
sampling and preamble strobing,

• the ContikiMAC [48] layer, which merges features from a range of asynchronous
preamble-samplingE2-MAC protocols, and which has become the new default
MAC layer of the current Contiki OS v.2.5, and

• the receiver-initiated Low Power Probing (LPP) [130] layer, with which every
node periodically sends out beacons to indicate reception readiness.

We chose every experiment run to last exactly 10 minutes, during which the TCP
clients on one end of the route tried to send as many segments as possible to the
TCP servers on the other end. We kept the size of the individual packets con-
stant such that comparability among the experiment runs is ensured. All TCP data
packets contained a 16 byte character string as payload. Including the TCP/IP and
Rime headers, the radio had to transmit 79 bytes per data frame. A TCP acknowl-
edgment, as transmitted by the servers in response to a data packet, contains only
63 bytes in total, since it does not contain any TCP payload. Throughout the entire
experiment duration, the involved nodes printed their stats to their serial interfaces,
which were then collected using the TARWIS management system.
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All experiments were run with and without our proposed cctrl module and the
extensions proposed in Sections 9.2.3 and 9.2.4. The results of the experiment runs
obtained without the cctrl module, hence with the same application sending TCP
packets, but running an unmodified Contiki OS networking stack, are henceforth
referred-to as unmodified in the subsequent figures. In order to reduce the impact
of environmental impacts on the experiment results, all experiments were run over
night or during weekends, when none or only few people are expected to be present
in the building and, hence, the channel circumstances are comparable to a large
extent. Since the frequency band of the TelosB nodes is license-free, there are many
consumer electronics in the same or a near frequency range, e.g., IEEE 802.11-
based devices, bluetooth devices, cordless headphones or microwave ovens. We
generally experienced more stable results at non-working hours.

Each run was repeated 15 times, in order to obtain a meaningful data set from
which stable statistical measures could be calculated (i.e., mean and standard devi-
ation). The figures of this section all depict the mean values of the 15 runs of each
configuration, and the standard deviation bars depicting ±σ. In total, the data pre-
sented in this chapter was acquired throughout 2500 experiment runs, an equivalent
of 425 hours experiment time.

9.3.2 Single Route Scenario

Figure 9.13 depicts the number of successfully transmitted TCP segments of the
four examined MAC layers, dependent on the number of hops. The graphs labeled
initial cctrl refer to our initial design of the cctrl module discussed in Section 9.2.2,
which implements the basic features of DTC and TSS, but without the extensions
of Sections 9.2.3 and 9.2.4 (channel activity monitoring and multiple connections).

Initial Strategy: Segment Caching and Local Retransmissions

Figure 9.13 conveys that NullMAC clearly benefits from the caching and retrans-
mission mechanisms introduced with the initial cctrl design, most notably when
data travels across long routes consisting of 5 and more hops, where it reaches al-
most twice the throughput of the unmodified Contiki network stack. For the shorter
routes, the result is less distinctive, but the application of local retransmissions still
tends to be an improvement. For X-MAC, throughput remained more or less in the
same range with the initial cctrl approach as with unmodified X-MAC. An analy-
sis of the traces yielded that retransmissions and the duplicate segment dropping
features increased throughput for longer routes, but had a slightly adverse impact
for shorter routes. For LPP, the introduction of the caching mechanisms had al-
most no impact on the end-to-end throughput at all. The curves both exhibit an
astonishingly similar degradation of the throughput with increasing route length.

With ContikiMAC, the introduction of the initial cctrl module dramatically de-
creased the amount of transmitted TCP packets. Analyzing the traces, we presume
that ContikiMAC suffers more from increased levels of interference and competing
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medium access, which is probably triggered by the early local retransmissions of
the cctrl module. The degrading effect of such early retransmissions is higher in
ContikiMAC than, e.g., in X-MAC, since ContikiMAC, after knowing the schedule
offsets of its neighbors, only transmits the data frames at the announced wake-up
time of the targeted receiver. A collision at this point then inevitably results in
a transmission failure. In contrast, X-MAC sends out long preamble strobes pre-
ceding every frame transmission, where a collision of two strobe packets has no
dramatic impact. The preamble strobes further serve to reserve the channel, since
they are likely to be overheard by neighboring nodes checking the channel for
transmission, probably even by nodes which are more than one hop away in the
testbed topology, which alleviates the hidden node problem.

Figure 9.14 depicts the radio on-time ton of all the nodes in the chain combined and
divided through the number of successfully transmitted and acknowledged TCP
segments from the TCP clients (senders) to the TCP servers (receivers). Contiki’s
internal power profiler [50] calculates ton as the combined duration the radio spends
in receive and transmit mode. Since the radio is in general by far the most power-
hungry component of a WSN node, the estimation ton has recently often been used
for estimating the energy consumption, e.g. in the studies by Dunkels et al. [48]
and Boano et al. [21]. As the scope of the investigation in this chapter is not partic-
ularly focusing on energy-efficiency and energy-consumption alone, but rather the
achieved end-to-end TCP throughput, we sticked to the radio on-time estimator of
Contiki, and neglected to capture physical measurements using SNMD devices (cf.
Section 2.3.2 of Chapter 2), since this would have been cumbersome to achieve
within the distributed testbed and up to 13 nodes synchronously involved in an ex-
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(c) LPP
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(d) ContikiMAC
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Fig. 9.13: Throughput with unmodified Contiki, the initial cctrl Strategy without
and with the Activity Monitoring Extension
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(b) X-MAC
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(c) LPP
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(d) ContikiMAC
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Fig. 9.14: Energy Consumption measured as Radio On-Time ton with unmodified Contiki,
the initial cctrl Strategy without and with the Activity Monitoring Extension

periment. The curves in Figure 9.14 represent a metric for the energy-efficiency of
the different configurations, since they denote how much radio on-time has been
spent per TCP segment on average. The displayed ratio tends to increase with the
number of hops for the E2-MAC protocols, since longer routes obviously require
more energy to be spent per segment. In absolute numbers, all protocols operate
in a similar range. The energy-unconstrained NullMAC protocol combined with
our cctrl module even outperforms X-MAC and LPP for most route lengths, since
it can transmit much more segments within the 10 min experiment time. The in-
troduction of the initial cctrl mechanism tends to improve the energy-efficiency of
NullMAC and X-MAC, but clearly deteriorates that of ContikiMAC.

Channel Activity Monitoring

We examined the impact of the channel activity monitoring approach introduced in
Section 9.2.3, where the MAC proxy is introduced between the µIP and the MAC
layer, in order to make information regarding the current channel utilization avail-
able to the cctrl module. The strategy then consists in making the cctrl module’s
local retransmission timeouts dependent of the registered activity level, transmit-
ting earlier in situations of low channel activity (to avoid long wasted idle periods
of the channel), and prolonging it when transmissions from neighboring are de-
tected. We refer to this strategy as activity dependent retransmissions hereafter,
and label it as cctrl + activity monitoring in the figures.

Figure 9.13 illustrates how this strategy affects the achieved throughput, and com-
pares it with the initial cctrl strategy. NullMAC and X-MAC convey a similar
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behavior: for both, the activity dependent retransmissions increase the end-to-
end TCP throughput for the 2-hop and 3-hop experiments, but decrease it for
longer routes, compared to the initial cctrl strategy. With X-MAC the through-
put even falls below the unmodified Contiki configuration for long routes. The
LPP throughput could be improved across all route lengths, which resulted in the
highest amount of successfully transmitted TCP segments with this MAC protocol
so far. When comparing the maximum throughput in absolute values, however,
LPP remains far behind ContikiMAC and XMAC, which both operate on a sim-
ilar level. The energy-unconstrained NullMAC, in contrast, reaches a throughput
that is at least 2-3 times as high for all route lengths. ContikiMAC also slightly
benefited from the activity monitoring approach. Its throughput was increased for
shorter routes (2-4 hops), or remained at roughly the same level for longer routes.
However, the throughput of ContikiMAC remained remarkably below that of its
configuration without any cctrl mechanisms. Obviously, concurrent channel activ-
ity and competition is particularly harmful for ContikiMAC, an observation that
was later confirmed in the second scenario as well.

The energy-efficiency metric of the activity monitoring approach, calculated as
radio on-time per TCP segment, is further depicted in Figure 9.14. Compared to
the initial cctrl strategy, no significant changes could be observed. This result was
rather expected, since the MAC proxy remains transparent to the MAC protocol,
only passing the gathered channel activity information to the cctrl module without
introducing any energy costs whatsoever.

Multiple Connections

In Section 9.2.4, we outlined our concept of multiple TCP connection between the
TCP client and server, which remains transparent to the application, and through
which data can be continuously transmitted. During a disruption in the packet flow
of one of the connections, e.g., due to a packet loss, the second connection can still
operate, and the channel is not left idle until a retransmission is triggered.

We refer to this approach as dualconnection in the subsequent figures of this chap-
ter. First, we evaluated whether initiating two connections without the cctrl basic
mechanisms increases the end-to-end throughput at all. Thereafter, we examined
the initial cctrl caching strategy with a second connection (cf. cctrl + dualcon-
nection) but without the activity monitoring, and then in combination with the lat-
ter (cf. cctrl + dualconnection + activity monitoring). Figure 9.15 illustrates the
throughput of these approaches, together with the unmodified Contiki and initial
cctrl strategies examined beforehand.

Again, the different strategies conveyed different results for the four examined
MAC layers. With NullMAC, the availability of a second connection and the ini-
tial cctrl caching and retransmission strategy (cf. cctrl + dualconnection) effec-
tively doubled the amount of transmitted TCP segments, across almost all tested
routes, compared to the unmodified Contiki variant. If, in addition, the cctrl mod-
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(b) X-MAC
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(c) LPP
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(d) ContikiMAC
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Fig. 9.15: Throughput with Activity Monitoring and Multiple Connections

ule applied the activity dependent retransmission strategy, together with the dual-
connection approach, the throughput was even further increased for the 2-hop and
3-hop routes, and performed only slightly worse than the cctrl + dualconnection
approach for longer routes. The X-MAC protocol also benefited from a second
open connection, but only if the cctrl module was active. Its throughput was in-
creased consistently across all route lengths, in the best case by roughly 37% (cf.
5 hops). Similar results were obtained for the LPP protocol: the experiment con-
figurations relying on two TCP connections significantly increased the throughput,
and the best results were obtained by combining the former with activity dependent
retransmissions (cf. cctrl + dualconnection + activity monitoring).

The ContikiMAC protocol consistently remained the exception in our evaluation
with the four examined MAC protocols, and still did not show any signs of TCP
throughput improvement. No matter whether ContikiMAC was run with the cctrl
module combined with a second connection, the activity dependent retransmission
strategy or both extensions combined, its throughput persistently remained at a
very low level. Again, we presume that the throughput degradation was mainly
caused by early triggered retransmissions colliding with the original transmissions
or returning TCP acknowledgements, probably because of the hidden node prob-
lem, which may occur more often with ContikiMAC due to the lack of preamble
strobes in advance of frame transmissions. Interestingly, none of the MAC proto-
cols profited from having a second open TCP connection without the cctrl mod-
ule (cf. unmodified + dualconnection). Most protocols’ throughput remained on a
similar level, except for ContikiMAC. With ContikiMAC, this approach achieved a
much lower performance, yet at least the overall second-best. The obtained values

204



9.3. EXPERIMENTAL EVALUATION

(a) NullMAC

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 2  3  4  5  6

R
a

d
io

 O
n

 T
im

e
 [

s
e

c
s
/T

C
P

 s
e

g
m

e
n

t]

Hops

unmodified
unmodified + dualconnection

cctrl + dualconnection
cctrl + dualconnection + activity monitoring

(b) X-MAC

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2  3  4  5  6

R
a

d
io

 O
n

 T
im

e
 [

s
e

c
s
/T

C
P

 s
e

g
m

e
n

t]

Hops

unmodified
unmodified + dualconnection

cctrl + dualconnection
cctrl + dualconnection + activity monitoring

(c) LPP

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2  3  4  5  6

R
a

d
io

 O
n

 T
im

e
 [

s
e

c
s
/T

C
P

 s
e

g
m

e
n

t]

Hops

unmodified
unmodified + dualconnection

cctrl + dualconnection
cctrl + dualconnection + activity monitoring

(d) ContikiMAC

 0

 1

 2

 3

 4

 5

 6

 2  3  4  5  6

R
a

d
io

 O
n

 T
im

e
 [

s
e

c
s
/T

C
P

 s
e

g
m

e
n

t]

Hops

unmodified
unmodified + dualconnection

cctrl + dualconnection
cctrl + dualconnection + activity monitoring

Fig. 9.16: Energy Consumption measured as Radio On-Time ton with unmodified Contiki,
the initial cctrl Strategy without and with the Activity Monitoring Extension

were still consistently below the performance of the unmodified Contiki network
stack configuration, where only one TCP segment/acknowledgement is in flight.

Figure 9.16 depicts the radio on-time of all the nodes in the chain combined and
divided through the number of successfully transmitted and acknowledged TCP
segments, which represents an indication for the energy-efficiency of the proto-
cols. One can clearly see the positive impact on NullMAC, where the three con-
figurations with our cctrl module and the dualconnection strategy again achieved a
much lower per-segment energy cost. With X-MAC, a slight improvement can be
claimed with the strategies cctrl + dualconnection and cctrl + dualconnection +
activity monitoring. With LPP, the efficiently is slightly degraded with long routes,
and with ContikiMAC clearly deteriorated for all route lengths.

Overall Comparison

The obtained results provide a detailed insight into the performance of the proposed
cctrl strategies for the different route lengths. Since the results sometimes vary
heavily across the different configurations and route lengths, a general conclusion
and guideline, however, remains hard to derive. We therefore averaged the sum of
the mean values of each different route length and configuration (= mean value of
the five hop-specific mean values per protocol and configuration) to obtain a single
value for each examined strategy. Since in WSNs, data is transported from and to
nodes at varying distances, averaging the throughput values results in a meaningful
number, with which the different approaches become somewhat comparable.

Figure 9.17 displays the obtained averaged values for each examined approach and
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Fig. 9.17: Single Route Scenario: Comparison of Throughput

each MAC protocol. The application of distributed caching and local retransmis-
sion of TCP segments and acknowledgements, denoted as initial cctrl approach,
obviously already had an astonishingly good impact on the NullMAC protocol.
Across all route lengths, this approach reached an improvement of 42.51% com-
pared to unmodified Contiki. Our proposed extensions of activity dependent re-
transmissions as well as the multiple connections combined finally reached the
best results, with an average increase of 84% compared to the unmodified Contiki
µIP configuration. With the X-MAC protocol, the improvement is less distinctive.
When following the initial cctrl strategy, the performance remained almost equal to
the unmodified Contiki variant. The best results of 17% more transmitted TCP seg-
ments could be achieved when combining the initial cctrl approach with a second
TCP connection. Similar results were obtained by combining this strategy with the
activity monitoring. LPP behaved similarly as X-MAC when applying the different
cctrl extensions. Again, our modifications of activity dependent retransmissions
and the multiple connections combined achieved the best overall performance with
X-MAC, an end-to-end throughput increase of remarkable 40%.

Figure 9.18 depicts the energy-efficiency metric calculated as radio on-time per
transmitted TCP segment for the four protocols. The efficiency of NullMAC clearly
profits from the cctrl module, in particular when combining all the strategies. Since
NullMAC reaches the highest number of transmitted TCP segments over the entire
experiment timespan, its efficiency is even better than that of any E2-MAC proto-
col (< 0.5 seconds per TCP segment). The energy-efficiency of X-MAC is slightly
improved with most of the mechanisms of the cctrl module. LPP remains in the
same range as X-MAC in absolute values. However, its efficiency varies rather
strongly with the different strategies, but is neither deteriorated nor improved.
ContikiMAC again constituted the negative exception among the four evaluated
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Fig. 9.18: Single Route Scenario: Comparison of Energy Consumption per TCP Segment

protocols: its energy-efficiency suffers a lot when introducing any caching strate-
gies whatsoever. This degradation can most probably be explained by the increase
in collisions and other sources of packet losses due to concurrent activity in the
channel, which does not occur when only one TCP segment is in flight at any time
and no local retransmissions are triggered, which is only the case with the unmod-
ified variant. Since ContikiMAC acknowledges the data packets themselves, and
re-attempts to transmit upon failed attempts, as opposed to X-MAC, it already in-
tegrates certain reliability. Comparing the similar, yet even slightly better results
of the X-MAC configuration with all our extensions (cctrl + dualconnection +
activity monitoring) with that of unmodified ContikiMAC, the question whether
reliability should rather be ensured on a hop-by-hop or end-to-end manner can not
be answered conclusively.

9.3.3 Cross Traffic Scenario

With the Cross Traffic Scenario, we aimed at scrutinizing our findings in an envi-
ronment where the route along which TCP operates is prone to intensive interfer-
ence. The topology of this scenario is illustrated in Figure 9.12. Two routes span
across three floors, and share one common node (node 3) in the top floor. Further-
more, the experiment settings are the same as in the single route case: each route
contains a TCP client that tries to send as many TCP data segments to the TCP
server node placed on the other end of the route. Node 3 being part of both routes
has to forward traffic from both TCP connections. Again, we tested the network
topology with different lengths of the routes.

The majority of the examined MAC layer protocols conveyed the best or nearly the
best results in the case of a combined application of the proposed features. Since
we were mainly interested in verifying that this configuration achieved the best per-
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(b) X-MAC
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Fig. 9.19: Throughput with Activity Monitoring and Multiple Connections

formance, we decided to limit the evaluation with the cross traffic scenario to the
cctrl module only to this particular configuration. The configuration that showed
the best overall performance in the previous single route experiment is that of ac-
tivity dependent local retransmissions combined with a second TCP connection,
i.e., the rightmost bar in Figure 9.17. We will refer to this configuration again as
cctrl + dualconnection + activity monitoring in the subsequent figures. Figure 9.19
compares the total amount of successfully received TCP packets over both estab-
lished routes at the nodes 1 and 2 in Figure 9.12. Figure 9.20 again illustrates the
same results averaged across all path lengths.

For all tested protocols, the throughput decreases gradually with the hop distance,
a behavior that has been observed many times. The degradation of throughput
across n hops approximately follows the 1

n rule, where n equals the number of
hops the data has to travel, as outlined by Österlind et al [137]. Besides this well-
investigated insight, the results obtained in the Cross Traffic Scenario turned out to
differ quite heavily from those obtained in the prior Single Route Scenario. Null-
MAC again achieved the highest throughput of all MAC protocols, with an end-
to-end throughput around 2000 segments across 6 hops in the unmodified Contiki
variant. The cctrl module’s caching and local retransmission mechanism, cou-
pled with the activity monitoring and the multiple connections strategy, which had
reached the best results in the single route experiment, increases the throughput
for NullMAC in the 2-hop and 3-hop case. However, it performed slightly worse
with longer routes. The massive improvement of 84% obtained with the cctrl +
dualconnection + activity monitoring configuration in the Single Route Scenario
(compared with the unmodified Contiki µIP stack, cf. Figure 9.17) could not be
reproduced in the Cross Traffic Scenario.
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Fig. 9.20: Cross Traffic Scenario: Comparison of Throughput

With X-MAC, the slight improvement of the TCP throughput observed in the Sin-
gle Route Experiment could also not be reached. In fact, the protocol performed
slightly worse for short routes, and equally for longer routes. X-MAC obviously
did not cope well with the additional interference caused by the local retransmis-
sions performed by the cctrl module in an environment with already increased
traffic load, as revealed with the 2-hop and 3-hop results. Yet, X-MAC performed
significantly better than its successor ContikiMAC in the Cross Traffic Scenario, no
matter whether the cctrl module was activated or not. The LPP protocol exhibited
the highest improvement induced by the cctrl module and the extensions. Through-
put could be improved particularly for short routes (2-hops and 3-hops), where it
almost doubled. For 4, 5 and 6 hops, LPP’s throughput decreased to the level of
that of the unmodified variant. We assume that the increasing number of nodes,
which periodically transmit beacons to indicate reception readiness, increasingly
led to collisions. However, our approach managed to improve the TCP throughput
by 49% on average, which is an even larger improvement than that of LPP in the
Single Route Scenario.

When comparing the absolute numbers of transmitted TCP segments of the Cross
Traffic Scenario in Figure 9.19 with those of the Single Route Scenario in Fig-
ure 9.17), one can clearly see that with NullMAC, the aggregated throughput of
the two routes experiment reaches roughly two times that of the single route ex-
periment. With X-MAC and LPP, the aggregated throughput of the two routes is
in the range of 1.5 times that of one route. However, with ContikiMAC, the aver-
age amount of successfully delivered TCP segments of the Cross Traffic Scenario
drops to less than half of that obtained in the Single Route Scenario. This observa-
tion was made across all route lengths. At the 6-hop run, the end-to-end through-
put almost stalled completely. Hence, we have again observed that ContikiMAC
has yet major difficulties in environments with increased levels of interference and
nodes concurrently competing for channel access. The medium reservation and
contention mechanism of ContikiMAC should probably be verified under increased
network contention in a controlled environment. NullMAC, in contrast, seems to
exhibit no major difficulties with concurrent traffic within the building. Interfer-
ences from transmissions on the other route generally deteriorated the throughput
of the E2-MAC protocols more than that of the energy-unconstrained NullMAC.
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Fig. 9.21: Cross Traffic Scenario: Comparison of Energy Consumption per TCP Segment

The introduction of the cctrl variant in the Cross Traffic Scenario, which had re-
sulted in a throughput decrease in the Single Route Scenario with ContikiMAC,
now lead to a slight increase of its throughput. On average, an improvement of
14% could be achieved. Based on an analysis of several trace files, we conjecture
that this observation can most probably be explained as follows: ContikiMAC suf-
fers from interferences with the second route, which often leads to packet losses.
With long routes, chances are high that the two active routes at some point inter-
fere with each other and cause a packet loss, which explains the significant drop
of ContikiMAC at 6 hops, where not a single TCP segment made it through the
chain in all 15 experiment runs. Without the cctrl module, each packet loss leads
to an end-to-end retransmission, however, again with the same low success proba-
bility. With the cctrl module, a packet lost in the middle has a higher probability
not to collide until it reaches its destination. Therefore, the 6-hop throughput of
ContikiMAC with the cctrl module is rather low, but at least remains above zero.

Figure 9.21 depicts the impact of the examined cctrl variant on the energy con-
sumption, again measured as radio on-time per TCP segment, which represents a
metric for the energy-efficiency. Furthermore, the figure puts the E2-MAC pro-
tocols’ performances into relation. Since NullMAC reaches the highest number
of transmitted TCP segments over the entire experiment timespan, its per-segment
value tops the performance of each of the radio duty-cycling MAC protocols. The
introduction of the cctrl module even improves the efficiency by another 18%. The
protocols NullMAC and LPP consistently profited from the application of the cctrl
module, although for NullMAC, the improvement was rather small compared to
the result of the prior scenario. Much to our surprise, ContikiMAC also benefited
from using the cctrl module, with respect to throughput and energy-efficiency. The
average radio on-time per TCP segment was lowered by almost 73%, resulting in
the most significant change experienced in the entirety of the conducted exper-
iments. Elaborate analysis of the traces revealed that without the cctrl module,
ContikiMAC experienced numerous subsequent packet losses, which caused the
TCP connection to finally time out. The costly reestablishment of the TCP connec-
tion then worsened to ratio between radio on-time and received TCP segments, as
no data could be transmitted during this time.
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9.4 Conclusions

In this chapter, we have outlined and evaluated our cctrl module, a modular add-on
for Contiki’s µIP stack, which implements and augments the distributed caching
and local retransmission features proposed in DTC [46] and TSS [24] within the
Contiki OS network stack. On top of the basic retransmission mechanism, we
designed and implemented additional extensions for our cctrl module. By involv-
ing three radio duty-cycling E2-MAC protocols, we further examined the impact
of different MAC protocol approaches to the mechanisms proposed in [46][24],
which turned out to be significant.

We tested our implementations in an indoor wireless sensor node testbed in two
scenarios where data has to be transmitted reliably across routes of increasing
length. In general, we encountered a rather high variability among the results of
the different examined protocol configurations. Some protocols (e.g., NullMAC,
LPP) generally reacted positively to the local retransmission scheme, whereas oth-
ers (i.e., ContikiMAC) performed rather worse. The results revealed that the cctrl
module can definitely increase the throughput of TCP across multi-hop WSNs in
many of the examined situations. However, due to the differences in the exam-
ined MAC protocols algorithms, the impact of the proposed cctrl extensions varied
heavily, such that was impossible to find a single cctrl configuration that maxi-
mizes the throughput with all evaluated MAC layers. We observed that the results
depend not only on MAC protocol characteristics, but also on the network topol-
ogy and the presence of interfering traffic. The increase in throughput ranged from
3% in the Cross Traffic Scenario with NullMAC, to up to 84% in the Single Route
Scenario with the same protocol.

Among the radio duty-cycling MAC protocols, X-MAC in combination with the
cctrl module achieved the highest average throughput in the single route experi-
ment. In this configuration, it exhibited the most consistent and predictable behav-
ior of all E2-MAC protocols, taking the results from both scenarios into account.
The comparison of NullMAC with the three E2-MAC protocols in Figure 9.20 fur-
thermore underlines our findings from Chapters 6 and 7: the energy-unconstrained
CSMA variant NullMAC reaches by far the highest throughput of all examined pro-
tocols. In the Cross Traffic Scenario, X-MAC reached less than 20% of NullMAC’s
throughput, LPP and ContikiMAC even far less than 10%. Measuring the radio
on-time per transmitted TCP segment as an indication for the energy-efficiency,
NullMAC even outperformed all E2-MAC protocols.

The basic idea and approach of MaxMAC, which effectively consists in keeping
all nodes in a multi-hop chain awake and operating in the CSMA state in case
a large portion of data has to be transmitted, is hence justified by the observa-
tion that NullMAC reached the best radio on-time per transmitted TCP segments
in both experiments of this chapter. According to our observations of Chapter 7,
we expect that the application of MaxMAC to the examined experiments of this
chapter would convey similar results as NullMAC, with respect to both throughput
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and energy-efficiency. In case of an experiment scenario with traffic load varying
between peaks of high intensity, and phases of low or even no network activity,
MaxMAC could even outperform all the examined E2-MAC protocols. An im-
plementation of the MaxMAC protocol for Contiki would therefore constitute a
significant added value for a wide range of TCP-based applications, which rely on
the provision of high throughput and short latencies for brief periods of increased
network activity, e.g., for letting the network operator communicate with single
nodes for configuration or code updates, and standard TCP applications such as
Telnet [148], SMTP [145] or FTP [146].
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Chapter 10

Conclusions and Outlook

Whereas wireless sensor network technologies have just attracted the attention of
the academic community one decade ago, a large number of real-world use cases
and business models have emerged in the meanwhile. Yet, wireless sensor network
technologies are far from having exploited their full potential. Researchers and
developers working in the WSN field still face a large number of limitations and
problems, which are yet to be solved. In this thesis, we have evaluated the fea-
sibility and potential of run-time adaptive resource allocation schemes in several
contexts, thereby addressing four main challenges and problem categories. Sec-
tion 10.1 describes the four main challenges we tackle with the contributions of
this thesis. These contributions are summarized in Section 10.2. Section 10.3 then
outlines promising research topics for future work related to our contributions.

10.1 Addressed Challenges of the Thesis

These addressed challenges and problem domains, to which we presented a number
of contributions in the different chapters of this thesis, address the following four
problem categories and challenges in WSN research:

• Experiment Methodologies: The usual approach many researchers follow to-
day consists in rapid-prototyping a WSN algorithm or application first by using
a network simulator, testing and comparing it to existing approaches, and pro-
ceeding with implementing a real-world prototype when the simulation results
are promising. Real-world prototype based research in experimental testbeds,
however, is a tedious and time-consuming task. Many WSN testbeds require
physical presence at site and offer only limited run-time information. Erro-
neous protocol behavior can hence often only be spotted in offline trace anal-
ysis. Furthermore, the inconsistent representation of experimental data in to-
day’s WSN communities severely aggravates experimental research: often, re-
sults from large-scale experimental WSN studies are arbitrarily organized and
formatted, which renders reproducibility impossible. Further problems con-
cern the availability of simple and painless experiment methodologies, e.g., to
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assess the energy consumption or environmental interferences.

• Hardware & Software Restrictions: Forced by the rules of economics, WSN
nodes have to be cheap and expendable in order to qualify for a wide range
of today’s and future WSN applications. Hence, they are usually built from
inexpensive electronic circuitry and components. The restrictions with respect
to memory, processing power and bandwidth pose inherent challenges to the
development of sensor network software, ranging from the application layer to
the operating system and the communication stack. In practice, this limitation
often means that mechanisms designed and evaluated in a network simulator
can not be realized exactly as planned on real-world sensor nodes, but have to
be downsized and simplified in order to meet the hardware restrictions.

• Energy Restriction: Most of today’s platforms drain out of energy after not
much more than a couple of days if all onboard components (sensors, CPU
and radio) are permanently kept on. The development of radio duty-cycling
MAC protocols has massively increased WSN lifetimes, and has thus been a
cornerstone in WSN research. The development of energy harvesting/scaveng-
ing techniques based on, e.g., thermal-electric, photo-electric or piezo-electric
technologies has yet come up with a range of solutions to alleviate the energy
restrictions. However, Kompis et al. [102] have outlined that these mechanisms
have yet not eliminated the need for frugal use of the energy resources.

• Wireless Channel Properties: The low-power wireless channel used in WSNs
is inherently unreliable: it is prone to the effects of multipath propagation,
reflection, scattering, or interferences with nearby nodes, or devices operating
in the same band. Often, links in WSNs are intermittent: communication across
one link may succeed during one hour and fail in the next hour, e.g., because
of changes in the environment, node mobility, or random node failures. Since
transmitting with higher power is energetically expensive, WSNs will also in
the future have to cope with low signal-to-noise ratios and the aforementioned
typical wireless phenomena. Intelligent and adaptive mechanisms remain to be
designed in order to fully cope with the dynamicity of the unreliable low-power
wireless channel and the performance-degrading effects (with respect to packet
delivery rates, reliability, latency) of typical wireless phenomena.

10.2 Thesis Summary

In the contributions presented in this thesis, we have faced the challenges listed
above, and we have addressed them with the frameworks of solutions, protocols
and concepts presented in Chapters 3-9. While Chapters 3 and 4 (Part I) describe
frameworks and tools for experimental WSN research and evaluations, the subse-
quent Chapters 5-9 (Part II) present several solutions for run-time adaptive com-
munication protocol architectures in WSNs, which forms the superordinate topic
spanning across the different contributions of this thesis.

214



10.2. THESIS SUMMARY

Part I - Frameworks and Tools

In Chapter 3, we have presented the Testbed Management Architecture for Wire-
less Sensor Network Testbeds (TARWIS), our solution for efficient, automated and
repeatable experimentation with WSN testbeds. TARWIS remains independent
from the physical setup of the testbed structure, the sensor node hardware or soft-
ware (operating system). With TARWIS, we can offer interested research groups
a solution for setting up own testbeds, and relieve them from the burden to im-
plement own user administration, experiment scheduling and testbed management
solutions from scratch. TARWIS to date runs on nine different testbeds of wire-
less sensor networks of the European-Union WISEBED [162] project, with node
deployments between a few 10 to more than 100 nodes. Throughout the course of
the WISEBED [162] project, we have set up a testbed of 47 sensor nodes and have
made it available to researchers from all over the globe. We have further conducted
the major part of experiments described in this thesis using TARWIS, among them
most of the results of Chapters 7, 8 and all the results of Chapter 9. The major
advantage of TARWIS is the simplicity and convenience with which a real-world
sensor network testbed can be operated. Its lucid user interface permits to observe
and inspect protocol behavior in a high granularity at experiment run-time, instead
of tedious offline trace analysis. Without exaggerating, one can well claim that the
ease of using TARWIS reminds that of many of today’s network simulation tools.

In Chapter 4, we have discussed different software-based estimation methodologies
to assess the energy consumption of WSN nodes. Software-based energy estima-
tion yields significant advantages over energy measurement using digital storage
oscilloscopes or high-resolution multimeters: only software-based on-line energy
estimation mechanisms running on the node themselves enable the network to take
energy-aware decisions about routing, clustering or transmission power schedul-
ing. We have contributed to this research domain with a profound empirical evalu-
ation of the accuracy of different software-based estimation models and parameter
calibration techniques. Chapter 4 identifies and quantifies the different factors that
cause deviations of the software-based estimations from the real physically mea-
sured energy consumption. The inaccuracies in the production of the electronic
components have been shown to impact on different power consumption levels,
which led to nodes differing by more than 4% in their average energy consump-
tion. The most widely used software-based energy model, referred-to as Three
States Model in Chapter 4, has been shown to result in an estimation error (µ± σ)
of 3.00 %± 2.55%, which yet suffices for a large range of experimental studies, but
which yields potential for improvement. Finally, we have shown that our proposed
methodology of enhancing the estimation model with information regarding the
state transitions, and applying multivariate OLS regression to calibrate the model
parameters using empirical data, can remarkably reduce the resulting estimation
error. With our protocol-independent methodology, we measured a mean absolute
estimation error (µ ± σ) of 1.13% ± 1.15%, an accuracy that clearly suffices for
the vast majority of experimental studies on WSN protocols.
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Part II - Contributions To Communication Protocols

In Part II, we proposed and evaluated a range of mechanisms and protocols that
apply run-time adaptive resource allocation within different layers of the ISO/OSI
communication protocol stack. The contributions relate to each other with respect
to their simple state-based approach of allocating more resources (e.g. radio on-
time, computational power) when crucial variables of the environments change
during run-time (e.g., threshold parameters exceeded, errors reported in ACKs),
and where hence the prerequisites are given to apply countermeasures to prevent
from a degradation of service quality.
We commenced our contributions with the evaluation of the WiseMAC burst trans-
fer mode More Bit and our proposed Extended More Bit, both in simulation and on
a real-world sensor node platform. Our results confirmed that the Extended More
Bit basing on the receiver promising to remain awake after a packet burst performs
better than the original WiseMAC More Bit scheme with respect to the achievable
throughput. The superior performance of 20%-25% has been found similar in both
simulation and real-world experiments. This study published in [87][91][89] ig-
nited our interest on throughput-maximizing but at the same time energy-efficient
mechanisms on the MAC layer, which finally led to the more sophisticated traffic
adaptivity mechanisms designed, implemented and evaluated in Chapter 7.
In Chapter 6, we explored the current state of the art in E2-MAC protocol design,
in particular by examining today’s most frequently cited E2-MAC protocols with
respect to their ability to react to variable traffic conditions. By comparing against
an idealized concept of an E2-MAC protocol named IdealMAC, we have shown
how far today’s E2-MAC protocols still are from the goal of being able to truly
allocate the radio transceiver in an on-demand manner. The evaluation clearly
shows by means of network simulation that mainly all existing E2-MAC protocol
heavily restrain the maximum achievable throughput for the upper layers, and do
not provide adequate measures to adapt to variable load. We have developed a tri-
partite metric to measure and quantify the traffic adaptivity of anE2-MAC protocol
by taking into account the crucial target variables maximum achievable throughput,
latency and energy-efficiency. With so-called traffic adaptivity (TA) metric, we
have formalized a notion for the property of traffic adaptivity, which so far has
been referred to often in an ambiguous and indeterminate manner. Applying the
TA metric to the selection of MAC protocols conveyed that the WiseMAC [57] yet
achieves the best TA values under variable load, a conjecture that is also supported
by the recent comparative study of Langendoen [107].
The Maximally Traffic-Adaptive MAC (MaxMAC) protocol introduced in Chap-
ter 7 is our contribution proposed to fill the gap of run-time traffic-adaptive MAC
protocols discovered in the state of the art analysis beforehand. The protocol in-
tegrates basic design principles of preamble-sampling based random access MAC
protocols, in particular WiseMAC and X-MAC. Based on a simple finite-state-
machine-based adaptation model, the protocol is able to allocate more energy-
resources when more load has to be handled, or even completely abandons any
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radio duty-cycling sleep-wake pattern when necessary. We evaluated the proto-
col’s behavior in a series of experiments in a network simulator, and compared
it against our idealized concept of an E2-MAC protocol using the TA metric de-
fined in Chapter 6. We then studied the real-world feasibility of the MaxMAC
protocol with our MaxMAC prototype implementation and compared its behavior
against two other wireless MAC protocols. Both experimental evaluations demon-
strated that MaxMAC reaches its goal of being clearly distinguishable from ex-
isting preamble-sampling based approaches by reaching nearly the same through-
put and a similarly low latency as energy-unconstrained CSMA, while still ex-
hibiting the same energy-efficiency during periods of sparse network activity. The
MaxMAC protocol hence succeeds in combining the advantages of energy uncon-
strained CSMA (high throughput, high PDR, low latency) with those of classical
E2-MAC protocols (high energy-efficiency). Like most contention-based MAC
protocols, MaxMAC is a general-purpose protocol, and does not rely on assump-
tions which are cumbersome to achieve (e.g, rigid time-synchronization across the
entire network). It can hence be applied without changes in scenarios where con-
stant low-rate traffic is expected, and where in most cases B-MAC and X-MAC are
being used today.

Chapter 8 addresses the challenges related to the inherently unreliable wireless
channel in WSNs. The chapter explores the potential of Forward Error Correc-
tion (FEC) schemes. We have implemented eight different Error Correcting Codes
(ECCs) in our library libECC and have proposed three run-time adaptive FEC
strategies, which react to deteriorating link quality by allocating the correctional
power of ECC codes in an on demand manner. The concept applied in this context
shares many similarities to that of Chapter 8. The parameter adaptation algorithm
follows a similar finite-state-machine-based model, where each state describes a
certain set of parameters. Input variables such as the success of previous trans-
missions then define the state transitions - allocating less computational power
when the link quality is good and unencoded transmissions are successfully ac-
knowledged, and more sophisticated coding when link qualities are deteriorated.
We have examined our different implemented ECCs as well as the adaptive FEC
strategies in a series of experiments, of which the majority were conducted again
using TARWIS. The main conclusions drawn from Chapter 8 is that the packet de-
livery rate (PDR) could generally be increased on weak and lossy links using FEC
mechanisms, and that the occurrence pattern of transmission errors turned out to be
a rather local phenomenon that differs heavily from link to link. Consequently, the
proposed adaptive FEC schemes offer significant advantages with respect to con-
servation of precious CPU time and energy, since they adapt the correctional power
on a per-link basis, deciding when and where to apply FEC in a totally distributed
manner. This turned out to significantly impact on the achieved end-to-end PDR at
a reasonable and limited overall energy cost.

In our final contribution presented with Chapter 9, we experimentally evaluate the
performance of TCP/IP across multiple hops in WSNs. TCP/IP has been shown to
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perform rather poorly [46][24] in WSNs with multiple hops, due to the unreliable
nature of the wireless channel (higher bit error rates and packet loss), particular
properties of and interactions with the underlying wireless channel MAC proto-
cols (exponential backoff mechanisms, hidden node and exposed node problem),
and the design of the TCP congestion control mechanisms. We take up basic con-
cepts of distributed TCP caching and local retransmissions proposed in [46][24]
and self-developed extensions of the latter, and implement them - in contrast to
the studies [46][24] themselves - in a MAC-layer independent manner into our
Caching and Congestion Control (cctrl) module. The cctrl module developed
within this experimental study is a modular add-on for the µIP stack [45] of the
Contiki OS [47]. We show that our contribution is able to significantly increase
the end-to-end throughput across multiple hops in various real-world WSN topolo-
gies. We study the performance of cctrl using three different E2-MAC protocols
(X-MAC, LPP, ContikiMAC) and Contiki’s energy-unconstrained CSMA variant
NullMAC. The TARWIS testbed management architecture, as discussed in Chap-
ter 3, was used to schedule and execute all the experiments of this chapter. The
main results of this study can be summarized as follows: our cctrl module man-
aged to increase the end-to-end TCP throughput of NullMAC by up to 84% across
routes of 2-6 hops lengths. The E2-MAC protocols X-MAC and LPP tended to
exhibit improvements, whereas ContikiMAC’s performance was significantly de-
graded. Much to our surprise, the best results with respect to the energy-efficiency
(measured as radio on-time per TCP segment) were achieved with NullMAC in
combination with our cctrl module. If a large portion of data has to be transmitted
to a certain node across multiple hops, it is a better strategy to let the entire route
temporarily operate without duty-cycling the radio, because the net radio on-time
per transmitted TCP segment is lower than with any existing E2-MAC protocol.
This observation basically confirms and justifies the MaxMAC concept of Chap-
ter 7, which proposes to temporarily switch to CSMA if the encountered load con-
ditions can not be handled anymore without major packet loss when sticking to the
periodic radio duty-cycling pattern.

10.3 Thesis Outlook

The work conducted in this thesis opens a broad range of possible directions for
future research and innovation. We briefly elaborate on some of the most promising
topics that relate to our contributions.

The Testbed Management Architecture TARWIS presented in Chapter 3 definitely
made many experimental evaluations of this thesis less cumbersome and error-
prone, since it fully automates the experimentation process and requires no contin-
uous physical presence at the testbed site. However, with yet only capturing the raw
serial output of the WSN nodes in the testbed, many aspects of WSN experimen-
tation are still left aside. Node failures can yet only be detected, but pinpointing
the actual reason behind them still often remains impossible. TARWIS could be
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augmented to sample the energy-consumption, the received power level, the tem-
perature or pressure around each installed node, or other variables, which poten-
tially impact on its run-time behavior. TARWIS and the WiseML standard are only
first steps towards convenient, repeatable experimentation and a consistent notion
of experiment results. An integration of the TARWIS testbed management services
with an Integrated Development Environment, which would permit researchers to
conveniently upload and test their sensor node code from within their workbench,
would be another visionary perspective for TARWIS.

The software-based energy-estimation methodology discussed in Chapter 4 basing
on a fine-grained estimation model should be integrated into the more popular sen-
sor node operating systems Contiki OS [47] and TinyOS [112], in order to make
this key contribution of the thesis available to a broader research community than
the ScatterWeb2 OS [157] users alone, which, as a matter of fact, is very small. The
proposed model extensions that consist in taking into account transceiver switches
as regressors into a multivariate OLS model, could further be applied to model the
onboard physical sensors. Other components, which are frequently encountered
on sensor node platforms, e.g., EEPROM or SD memory slots, could likewise be
integrated into such a model. A preliminary study on the integration of further
sensor node components has been conducted in [136], where besides the radio, the
temperature and humidity sensor are similarly modeled and the respective param-
eters calibrated. The results with respect to the obtained measurement accuracy
basically confirms the adequateness and generality of the multivariate OLS-based
approach. The empirical determination of OLS model parameters and the resulting
estimation accuracy for a range of WSN platforms could form the topic for several
semester or bachelor thesis projects. First steps to integrate our contributions of
this chapter into the Contiki OS power profiler have been undertaken recently.

The MaxMAC protocol in Chapter 7 has been evaluated in a lab and testbed envi-
ronment with rather artificial traffic patterns, except for the use case oriented sce-
nario in Section 7.4.4. In order to fully evaluate the advantages and drawbacks of
MaxMAC, a long-term real-world deployment in an event-based application (e.g.,
a study related to environmental monitoring [183] or a health-care related applica-
tion [119]), during which essential long-term operations would have to be applied
(e.g., code and configuration updates) would outline advantages and drawbacks,
but also further potential for improvements. An implementation on the popular
sensor node operating systems Contiki OS [47] and TinyOS [112] would further
increase the range of potential users. Since the WSN field has clearly shifted to-
wards platforms equipped with IEEE 802.15.4-compliant chips in the past couple
of years, a platform with a packetizing radio should be envisaged for this purpose.
An interesting research question would furthermore consist in designing an effi-
cient distributed algorithm to define the number of intermediate states and their
threshold parameter values in MaxMAC, e.g., based on the knowledge of the net-
work size and topology, probably by specifying the network topology and the re-
quirements with respect to mean latency and throughput. Heuristics based on these

219



10.3. THESIS OUTLOOK

parameters would significantly improve the general applicability of MaxMAC on
other real-world platforms. As already discussed in Chapter 7, a distributed pa-
rameter learning algorithm, which attempts to meet predefined Quality of Service
target goals specified by the network operator, would be the favorable and most
elegant solution. Such an algorithm should translate end-to-end Quality of Service
goals to individual parameter sets for each node within the network, taking the
discovered parameters (i.e., transceiver bandwidth, energy consumption, network
topology, etc) into account, and would form a promising research topic for future
investigations.

The Forward Error Correction schemes discussed in Chapter 8 have been evaluated
using a byte-level radio transceiver operating in the 804-940 MHz ISM frequency
band, using simple on-off keying (OOK) as modulation scheme. As mentioned
beforehand, the WSN research field and the related industry has clearly moved to-
wards standardized and IEEE 802.15.4-compliant radio chips in the 2.4 GHz ISM
band, and the so-called Offset Quadrature Phase-shift Keying (OQPSK) modu-
lation scheme. Liang et al. [114] have examined one Hamming and one Reed-
Solomon variant to protect transmissions of a TelosB network from interferences
with an IEEE 802.11b/g wireless LAN, which typically introduce large burst er-
rors. To the best of our knowledge, a study examining the potential of (adaptive)
FEC schemes to cope with low signal-to-noise ratios, and high bit error rates due
to multipath propagation, reflection or scattering effects carried out in the 2.4 GHz
band does not yet exist. An evaluation of our DECTED, the five BCH variants,
and the simple bit repetition codes of libECC, as well as the adaptive FEC strate-
gies, would most probably convey different results on this kind of radios, since
bit error patterns in wireless communications often heavily depend on the modula-
tion scheme and the radio frequency, and would form an appealing topic for future
investigations.

The Caching and Congestion Control (cctrl) layer presented in Chapter 9 has been
evaluated on TelosB nodes in our indoor distributed testbed laboratories. The re-
sulting cctrl module was designed to remain as independent as possible from a)
its underlying MAC protocol and b) from any changes on the µIP stack [45]. In
our activity monitoring approach and the activity-dependent retransmission strat-
egy outlined in Chapter 9, we basically fed MAC-layer parameters to the cctrl
layer, yet satisfying the MAC-layer independence constraints. Softening these con-
straints would yield potential for further improvements with respect to the end-to-
end throughput - the MAC Proxy could not only count the overheard transmissions,
but also inspect the TCP headers within the packets and, depending on the utilized
MAC layer, feed this information to the cctrl module. With this knowledge, im-
plicit acknowledgements could actually be implemented without making continu-
ous overhearing necessary. In case cctrl module would overhear the next node in
line forwarding the previously sent TCP segment, it could take advantage of this
knowledge and cancel its retransmission timeout for the same segment, knowing
that its previous transmission definitely made it to the next node.
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Similarly, further potential for improvements could potentially be found by making
slight changes on the µIP stack. Recently proposed bulk-transfer protocols such as
PIP [152] or Lossy Links, Low Power, High Throughput [52] allow the transmission
of large bursts of TCP numerous segments synchronously in flight, and assume that
each node can buffer significant amounts of data (∼ 1 MB) on external flash mem-
ory. Combining the cctrl mechanisms with these bulk-transfer protocols would
require modifications on the µIP stack, but would open further room for significant
improvements.
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work at 3500 m Above Sea Level.” ACM/IEEE International Conference
on Information Processing in Sensor Networks (IPSN), Demos and Posters,
San Francisco, USA, April 2009, pp. 405–406.

[20] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker,
C. Gruenwald, A. Torgerson, and R. Han, “MANTIS OS: an Embedded

224



BIBLIOGRAPHY

Multithreaded Operating System for Wireless Micro Sensor Platforms,”
ACM/Kluwer Mobile Networks & Applications (MONET), Hingham, USA,
vol. 10, no. 4, pp. 563–579, August 2005.

[21] C. Boano, T. Voigt, N. Tsiftes, L. Mottola, K. Roemer, and M. Zuniga,
“Making Sensornet MAC Protocols Robust Against Interference.” Euro-
pean Conference on Wireless Sensor Networks (EWSN), Coimbra, Portu-
gal, February 2010, pp. 272–288.

[22] R. Bose and D. Ray-Chaudhuri, “On a Class of Error Correcting Binary
Group Codes,” Information and Control Journal, San Diego, CA, USA,
vol. 3, no. 1, pp. 68 – 79, March 1960.

[23] R. Braden, “Requirements for Internet Hosts - Communication Layers,”
Request for Comments RFC 1122, Internet Engineering Task Force (IETF),
October 1989. [Online]. Available: http://www.ietf.org/rfc/rfc1122.txt

[24] T. Braun, T. Voigt, and A. Dunkels, “TCP Support for Sensor Networks.”
Wireless On demand Network Systems and Services (WONS), Obergurgl,
Austria, January 2007, pp. 162–169.

[25] M. Buettner, V. Gary, E. Anderson, and R. Han, “X-MAC: A Short Preamble
MAC Protocol for Duty-cycled Wireless Sensor Networks.” ACM Confer-
ence on Embedded Networked Sensor Systems (SenSys), Boulder, USA,
November 2006, pp. 307–320.

[26] U. Bürgi, “Performance Optimization for TCP-based Wireless Sensor Net-
works.” Master Thesis, University of Bern, Switzerland, August 2011.

[27] M. Busse, T. Haenselmann, T. King, and W. Effelsberg, “The Impact
of Forward Error Correction on Wireless Sensor Network Performance.”
ACM Workshop on Real-World Wireless Sensor Networks (REALWSN),
Uppsala, Sweden, June 2006.

[28] C. Cano, B. Bellalta, A. Sfairopoulou, and J. Barcelo, “A Low Power Listen-
ing MAC with Scheduled Wake Up after Transmissions for WSNs,” IEEE
Communications Letters, pp. 221–223, April 2009.

[29] M. Ceriotti, M. Corra, L. D’Orazio, R. Doriguzzi, D. Facchin, S. Guna,
G. Jesi, R. L. Cigno, L. Mottola, A. Murphy, G. Picco, M. Pescalli, D. Preg-
nolato, and C. Torghele, “Is There Light at the Ends of the Tunnel? Wireless
Sensor Networks for Adaptive Lighting in Road Tunnels.” ACM/IEEE
International Conference on Information Processing in Sensor Networks
(IPSN), Chicago, USA, April 2011, pp. 187–198.

[30] M. Ceriotti, L. Mottola, G. Picco, A. Murphy, S. Guna, M. Corra, M. Pozzi,
D. Zonta, and P. Zanon, “Monitoring Heritage Buildings with Wireless

225

http://www.ietf.org/rfc/rfc1122.txt


BIBLIOGRAPHY

Sensor Networks: The Torre Aquila Deployment.” ACM/IEEE Interna-
tional Conference on Information Processing in Sensor Networks (IPSN),
St. Louis, Missouri, USA, April 2008, pp. 277–288.

[31] K. Chandran, S. Raghunathan, S. Venkatesan, and R. Prakash, “A Feed-
back Based Scheme For Improving TCP Performance In Ad-Hoc Wireless
Networks.” International Conference on Distributed Computing Systems
(ICDCS), Amsterdam, Netherlands, May 1998, pp. 472–479.

[32] M. Chang and P. Bonnet, “Meeting Ecologists’ Requirements with Adaptive
Data Acquisition.” ACM Conference on Embedded Networked Sensor
Systems (SenSys), Zurich, Switzerland, November 2010, pp. 141–154.

[33] S. Chatterjea, L. van Hoesel, and P. Havinga, “AI-LMAC: An Adaptive,
Information-centric and Lightweight MAC Protocol for Wireless Sensor
Networks.” International Conference on Intelligent Sensors, Sensor Net-
works and Information Processing (ISSNIP), Melbourne, Australia, Decem-
ber 2004, pp. 381–388.

[34] R. T. Chien, “Cyclic Decoding Procedures for Bose-Chaudhuri-
Hocquenghem Codes,” IEEE Transactions on Information Theory, vol. 10,
no. 4, pp. 357–363, October 1964.

[35] O. Chipara, L. Chenyang, C. Thomas, and R. Gruia-Catalin, “Reliable Clin-
ical Monitoring using Wireless Sensor Networks: Experiences in a Step-
down Hospital Unit.” ACM Conference on Embedded Networked Sensor
Systems (SenSys), Zurich, Switzerland, November 2010, pp. 155–168.

[36] Computer Services Department of University of Bern (Informatikdienste),
“UBELIX - University of Bern Linux Cluster.” [Online]. Available:
http://www.id.unibe.ch/content/services/ubelix/

[37] Crossbow Technologies. [Online]. Available: http://www.xbow.com

[38] T. V. Dam and K. Langendoen, “An Adaptive Energy Efficient MAC Proto-
col for Wireless Sensor Networks (TMAC).” ACM Conference on Embed-
ded Networked Sensor Systems (SenSys), Los Angeles, USA, November
2003, pp. 171–180.

[39] Debian Linux - The Universal Linux Operating System. [Online]. Available:
http://www.debian.org/releases/lenny/

[40] Deliverable D4.1: First Set of well-designed Simulations, “Experiments and
possible Benchmarks. Technical Report,” June 2008. [Online]. Available:
http://www.wisebed.eu

[41] I. Demirkol, C. Ersoy, and F. Alagoz, “MAC Protocols for Wireless Sensor
Networks: A Survey,” IEEE Communications Magazine, vol. 44, pp. 115–
121, April 2006.

226

http://www.id.unibe.ch/content/services/ubelix/
http://www.xbow.com
http://www.debian.org/releases/lenny/
http://www.wisebed.eu


BIBLIOGRAPHY

[42] DFN: Deutsches Forschungsnetz. [Online]. Available: http://www.dfn.de

[43] N. Draper and H. Smith, “Applied Regression Analysis, Wiley Series in
Probability and Statistics,” 1998.

[44] W. Drytkiewicz, S. Sroka, V. Handziski, A. Koepke, and H. Karl,
“A Mobility Framework for OMNeT++.” International OMNeT++
Workshop, co-located with International Conference on Simulation Tools
and Techniques (SIMUTools), Budapest, Hungary, January 2003. [Online].
Available: http://mobility-fw.sourceforge.net

[45] A. Dunkels, “Full TCP/IP for 8-Bit Architectures.” International Confer-
ence on Mobile Systems, Applications, and Services (MobiSys), San Fran-
cisco, USA, May 2003, pp. 85–98.

[46] A. Dunkels, J. Alonso, T. Voigt, and H. Ritter, “Distributed TCP Caching for
Wireless Sensor Networks.” Mediterranean Ad-Hoc Networks Workshop
(Med-Hoc-Net), Bodrum, Turkey, June 2004, pp. 13–28.

[47] A. Dunkels, B. Groenvall, and T. Voigt, “Contiki - a Lightweight and
Flexible Operating System for Tiny Networked Sensors.” IEEE Workshop
on Embedded Networked Sensors (EmNets), Tampa, Florida, November
2004, pp. 455–462. [Online]. Available: http://www.sics.se/contiki/

[48] A. Dunkels, L. Mottola, N. Tsiftes, F. Osterlind, J. Eriksson, and N. Finne,
“The Announcement Layer: Beacon Coordination for the Sensornet Stack.”
European Conference on Wireless Sensor Networks (EWSN), Bonn, Ger-
many, February 2011, pp. 211–226.
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