
Unsynchronized Energy-Efficient
Medium Access Control and Routing

in Wireless Sensor Networks

Masterarbeit
der Philosophisch-Naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von:
Philipp Hurni

2007

Leiter der Arbeit:
Professor Torsten Braun

Forschungsgruppe Rechnernetze und Verteilte Systeme
Institut für Informatik und Angewandte Mathematik (IAM)





Abstract

Various energy saving MAC protocols for all kinds of wireless networks have evolved
in the past decades. Reaching from the 802.11 WLAN-standard with its power saving
extension, researchers have suggested energy saving MAC protocols for use in wireless
ad hoc networks and MANETs, sensor networks and personal area networks. Today’s
energy saving wireless MAC protocols periodically switch the radio transceiver hardware
between the costly operation modes receive and transmit and an energy-saving sleep
mode. The majority of the existing power saving MAC approaches tries to synchronize
the state changes of the nodes in the network and introduces mechanisms to let the nodes
synchronously wake up at designated points of time in order to exchange pending traffic
or control messages. Such synchronization however is not easy to achieve, especially over
multiple hops, and the introduction of periodic control messages for global or cluster-
wise synchronization is energetically costly. With low traffic, the energetic overhead for
maintaining synchronization and slot coordination may exceed the energy spent for the
actual data traffic. Mechanisms that renounce on synchronization schemes are likely to
be more energy-efficient in low-traffic scenarios.

This thesis investigates modifications and optimizations on recently proposed fully un-
synchronized power saving MAC protocols for wireless sensor networks based on asyn-
chronous wake-up patterns, and intended for sensor networks with low traffic require-
ments. The thesis begins with investigations on efficient broadcast techniques and sug-
gests a scheme that exploits the knowledge about the neighboring node’s wake intervals.
It continues with outlining a performance degrading overhearing effect that can occur in
dense sensor network environments with increased load when applying a fixed constant
period for the node’s wake-up intervals. An alternative allocation scheme of the sensor
node’s wake-up intervals based on a linear movement function is shown to resolve this
problem in a simple and cheap manner. Further investigations topic the issue of improv-
ing the traffic adaptivity of the MAC scheme in cases of traffic between multiple senders
and one receiver, which are likely to occur when packets are forwarded from numerous
nodes towards one or a few base stations. The discovered mechanisms and improvements
are tested out and examined in a network simulator environment and a prototype imple-
mentation on a sensor hardware testbed.
The thesis concludes with the integration of an ad hoc on-demand routing protocol and
experiments to achieve higher sensor network lifetime by balancing the traffic load over
multiple paths.
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Chapter 1

Introduction

Wireless Sensor Networks (WSNs) have gained remarkable attention in the past decade,
not only in the academic community. With decreasing cost of integrated circuits and
low-power transceiver hardware, many applications of WSN become feasible and realize-
able at reasonable cost. Mark Weiser’s prominent vision of Ubiquitous Computing [1] yet
only gives a clue about where the near future of distributed and pervasive computing
and information technology in general leads.
Wireless Sensor Networks are autonomous systems composed of numerous entities dis-
tributed over an area or at special points of interest. Purpose and goals of WSNs can
differ heavily. WSNs can be applied in many fields of our economy and our daily life:
as instruments for environmental monitoring, as useful tools in business and industrial
process control, for health-care and medical purposes. WSNs can provide useful services
and supply important data in military campaigns and peacekeeping missions, help pro-
tect areas or valuable assets from unauthorized access, give alarm in cases of emergency.
Monitoring and reporting physical and environmental values, such as vibration, tem-
perature or noise, is the main activity of a WSN. Nodes self-organize into a multi-hop
network, and collaborate in sensing and forwarding gathered information towards one
or a few base stations. Communication of the sensing units is achieved over a wireless
channel with low-power radio transmission units. Sensor nodes should be robust for de-
ployment in hostile environments, low in energy usage and inexpensive in production.
WSN nodes are in most cases battery operated. As many sensor networks are meant to
cover areas where physical access is difficult, nodes are often meant not to be recollected
and recharged - the energy resource consists in the battery it is initially equipped with,
its lifetime is thus limited. The development of energy-scavenging techniques has already
led to exciting results, but still there is no easy and cheap solution to the energy restric-
tion. It is therefore of highest priority that the nodes make optimal use of the limited
energy resources.

1.1 Power Saving in Wireless Sensor Networks

The main goal of all the efforts towards energy-saving and energy-efficient operation of
wireless sensor networks lies in the prolongation of the network operability, so to speak
the network lifetime. The current research addresses this goal both at the level of hard-
ware and software.
The development of energy-efficient low-voltage integrated circuits has already made
impressive progress in the past years. Dynamic frequency scaling and advanced power-
management have become accepted and widespread techniques to manage power and
energy consumption in both embedded systems and general purpose computing systems.
Research and development have led to sophisticated and very energy-efficient computing
systems in terms of energy-efficiency, yet the measures taken often remain transparent
to the application programmer and the end user.
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The challenging task in the design of energy-efficient communication protocols consists
in finding means to use the wireless transceiver chip only in an on demand manner. The
radio transceiver unit should overall use less power whenever it is not or only infrequently
used. In WSNs, this task is of crucial importance, as the transceiver hardware very often
is responsible for a major part of a node’s energy consumption.
Turning off the radio interface whenever there is nothing to be sent does not solve the
problem, as the connectivity with neighboring nodes would be disrupted and must some-
how be kept alive. The power management of the communication interface is a task that
needs to be tackled by the entire communication protocol stack. The radio transceiver
units have to be switched into a low-power sleep state for a maximum amount of time,
yet still maintaining connectivity to the neighboring nodes by periodically switching to
the receive state and listen for incoming traffic. In case of no outgoing and incoming
transmissions, nodes should keep their radio interfaces in an energy saving state for most
of the time. Sophisticated mechanisms should still allow considerable service character-
istics whenever transmissions have to be handled, with respect to throughput and latency.

In the ideal case, both, sender and receiver would always switch their transceivers into the
respective operation modes, whenever there is traffic to be handled, magically knowing
each others intentions. However, as we are dealing with two communication endpoints
and asymmetric information, this goal can and will never be reached.

1.2 Problem and Goal Statement

The goal of this master thesis consists in the design and optimization of medium access
control and routing mechanisms tailored for use in wireless sensor networks renouncing
on costly synchronization schemes.

We lean on basic concepts introduced by Braun et al. in [2], [3] and on principal op-
eration characteristics of the WiseMAC [4] protocol. In contrast to a huge amount of
energy-saving MAC protocols, these propositions suggest to renounce on any kind of
network-wide or clusterwise synchronization for the channel access, as it is done in many
scheduled protocols, nor for the coordination of a common wake and sleep pattern. They
neglect to exchange costly MAC layer control messages in the belief that for wireless
sensor networks with low traffic requirements, maintaining a multi-hop synchronization
scheme to control scheduled medium access is too costly. When the network load is low,
the energetic overhead for maintaining coordination of slot or schedule assignment may
easily exceed the energy spent for the actual data traffic.
A further advantage of unscheduled protocols is the fact that the nodes’ wake intervals
are naturally distributed and spread over time. The medium is not only allocated in
a common periodic fixed slot window. With dense networks, a few nodes will always
be awake in any point of time. This is a conceptual advantage, as the medium will be
utilized more equitably over time.

We aim to develop an unsynchronized MAC and routing prototype for wireless sen-
sor networks with lowest-possible duty cycle in case of no traffic, which is still flexible
with increasing traffic. By closely coupling MAC and routing layer, we aim to make
performance gains by exploiting cross-layer optimizations.
We target to evaluate the performance of the prototype implementation in wireless sensor
network traffic scenarios with network simulation tools and on a real sensor hardware
testbed. We aim to measure transmission characteristics of the prototype and energy
consumption both in simulation and on real sensor hardware.
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1.3 Contributions

The main contributions and insights of this thesis are summarized as follows:

� We designed an energy-efficient broadcasting technique for application in wireless
sensor MAC protocols based on asynchronous wake intervals and the low duty cycle
preamble sampling technique. The necessary prerequisites and assumptions under
which this technique proves to deliver energy-efficiency gains in comparison to
existing techniques are analytically evaluated and formally proved. The technique
proves to deliver significantly better results in simulation and slightly better results
in practice on real sensor hardware.

� We show how careful investigations on simulation parameters pay off when cross-
comparing the obtained results results to measurement results on real sensor hard-
ware. We show that the gap between simulation model and measurements on
real devices can be reduced when carefully investigating on the parameters of the
hardware testbed and modelling implementation specific settings. We show that
obtaining a realistic model of the reality in simulation is up to a certain possible
in small-scale experiments.

� We designed a novel allocation and arrangement scheme of the node’s unsynchro-
nized wake-up intervals to avert dangerous performance degrading effects of sys-
tematic overhearing. Nodes wake up in respect to a linear movement function
in-between the fixed cycle. The wake-up intervals thereby remain deterministic
and predictable for each neighboring node. The advantage of the scheme is proved
analytically and on the experimentation testbeds.

� We suggest a scheme to improve the traffic-adaptivity extension of the WiseMAC
[4] power saving MAC protocol in case of traffic between multiple senders and one
receiver. The novelty consits in a so-called stay-awake promise - nodes receiving
and forwarding packets from multiple stations promise to their neighbors to stay
awake for further transmissions with a flag bit in the acknowledgement. Receiving
these, nodes with pending transmissions can seamlessly continue to forward their
frames, without having to wait for the next wake-up in the next slot. The technique
is shown to improve throughput and end-to-end delay.

� We experiment with on-demand multipath routing approaches to achieve lifetime
gains by balancing the load more equitably over the network and by exploiting cross-
layer information. Slight performance gains can be claimed with altering the path
update rules of existing on-demand routing schemes. Problems encountered with
concurrent traffic along interferring paths are identified to be a direct consequence
of the special properties of the MAC scheme.
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1.4 Thesis Outline

Chapter 2 introduces into related work on power saving MAC protocols for wireless chan-
nel networks that influenced this work and the mechanisms described in it. It summarizes
research work on ad hoc routing protocols and multi-path routing schemes for ad hoc
networks. It concludes with recent work on data aggregation techniques in wireless sen-
sor networks. The part gives an insight into ideas and principles that were studied and
investigated on during the last couple of months to achieve the goals of this thesis.

Chapter 3 describes the two experimentation testbeds that were used to perform ex-
periments, a simulation environment and a sensor hardware testbed.

Chapter 4 contains the first achievement of the thesis, which forms the entry point of the
investigations on further improvements. It describes the implementation of the recently
proposed power saving protocol WiseMAC, implemented on both the simulator and the
sensor hardware testbed.

In Chapter 5, the thesis outlines advantages and drawbacks of the WiseMAC power
saving MAC protocol. Inspired by recent work on unsynchronized power saving schemes,
it proposes mechanisms to improve WiseMAC performance in different contexts. The
thesis investigates theses mechanisms on the simulator and on the ESB platform.

Chapter 6 gives an insight into efforts that were undertaken to port the energy effi-
cient MAC scheme of chapter 5 to an on-demand routing scheme and achieve further
performance improvements by altering routing mechanisms and exploiting specific MAC
layer information on the network layer.

Chapter 7 summarizes and concludes the thesis, refers to encountered problems and
difficulties and suggests topics and fields for further investigations.
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Chapter 2

Related Work

2.1 Medium Access Control in Wireless Sensor Networks

Figure 2.1: Classification of wireless sensor MAC protocols

In the past decade, various MAC mechanisms have been proposed for use in wireless sen-
sor networks. One can find almost any wireless channel multiplexing technique (i.e.
SDMA, TDMA, CDMA, FDMA) and any medium access scheme suggested for use
in wireless sensing systems. The major part of the currently available sensor hard-
ware testbeds are equipped with low-power single-channel-transceivers - so do the sensor
boards that were used in the experimental part of this thesis. We therefore limit this
section to related work on single-channel MAC protocols. In the following, we briefly
introduce into the operation principles of the sensor MAC protocols that influenced the
approach pursued in this thesis.

It is an uneasy task to organize and classify the big variety of the proposed sensor
MAC protocols. In [5], El Hoiydi points out that all protocols share the goal of saving
energy by letting nodes sleep the biggest part of the time. The main difference lies in the
organization of the sensor nodes wake times. In [5], a general distinction between sched-
uled and unscheduled wireless sensor MAC protocols is proposed. Figure 2.1 depicts the
resulting classification of the most prominent wireless sensor network MAC protocols.
In scheduled MAC protocols, the sensor nodes have to be synchronized. Transmissions
take place during time slots that are either allocated to links, to single nodes or to groups
of nodes. Slots for single nodes can either be defined for transmission or reception, be
segmented to allow both directions (i.e. with windows), or be contention-based inside the
slots. Problems arise when determining how the slots are assigned and by which node.
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Suggestions for this problem reach from single instances that allocate the slots to the
nodes, over clustered approaches with clusterheads assigning the slots to nodes in their
vicinity, up to completely distributed solutions. Once the medium access is successfully
split into slots and the slots assigned, scheduled protocols offer the major advantages
of frame-based TDMA protocols, which lie in the inherent energy-efficiency due to the
absence of collisions, overhearing, and idle-listening. Drawback of this approach is the
high system complexity of the time slot allocation, which requires continuous periodic
control message exchange to solve the allocation problem. One has to establish a tight
synchronization scheme such that the node’s individual clock drifts don’t lead to over-
lapping time slots and concurrent channel access.
With unscheduled MAC protocols, wake-up schedules of each node’s duty-cycles have to
be exchanged, to make sure that nodes know when their destinations are awake when
aiming to transmit a packet. Access to the medium is at random, collision avoidance often
bases on contention. Unscheduled MAC protocols are cheaper in respect to the system
maintenance overhead. Once deployed, the challenge with unscheduled contention-based
protocols consists in finding ways to reduce the energy waste caused by collisions, over-
hearing, and idle-listening.

Energy efficient MAC layer techniques are a challenging and demanding issue. The
research results of the various techniques that have been proposed so far suggest that
there is no ultimate and sole solution to the problem. It seems that the protocol perfor-
mance often varies with the underlying network topologies, the traffic pattern and traffic
intensity, as well as the application scenarios.
Overall, energy efficient MAC techniques aim to operate as efficient as possible, targeting
to reduce the major sources of energy waste at the MAC layer. There is a widespread
agreement in the research community in the question what the sources of energy waste
on the MAC layer are. The major sources or energy waste have been pointed out by Ye
et al. in [6]:

� Idle Listening: If a node constantly remains in the idle state in order to wait for pos-
sibly incoming traffic, a lot of energy is wasted. For most wireless transceivers, the
power consumption in the idle listening state is not much lower than in the receive
state, besides some energy spent for the signal processing. For many transceivers,
this small difference is barely measurable. In general, nodes should only be switched
to the receive state when they actually receive frames, and switch back to sleep
immediately.

� Overhearing: Reception of data frames that are not actually meant and destined to
the receiving station represent an energy waste. Systematic overhearing and recep-
tion of other stations traffic should be avoided. Overhearing avoidance mechanisms
should make sure that overhearing is improbable and infrequent.

� Collisions: Unrecoverable frames due to interferences with other nodes’ concurrent
transmissions are a waste of energy, as Automatic Repeat Request (ARQ) schemes
require costly retransmissions. Introducing collision avoidance mechanisms to make
collisions less probable often pays off in respect to energy consumption.

� Overhead: Control messages and signalling information in frame headers in order
to sustain the MAC protocol operation only allow the communication scheme to
operate as intended, but do not carry any useful payload. Therefore, the amount
of signalling information on the MAC layer has to be kept as low as possible. If
possible, signalling information should be piggybacked on data packets carrying a
payload. In case of no or only sparse traffic, the control message overhead should
sink to a minimum.
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2.1.1 Sensor MAC

Figure 2.2: S-MAC slots Figure 2.3: Two S-MAC clusters
with bordering nodes adopting both
patterns

The Sensor-MAC (S-MAC) [6] protocol is a scheduled protocol following the taxonomy
of figure 2.1. It synchronizes the wake-up patterns of the nodes in a network, lets the
nodes simultaneously wake up and fall back to sleep, but renounces on central instances.
S-MAC follows a so-called virtual clustering approach to synchronize the nodes to a com-
mon wake-up scheme with a slotted structure.
Nodes regularly broadcast SYNC packets at the beginning of a slot, such that neighbor-
ing nodes receiving these packets can adjust their clocks to the latest SYNC packet and
correct their clock drifts. In a bootstrapping phase, the nodes listen for incoming SYNC
packets in order to join the ad-hoc network and follow to the propagated wake-up pattern
of a synchronization cluster. When not hearing any SYNC’s, a node starts alternating in
its own wake-up pattern and propagates it with own SYNC messages, hoping that other
nodes join this cluster. A problem of the virtual clustering arises when multiple clusters
evolve in a multi-hop network topology, as depicted in figure 2.3. Bordering nodes be-
tween both clusters then have to adopt the wake-patterns of both clusters, in order to
provide interconnecting links. By imposing twice the duty cycles on these nodes, they
become vulnerable spots in the network topology, as they might drain out of energy first,
whereby the network could become segmented into disjoint clusters.

An S-MAC slot consists in a listen interval and a sleep interval. The listen interval
is fragmented into a small synchronization phase to exchange SYNC messages, and a
second and third phase, dedicated to RTS-CTS exchange. During the second and third
phase, nodes with pending traffic announce their transmission to the receivers with RTS
messages. Receivers acknowledge the reception of the traffic announcement and reserve
the channel by emitting a CTS. Nodes receiving a RTS will stay awake during the sleep
interval, whereas all other nodes go back to sleep for the rest of the slot. Using a RTS-
CTS handshake, S-MAC achieves both collision avoidance and overhearing avoidance,
however at the cost of the two additional control messages.
With the S-MAC protocol, the duration of the listen interval (duty cycle) must be set
in a fixed manner, which severely restrains latency and maximal throughput. The listen
interval has to be long enough to handle all communication needs of the network which
may arise in the worst case. If in any case more traffic has to be handled, nodes must
buffer their outgoing packets until the next listening interval. There is no mechanism to
prolong the current duty cycle in case of more load. This can be disadvantageous, as in
sensor networks, traffic can often be of bursty nature and the rate of traffic can change
over time.
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2.1.2 Timeout MAC

Figure 2.4: T-MAC adaptive duty
cycle

Figure 2.5: T-MAC Future Request to
Send (FRTS)

The fixed duty cycle duration in S-MAC is a rather inflexible scheme. Keeping a fixed
listening interval of some 10-20% of the slot duration limits the throughput and does not
adapt to varying traffic. A fixed duty cycle results in significant energy wastage when
traffic is low. Furthermore, packet delivery latency is very high, as every node has to
wait for the next wake-up of the node in line when forwarding packets towards a sink.

The Timeout-MAC (T-MAC) [7] protocol can be considered as the successor of S-MAC
and has been proposed to enhance S-MAC under variable load. It keeps the S-MAC
concept of the slot windows for SYNC, RTS and CTS, as well as the common wake-
up pattern concept of the virtual synchronization clusters. The problem with bordering
nodes that have to adopt the wake-up patterns of two clusters therefore arises in T-MAC,
too. The listening interval in T-MAC is adaptive and is extended if there are signs of
pending transmissions. It ends when no so-called activation event has occurred for a
given time threshold called time-out TA, as depicted in figure 2.4, which is much shorter
than the fixed listen interval in SMAC. An activation event may be the sensing of any
communication in the neighborhood, the end of the own data transmission or acknowl-
edgement, the overhearing of RTS or CTS control messages which may announce further
packet exchanges.

One drawback of T-MAC’s adaptive time-out policy is that nodes often go to sleep too
early. This problem often occurs when nodes have to forward packets over multiple hops,
a typical situation is simplified in figure 2.5. The figure displays four nodes A,B,C, D
forwarding traffic along the chain A → B → C → D, where every node is only in range
of the next hop. When both nodes A and C need to deliver packets to their next hops,
only one transmission will succeed, as one of the destinations will go to sleep too early.
Consider the following case: C looses contention to A and overhears the CTS of B. C
will have to remain silent. The time-out timer of D however will run out, as D does
not receive any CTS, so D goes to sleep. After the end of A’s transmission to B, C will
send a RTS to D to notify it about the upcoming transmission. Node D however has not
heard anything for a long time and has already switched to the sleep state. So A must
wait until the next T-MAC slot to try again to reach B.
To alleviate the impact of the so-called early sleeping problem, T-MAC introduces the
Future Request to Send (FRTS) control message exchange depicted in figure 2.5. Shortly
after receiving node B’s CTS, Node C sends out a FRTS for D to keep it awake for
the upcoming transmission. The scheme proved to pay off when the network load is
high, but certainly leads to a higher overall system complexity. Sending out additional
MAC control messages carrying no payload just to save some packet inter-delay remains
questionable in sensor networks with scarce energy resources.
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2.1.3 Wireless Sensor MAC

Figure 2.6: WiseMAC nodes with basic interval du-
ration T and short medium samplings

Figure 2.7: WiseMAC
broadcast

The Wireless Sensor MAC (WiseMAC) [4] protocol belongs to the unscheduled protocols
in the taxonomy of figure 2.1. WiseMAC’s wake-up scheme consists of simple periodic
wake-up’s and duty cycles of only a few percent in order to sense the carrier for a preamble
signal, as depicted in figure 2.6. All nodes in the network sample the medium with a
common basic interval duration T , but their wake-up patterns are independent and left
unsynchronized.
When transmitting a frame, a preamble of variable length is prepended for alerting the
receiving node in its wake-up interval not to go to the sleep state. When the receiver’s
wake-up pattern is yet unknown, the duration of the preamble equals the full basic
interval duration T , as illustrated in figure 2.6 in the first transmission. The preamble
is a simple bit-sequence indicating an upcoming transmission to a node’s neighborhood.
The own schedule offset is then piggybacked to the frame and transmitted to the receiver.
After successful frame reception, the receiver node piggybacks its own schedule to the
respective frame acknowledgement. The received schedule offsets of all neighboring nodes
are subsequently kept in a table and periodically updated. Based on this table, a node
can determine the wake-up patterns of all its neighbors, which in turn allows to minimize
the preamble length for the upcoming transmissions and thus the transmission costs. As
the sender node is aware of the receiver’s wake-up pattern, it only prepends a preamble
that compensates for the maximun clock drift that the two involved node’s clocks may
have developed during the time since the last schedule exchange. As illustrated in 2.6 in
the second transmission, WiseMAC minimizes the preamble and calculates its duration
as follows:

Tpreamble = min(4θL, T )

θ denotes the quartz oscillator clock’s drift, L denotes the time since the last update of
the neighbor’s wake pattern and T denotes the common basic interval duration. One has
to consider 4θL because the clock drift of the sender leads to an inaccuracy in the esti-
mation by ±θ. As the receiver’s drift may also have drifted apart by ±θ, one has to deal
with a total inaccuracy of ±2θ. By incorporating 4θL as minimum preamble, WiseMAC
accounts for every possible drift. The length of the preamble therefore increases linearly
with the time since the last schedule update, but does not exceed the duration of the
common basic interval duration T . With a preamble of this size, the sender node can be
sure to reach every node’s medium sampling in its transmission range.

WiseMAC exploits this property to implement the broadcast technique. Broadcasting
consists in prepending a preamble of the length of the basic interval duration T to every
broadcast message, in order to first alert every neighboring node for the upcoming trans-
mission, and finally transmit the frame. As illustrated in Figure 2.7, this broadcasting
scheme uses a lot of energy only for sending and receiving the long preamble, whereas
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the actual data transmission is very short. Broadcast is used by many multi-hop routing
protocols such as DSR, AODV or data-centric approaches such as Directed Diffusion. As
using such long preambles in every node is energetically costly, the designer El Hoiydi
reflects in [5] that more sophisticated broadcasting and flooding techniques for multi-hop
ad-hoc sensor networks and MANETS remain to be designed.

2.1.3.1 Extended Carrier Sensing Range

Figure 2.8: RTS-CTS handshake
Figure 2.9: Extended
carrier sensing range

In WiseMAC, the carrier sensing range is chosen to be larger than the transmission range
in order to mitigate or alleviate the hidden node problem, but yet renounce on an ex-
pensive RTS-CTS control message exchange. Such a scheme would rather be difficult
to achieve in WiseMAC, as the wake-up intervals of all neighboring nodes are left un-
synchronized. To achieve a RTS-CTS based channel reservation, the sender would need
to announce the transmission with a RTS to the receiver, which in turn would have to
broadcast a CTS message to silence the surrounding nodes. However, sending a RTS
and a full-preamble CTS broadcast control message to achieve a medium reservation and
collision avoidance for one single message exchange would rather be inefficient.
With a so-called extended carrier sensing range, a node considers the medium to be busy
whenever it detects a transmission or transmission noise from distant stations, even if
the transmitting station is not in the node’s transmission range. This more prohibitive
carrier access mechanism can be achieved by setting a lower carrier sense threshold of
the wireless transceiver chip’s measured received signal strength indicator (RSSI). Nodes
will interpret the medium to be busy, even if the received signal strength is too low to
correctly demodulate frames.
The extended carrier sensing range is a sophisticated protection against the hidden node
problem. All nodes located in the carrier sensing range, which is proposed to be ap-
proximately twice as large as the transmission range, will consider the medium busy and
back off their own transmission attempts. However, this property is gained at the cost
of a reduced overall maximum throughput, as fewer nodes will be allowed to transmit at
the same time. In a sensor network designed for low-traffic scenarios, this throughput
reduction can be acceptable. If resources are scarce and lifetime is more important than
throughput, an extended carrier sensing range is a cheap and appropriate solution.

Figures 2.8 and 2.9 depicts both concepts to solve the hidden node problem. In both
cases, node A contends to transmit a message to node B, and node C concurrently con-
tends for transmission. Without any measures, A and C would sense the carrier idle and
start transmitting their frames, as they are not in each others range. With the RTS-CTS
exchange illustrated in figure 2.8, A first sends a RTS message to B, which quickly clears
the channel by broadcasting a CTS message. When receiving the CTS, C stays quiet
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upon overhearing the acknowledgement of B destined to A, or a NAV timer running out.
In figure 2.9, A starts transmitting, while C senses the carrier and interprets it to be
busy due to a lower carrier sense threshold. C may not be in range of A, but is assumed
to still notice a farther away transmission by observing the RSSI values of the wireless
transceiver chip.
Both concepts have been proposed and applied in various other wireless channel protocols
before, problems and traffic characteristics are well-studied in the respective literature.
The most prominent protocol applying a RTS-CTS handshake is the IEEE 802.11 stan-
dard for wireless local area networks. According to [9], the effectiveness of the RTS-CTS
handshake is based on the assumption that hidden nodes are within transmission range
of receivers. Neither the RTS-CTS handshake nor an extended carrier sensing range are
ultimate solutions to solve the hidden node problem, collisions can still occur in both
cases, as surrounding noise can additively contribute to the interference, or nodes can
simultaneously switch to the transmit state and access the medium. Introducing a RTS-
CTS handshake means a high overhead, especially in a sensor networks, where payloads
are considerably small. The question whether it pays off to apply a RTS-CTS scheme in
a wireless local area network has been intensively studied in [10]. The authors conclude
that considering the fact that under low load condition in the network the few collisions
caused by the hidden terminal scenario do not harm the overall performance as much
as under high load condition, it seems to be reasonable only to use RTS-CTS when the
network load is high. They argue that RTS-CTS only make sense when the average frame
exceeds a certain vulnerable length. As WiseMAC aims for efficiency in low-traffic sce-
narios, and payloads are considerably small in wireless sensor networks, introducing an
extended carrier sensing range is a cheaper and more suitable solution.

2.1.3.2 Nonpersistent-CSMA with preamble sampling

To mitigate collisions caused by concurrent transmissions to the same node or other
transmissions in the immediate vicinity, WiseMAC follows a simple CSMA/CA scheme,
as done in most unscheduled wireless MAC protocols. With wireless transceivers, colli-
sions are harder to detect than in wired communication, as the power difference between
the transmitted signal and the received signal makes it impossible to distinguish the
emitted signal from the received signal. Anyway, most wireless transceivers do not per-
mit to send and receive at the same time.
WiseMAC proposes to prepend a medium reservation preamble of limited random length
to the actual preamble. Before starting to transmit this preamble, nodes check the carrier
and wait for a certain time. When there is more than one station aiming to transmit a
packet, the station with the longest medium reservation will start transmitting and win
the contention. Collisions and errors in transmission are detected using acknowledge-
ments and are resolved with an Automatic Repeat Request (ARQ) scheme. Collisions
can still occur because of the hidden node problem, signal propagation delays and the
vulnerable time period when two stations are simultaneously switching their transceivers
to the transmit state.
Non-persistent CSMA proposes to reschedule a transmission within a random time value
in between uniform [0, MaxBackoff] when the first transmission attempt fails. The com-
bination of non-persistent CSMA and the WiseMAC preamble sampling technique works
as follows: a node aiming to transmit a frame schedules the transmission for a certain
instant. If at this instant, the node finds the medium busy, it reschedules the transmis-
sion to a later instant in between [0, MaxBackoff] and turns its radio to the sleep state
for the time in between. When aiming to send a unicast packet to a station that is peri-
odically sampling the medium, the node must choose the next wake-up of the respective
destination and try again with another random medium reservation preamble.
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2.1.4 Fixed and Random Intervals

Figure 2.10: Unsynchronized Power Saving Mechanism with Fixed and Random
Intervals

The mechanism proposed by Braun et al. in [2] and analyzed in a static multihop wireless
ad hoc network environment in [3] defines two wake and two sleep intervals during one
basic interval duration T . As depicted in Figure 2.10, nodes alternate between the wake
and sleep states in their individual wake-up pattern, with their duty cycles remaining
fully unsynchronized. The nodes strictly alternate between a fixed wake interval F and
a random wake interval R. Each of the wake periods are of same duration t. The fixed
wake interval F always starts at the beginning of the slot. The start of the random wake
interval R is uniformly distributed between the end of the fixed wake interval F and the
start of the next one. Hence, all nodes operate with the same wake ratio W = 2t/T .
The fixed wake interval F enables a node aiming to contact any neighboring node, if its
periodically occurring fixed wake interval pattern is known. If there is no intersection be-
tween the fixed wake interval of the sender and the neighbor, it may never learn about its
presence. This motivates the choice for the random secondary wake interval R. It ensures
that two nodes with disjoint wake-up pattern will sooner or later be awake at the same
time and therefore be able to exchange announcements about their own wake interval.
By receiving these, the nodes will learn about the wake-up patterns of their neighbors,
and thus be capable to reach any neighboring node during their fixed wake interval F.
The mechanisms applies the 802.11-based medium access and contention scheme without
the RTS-CTS prefix, as disseminating RTS and likewise CTS control messages is difficult
and costly with unsynchronized wake intervals.

In [3], this wake-up scheme is applied to a multi-hop wireless ad hoc network and a
reactive routing protocol. In order to efficiently disseminate broadcast messages, [3] sug-
gests to combine and exploit the information about the next soonest wake-ups of each
node’s neighboring nodes. By figuring out the best instant for sending and forwarding a
broadcast, the so-called wireless multicast advantage can be exploited. A node intending
to broadcast a message can figure out the best instant to forward the message using
previously received wake-up announcements which can be used to determine the current
duty cycles. The best instant shall be the instant during the next basic cycle T when
the largest subset of the neighboring nodes is awake. The aim is to transmit the message
during some neighbor’s intersections, if there are. A node can calculate the best instant
and duration of possible intersections by exploiting and combining the knowledge about
each neighbor’s respective wake-up patterns.
Figure 2.11 depicts the concept to search the best instant. The node calculates the best
moment for broadcasting a message, and selects any instant in between ∆x. If there are
more than one possible instants, one intersecting moment shall be chosen at random. The
aim of the broadcast is therefore not to reach all of the neighbors, but only the largest
possible count of neighbors with each attempt, as it is done in probabilistic broadcasting
techniques.
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Figure 2.11: Intersection table Figure 2.12: Connectivity

This scheme was then tested out to find routes with a AODV Route Request (RREQ)-
Route Reply (RREP) query cycle between random senders and destinations on a 1000 m
× 1000 m plane with 200 uniformly distributed nodes. Using this technique, and taking
the two best instants for rebroadcasting each RREQ, the success ratio reached 97% even
for the very low wake ratio of 4%, as depicted in Figure 2.12. By rebroadcasting a RREQ
message maximally twice in every node, the disadvantage of the unsynchronized wake-up
pattern in regard of broadcasting becomes negotiable, when considering the efforts that
would otherwise be necessary to achieve a rigidly synchronized wake-up pattern.

Furthermore, the unsynchronized wake-pattern led to astonishingly good results in re-
spect to the rate of collisions. As every node waits for another instant to rebroadcast the
RREQ, the impact of the broadcast storm problem becomes negligible. Only a very low
jitter had to be incorporated for the rebroadcasts of the route request RREQ messages.

The simulation showed that it is possible to sustain a fully unsynchronized wake-sleep
schedule on the MAC and reduce the wake-ratio to a few percent. The investigation
states that on-demand routing protocols can be applied with a high probability of suc-
cessful connection attempts on top of this MAC when carefully designing broadcast flood
message forwarding strategies.

13



2.1.5 Scheduled Channel Polling MAC

Figure 2.13: WiseMAC vs. SCP-MAC Figure 2.14: two-phase contention

Scheduled Channel Polling MAC (SCP-MAC)[11] is a very recent contribution inspired
by the synchronized scheduled protocols S-MAC/T-MAC and the unsychronized unsched-
uled preamble sampling based WiseMAC [4].
SCP-MAC combines the advantages of both approaches. Nodes are yet again synchro-
nized as in S-MAC/T-MAC and sample the medium for channel polls in a clusterwise
or global common wake-up pattern. Nodes that have data to transmit contend in a two-
phase contention mechanism. In a first contention window (CW1), they contend for a
tone transmission, as depicted in figure 2.14. Nodes winning the contention will transmit
a tone. Possible collisions in tone transmission will cause no harm, because only the
presence of the tone is important. The receiving nodes sample the medium and operate
similarly as in WiseMAC - if there is no tone, the receiving nodes return to the sleep
state immediately. If the stations sense the presence of the tone, they remain awake
for the next phase. The actual contention for the data transmission then takes place in
a second contention window (CW2), but only with the winners of the first contention.
In order to avoid collisions from hidden stations, SCP-MAC applies the full RTS-CTS
handshake. The sender station announces the transmission and thereby also addresses
the receiver node by emitting a RTS. Stations receiving the RTS will know that there is
a transmission going on and whether they have to stay awake or not. The receiver will
likewise emit a CTS and reserve the channel.

There are advantages and drawbacks when comparing the scheme with WiseMAC. Since
SCP-MAC synchronizes all nodes to a common wake-up pattern, there is no need for
additional bookkeeping of the relative schedule offsets of all neighbors as in WiseMAC.
SCP-MAC supports broadcast very well because of the common wake-up pattern, while
WiseMAC must use long preambles to reach all neighbors with one message. On the
other hand, WiseMAC gets along without a big contention window, because traffic does
not only take place in a single common active period, but is spread out over the complete
sleep-wake cycle.
The synchronization overhead for keeping the tight sampling scheme for all nodes in
SCP-MAC is another concern. The authors propose to piggyback synchronization infor-
mation to every data packet that has to be sent, and claim that with data rate higher than
synchronization period, piggybacking can completely suppress explicit SYNC messages.
Another drawback is the inherent latency of packets routed over multiple hops, as each
node will have to wait for the full next interval to forward the packet. Depending on
the chosen interval rate and the network size, it can take much time for a packet to be
routed to a sink. Yet another concern is the initial deployment of the common wake-up
pattern. The problem that multiple synchronization clusters evolve arises, as observed
in the S-MAC protocol (see 2.1.1). Bordering nodes between two synchronization will
have to adopt both wake-up patterns, which is however not that harmful in SCP-MAC,
as the duty cycles are very short and not too costly.
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2.2 Routing in Wireless Sensor Networks

Figure 2.15: Routing protocols taxonomy

Wireless sensor network nodes are severely constrained in energy reserves and bandwidth.
Typically, nodes are deployed in a large number. Coordination and management of the
sensing activity represent a huge challenge to sensor networks mechanisms designers.
Seamless collaboration among sensors is necessary for gathering and reliably processing
sensor data to the sink. These challenges necessitate energy-awareness at all layers of the
underlying networking protocol stack. At the network layer, methods for energy-efficient
route setup and reliable relaying of data from sensor nodes to sink have to be designed.
A lot of development in the research on routing protocols for ad-hoc and sensor networks
has been seen since the introduction of Highly Dynamic Destination-Sequenced Distance-
Vector Routing (DSDV), Ad Hoc On-Demand Distance-Vector Routing (AODV) [14] and
Dynamic Source Routing (DSR) [15]. Countless new routing protocols for sensor net-
works have evolved since then, laying their focus on new paradigms and introducing
various ideas and features. AODV and DSR are nowadays very popular and widely
accepted ad hoc routing protocols, several variations of DSR and AODV have been sug-
gested.

Karaki and Kamal suggest in [16] to divide the routing schemes for wireless sensor
networks according to the network structure into flat-based routing, hierarchical-based
routing, and location-based routing, as illustrated in figure 2.15. In flat-based routing,
all nodes are typically assigned equal roles. In hierarchical-based routing, nodes have
different roles. Often, nodes are organized into clusters so that so-called cluster heads
aggregate and preprocess gathered data and thereby save some energy. Location-based
protocols utilize the position information to relay the data to the desired regions rather
than the whole network. The sensor nodes’ positions are exploited to route data in the
network. Depending on the protocol operation, [16] classifies sensor networks protocols
into multipath-based, query-based, and negotiation-based, QoS-based, or coherent-based
routing techniques.
In regard of how and when routes are discovered and computed, routing protocols are
classified into the three categories, proactive, reactive, and hybrid, depending on how
the source finds a route to the destination. In proactive protocols, all routes are com-
puted before they are really needed, while in reactive protocols, routes are computed on
demand. Hybrid protocols use a combination of these two ideas. A significant amount
of energy is used in the route discovery and path setup phase of routing protocols.

In the following, we discuss the two protocols AODV and DSR. The protocols both
follow the flat rather than the hierarchical routing paradigm. Both protocols are reac-
tive and calculate paths only when they are actually needed. The two protocols seemed
suitable to operate with the asynchronous MAC mechanisms examined and developed in
this thesis, which neglect to build clusters and assign special functions to single instances
on the MAC. We decided to pursue the flat-based paradigm on the routing layer too.
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2.2.1 Ad Hoc On-Demand Distance Vector Routing

Figure 2.16: AODV Route Request Figure 2.17: AODV Route Reply

The Ad Hoc On-Demand Distance Vector Protocol (AODV) [14] is an on-demand rout-
ing protocol for ad hoc networks and mobile ad hoc networks. It builds routes using a
route request (RREQ) and route reply (RREP) query-response cycle. Each RREQ con-
tains a source sequence number and a destination sequence number. The source sequence
number is an indicator of the route information freshness. Every node maintains an own
sequence number and increases it with every RREQ broadcast it originates. The desti-
nation sequence number denotes the last received sequence number of a destination node.

When a source node requires a route to a certain destination, it floods a RREQ packet
across the network, given a contiguous network topology. Any nodes receiving the RREQ
update their table entry for the source node and set up entries to the neighboring sender
node, if they provide the freshest and shortest path to the source node. Duplicate in-
coming RREQ’s are identified using the sequence numbers and are simply discarded.
If an intermediate node receives the RREQ, it sends a RREP if it has a fresh enough
routing entry to the destination of the RREQ in its table. It responds in place of the
destination node by unicasting a RREP towards the source to shorten the route discov-
ery process and limit the flooding. The RREQ is then not further forwarded. If the
intermediate node has no valid entry, it simply rebroadcasts and forwards the RREQ.
When the RREQ passes through and reaches the destination, the destination responds
with a RREP. If a later incoming duplicate of the RREQ proposes a shorter route to
the sender node, the destination node responds again by sending another RREP to the
corresponding node.
To keep their routing tables up to date with information about the current neighboring
nodes, AODV proposes to broadcast HELLO messages. HELLO messages are intended
to maintain local connectivity and are not forwarded, or optionally forwarded up to a
certain defined distance.

When a node detects a broken link while attempting to forward a packet to the next
hop, it generates a RERR packet that is either sent to the node previously having sent
the packet and is forwarded to the originating node, or to all neighboring nodes. The
RERR packet erases all route entries for this destination and serves as notification for
the link break. If a source receives a RERR packet and a route to the destination is still
required, it initiates a new route discovery cycle. Routes can also be deleted from the
routing table if they are unused for a certain amount of time (route aging).
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2.2.2 Dynamic Source Routing

Figure 2.18: DSR Route Request Figure 2.19: DSR Route Reply

Dynamic Source Routing (DSR) [15] is an on-demand routing protocol for ad hoc net-
works and mobile ad hoc networks. Like any source routing protocol, DSR includes the
full route in the packet header. Instead of relaying on a routing table, each intermedi-
ate node only needs to forward the packet to the next node on the route in the packet.
Intermediate nodes do not necessarily have to maintain local routing information, what
may be considered as an advantage compared to table-driven protocols.

When a node aims to send a message to a destination it has no route for in its route
cache, it broadcasts a route request (RREQ) message towards the destination, which is
in turn flooded across the network. The RREQ message includes the route specifying the
sequence of nodes the message has already traversed, as illustrated in figure 2.18, and a
sequence number generated by the source node. After reception of a RREQ, an inter-
mediate node checks to see if it is already contained in the route record. The sequence
number on the packet is compared to the respective numbers of recent RREQ’s in the
cache in order to recognize duplicates. If the receiver is already in the route record, the
intermediate node drops the message, in order to prevent routing loops. If not, and if
the packet is not a duplicate, it is forwarded and rebroadcast.
Intermediate nodes passively collect the routing information of the RREQ header in their
route cache for their own possible future use. When the destination receives the RREQ
from a source it has a route for in its route cache, it sends a route response (RREP)
message along this route.
Intermediate nodes may optionally use their route cache to reply to RREQ’s. If an in-
termediate node has a route to the destination in its cache, it appends the route to the
route record in the RREQ and sends a RREP back to the source containing this route,
in order to limit the flooding of the RREQ. However, if the cached route is outdated,
this can result in the source receiving inactive routes.

When a node detects a broken link while trying to forward a packet to the next hop, it
sends a route error (RERR) message back to the source along the same route. When
an RERR message is received by intermediate nodes and the source node, all respective
routes containing the broken link are deleted.
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2.3 Multipath Routing

Standard routing protocols in ad hoc wireless networks, such as AODV [14] and DSR [15],
are mainly intended to discover one single route from a source to a destination. During
the route discovery process, these protocols aim to find the best route that advertises
the lowest cost.
Multipath routing protocols aim to find multiple routes. Multiple routes can be useful
to compensate for the dynamic and unpredictable nature of ad hoc networks, suppos-
edly also in energy and bandwidth constrained sensor networks. Multipath Routing is
discussed in the context of both wired and wireless communication networks. It has
been proposed for application in the internet, in metropolitan and local area networks,
in wireless mobile ad hoc networks, as well as in wireless sensor networks.
Mueller and Ghosal discuss in [18] common goals, problems and recent suggestions for
multipath routing protocols in wireless ad hoc networks. We focus in this section only
on reactive multipath routing schemes. We begin by outlining the main benefits of mul-
tipath routing, discuss problems that may arise when applying such schemes to wireless
ad hoc networks and sensor networks and conclude with a brief overview of recent work
on multipath routing protocols in wireless channel networks, laying our focus on the
application in wireless sensor networks.

2.3.1 Benefits of Multipath Routing

Discovering and maintaining multiple paths requires a certain overhead, but yields con-
ceptual advantages. The following goals are typically addressed when applying multipath
routing schemes:

� Load Balancing: Multipath routing provides a means to avoid and resolve conges-
tion and to improve QoS characteristics. When certain nodes and links become
over-utilized and cause congestion, multipath routing can be applied to spread the
traffic over alternate paths, thereby balancing the load over both paths. In wireless
sensor networks, the main focus of multipath routing is typically on the load bal-
ancing aspect. As nodes are constraint to a limited amount of energy, and traffic is
expected to be low, the main concern is to keep the network operable for a maxi-
mum amount of time. In sensor networks, one has to deal with traffic generated by
many leaf nodes attempting to deliver data to one or a few sinks. Usual on-demand
routing schemes tend to utilize always the same set of nodes to forward packets,
whereas many other nodes stay unused. It has been observed that in such a case,
nodes that have to forward traffic from large subtrees drain much earlier due to
energy depletion, whereas other nodes have only slightly been used. When nodes
collaborate in the sensing and data forwarding activity more equitably, and pack-
ets are not always routed on the same routes, but balance the load over multiple
routes, network lifetime can be substantially increased.

� Fault Tolerance: Multipath routing protocols provide measures to increase the
degree of fault tolerance by having redundant information routed to the destination
over alternate paths. This increases the energy overhead, but helps to reduce the
probability that communication is disrupted and data is lost in case of link failures.
Sophisticated algorithms have been developed to increase the degree of reliability.
The trade off between the additional overhead and the reliability gain has been
subject to recent research [17]. As fault tolerance and reliability is not the main
topic of this thesis, we omitted further investigations on this issue.
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� Bandwidth Aggregation: By splitting data to the same destination into multiple
streams, each routed through a different path, the effective bandwidth can be
aggregated. This strategy is especially beneficial when a node has multiple low
bandwidth links but requires a bandwidth that is greater than each individual link
can provide.

� Reduced delay: For wireless networks employing single path on-demand routing
protocols, a route failure means that a new path discovery process needs to be
initiated to find a new route. This results in a route discovery delay. The delay
can be minimized in multipath routing, as backup routes can be identified and held
active during one single route discovery attempt. Furthermore, discovering several
paths and observing QoS characteristics of both paths permits to switch the load
to another route whenever the service parameters of another route promise better
throughput and lower latency.

In wireless sensor networks, the focus of multipath routing often lies on the load-balancing
or the fault-tolerance aspect, rather than on the aggregation of bandwidth. Often, the
goal of multipath routing protocols is to maximize the time the network is operable and
fulfills its observation task. A brief overview over concepts of network lifetime is given
in section 2.4.

2.3.2 Route Coupling

Using multiple paths in ad hoc networks to achieve higher bandwidth, balance load or
achieve fault-tolerance is not as easy as in wired networks. As nodes in the network
communicate through the wireless medium, radio interference must be taken into ac-
count. Transmissions from a node along one path may interfere with transmissions from
a node along another path, even if the paths are link- or even node-disjoint. The inter-
ference may limit the achievable throughput and lead to two paths hindering each other
in forwarding packets. This phenomenon is often referred to as route coupling. Route
coupling occurs when two routes are located physically close enough to interfere with
each other during transmission. As a result, the nodes in those two routes are constantly
contending for access to the same medium. The advantages of two routes being available
are therefore narrowed.
Pearlman et al. discuss in [19] that in wireless networks, route coupling caused by radio
interference between paths can have serious impacts on the performance of multipath
routing protocols, even if the paths are disjoint. In some cases, route coupling can even
lead to worse results than routing over one single path. The shared transmission medium
forces all nodes in the interference range of a sender to remain silent until completion
of a transmission, and the problem even gets worse when applying a RTS-CTS handshake.

Waharte and Boutaba [21] study the influence of route coupling in wireless channel
networks applying multipath routing, and distinguish between routes that have a) no
common collision domain, b) routes with a link connection in between and c) nodes shar-
ing a common node.

Figure 2.20: a) without
connection

Figure 2.21: b) link
connection

Figure 2.22: c) node
connection
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It is important to notice that node-disjoint paths, which are preferable in multipath
protocols, do not necessarily have to be of type a). Even if the nodes of the paths form
disjoint sets, each of the intermediate node might still be linked to nodes of another path,
thereby causing the problem of route coupling by tampering transmissions going on on
other routes. The authors conclude that paths of type a) produce the best throughput
results, as the common collision domain of the multiple paths is minimized to source
and destination nodes, and transmission along the path are independent to the largest
possible extend. [21] concludes that although a more efficient network utilization due to a
better load balancing can justify the use of a multipath routing strategy compared to single
path routing, the benefits of multipath routing in terms of throughput quickly vanish when
interference is accounted for.
The authors of [22] tend towards a similar conclusion. They argue that the common mul-
tipath protocols mainly find routes that are too close to each other to actually behave
much different than single path routing schemes, and conclude that to actually make
energy savings, multipath routes would have to make sure that traffic is routed along
routes that do not interfer with each other at all, which is - in most cases - illusional.
Factually, none of nowadays established and well-investigated proposals have considered
and incorporated the route-coupling phenomenon for effective load balancing.
Recent research has been pursued on the issue of on-demand construction on non-
interfering multiple paths in sensor networks in [20]. The proposed mechanism routes
packets along paths that have a gap of two transmission ranges in between. The mech-
anism however strongly relies on the position-awareness of the sensor nodes and the
knowledge of the position of the receiver.

2.3.3 Example Multipath Routing Protocols

2.3.3.1 Split Multipath Routing

Split Multipath Routing (SMR) [25] is an on-demand multipath source routing protocol.
As done in every source routing protocol, SMR includes the full route in the route dis-
covery control packet header. Intermediate nodes use the received routing information
to forward packets towards the destination, and to furthermore extract knowledge about
the network topology and build up a route cache containing routes to other nodes.
In general, SMR is quite similar to DSR, and aims to obtain maximally disjoint paths
by a classical Route Request - Route Reply query cycle. Unlike in DSR or AODV, the
intermediate nodes do not reply to incoming RREQ’s to shorten the RREQ query cycle,
as the destination shall receive all the routes, and select the maximally disjoint paths
that have the fewest links or nodes in common.
Duplicate RREQ’s are not always discarded. Instead, intermediate nodes forward all
incoming RREQ’s that are received through a different incoming gateway node. They
also forward RREQ’s when the hop count is not larger than the respective hop count of
previously received RREQ’s.
The SMR route selection algorithm is designed to discover two routes, but can be ex-
tended to find more than two routes, if there physically are. The destination sends a
RREP for the first RREQ it receives, which is expected to be the path with the shortest
delay. The destination node then waits to receive more RREQ’s. From the later received
RREQ’s, the path that is maximally disjoint from the first discovered path is selected. If
more than one maximally disjoint path exists, the shortest path is selected. If more than
one shortest path exist, the path whose RREQ was received first is selected. Finally, the
destination sends a RREP for the RREQ providing the best alternate path towards the
source, thereby establishing the full bidirectional route.
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2.3.3.2 Ad Hoc On-Demand Multipath Distance Vector Routing

The Ad hoc On-Demand Multipath Distance Vector Protocol (AOMDV) [26] is an ex-
tension to the AODV protocol for discovering node-disjoint or optionally link-disjoint
paths. It achieves to finds node-disjoint paths by exploiting a particular property of
flooding. By appending the first-hop to the RREQ header, and bookkeeping about the
first-hops of the recently received RREQ’s, nodes receiving duplicate RREQ’s by differ-
ent neighboring nodes can easily determine if the routes are node-disjoint. The first-hop
is the first node a RREQ traverses after the initiating source. To find node-disjoint
routes, nodes do not immediately reject RREQ’s. Each RREQ arriving via a different
neighbor of the source has another first-hop in the RREQ header, and therefore defines
a node-disjoint path. This is because nodes do never rebroadcast duplicate RREQ’s, so
any two RREQ’s arriving at an intermediate node via a different neighbor of the source
could not have traversed the same node. As in AODV, RREQ duplicates are discarded
in intermediate nodes. RREQ’s with equal destination sequence number, but incoming
from another gateway node are simply ignored in AODV, unless they provide a better
hopcount value. In AOMDV, intermediate nodes, as well as destination nodes do reply
to such RREQ’s if their first-hop is different from the one prior received, and reply to
them with RREP messages. Using this policy, AOMDV guarantees node-disjoint paths
whenever it takes up a second routing entry to the same destination. AOMDV further
allows to discover link-disjoint path by exploiting RREQ duplicates coming in at the
destination via different gateways. AOMDV [26] leaves the choice if the option shall be
used open to the implementer or even the user.

Figure 2.23: AOMDV Route Request Figure 2.24: AOMDV Route Reply

routing table node #1
dest next hops seq
8 3 3 37
8 2 4 37

routing table node #6
dest next hops seq
1 4 3 11
8 8 1 37

routing table node #8
dest next hops seq
1 7 3 11
1 6 4 11

Figures 2.23 and 2.24 illustrate the AOMDV mechanisms to find node-disjoint paths.
The illustration shows node 1 initiating a route request to node 8. The RREQ is flooded
over node 2 and node 3. There, the first-hop field is set accordingly. The RREQ’s
finally reach the destination node 8, where both incoming requests provoke new path
entries for the source node 1, as the incoming RREQ packets exhibit a different first-hop.
Furthermore, to establish the full bidirectional routes, both RREQ packets are replied.
Node 6 similarly receives two path RREQ packets over the two nodes 4 and 5. Both
RREQ’s however exhibit the same first-hop. Node 6 therefore knows, that the paths to
the source node advertised by these RREQ packets are not node-disjoint, and does not
add a second path entry.
To support multipath routing, the AOMDV route tables contain a list of gateways and
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hop counts for each destination node. The path entries to a destination have all the same
destination sequence number, as they have been obtained in one single RREQ-RREQ
query cycle. When receiving a path advertisement with a higher sequence number, all
routes with the old sequence number are removed.

2.3.3.3 Ad Hoc On-Demand Distance Vector Multipath Routing

The Ad Hoc On Demand Distance Vector Multipath Routing Protocol (AODVM) [27]
is another extension to AODV for finding multiple node-disjoint paths. In AODVM,
intermediate nodes are not allowed to shorten the RREQ and send a route reply to the
source, and duplicate RREQ packets are not discarded by intermediate nodes. For each
received copy of an RREQ message, the receiving intermediate node records the source
who generated the RREQ, the destination for which the RREQ is intended, and the
neighbor who transmitted the RREQ in the so-called RREQ table.
When the destination receives the first RREQ packet from one of its neighbors, it gener-
ates a RREP packet. The RREP packet contains an additional field last hop to indicate
the neighbor from which the particular copy of RREQ packet was received. This RREP
packet is sent back to the source via the path traversed by the RREQ copy, to establish
the full bidirectional route. When receiving duplicate copies of the RREQ packet from
other neighboring nodes, it sends RREP packets to each of these neighbors. Like the
first RREP packet, these RREP packets also contain the last hop that the correspond-
ing RREQ took. When an intermediate node receives an RREP packet from one of its
neighbors, it deletes the entry corresponding to this neighbor from its RREQ table and
adds a routing entry to its routing table to indicate the discovered route to the originator
of the RREP packet. By checking the RREQ table, the intermediate node figures out
the neighbor with the shortest path to the source and forwards the RREP message to
that neighbor. The entry corresponding to this neighbor is then deleted from the RREQ
table. As long as there is an entry in the RREQ-table, incoming RREP’s are forwarded
towards the source.

To ensure that nodes do not participate in multiple paths, nodes have to monitor the
outgoing traffic of their neighboring nodes. When a nodes overhears a RREP packet
emitted by a neighboring node, the corresponding entry is deleted from the RREQ ta-
bles. Because a node cannot participate in more than one route, the discovered routes
must then be node-disjoint.
In AODVM, the intermediate nodes make decisions where to forward the RREP mes-
sages. The destination node originating the RREP’s does not know if and how many
of these RREP messages actually get back to the source. Thus, it is necessary for the
source to confirm each received RREP message by means of a Route Confirmation mes-
sage (RRCM). The RRCM message is piggybacked on the first data packet sent on the
corresponding route, and optionally contains further information such as the hop count
of the route, or the first and last hop nodes.

2.3.3.4 Discovering and Maintaining Braided Paths

Ganesan et al. [24] consider the question how to construct the secondary paths which
are - in the optimal case - node disjoint, but focus their study on the question how to
keep the overhead as small as possible if only one node or one link in the network fails.
The authors argue that when a small number of multipaths are kept alive, failures on
the primary path can usually be recovered without invoking network-wide flooding for
path discovery. This feature is important in sensor networks since flooding is very costly
and can vastly reduce network lifetimes.
Node-disjointness is a very strong condition when aiming to find multiple paths between
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two nodes. It seems to produce rather inefficient and suboptimal paths in terms of
hopcount. Long detours around many nodes can be necessary to fulfill the condition
of node-disjointness. Alternate node-disjoint paths can become very long, and therefore
expend significantly more energy than expended on the primary path.
To overcome this problem, and yet retain the robustness advantages of multiple paths,
the authors suggest the construction of so-called braided paths. Braided multipaths relax
the requirement for node-disjointness. Such paths are only required to leave out some
of the primary path’s nodes. They are free to use other nodes on the primary path.
The authors propose to construct two different kinds of redundant paths - node-disjoint
paths and braided paths. Which of the two schemes to use shall depend on the failure
patterns. They measure the so-called path resilience as the percentage of paths that is
compensated by a so-called alternate path reinforcement to reconstruct a failing path.
The authors claim a overall better path resilience with the braided path approach.

2.3.3.5 Probabilistic Routing over Suboptimal Paths

When discovering and maintaining multiple paths from a source to a destination, it may
make sense also to occasionally use suboptimal paths in terms of hop-count that use more
energy for an end-to-end transmission than the optimal one. Traffic load can be spread
over multiple paths, which leads to more nodes participating in the forwarding process.
Using the lowest energy path for all packets is not necessarily best for the long-term
health of a sensor network, as important forwarders might drain out of energy first.

Shah and Rabaey [28] suggest a quite simple approach to probabilistically incorporate
suboptimal routes. Each node maintains an energy cost estimate for each of its path
entries. This cost estimate determines the probability that a packet is routed over this
certain path. If a node aims to transmit a packet to a certain destination it has multiple
paths for, it chooses the forwarding node according to a probability assigned to that
path. Each of the intermediate nodes do the same and forwards packets according to
the probability assigned to the different paths in their table, if there are more than one.
This is continued until the data packet reaches the destination node. The probability
assigned to a gateway Ni to destination Nj is weighted to be inverse proportional to
the cost over this gateway in relation to the sum of the costs of all known paths to this
destination. When aiming to transmit a packet to Nj , a node chooses the path over Ni

with the following probability:

PNj ,Ni
=

1
CNj,Ni∑

k∈FTj

1
CNj,Nk

Where FTj is the set of all path entries destined to Nj . Consider the routing table of
node 1 in section 2.3.3.3. Node 1 knows two paths towards node 8, with either nodes 3 or
2 as gateways with costs 3 or 4, respectively. When aiming to transmit a packet to node
8, the probability with which the packet is routed over 3 is P3,8 =

1
4

1
4+ 1

3
= 0.57 Using this

simple mechanism to send traffic over different routes helps in using the nodes’ resources
more equitably. The authors test the probabilistically weighted forwarding strategy in a
sensor network scenario, and measure the lifetime as the time to the first node depletion.
They claim an overall gain of ∼ 40% of network lifetime increase with this probabilistic
routing scheme. The authors argue that indeed, taking suboptimal paths occasionally
into account is strategy that pays off as nodes use their scarce resources more equitably,
which helps to disburden central forwarder nodes that would otherwise drain out of
energy first.
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2.4 Network Lifetime Metrics

There is no single answer to the question how we can measure the lifetime of a sensor
network. One has to make more assumptions about when the network can be considered
as operable and fulfilling its purpose and when not, or not anymore. There is no consistent
definition for the lifetime of a sensor network within the literature. Many researchers
have defined their own unique measures of network lifetime in their investigations on
different topics. Network lifetime must be defined for each application purpose of a
sensor network. In some cases, coverage is a very critical issue, and the depletion of one
single node may already make the network much lesser useful. In other cases, the loss of
half of the nodes might still be bearable. Node density and available redundancy usually
makes a big difference.
Karl and Willig pointed out the most common approaches in [23]. A brief overview
about the network lifetime metrics pursued in recent wireless network sensor lifetime
evaluations is given below.

� First Node Depletion: One simply measures the time between deployment and
initiation of the sensor network and the first depletion of a sensor. This approach
is easiest to implement. A big part of the publications on wireless sensor network
MAC and routing schemes that target at lifetime-optimization defines network
lifetime in this manner, especially when coverage is a big concern, and not much
redundancy is supplied. In many other applications, this definition makes fewer
sense. When dealing with wireless sensor networks with countless redundantly
deployed nodes, the loss of one node can be considered irrelevant.

� Network Half-Life: Fewer publications defined the network lifetime as the time
until 50% of the nodes drain out of energy. Applying this metric opens the prob-
lem how to continue when a network gets partitioned into disjoint sets without
any interconnection. In some cases, one would expect such a network not to be
operable any more. But if one considers that recollecting the nodes is possible, and
no in-time-delivery of data is necessary, this metric makes sense. In other cases,
researchers proposed to measure the time to the depletion of the first 10%, 20% or
else percentile of nodes as a metric for the network lifetime.

� Network Partition: The time to the first network partition has also been suggested
as a network lifetime metric. One measures the time until the network is split into
two or more disjoint network partitions due to the depletion of pivotal intercon-
necting nodes. This measure is very dependent from the network toplogy. If there
are a few bottleneck nodes that connect two or more clusters of nodes, the measure
might indicate the network as dead very early, whereas in robust topologies with
many redundant nodes, it might take much longer.

� Hybrid Metric: Hybrid definitions of the upper conditions can also be found in the
literature on sensor networks. Some researchers defined the lifetime as the time until
some percentile of the nodes depletes or the network becomes partitioned. When
there is only one sink, a network partition immediately leads to one partition of
nodes that is no longer in reach of the sink and can thus not forward data anymore.

Obviously, defining the network lifetime is a critical task. If the performance of different
sensor network mechanisms is measured, simulations should be carried out with different
network lifetime metrics, in order to omit that the obtained results are not a consequence
of the scenario setup and the chosen the lifetime metrics. Applying different metrics
underlines and proves the robustness and significance of the obtained results.
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2.5 Convergecast and Data Aggregation

Data aggregation techniques have been heavily examined in the past few years. Data
aggregation and in-network-processing are nowadays established paradigms for wireless
sensor networks. Data from remote stations can be preprocessed or aggregated in inter-
mediate nodes, in order to eliminate redundancy, minimize the number of transmissions
and thus save energy. Incoming messages from different stations can be converged to
save some MAC and routing headers transmission overhead. Several suggestions propose
to preprocess data on the application level, such that intermediate nodes filter, extract
and compact application layer data to minimize the transmissions. There have been sug-
gestions for intelligent query dissemination, where queries are flooded and disseminated
in the network, and responses are aggregated and preprocessed by intermediate nodes.
Finally only the results are transmitted back to the sink.
There are many different approaches to tackle the data aggregation and preprocessing
problem. Data aggregation can generally be considered as an optimization problem. In
[32], the authors define a model with several constraints, an initial energy endowment
and costs for every transmit/receive operation. The authors then calculate an optimal
solution by means of a linear programming approach, which however relies on the as-
sumption of global knowledge about every node’s position and energy supplies.
In the following, we briefly discuss two approaches of data aggregation techniques. The
first approach proposes to first get a complete picture about the network topology at one
central node, then propagate schedule assignments to every leaf node in case of broadcast-
initiated convergecast traffic. The second approach is of more distributed nature, and
consists in nodes independently aggregating data packets and buffer them for a while
before sending it further.

2.5.1 Tree-based Convergecasting

Figure 2.25: Tree-based Convergecasting

Several protocols schedule transmissions along a spanning tree in order to avoid collisions
and interferences. As shown in [30], the problem of minimizing the total transmissions
along a minimum spanning tree is assumed to be NP-hard. Gupta et al. proposed a
mechanism in [31] to construct a spanning tree. The mechanism assigns schedules for
each link, aiming to minimize the total delay in a broadcast-convergecast query. The
heuristic Convergecasting Tree Construction and Channel Allocation algorithm is run by
the root node and assigns to each node a schedule in a breadth first tree traversion for
collision free convergecasting. The mechanism focuses and relies on the communication
pattern of a initially injected broadcast query and a convergecast of the responses of all
leaf nodes of the network. The mechanism is not intended for event-based traffic, where
nodes independently initiate data transmissions.
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2.5.2 Data Combining Entities

Figure 2.26: DCE nodes combining and aggregating data

Schurgers et al. [29] discuss the introduction of so-called Data Combining Entities (DCE).
DCE nodes are designated nodes behaving different than the other neighboring nodes.
They buffer incoming messages and wait for a certain predefined time interval before for-
warding them. They wait for other incoming packets with the same destination. When
more packets arrive, DCE nodes combine the payload or even preprocess the payload on
the application layer, and forward them together as one packet to save the header over-
head. This approach introduces new delays when buffering the packets. It may depend
on the application type whether the increase of delay is tolerable in order to save some
energy and maybe prolong the lifetime or not.
The choice of appropriate DCE’s in a network may by achieved by sophisticated algo-
rithms to figure out spots with high incoming traffic and high fan-in. As pointed out
by Karl and Willig in [23], aggregation should happen close to the sources, and many
sinks should be aggregated as early as possible. As the problem to find these nodes
along a minimum spanning tree is also known to be NP-hard and implies total topology
information in one node, searching for optimal aggregation points might become a costly
issue.

Figure 2.27: Energy consumption
with increasing traffic

Figure 2.28: Delay with increasing
traffic

Figures 2.27 and 2.28 depict the results of the examinations in [29] when applying node-
to-sink traffic of increasing rate to a wireless sensor network scenario with no, one or more
DCE nodes. As expected, the mechanism allows to improve the energy efficiency. The
total energy consumption decreases for the same traffic with more DCE nodes deployed,
at the cost of an increasing end-to-end delay introduced by the buffering.
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Chapter 3

Experimentation Testbeds

3.1 Network Simulator Environment

We simulated different wireless sensor network scenarios with the OMNeT Network Sim-
ulator [34] and the Mobility Framework from TU Berlin [35]. The Mobility Framework
is a framework to support simulations of wireless ad hoc and mobile networks on top
of OMNeT. This framework incorporates a sophisticated transmission model which is
based on calculation of SNR (Signal-to-Noise Ratio) and SNIR (Signal-to-Noise-and-
Interference Ratio) values according to a restricted free space propagation model.

The energy consumption model is based on the amount of energy that is used by the
transceiver unit. With the parameters below, we do not take processing costs of the CPU
into account. Each node’s energy consumption is calculated in respect to the time and
input current that the nodes spend in the respective operation modes idle/recv, trans-
mit and sleep. Furthermore, state transition delays are incorporated to model the state
transition lag and the respective costs.
In a later investigation on the sensor testbeds, we determined the relation between the
energy consumption in the different transceiver states which deliver a more realistic en-
ergy model of the ESB nodes. The parameters are listed in section 3.3. If not explicitly
mentioned, the simulations base on the parameters below.

simulation parameters
path loss coefficient α 3.5
carrier frequency 868 MHz
transmitter power 0.1 mW
SNR threshold 4 dB
sensitivity -101.2 dBm
sensitivity carrier sensing -112 dBm
communication range 50 m
carrier sensing range 100 m

3.1.1 Signal Propagation Model

The Mobility Framework [35] bases on a so-called Free Space Propagation Model, which
calculates the received power Pr on a node at distance d to

Pr(d) =
Ptλ2

(4π)2dα

where Pt is the transmitted signal power, λ the wavelength of the signal and α the path
loss coefficient. If the signal-to-noise (SNR) ratio of the received signal is above a certain
threshold, it is assumed that the station can successfully recognize the emitted signal.
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As signal dispersion is circular and equal in every direction, all receivers are within a
circular transmission range. If there is no other transmission going on in their vicinity
and the signal-to-noise ratio is above the threshold during the entire packet transmission,
stations within this range correctly receive all frames. The stations out of this range also
receive the signal according to the upper equation, but the frames are assumed to be
unrecoverable. The received signal then only contributes to the noise level.
The radio propagation model does not take multipath propagation or doppler effects into
account, but allows to adjust the path loss coefficient α. Recent examinations of the signal
attenuation in IEEE 802.11-based networks [36] conclude that a path loss coefficient
between 3 and 4 is most suitable to model wireless propagation in office buildings and
outdoor areas. We based our simulations on a path loss coefficient of α = 3.5, as many
other sensor network simulations base their model on the same or similar values.

3.1.2 Energy Model / Transceiver Model

For performance-evaluation of power-saving MAC and routing approaches, one has to
carefully model the transceiver’s energy consumption in its respective operation modes
and state transition phases, as well as the transition delays and their respective costs.
Feeney and Nilsson model the energy consumption of a IEEE 802.11 wireless device in
[38] in respect to the transceiver states sleep, idle, receive and transmit. They assume
that the per-packet energy consumption can be modelled as

Energy = m× size + b

Their model assumes a fixed component b associated with transceiver state changes and
channel acquisition overhead (contention mechanism) and an incremental component
which is proportional to the size of the packet. The experimental results in [38] confirm
a quite high accuracy of the linear model.
The investigations conclude with average values for the power consumption in the differ-
ent transceiver states. The authors measure 10 mA for the sleep state, 156 mA for the
idle state, 190 mA for the receive state and 284 mA for the transmit state. The differ-
ence between idle and receive state results from the signal processing on the transceiver
circuitry. If the received signal strength indication (RSSI) falls beneath a certain thresh-
old, IEEE 802.11 wireless devices consider the medium as idle and do not attempt to
reconstruct the signal.

Many low-power and low-bandwidth transceivers used in sensor networks are of very
low complexity. Many of them do not even incorporate a digital RSSI indicator. In
most cases, the energy consumption in idle and receive mode is approximately equal.
The TR1001 transceiver [44] as an example uses the same amount of energy when in the
receive state, whether it is receiving a frame or not. It constantly tries to reconstruct
a signal, even if there is only Gaussian electromagnetic noise in the channel. When
only examining the transceiver’s energy cost, and not the processing cost of the micro-
processing unit or on-chip signal-processing, one can neglect to distinguish between idle
and receive states, as done also in several other investigations on wireless sensor MAC
protocols, such as WiseMAC [5] or T-MAC [7]. We sticked to an energy consumption
and state transition model with three operation modes sleep, receive and transmit, and
applied the respective energy consumption values and state transition delays of the man-
ufacturer [44]. The following table highlights the input current and the state transition
delays of the simulations in the next chapter.

28



supply voltage: 3 V

current:
send 12 mA
recv 4.5 mA
sleep 5 µA

state transition delays:
recv to send 12 µs
send to recv 12 µs
sleep to recv 518 µs
recv to sleep 10 µs
send to sleep 10 µs

The energy consumption during the state transition is assumed to be equal to the con-
sumption of the respective costlier state, i.e. when switching from sleep to receive, the
cost during the 518 µs is equal to the same amount of time spent in the receive state.
During the switch however, the node does neither emit or receive anything. To success-
fully receive a frame, a node must be in the receive state from frame start until frame
end. Switching to receive in between a frame is treated as erroneous transmission.

As the simulation scenarios were chosen not to last more than a couple of hours, we
decided to renounce on a battery model that takes self-discharge into account. The sum
of the energy consumption therefore simply equals the sum of the energy spent in the
respective states.

3.1.3 Clock Drift Model

Sensor nodes are equipped with digitally controlled oscillators (DCO units). DCO make
use of a crystal quartz oscillator, an electronic circuit which utilizes the resonance of
a vibrating crystal to create a signal with a very precise frequency. Quartz oscillator
clocks are still prone to a certain impreciseness, as the frequency slightly depends on
environmental influences like temperature, vibration, pressure and magnetic fields.
Clock drifts are measured in quartz frequency tolerance θ, the respective values are given
in parts per million (ppm), where 1 ppm equals an imprecision of 10−6 sec/sec. The lower
the frequency tolerance, the more precise the clock. A quartz oscillator usually has no
more than 10−20 ppm, which roughly sums up to one second a day. The SaRonix quartz
oscillator for example claims to feature a frequency tolerance no more than ±20 ppm in
the datasheet [41]. We assumed a clock drift of 30 ppm as a realistic choice for a sensor
network node’s hardware clock. The clock drift at the sender and receiver are assumed to
be independent. This assumption is pessimistic, as the quartz inaccuracy is often related
to the device temperature and aging, two parameters that are likely to be correlated
between the nodes in a network.
The behavior of clock drifts is most easily modelled as univariate random walk process.
There are different clock models proposed in literature, but sticking to the random walk
is quite usual for networking simulations, as discussed quite frequently in the OMNeT
[34] mailing list and certainly in other network simulator communities as well.
The mathematical and statistical properties of this clock model actually fits quite well
when comparing with measured clock drifts in practice. In each timestep, a clock drifts
away from the real time by a randomly distributed value. The model assumes that the
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node’s clocks develop individual clock drifts dnode after n seconds from the simulation
start in relation to the real time. The drift of a node’s clock after n seconds therefore
calculates as follows:

dnode =
n∑

i=1

Xi where Xi ∼ uniform [+θ,−θ]

where θ denotes the oscillator clock drift in ppm per seconds. The node’s respective clock
drifts are assumed to make one node’s estimation for its neighbors sampling pattern more
and more inexact with every timestep since the last relative wake-up pattern exchange.
Having two nodes A, B, the relative drift between the clocks dAB calculates as

dAB =
n∑

i=1

XAi −
n∑

i=1

XBi

with mean

E(dAB) = E(
n∑

i=1

XAi −
n∑

i=1

XBi) =
n∑

i=1

E(XAi)−
n∑

i=1

E(XBi) = 0

and variance

V (dAB) = V (
n∑

i=1

XAi −
n∑

i=1

XBi) = V (
n∑

i=1

XAi) + V (
n∑

i=1

XBi) = 2nσ2

Don Percival proposes in [39] a model with the same statistical properties in the first
two momentum’s (mean and variance), namely a zero-mean and a linearly increasing
variance.

Figure 3.1: Random walk clock drift instances A, B, C compared to the real time

Figure 3.1 illustrates three instances of clocks A, B, C modelled as random walk processes.
The difference to the zero-level, which is indicated by the black line, illustrates the drift
between a clock and the real time. The relative drift between two clocks, as evaluated
in the analytical discussion above, corresponds to the difference of two curves.
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3.2 Embedded Sensor Boards

Simulation tools are a valuable, manageable and yet cheap test- and playground for eval-
uating wireless sensor network mechanisms. Simulation tools provide essential insights
when developing and evaluating network system mechanisms, yet they are constrained to
an artificial horizon. The environment they model is in any case a simplified one. Rea-
soning over improvements in wireless MAC mechanism design and simulating efficiency
gains is much easier than realizing and proving them on hardware prototypes.

The simulation described in 3.1 is an attempt to model a wireless sensor network, with
respect to effects of signal dispersion, environmental noise, bandwidth limitation, energy
constraints, clock drifts and much more. Yet, many other aspects that may play a role for
wireless sensor networks are still left aside. The inherently unreliable wireless channel for
instance is not accounted for appropriately. Problems with multipath dispersion, refrac-
tion and scattering are not modelled at all. Interferences with other devices (i.e. GSM
cellphones), with electromagnetic noise in general and many other issues are untouched.
Only measurements on real hardware make sure that all influences and side effects are
taken into account. In order to examine the serviceability and robustness of simulated
wireless sensor network mechanisms, a prototype implementation on real sensor network
hardware is indispensable. We therefore ported the original WiseMAC mechanism and
the most promising mechanisms proving substantial efficiency gains on the MAC layer,
as well as an on-demand routing scheme to the Embedded Sensor Boards (ESB), a sen-
sor hardware testbed. ESB’s as well as the Sensor Node Operating System ScatterWeb
have been developed at Freie Universitaet Berlin as part of the ScatterWeb project [43].
The nodes are nowadays shipped by the spin-off company ScatterWeb GmbH [42]. The
company subsequently works on improving and updating the tools for application devel-
opment and programming. The company also distributes the ESB nodes industry line
which is aimed for use in industry automation, geoinformation systems, logistics and
facility management.

The following sections discuss the properties of the hardware testbed, and introduce
to the challenges that had to be met with the implementation.
The upcoming chapters discuss results of experiments with simple network scenarios car-
ried out on the simulator and the ESB platform, and address the relationship between
simulation results and experiment results.

Figure 3.2: Embedded Sensor Board (ESB)
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Figure 3.2 shows one of the sensor nodes used. Each ESB is equipped with a micro
controller MSP430 and various sensors and communication interfaces:

� 868.35 Mhz Wireless Transceiver

� Infrared sender/receiver

� Motion sensor (passive infrared sensor)

� Luminosity sensor

� Temperature sensor (integrated with Real-time clock)

� Vibration/Tilt sensor

� Microphone/Speaker

� Button

A RS-232 interface allows to connect the node to a personal computer and read and write
to the command shell interface of the ScatterWeb Operating System at a rate of 115.2
kbit/s. The parallel interface of the ESB utilizes a JTAG interface (IEEE 1149.1) which
allows flashing and real-time program debugging. Monitoring of variables and registers
is possible using the debugger of the MSP430-gcc toolchain [46].

3.2.1 MSP430 Microcontroller / TR1001 Low Power Transceiver

Figure 3.3: Modular architecture of
the MSP430 microcontroller

Figure 3.4: On/Off-keyed
modulation (OOK)

The microcontroller MSP430 from Texas Instruments [45] is well suited for wireless radio-
frequency applications and battery operated scenarios. The 16-bit RISC CPU with only
27 basic instructions is designed for application where low cost and low power consump-
tion are important. The CPU consists in a 16-bit arithmetic logic unit, 16 16-bit internal
registers and a control unit. The CPU offers five low power modes LPM0-LPM4 with
decreasing tact frequency and energy consumption. Waking up the CPU from the energy
saving modes is possible via interrupts.
The 16-bit address space allows to address 60 kbyte + 256 byte flash ROM memory and
2 kbyte RAM. 64 kbyte of EEPROM are available to store large amount of data. In
order to communicate with the radio transceiver, one of the two universal synchronous-
asynchronous receiver/transmitter (USART) of the MSP430 micro-controller is used.
The other USART is used for the RS232 interface.
The MSP430 comes with a sophisticated watchdog solution to recover from program
crashes and endless loops or other logical errors. The watchdog consists in a timer and
control register. If everything works fine, the operating system periodically updates timer
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and control register of the watchdog. If this is not done within a certain predefined time
interval, the watchdog automatically resets the CPU. This typically happens when a
program or the OS crashes, is locked or got stuck in an endless loop.

ESB nodes are equipped with RFM TR1001 [44] wireless radio transceiver chips. The
TR1001 hybrid radio transceiver is designed for short-range wireless communication, and
is suitable for applications where small size, low power consumption and low cost are de-
sired. The transmitter includes provisions for both on-off keyed (OOK) and amplitude-
shift keyed (ASK) modulation and operates in the license free band at 868.15-868.55
MHz. The ScatterWeb OS per default uses OOK modulation at 19’200 kbps.

OOK is often referred to as simplest digital modulation scheme with very low imple-
mentation costs [50]. OOK simply turns the signal on and off for bits to send ’1’ and
’0’, respectively. Between each of the data pulses, transmitter output is turned off com-
pletely, which explains and justifies the use of OOK in low-power transceivers where
conserving power is important. The disadvantage of OOK arises in the presence of an
undesired signal, where noise is often misinterpreted as ’1’.
The transmission range of the TR1001 heavily depends on the environment. On a plain
field without interferences, transmission within a range of up to 300 m is possible. Inside
buildings, obstacles like concrete walls and furniture have a vastly reduce the transmission
range. Reflection, refraction, multipath propagation, and echo effects decrease the range
where nodes are reachable with a sufficient reliability and no bit errors. Nodes are typ-
ically not reachable beyond 50 m in buildings. Devices interferring with the transceiver
(i.e. IEEE 802.11 devices, GSM cellphones, electronic devices in general) can decrease
the transmission range or can temporarily tamper ongoing transmissions, resulting in
packets that are not received or received with errors in the checksum.
Power consumption is much lower in the sleep mode than in receive and transmit modes.
Almost all wireless radio devices for the input current are listed in section 3.1.2. Further
technical information can be found on the technical datasheet of the manufacturer Radio
Frequency Monolithics [44].

3.2.2 Power Consumption

The Embedded Sensor Boards integrated circuit aims for least possible power consump-
tion. The ESB is intended to be run with 3 AA-batteries or an external power source, like
a mains adapter, a solar panel or a capacitor. The input voltage has to be in the range
of 3-5 V . The embedded voltage controller of the ESB then tailors the input voltage to
3V . The different sensors and the communication interfaces can be turned on and off.
Depending on the operation mode of the sensors and the microcontroller, the ESB nodes
have different energy consumption levels:

� Average power consumption for the ESB running with all communication interfaces
is 45 mW .

� When all sensors are turned off and the TR1001 transceiver module ESB is trans-
mitting data, power consumption is 29 mW in average.

� With every sensor turned off and the CPU in power down mode, power consumption
does not exceed 24 µW. Unfortunately, the deep sleep mode is not yet supported
by ScatterWeb OS. Up to today it only supports the LPM1 low power mode.

� With all sensors shut off and radio in sleep mode and the CPU in LPM1, the ESB
still consumes roughly 14 mW .
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3.2.3 ScatterWeb Sensor Operating System

The ScatterWeb Operating System is a very small and simple sensor operating system,
consisting in ∼ 7000 lines of C code. It uses static memory allocation and provides no
abstraction for large amounts of data on external devices, such as a file system.
ScatterWeb is well documented and the source is open to a large extend. In contrast
to desktop computer operating systems, ScatterWeb OS is not segmented into core and
application. System and applications share the same address space, there’s no separation
into privileged operating system mode and user mode. All code files are compiled into
one single ELF binary file and then loaded to the node’s ROM memory.
The control flow of the ScatterWeb OS core is a quite simple never-ending loop function
named superloop that calls handler-functions if there is something to do and goes to the
sleep mode LPM1 if not. The core is contained in the source file ScatterWeb.System.c
and summarizes how the ScatterWeb OS mainly works. It contains the main()-function
which is executed when booting the node. After some hardware initialization steps, vari-
able and buffer initializations, ScatterWeb OS straightly heads to the so-called superloop,
which is listed in Figure 3.5.

for(;;) {
System startWatchdog();
// Starts & resets the watchdog, long procedures should call
// stop watchdog, else MSP will reset.
if(runModule & MF SCOS) Threading eventHandler();
// Radio tasks.
if(runModule & MF RADIO RX) Net rxHandler();
if(runModule & MF RADIO TX) Net txHandler();
if(runModule & MF TIMER) Timers eventHandler();
// Callback for serial line
if(runModule & MF SERIAL RX) {

extern volatile UINT8* serial line;
if(serial line != 0) {

if(callbacks[C SERIAL]) callbacks[C SERIAL]((void*)serial line);
}

}
if(runModule & MF SENSORS)
if(Data sensorFlags != 0x00) Data sensorHandler();
if(runModule & MF RC5) Data RC5ReceiveHandler();
dint();
if(runModule==0) {

System stopWatchdog();
eint();
LPM1;

} else
eint();

}

Figure 3.5: ScatterWeb Operating System superloop

The superloop contains the System startWatchdog() function call which resets the timer
register for the watchdog. If the program gets stuck in a loop during the following state-
ments of the main-loop, the watchdog timer runs out and causes the system to be reset.
The variable runModule serves as status and flag variable and is used to signalize pending
tasks. Some bits of the variable can be set to in an interrupt-service routine, i.e. when a
sensor has sensed an event. In such a case, the sensor triggers an interrupt. The interrupt
service routine sets the MF SCOS -bit and wakes up the CPU from the sleep mode. The
CPU will then execute the main loop and handle the event in Data sensorHandler().
A very similar procedure is followed for sending and receiving packets, and for handling
timer events (in Net rxHandler(), Net txHandler(), Timers eventHandler()). When all
handler flags are checked, the watchdog is stopped and the microcontroller goes to the
low-power mode (LPM1) again, until the next interrupt starts the main loop.
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As the ESB nodes only offer 64 kbyte of memory, thereof only 2 kbyte RAM, the Scat-
terWeb OS has to get along with a very simple model of concurrency. Real multitasking
would consume large parts of the memory resources. Each process would need its own
stack and because it in general is hard to know in advance how much stack space a
process needs, the space for the stack typically would have to be allocated in advance. A
classical multitasked concurrency model would also require complex locking mechanisms
to prevent concurrent processes from modifying shared resources.
To provide concurrency without the need for allocating costly stacks for every process
and costly locking mechanisms, event-driven systems have been proposed in [48] and [47].
In event-driven systems, processes are implemented as events that run to completion. All
events us the same stack, effectively sharing the memory between all processes. Com-
plex locking mechanisms are not necessary. ScatterWeb similarly follows an event-based
approach with a simple cooperative scheduler for pending events. In ScatterWeb OS,
control heads to the handler function Threading eventHandler() which runs eligible and
waiting events in the main loop. Once an event is handled, it is not preempted by other
events.
The problem of event-driven operating systems is that long computations can completely
monopolize the CPU, making the system unable to respond to external events. This phe-
nomenon can be observed with the ScatterWeb OS. If an event requires some more time
to be handled, as costly computations are necessary, the CPU is completely monopo-
lized and all other events have to wait. ScatterWeb Timers will not be executed before
the computation ends. One will need to periodically reset the watchdog timer register
inside the computation code, such that the watchdog does not reset the system before
completion of the computation.

3.2.3.1 Transmitting and Receiving

Figure 3.6: Manchester Encoding as applied by ScatterWeb

Transmitting and receiving via TR1001 wireless transceiver is interrupt-driven in Scat-
terWeb. The two main interrupt service routines radio rx isr() and radio tx isr() are
called every time the radio transceiver receives or sends one byte in an interrupt-driven
handshake. When transmitting, the CPU starts the interrupt loop radio tx isr() by set-
ting status bits of the TR1001, causing it to turn to the transmit state. In radio tx isr(),
the previously buffered packet contents are read out one byte after the other and written
into the TXBUF register of the TR1001. The TR1001 reads the register contents and
emits the corresponding signal. It then notices the successful transmission to the CPU
by triggering again the radio tx isr() routine via interrupt. The routine is then called
for every byte until the end of the frame is reached. The end of transmission is signalled
by setting certain status bits in a TR1001 internal register. When operating with 19’200
kbps, the periodic call to radio tx isr() takes place approximately every 417 µs.
Receiving is similar. The TR1001 triggers the interrupt service routine radio rx isr()
each time a byte is received. It keeps triggering radio rx isr() with every byte received,
so again every 417 µs. The routine reads out the bytes from the RXBUF register of the
TR1001 and buffers the bytes into a receive buffer, continuously calculating the check-
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sum. It finishes and sets flag variables when reception is over and saves whether the
checksum matches or not. The radio rx isr() routine then awakes the CPU from the low
power mode LPM1. In the superloop, the system will notice when reading the runModule
variable that there has been a frame reception and will interpret the status codes and
handle the received frame.

Frame start is determined by a sequence of certain startbytes, frame length by the length
indication in the frame header. When starting transmission, a certain well-defined se-
quence of bytes is being sent in order to announce the upcoming frame transmission. On
the receiver side, the received bytes are read out of the RXBUF register and compared
to the predefined startbyte sequence. If the startbyte sequence does not match, the node
considers the received bytes to be noise. If the sequence of received bytes one after the
other matches, frame reception starts and all upcoming received bytes are buffered.

If many ’1’ or ’0’ bits are sent in a row, the receiving oscillator can loose the tact and
might not receive the bit sequence correctly. Long ’1’ and long ’0’ sequences impose a
higher probability of transmission errors. In order to avoid long equal bit strings, Scat-
terWeb logically maps every byte to two bytes with the Manchester Encoding algorithm,
as depicted in figure 3.6. Manchester Encoding makes sure that long bitseries do not
occur. Each bit is encoded as a change in level, rather than a single bit. A ’1’ is encoded
as a low followed by a high (’01’), and a ’0’ is encoded as a high followed by a low (’10’).
It is important to notice that with Manchester Encoding, the transmission rate is halved.
The actual transmission rate of the ESB using OOK modulation is reduced from 19’200
to 9’600 bps.

3.2.3.2 Transceiver Switches

Figure 3.7: Switching from receive (RX) to transmit (TX) in ScatterWeb

When switching from receive state into transmit state, or from sleep state to receive
state, certain control-bits of the TR1001 have to be set inside the radio rx isr() and
radio tx isr() routines. The transceiver itself needs some time to switch to the respective
states, as documented in the table 3.1.2, ranging from 10 µs to 518 µs. But in reality,
this switch takes much longer. When switching from receive to transmit for instance,
radio rx isr() first sets some status bits, signals transmission start with 0xFF to the
USART interface, and then starts tuning the radio with up to 5 preamble bytes and
finally begins with the start byte sequence that is necessary for the receiver to detect
the frame start. The different steps are illustrated as a finite state machine in figure 3.7.
As each isr-cycle takes 417µs, a switch takes about 8 times 417 µs, and adapting the
procedure to WiseMAC specific settings led to 3-5 ms turnaround time.
While switching from the receive to the transmit state, it is not possible to listen if the
medium is busy. During this vulnerable switching time, another node’s frame start can
not be detected - collisions can therefore occur even if the medium has been sensed idle
before transmission start.
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3.2.3.3 Carrier Detection

The TR1001 hybrid transceiver [44] is not equipped with a digital RSSI. Instead, only
the last received power rxpValue can be read out from the TR1001 internal register
ADC12MEM5. This value corresponds to the last measured signal level, and varies
heavily between single bits, especially with the simple OOK modulation scheme. Newer
transceiver chips calculate digital RSSI values over a sliding window of many measure-
ments. This process is performed on-chip using low noise amplifiers filtering the magni-
tude of the signal to produce a filtered RSSI indication with low variance.
Because the received power value varies so heavily with the signal modulation, it is not
a good indicator for carrier detection. ScatterWeb CSMA therefore only partly makes
use of this value and relies the carrier detection merely on a software-based solution.
It exploits the reception of the startbyte sequence in the radio rx isr() routine. When
detecting a frame start with the predefined startbytes, the variable cdCounter is incre-
mented and the packet that may be destined to another station is overheard. When
reaching the frame end, cdCounter is set back to zero. In every loop of radio tx isr(),
cdCounter is decreased stepwise by one, thereby reaching zero sooner or later. This is a
security mechanism that makes sure that the carrier detection sooner or later considers
the medium to be free in case a frame start has been detected and the corresponding
frame end would somehow have been missed. The variable cdCounter therefore serves
as carrier detection for the radio tx isr() routine. If cdCounter is greater than zero, the
routine considers the carrier to be busy and backs off to avoid collisions. A value of zero
indicates that the medium is free.

Yet it is still possible that a frame start is not detected, for instance when a node is
turning on its transceiver inside another node’s frame transmission. Such a node might
attempt to transmit and interfer with the ongoing transmission. To achieve a more pow-
erful and reliable carrier detection, ScatterWeb exploits the received power value of the
TR1001. It periodically reads the received power value rxpValue out of the transceiver
register ADC12MEM5 in a separate interrupt service routine called every 120 µs. In
each isr call, rxpValue is compared against a maximum receive power threshold Config-
uration.rxReceiveLimit if the variable cdCounter has reached zero, what indicates that
the node considers the carrier to be free. If the maximum receive power threshold Con-
figuration.rxReceiveLimit is exceeded, ScatterWeb increases the cdCounter variable and
thereby again considers the medium to be busy for at least 13 isr-cycles. The following
code snippet in Figure 3.8 illustrates this principle. However, as a single measurement
of the value rxpValue is not a good indicator for the carrier state, the periodically called
routine ADC12ISR() only aims to bridge the gap of unrecognized frame starts and the
detection of transmission noise from farther away stations. The mechanism only prevents
that nodes imprudently access the medium when the received power is above the security
threshold Configuration.rxReceiveLimit.

interrupt(ADC VECTOR) ADC12ISR() {
rxpValue = ADC12MEM5; // Important as this will reset the IFG.

// Test if CarrierDetect and not already inside a packet.
if(rxpValue > Configuration.rxReceiveLimit && cdCounter==0) {

cdCounter = 13; // Packet start should be detected within next 13 bytes.
}

}

Figure 3.8: Carrier detect in ScatterWeb
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3.2.4 Measurement Methodology

Figure 3.9: ESB with 1F-GoldCap
capacitor Figure 3.10: ESB operation modes

Measuring the current of a small device such as the Embedded Sensor Boards can be
done within some imprecision using a cathode-ray oscilloscope. Such a device is available
at the Institute of Applied Physics of the University of Bern. But unfortunately, these
oscilloscope devices are not intended to record and sum up the current and the energy
consumption over a longer period of time. They are intended to measure the energy
consumption in one certain instant.
Equipping all nodes with replaceable or rechargeable AA batteries is not a suitable ap-
proach, as measurements of the capacity of customary batteries have shown that the vari-
ance can be huge. The capacities of rechargeable batteries that have just been charged
up also vary heavily, especially if some of them are new and some have already been
used during many charging cycles. It is furthermore too impractical to use batteries or
rechargeable batteries to make lifetime and energy-consumption measurements. With
energy-saving sensor nodes, the respective lifetimes can last for days or weeks or even
months.

We sticked to a a well-tested and established measurement methodology to investigate
on the energy consumption of the ESB nodes. The methodology was already applied
by the developers of the ESB in [52] and likewise used in the investigation on different
MAC protocols in [51]. The methodology uses so-called Gold-Cap Capacitors. GoldCap
Capacitors are a special kind of capacitors that come with high capacity of 1 Farad in
our case. These devices can be charged quite quickly and power a sensor node for a rea-
sonable amount of time. A 1F GoldCap Capacitor stores up to 15 Joules at a charging
voltage of 5.5 V.

The actual absolute value of the nodes’ energy consumption is of not much importance in
our experiments. We mainly focus on the comparison of different selected mechanisms.
The upcoming chapters and sections investigate on the power consumption of different
MAC mechanisms using the lifetime of the nodes as an indication for the energy con-
sumption. When being charged with the same initial amount of energy, a node with
a lower overall energy consumption can life longer on the energy it is equipped with.
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This allows to compare the energy consumption of our own implementation prototype
with pure CSMA that does not incorporate any periodic switching between the costly
transceiver modes receive and transmit and the energy saving sleep mode. The method-
ology allows to answer the question how much energy could actually be saved when
applying energy-efficiency measures in practice on the Embedded Sensor Boards.

The following methodology setup was applied for all lifetime-measurements, as it pro-
duced the most stable measurement results:

� We charged the 1F-Capacitors for a charging time of 4t = 120s with a supply
voltage of 5.5 V with a customary mains adapter.

� Shutting down all sensors and unplugging the nodes from the RS232 Interface keeps
influences and dilutions from other parts low and makes sure that only CPU and
transceiver consume energy, besides some small amount of energy spend for the
circuits on the board.

� We observed the supply voltage of the capacitor with a customary multimeter.
When unplugging the capacitor from the mains adapter, the voltage on the ca-
pacitor continuously keeps falling, as sourcing the ESB node with energy slowly
discharges the capacitor. We measured the time until the voltage drops below 3 V ,
which is the supply voltage the embedded voltage controller (MIC5201-3V) requires
to power the node. Below this threshold, the node still runs for some small amount
of time, but its behavior is unpredictable.

By applying this methodology, we obtained robust and stable results with low vari-
ance which allow to compare the ESB-node’s energy consumptions in different operation
modes. This allowed to quantify the efficiency gains of the energy-efficiency measures
under application of different traffic load levels.
In Figure 3.10, the lifetime of a ESB node is depicted, when the transceiver is constantly
in one of the three transceiver states sleep, receive and transmit. When comparing the
sleep mode with the respective states receive and transmit, it is obvious that approxi-
mately one half of the energy charged to the capacitor is being used to power the ESB
circuit, microcontroller unit and memory, as a node that is constantly in the sleep mode
can live approximately twice as long as a node that is constantly in the receive state.
The lifetime of nodes being constantly in the sleep state gives us upper boundary values
for the energy measurements - better results can and will never be obtained when peri-
odically switching the transceiver between sleep and active modes receive and transmit.
Similarly, the lifetime measurements of the nodes being constantly in receive and trans-
mit state define the lower boundary values. If the prototype of the power saving MAC
mechanisms in the upcoming sections perform worse than ∼ 150s, they would likewise
perform worse than pure CSMA/CA. This would mean that the mechanisms would miss
the goal of saving energy. In the worst case this could mean that the energy-saving
measures even imply energetic costs, which would prove them to be of no use.
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3.2.5 MAC Filter Technique

For developing and testing sensor network mechanisms and analyzing them in multi-hop
topologies, it is way too unpractical to deploy nodes in a wide-range scenario during test-
ing and debugging, as recollecting, flashing and redeploying would consume unreasonably
much time. We decided to keep all nodes on one big table for all measurements. How-
ever, in order to perform measurements of MAC and routing mechanisms in multi-hop
topologies, we needed to find a means to control the setup of topology of sensor nodes,
to determine which link between which nodes is active and which one is not.
The problem proved to be more difficult than it may seem from a first point of view.
The notion of a link in wireless networks in general is not as straightforward as in wired
networks. In wired networks, a copper or fibre cable most often corresponds to a link.
We have - per definition - no wires in wireless communications. Often, the wireless chip
calculates RSSI values to quantify the received signal strength and therefore the quality
and robustness of a link. Signal strength thresholds can then be set to determine if a
link is used or not.
The fact that the Embedded Sensor Boards’ transceiver does not even calculate a digital
RSSI did not ease our burden to find a means to control the network topology and link
structure. In a first step, we tried to obtain a signal strength indication by saving every
value of the received power register rxpValue during a packet reception and using a slid-
ing window over the last few values to obtain a filtered, average value. Buschmann et
al. also experiments with the Embedded Sensor Boards using the received power register
rxpValue of the TR1001 transceiver in [49]. The investigations conclude that the high
variation in the measurements and the only vague correlation with distance and delivery
probability do not allow to implement any useful distance estimation.

We therefore omitted to rely the topology control on any measurements of signal power
and integrated a MAC filtering technique based on a node’s position and a circular vir-
tual range. Like this, we could make sure that the nodes use only the links that are
meant to be used. We obtained this quite flexible scheme with the following minimum
assumptions:

� All nodes have a position in a 2-dimensional space

� Nodes know their own position (x, y)

� Nodes know their maximum transmission range (MAX RANGE)

Every node keeps its x and y coordinates in its configuration memory. With every frame
and every acknowledgement sent, the sender node appends its x and y coordinates. We
used two unsigned 8-bit integers, could therefore set values from 0 to 127 for each coordi-
nate. A node receiving a frame reads out the coordinates of the sender, and determines
the distance to the sender node on the MAC layer. If the difference exceeds the virtual
maximum transmission range determined by MAX RANGE, the packet is neglected and
not passed to the routing or application layer. Packets may still be received outside
the range, but are already filtered out on the level of the interrupt service routine ra-
dio rx isr() and not passed further.
We set the range to 10 in all our experiments. The unit has no meaning in this con-
text, as it only serves to accomplish the MAC filter. Without the MAC filtering tech-
nique, keeping all nodes on one table would yield a fully-meshed network topology. With
MAX RANGE being limited to 10, a node’s transmission range is limited to a circular
field with a radius of 10. Receivers are permitted to have a position with euclidean dis-
tance of at maximum 10 units.
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Another solution for the same problem would have been to rely the MAC filtering tech-
nique on the id’s of the neighboring nodes. One could determine for every node which
id’s are allowed to communicate with it and which are not, supposedly hard coded in the
source code that is flashed to the node’s ROM.
We find that our solution is more convenient and fits the ad-hoc nature of sensor networks
quite well. With our MAC filter approach, nodes still find each other autonomously, and
changes in the topology do not necessitate to alter the source code. The flexible scheme
permitted us to carry out different multi-hop experiments.

Figure 3.2.5 illustrates the mechanism. Node 4 is located at position (0, 0) and broadcasts
a packet to its neighborhood. Node 7 at position (10, 0) and node 8 at position (10, 10)
receive the frame and calculate the range to the transmitting node. Node 4 calculates

dist = |(0, 0)− (10, 0)| =
√

(0− 10)2 + (0− 0)2 = 10

and accepts the frame as dist ≤ MAX RANGE. Transmissions between node 4 and
7 are possible as they are in each others virtual range. On the other hand, node 8 at
position (10, 10) calculates

dist = |(0, 0)− (10, 10)| =
√

(0− 10)2 + (0− 10)2 = 14.14

and notices that this packet’s sender, node 4, is out of its range and rejects the frame.
Similarly, node 4 likewise rejects any message originated by node 8.

Figure 3.11: MAC filter implementation using a virtual range
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3.3 Comparisons between Simulation Results and
Sensor Testbed Results

In the upcoming chapters, we cross-compare measurements performed on the ESB with
measurements carried out in the simulator environment. In order to obtain a realistic
model of the ESB nodes that reproduces similar results in simulation, we had to adjust
several model parameters.
Transceiver operation mode switches need more time with the ScatterWeb platform than
outlined in the technical datasheet of the manufacturer. To switch from receive to trans-
mit, ScatterWeb needs to go through different steps, as discussed in section 3.2.3.2. The
procedure requires roughly 4 ms, whereas the datasheet of the transceiver only accounts
for 12 µs. Similarly, switches from transmit to receive and from sleep to receive need
more time than indicated in the datasheet. We estimated these switches with 2 ms and
1 ms, respectively.
The power consumption of the ESB in the respective states is modelled according to the
measurements on the ESB prototype implementation performed in section 3.2.4. When
applying the parameters below, the whole ESB node’s power consumption, including
CPU, board circuit and memory is taken into account. As measured in 4.2, receiving
and sending is more or less equal expensive. The sleep state is still the most energy-
efficient, but the difference is not as huge as modelled with the datasheet parameters of
section 3.1. To obtain a more realistic energy model, the sleep current is 2.0 mA, receive
4.5 mA and transmit 5.0 mA.
The bit rate was adapted from 19’200 to 9’600 bps, as ScatterWeb applies the Manchester
Encoding algorithm to ensure more reliable communication and avert bit-errors.

The simulation parameters for all cross-comparisons are listed in the table below. We
will refer to them as the comparison model parameters in the upcoming sections. If
not explicitly mentioned, the parameters of section 3.1 and 4.1 were used to model the
transceiver current, transmission rate and the node’s power consumption.

comparison model parameters
bit rate 9’600 bps
minimum preamble 5 ms
medium reservation preamble uniform [0,6] ms
packet queue length 5

transceiver transition delays:
recv to send 4 ms
send to recv 2 ms
sleep to recv 1 ms

transceiver current:
send 5.0 mA
recv 4.5 mA
sleep 2.0 mA

battery (lifetime measurements) 20 J

Table 3.1: Parameters for cross-comparisons of experimentation testbed results
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Chapter 4

Implementation and Evaluation of WiseMAC

4.1 WiseMAC in the OMNeT Simulator

simulation parameters
wake interval duration T 250 ms
wake ratio 5%
bit rate 19,2 Kbps
minimum preamble 1 ms
medium reservation preamble uniform [0,2] ms
packet queue length 15

We modelled the WiseMAC protocol [4] with the preamble sampling technique, the ex-
tended carrier sensing range and all the main features of the protocol in the OMNeT
simulator to experiment with modifications and optimizations on the unsynchronized
MAC scheme.
The implementation in OMNeT is straightforward. Switching between wake and sleep
intervals is modelled with self-messages telling the node to turn the transceiver to an-
other state. Similarly, the state transition delays of the transceiver are also modelled
with self-messages being triggered when the switch is initiated, and notifying the node
when switching is complete. Preambles are modelled as special MAC packets with vary-
ing size. When receiving preambles, a certain flag is set such that nodes do not turn to
the sleep mode when the next sleep timer runs out.
The WiseMAC implementation applies a periodic preamble sampling period of T = 250 ms
and a 5% duty cycle. The duration of a preamble sampling interval therefore comes to
12.5 ms. As we later found out with the ESB WiseMAC implementation, even lower duty
cycles are possible on sensor hardware testbeds. But when considering the impreciseness
due to implementation specific issues and the unpredictable behavior of the transceiver’s
state transitions, we considered that 5% should be an appropriate and realistic choice.
Figure 4.1 depicts six nodes operating with the WiseMAC protocol in OMNeT. The
black circles depict the nodes’ respective maximum transmission range. This only serves
to visualize the neighborhood a node can reach. The signal propagation model does - as
discussed in 3.1.1 - not rely on a simple unit disk graph.

Figure 4.1: WiseMAC nodes in OMNeT
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4.2 WiseMAC on the Embedded Sensor Boards

The implementation of the power saving WiseMAC protocol on the ESB proved to be a
challenging task. The main features of the WiseMAC proposal outlined in [4] could be
realized, some had to be omitted. The parameters listed below led to stable and quite
robust functioning of the prototype implementation on the ESB. They were applied
throughout all the examinations and measurements of WiseMAC on the ESB and the
modifications concerning the wake pattern suggested in chapter 5.

ESB prototype parameters
basic interval duration T 500 ms
wake ratio 1%
retries 3
minimum preamble 5 ms
medium reservation preamble uniform [0,6] ms
baud rate 19’200 bps
bit rate 9’600 bps
MAC header 104 bit
payload 96 bit
packet queue length 5

4.2.1 Preamble Sampling and Frame Reception

The WiseMAC sleep-wake pattern is accomplished with ScatterWeb timers calling them-
selves and other timers in an endless recursion. After boot-up and hardware initialization,
a ScatterWeb timer function tactTimer() is scheduled. The timer schedules itself again
for execution after the basic interval duration T . It continues turning on the transceiver
and scheduling a timer to switch the transceiver off again, thereby accomplishing the
alternation between receive and sleep state with the basic interval T .
As the transceiver switches need a certain turnaround time, and carrier detection is
bound to the recognition of a sequence of predefined startbytes, nodes need a certain
minimum duty cycle to actually recognize if a preamble is being sent. The wake-ratio
could therefore be lowered down to the minimum value of 1% for T = 500 ms, but not
further. The duration of the wake duty cycle calculates as 4t = T · wakeratio = 5 ms.
In fact, 5 ms is only the time from the moment when the periodic tactTimer() writes
certain control bits into a transceiver register, thereby telling the transceiver to turn to
the receive state, and the moment when another timer function tells it to go to the sleep
state again. The transition delay for changing from sleep state to the wake state has to
be subtracted from the duty cycle. The net duty cycle therefore comes to only 3− 4 ms
in each cycle.

When the periodic tactTimer() is called, the transceiver is switched to recv and lis-
tens for the startbyte sequence. If after the duty cycle 4t = T · wakeratio, the node
has not recognized this sequence, the transceiver is switched to sleep state again by the
shutDown() timer. The node is then kept asleep until the next tactTimer() is executed.
If the node recognizes the startbyte sequence within the duty cycle 4t, the shutdown
timer does not switch the transceiver to sleep. The node is kept in the receive state
until preamble and frame are correctly received. Inside the interrupt service routine ra-
dio rx isr(), the receiving station determines whether the frame is a broadcast or unicast
frame. In the first case, the transceiver is ultimately turned to the sleep state. In the
latter case, a 10-byte acknowledgement is sent after frame reception. The gap in between
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frame and acknowledgement is determined by the transceiver switches and the mecha-
nism for frame reception. In total, the gap roughly takes 10 ms, including the startbyte
sequence, whereafter the node is subsequently turned to the sleep state again.

4.2.2 Frame Transmission

In the sender’s case, the application passes a packet to the ScatterWeb OS function
Net send(). The function prepares the frame in the corresponding buffer and returns
immediately (nonblocking call). The Net txHandler() function is then called in the next
OS superloop. The function determines if the frame receiver is already known - meaning
if the node’s schedule offset is already stored in the WiseMAC neighbor table. If this is
the case, the node calculates the necessary preamble duration according to the WiseMAC
equation Tpreamble = min(4θL, T ). The node then calculates the exact instant when it
has to switch its transceiver to the receive state in order to contend for the medium,
switch to transmit and begin sending the preamble, including a randomly determined
small medium reservation preamble. Thereafter it schedules a timer to alert itself in
this instant, contends for the medium and sends the preamble and the frame in the
appropriate instant. If the medium is not free, it turns to sleep again and schedules a
timer to alert itself for the next transmission attempt at the neighboring node’s next
wake-up.
In case the receiver is unknown yet, the preamble duration is set to the basic interval
duration T and the transmission is attempted immediately. After successful medium
contention, preamble and frame are subsequently transmitted.

4.2.3 Retransmissions

Figure 4.2: Retransmissions in the WiseMAC implementation on the ESB

When a node transmits a packet and does not get a respective acknowledgement within
certain predefined time, MAC layer protocols often schedule retransmissions. Sometimes,
some parameters are changed in order to increase the probability that the second attempt
succeeds. The original WiseMAC draft outlined in [4] does not address the topic retrans-
mission strategy at all. We therefore designed an own solution for retransmissions in our
WiseMAC prototype implementation.
A transmission is restrained to four transmissions at maximum, allowing three retrans-
mission attempts. In case the node is not known yet, all transmissions prepend full-cycle
preambles of duration T . In case the destination is known, the procedure is illustrated in
figure 4.2. For the first transmission, the preamble size is chosen according to WiseMAC
to be Tpreamble = min(4θL, T ). If this attempt fails, may it be because the transmission
is interferred by other transmissions or electromagnetic noise in the channel, as indicated
in figure 4.2, the station receiving no acknowledgement within ∼ 50 ms starts with a
second transmission attempt. In the second attempt, the initial preamble is doubled. In
the third attempt, the initial preamble is tripled. Finally, in the last attempt, a full-cycle
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preamble is prepended to the actual frame transmission.
Using this retransmission strategy, delivery probability for transmissions between two
nodes reached 100% for all ESB nodes that are currently available in the Institute of
Computer Science of the University of Bern. Cases where two or more transmission
attempts occur, but remain quite seldom, given no exterior influences and parallel trans-
missions between other sender and receiver pairs. The occurrence of retries furthermore
proved to be more node-dependent rather than depending on the rate of transmissions.
Some nodes seem to work more reliably than others, which are most likely symptoms of
the heavy usage and the countless ROM flashing’s in the last couple of months.

4.2.4 Extended Carrier Sensing Range

Figure 4.3: Received power measurements during transmission and with idle channel

As discussed in 3.2.3.3, the TR1001 transceiver [44] does not calculate a digital RSSI.
Lacking a reliable value for quantifying the signal strength, the implementation of the
collision avoidance scheme to mitigate the hidden node problem in WiseMAC, the so-
called extended carrier sensing range proved to be quite difficult. WiseMAC proposes to
apply a lower carrier sense threshold, a threshold that considers the medium to be busy
when there is a signal detected, even if the signal is too weak to be correctly demodu-
lated, as discussed in section 2.1.3.
To achieve the effect that a station considers the medium to be busy when it receives
transmission noise from farther away stations, we suggest to alter a crucial parameter
of the carrier detection mechanism, that is mainly intended to bridge the gap of unrec-
ognized frame starts (see 3.2.3.3). ScatterWeb periodically reads out the received power
value rxpValue from the transceiver and increases the cdCounter if the value is bigger
than the threshold value Configuration.rxReceiveLimit. It thereby considers the medium
to be busy and prevents the transmission handler function from transmitting. Usually,
when a transmission is going on in a range of ∼ 10 m, the received power value of the
TR1001 reaches a value of ∼ 2600 − 2700 for a ’1’ and ∼ 1700 − 2000 for a ’0’. Figure
4.3 illustrates 100 measurements of the TR1001 received power value rxpValue when a
transmission is going on (red dots), and 100 measurements when the channel is idle (blue
dots). As one can see in the figure, red dots are on the high level and the low level,
depending on whether a ’1’ has just been sensed or a ’0’. According to the ScatterWeb
UserGuide [42], the threshold value Configuration.rxReceiveLimit can be set and varied
to figure out optimal settings for a given application scenario. According to comments
in the ScatterWeb community, values in between the range of 2300-2400 should suffice.
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To achieve the more prohibitive carrier sensing mechanism of WiseMAC, lowering the
Configuration.rxReceiveLimit threshold value is the only thinkable solution for the ESB
sensor nodes. We propose to set the threshold value to 2100 or even lower. The lower
the threshold is set, the earlier the node considers the medium to be busy. However,
setting the threshold value too low will cause the station to consider the medium busy
even when no transmission is going on at all. The station will then not dare to transmit
any packet anymore.

We neglected to perform measurements and quantify the effect of such a lower threshold
when dealing with transmissions from far away stations, as the assumption of circular
ranges is unrealistic and simplistic anyway, and such investigations would go far beyond
the scope of the thesis. Similar investigations with measurements of the receive power in
function of the distance are carried out in [49].

4.2.5 Idle Power Consumption

Figure 4.4: sleep mode, WiseMAC and ScatterWeb CSMA (=receive mode)

Figure 4.4 depicts the measured lifetime of an Embedded Sensor Board when apply-
ing the methodology described in Section 3.2.4. In Figure 4.4, it becomes clear that
the WiseMAC preamble sampling technique is quite energy-efficient. When sampling
the medium periodically with T = 500 ms and a duty cycle of 1%, the cost is barely
measurable at all. In case of no traffic, the small medium-samplings lead to a very low
power consumption. The lifetime of a node that applies the WiseMAC medium sampling
technique (green bar) is almost equal to the lifetime of a node with the permanently
turned-off transceiver (red bar).
Considering that the mechanism still allows to keep nodes reachable at any time within
500 ms at maximum, the cost for this connectivity is quite reasonable, almost negligible.
When comparing the lifetime of the WiseMAC node to the lifetime of simple ScatterWeb
CSMA (blue bar), which keeps the transceiver permanently in the receive state, the life-
time could be increased by approximately 120%.

The WiseMAC protocol implementation on the ESB presented in this thesis certainly is
the prototype with the lowest duty cycle and lowest idle power consumption that has up
to today been implemented on the ESB research platform.
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4.3 WiseMAC Evaluation

Figure 4.5: Chain topology

This section analyzes the performance of the Embedded Sensor Boards WiseMAC pro-
totype with increasing traffic load and cross-compares the results with corresponding
results of measurements with the same experiment setup in the WiseMAC simulation in
OMNeT. As a simple scenario setup, we chose a linear chain topology with 6 participat-
ing nodes, as depicted figure 4.3. The nodes are all in range of each other, in terms of
transmission range. Technically, they build up a full mesh topology, as indicated by the
grey lines in figure 4.3, but only the links that are painted in bold are used.
The scenario models periodic traffic along the chain. As all nodes are neighbors, their
respective transmissions serves to portray a certain extend of environmental noise and
interference by other nodes’ transmissions, as it might occur in a dense wireless sensor
network topology. With nodes being all in range of each other, increasing traffic will
furthermore lead to increasing periodic overhearing. In all lifetime-measurements, we
measured the time until the intermediate node 5 depleted.
Before every measurement run, an external node broadcasts a special SYNC packet.
Immediately upon reception of the type field in this packet, all nodes reset their clocks
back to zero. As this is done inside the receiving interrupt service routine radio rx isr(),
the accuracy of the synchronization among all nodes is expected to lie within one ra-
dio rx isr()-cycle, which is approximately 417 µs. This methodology proved to be suffi-
ciently accurate for our measurements over the five hops.

Node 1 starts generating traffic and addresses all frames to node 2. The application
layer in node 1 generates a packet and logs the exact time into it. It then passes the
packet to the MAC layer, where it is buffered and sent. Node 2 receives the frame and
subsequently forwards all frames to node 3, until the packets reach node 6. When node
6 receives the frame, it passes it to the application layer, where it is decapsuled, and the
sending time extracted. Like this, the one-way delay could be calculated as time between
the instant when the application layer in node 1 passes the packet to the MAC and the
instant when the application layer in node 6 unpacks the frame.

Traffic is generated with varying inter-delay. We aimed to omit effects and results depend-
ing on a certain pattern or a certain periodicity that traffic is passed to the MAC layer.
The inter-delay between two packets therefore depends on the traffic rate r [frames/sec]
and a randomly distributed jittering interval in between two basic wake interval dura-
tions T. Traffic should therefore be distributed over the whole basic interval of the first
node, such that the effects of the constant alternation between wake and sleep states
does not impact on the measurement results. The inter-delay 4t between two packets
calculates as:

4t =
1
r

+ djitter djitter ∼ uniform[+T,−T ]
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4.3.1 Lifetime

Figure 4.6: Lifetime on the Embedded
Sensor Boards

Figure 4.7: Lifetime in the OMNeT
simulator

Figure 4.6 on the left depicts the lifetime of the selected ESB node 5 as a function of the
traffic rate r when being charged with the initial amount of energy (see section 3.2.4). As
the node’s energy consumption increases with increasing traffic along the chain, a more
or less linear decrease of the node’s lifetime can be observed. The black line in the same
figure displays the lifetime of a node using custom ScatterWeb CSMA when applying
the same traffic. Obviously, the traffic has no greater impact on the curve. ScatterWeb
CSMA keeps the transceiver constantly in the receive state, applying no energy-saving
measures such as periodic switching between sleep and active states. As sending and
receiving is more or less equal expensive, the traffic has no big impact on the lifetime of
nodes applying ScatterWeb CSMA.
Figure 4.7 on the right depicts the lifetime of the same node in the simulator. Lifetime is
measured as the time a node can live on a certain amount of energy, using the comparison
parameters of section 3.3. The graph shows a quite similar decrease of lifetime as the
graph of the ESB implementation, although the steepness is a bit lower. This might be
due to the absence of retries in the simulator and the fact that transmissions including
the respective acknowledgements still need a bit longer with the ESB than modelled on
the simulator.
These lifetime results on the WiseMAC ESB prototype state clearly that the node’s
energy consumption can be drastically reduced, whereas considerable service character-
istics and the connectivity can still be maintained. With r = 0.35, nodes forward a
packet along the chain every three seconds. Still, the lifetime is increased by approxi-
mately 80% compared to non-power-saving ScatterWeb CSMA. This result is satisfactory
and inspiring.

4.3.2 Delivery Rate and Retransmissions

We measured how many of the packets initially sent by the first node finally reached the
destination node 6. Astonishingly, there were no packet losses at all. The implementa-
tion of the WiseMAC protocol on the ESB managed to deliver every single packet from
source node 1 to destination node 6, without a single packet loss.
We further investigated on the count of retransmissions that are necessary to deliver a
packet from node 1 to 6. As discussed in 4.2.3, the implementation allows 3 retrans-
missions, so 4 transmissions in total for each transmission attempt between a sender
and receiver. We kept track on the retransmission attempts in a special frame field and
summed up all necessary retransmissions for each packet. The retransmits turned out
not to depend on the transmission rate for the rates being used above, but to depend
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more on the nodes that were used for the test setup. Some nodes inherently delivered
worse results than others, which might also be a symptom of the heavy usage during
the last years. We measured the retransmissions in separate measurement runs with 500
packets for each run with different nodes. When averaging the measured retransmissions
per packet, we obtained values ranging between 0 and 1.61 retransmits per packet trans-
mission from node 1 to node 6. As the results more and more proved to depend on the
nodes rather than transmission range or the frame rate, we ceased to investigate further
on this topic.

4.3.3 One-Way Delay

Figure 4.8: One-way delays of WiseMAC in simulation and on the ESB prototype

Figures 4.8 illustrates the end-to-end delay measured both on the ESB prototype and
in the OMNeT simulation. As we cross-compare the results with results of the sensor
hardware testbed, we again applied the comparison parameters. The delay measured
is the time difference between the instant when the upper layer passes the payload to
the MAC layer of the source node 1 and the instant the destination node 6 passes the
payload to its upper layer. The delay proved to be independent from traffic rate. The
mean value for the transmission over 5 hops is in the range of about 1500 − 1600 ms,
approximately 300 ms per hop.
As depicted in figure 4.8, the results of simulation and the ESB implementation fit quite
well. The per-hop delay of ∼ 300 ms is obtained both in simulation and on the ESB,
and can be explained as follows. If a packet has to be sent from one node to another,
the sender node first determines the next wake-up of the receiver node and waits for this
instant. As the wake intervals are uniformly distributed over the basic interval duration
T = 500 ms, the expected time to wait for the next instant is E(twait) = T

2 = 250 ms.
But from the receiver’s perspective, the node can not forward the frame to the next node
before successful reception and acknowledgement of the frame. It first has to receive
the frame, and transmit the respective acknowledgement, and then determine the next
wake-up of the next node in line. We can estimate the expected delay per hop E(dhop)
as the time necessary to wait for the next wake interval of the receiver node plus all
delays that are necessary for frame transmission and acknowledgement, i.e. the time
for the medium reservation preamble tMRP , the minimum preamble tMP , the transmis-
sion of the frame tframe, the transceiver switches trxtx and ttxrx and acknowledgement
tack. As we applied the comparison parameters of section 3.3, we can incorporate the
expected value E(tMRP ) = 3 ms of the medium reservation preamble tMRP , which is a
uniformly distributed value in between [0,6]. When incorporating all particular delays
of the transceiver switches of section 3.3 into the calculation, we analytically obtain a
per-hop delay of
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E(dhop)= E(twait) + E(tMRP ) + tMP + tframe + trxtx + ttxrx + tack

∼ 250 ms + 3 ms + 5 ms + 20 ms + 4 ms + 2 ms + 10 ms = 294 ms

With 294 ms analytically calculated per hop delay we obtain a 5-hop delay of 1470 ms,
which is approximately the latency measured in the simulation. The slightly higher value
of the one-way delay in OMNeT compared to the result of the implementation on the
ESB is most likely explained by the fact that a transmission on the ESB takes still a bit
longer as the comparison parameters actually model it in OMNeT. Especially the delay in
between frame transmission and acknowledgement is longer than the transceiver switches,
as the implementation needs to first prepare and buffer the acknowledgement and go
through some ScatterWeb implementation specific steps in the interrupt service routine.
Some other implementation-specific issues may also play a role, i.e. the scheduling of a
packet transmission was implemented to include a security gap of some milliseconds, such
that the sender node has enough time to cautiously check the carrier before accessing it
for transmission.

4.3.4 On the Impact of Simulation Parameters

Figure 4.9: Lifetime OMNeT simulator
with comparison parameters

Figure 4.10: Lifetime OMNeT
simulator with datasheet parameters

When running the simulation with the transceiver parameters of section 3.1, the result-
ing one-way delays did slightly differ from the delays obtained with the more realistic
comparison parameters depicted in figure 4.8, but not that much. The difference in the
turnaround delays impacts on the end-to-end delay with approximately 2−3% lower val-
ues than the simulations carried out with the comparison parameters. To ensure clarity
and visibility of the curves, we omitted to display them in the same figure 4.8.

Figures 4.9 and 4.10 display the lifetime curves obtained with the comparison parameters
and the parameters of the transceiver datasheet outlined in section 3.1. One can clearly
see the astonishing impact of the adaptation of the parameters. In the left figure, the
lifetime sinks only slowly when increasing the traffic rate, as sending and receiving is
only twice as expensive as the sleep state. On the right, the impact of the traffic applied
to the chain is much stronger. With more traffic, nodes need to switch and stay in the
costly states receive and transmit longer, which leads to the lifetime curve sinking steeper
with increasing traffic. With the parameters of the transceiver datasheet on the right,
receive and transmit states are approximately 1000 times costlier than the sleep state. In
section 4.2 however, we measured that the ratio between sleep and receive and transmit
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is rather 1:2:2, as the CPU still consumes the same energy in each state, and the parame-
ters of section section 3.1 only account for the energy spent by the transceiver unit. The
datasheet parameters therefore deliver no reasonable energy model for cross-comparisons
between simulation and experiments with the ESB.
Choosing suitable and realistic simulation parameters is important. The gap between
simulation results and results carried out on real hardware can be lowered when carefully
investigating on the parameters of the hardware testbed and modelling implementation-
specific settings. Obtaining a realistic model of the reality in simulation is up to a certain
degree possible, at least with small experiments where interference from countless distant
stations and scale-effects do not yet play a major role.
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Chapter 5

Medium Access Control Layer Issues

In this chapter, we outline modifications and optimizations inspired by Braun et al. in
[2] and [3] on the WiseMAC protocol, and compare it against the original draft standard.
We make suggestions by introducing new mechanisms to improve performance, and eval-
uate them with the OMNeT network simulation environment, and with measurements
performed on the Embedded Sensor Boards WiseMAC prototype. The last experiment
of this chapter is an attempt to integrate a simple data aggregation and convergence
technique into the MAC.

5.1 Clock Drift Evaluation

Figure 5.1: Relative clock drift and synchronization between two nodes

Figure 5.1 depicts the simulated relative drift between two arbitrary nodes. The y-axis
illustrates the difference in the estimation of node A for the next wake-up of its neigh-
boring node B and its real next wake-up in the WiseMAC simulation, and how this
difference behaves when infrequently exchanging messages with the wake-up schedules
piggybacked. After ∼ 4s, node A receives a message from node B, based on which it can
estimate the next wake-up of B for the upcoming time.
As WiseMAC renounces on a global synchronization scheme, every node must keep a
table with the relative schedule offsets for its neighbors. Neighboring nodes then cor-
rect each others relative clock drifts when there are transmissions in between the two
neighbors, or if they overhear each others transmissions or acknowledgements with their
wake-up schedules appended. When receiving a schedule update, the relative clock drift
falls back to zero.
This mechanism is marked with red spots in figure 5.1 after 100 s, 340 s, 670 s and 895 s.
Node A then receives or overhears a message from B with its wake-up announcement ap-
pended, and updates the relative schedule table for its neighbor B. As consequence, the
relative drift to B depicted in 5.1 falls back to zero.
We renounced to investigate on the clock drift behavior on the ESB, as there was no pos-
sible methodology available to figure out clock drifts of ESB’s with a sufficient accuracy,
and such an investigation would be far too time-consuming.
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5.2 Preamble Length

WiseMAC suggests to apply a preamble of duration Tpreamble = min(4θL, T ), in order
to compensate for the maximum drift having occurred between two clocks since the time
L of the last schedule exchange. This preamble guarantees to compensate for the drift
between two clocks in every case, it incorporates every possible clock drift model based
on the assumption that a clock drift has a upper bound θ, and includes the worst-case
scenario, that a clock could drift apart by the same θ in every timestep. When working
with the ESB’s, we noticed that the linearly increasing preamble function might overes-
timate the clock drift between two clocks, and that a shorter preamble would suffice.

In the following we show that the WiseMAC preamble function Tpreamble = min(4θL, T )
indeed overestimates the clock drift when modelling this drift by a random walk time
series process. One can find an optimal preamble duration by incorporating a proba-
bilistic energy cost model, such that the expected value of the transmission costs Tc is
minimized. When the time in between two relative synchronizations, the so-called inter-
delay, is short, this preamble modification does barely pay off. The benefit rises with
increasing inter-delay. We model the energy cost as function of the preamble of length
x, the cost weight which is specified by the transmission and receive power consumption
ctr and crecv, and the probability that the transmission succeeds when using the pream-
ble of length x. The probability that the transmission succeeds when using a preamble
of length x can be expressed as function of the cumulative distribution function of the
random walk process after n timesteps, p = f(cdf(x, n)).
To calculate the expected transmission costs, we have to distinguish two cases. In the
first case, the preamble succeeds in alerting the receiving node. In the second case, the
preamble is too short and the receiving node does not capture the full frame and the
transmission fails. Let us assume that in this case, the sender node stays in the receive
mode for a certain waiting delay period twACK

, then turns back to sleep and awaits the
next wake interval of the receiving node. As the probabilistic preamble has failed, it now
sends a WiseMAC preamble Tpreamble = min(4θL, T ), as this preamble duration suffices
for any possible drift. In this case, the transmission costs have to account for the energy
spoiled for the first preamble, the second preamble, and the first, lost frame of length lf .
By incorporating the additional overhead in case of the first attempt failing, we obtain
the following transmission cost function with probabilities p and 1−p for first and second
cases:

Tc(x, n) =
{

xctr + lfctr p
xctr + lfctr + twACK

crecv + min(4θn, T )ctr + lfctr 1− p

The expected value of the cost function then yields as

E(Tc) = p ·
(
xctr + lfctr

)
+ (1− p) ·

(
xctr + lfctr + twACK

crecv + min(4θn, T )ctr + lfctr

)
It might happen that the receiver is early and the sender late, or vice versa. To in-
corporate both cases, we have to multiply the upper expression by a factor of 2 to obtain
the right preamble size which allows to reach the receiver. We numerically optimized
the preamble length x which solves the problem with the minimal expected cost and the
simulation parameters of section 3.1 and 4.1.

Figure 5.2 depicts both, the WiseMAC preamble of duration Tpreamble = min(4θL, T )
and the energy optimal preamble which was obtained when applying the energy cost
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function and numerical optimization described above. As one can see, the difference
between both preamble lengths does not differ much for low values of t. With periodic
traffic with inter-delay between of some seconds, the energy-optimal preamble does not
differ much from the WiseMAC preamble. But when dealing with very low traffic, for
instance traffic with inter-delay of 50-100s, the WiseMAC preamble heavily overestimates
the clock drift between sender and receiver. The energy optimal preamble is in this case
much shorter.

Figure 5.2: WiseMAC preamble and optimized preamble

Simulation Results

We simulated the mechanism in a sensor network scenario where the last node in a chain
of 6 nodes sends packets towards the sink, with low rates of traffic. We assumed to achieve
increasing benefit out of the optimized preamble when lowering the traffic rate. The table
below lists the simulation results for low traffic rates between 0.05 and 0.001 packets per
second. The results confirmed the expectations, but the energy efficiency gain is very low.
The first column specifies the traffic rate run in the experiment. Second and third column
specifies the total energy consumption of all nodes when using the WiseMAC preamble
or the optimized preamble, respectively, and fourth column quantifies the efficiency gain
of the approach.

Traffic rate λ Energy WiseMAC preamble Energy optimized preamble ∆
0.05 18.37 J 18.09 J 1.48%
0.01 11.27 J 11.09 J 1.60%
0.005 12.05 J 11.85 J 1.63%
0.001 10.57 J 10.13 J 4.12%

After having further investigated on the behavior of clock drifts, we found that there are
different models with different statistical properties. The so-called optimized preamble
only fits to the clock drift model with the random walk, as specified in 3.1.3. It might not
be appropriate for other clock drift models. Shortening the preamble and thereby saving
some small amount of energy remains questionable, as one risks worsening packet delivery
reliability and service characteristics, which might occur with too short preambles.
We renounced to implement this scheme on the ESB nodes. Improvements in the range
of 1% would not be measurable and distinguishable from the measurement variation
with the methodology of section 3.2.4. As the capacitor can only power the node for
approximately 5 minutes, traffic rates of 0.001 can not be examined with this methodology
anyway, as the inter-delay between two transmissions would be too long.
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5.3 Broadcasting Scheme

Broadcasting is a costly issue in WiseMAC. As the nodes all sample the medium in their
own wake-up pattern, a node intending to broadcast a message needs to first alert all
its neighboring nodes for the upcoming transmission. The WiseMAC approach consists
in prepending a preamble of the duration of the full basic interval duration T to each
frame. This broadcasting scheme wastes a lot of energy for sending and receiving the
long preamble, whereas the actual data transmission can be short. But regardless of prior
knowledge about the neighboring nodes, this mechanism allows to alert every neighbor.

If the message has to be rebroadcast in every node, the characteristic wireless broad-
cast storm problem is certain to occur. The broadcast storm problem for radio networks,
as studied in [33], occurs with uncontrolled flooding techniques in wireless networks. If
every node rebroadcasts an incoming broadcast message, transmissions take place more
or less simultaneously. As a consequence, the medium will be blocked for a long time and
many nodes will redundantly rebroadcast the message and receive countless duplicates.
Transmissions will presumably collide with other ongoing transmissions, which can in
turn lead to starvation of the flood, as broadcasts are unacknowledged and collisions can
not be detected by the sender.
When applying no control measures for multi-hop flooding, the WiseMAC broadcast ex-
acerbates the broadcast storm vulnerability with the long preambles. The full-preamble
broadcast blocks the channel not only for the immediate neighboring nodes, but also for
all nodes in the extended carrier sensing range (as discussed in 2.1.3). Network activity
will be restraint to countless full-preamble broadcasts for every rebroadcast, and this is
especially costly as all nodes sampling the medium will stay awake when hearing the
preamble tone, even if they have yet received the message. As using full-cycle pream-
bles in every node is energetically costly, the designer El Hoiydi reflects in [5] that more
sophisticated broadcasting and flooding techniques for multi-hop ad-hoc sensor networks
and MANETS remain to be designed. We aim to bridge this gap with the technique
being introduced in this section.
The broadcast storm problem is illustrated below. Figure 5.3 illustrates a node initi-
ating a broadcast flood. The message is received by its neighboring nodes, which all
rebroadcast the packet in 5.4. The black arrows depict useful transmissions and recep-
tions. As indicated by the red arrows, many transmissions and especially receptions are
redundant. As receptions are likewise costly in wireless networks, this problem has severe
impact on the energy consumption of the participating nodes. If the rebroadcasts of the
nodes are not coordinated, frames may presumably collide with each other. The service
characteristics of the network can temporarily be harmed.

Figure 5.3: Node initiates broad-
cast flood

Figure 5.4: Many transmissions
and receptions are redundant
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5.3.1 (k) Best Instants

Braun et al. study the problem of disseminating broadcasts in a multi-hop topology in
[3], when applying the unsynchronized wake-up pattern discussed in [2] (section 2.1.4)
that shares a similar wake-up pattern with WiseMAC. The paper concludes with a sug-
gestion for a flooding service that proved robust for use in on-demand routing schemes
as well as energy-efficient. The concept is referred to as k-best-instants broadcast. This
flooding concept is a simple means to limit the broadcasting overhead in power saving
mechanisms with asynchronous wake intervals. It suggests to first figure out the minimal
set of instants for a packet to be sent with which a node reaches all its neighbors. Having
done so, a node shall - depending on required reliability, topology or density of the net-
work - only choose k such instants, where k is meant to be kept small (i.e. k=2). With
the factor k, the message fan-out can be limited and controlled. Thanks to this restric-
tion, the broadcast storm problem became negligible. Intermediate nodes participating
in the flooding do not aim to reach every neighbor, but only a limited subset. In contrast
to OLSR, which first calculates so-called multi-point relays over its 2-hop neighborhood,
the mechanism only relies on the local information about the 1-hop neighbors’ wake-
ups. The choice of the subset of neighbors therefore is a random one, as it is based on
the wake-up patterns, which in turn are determined at random. The flooding technique
therefore shares some similarities with probabilistic multi-hop broadcasting techniques.

Figure 5.5: WiseMAC broadcast Figure 5.6: k-Best-Instants broadcast

We propose to integrate the same idea to improve the energy-efficiency of the WiseMAC
broadcast in general. Consider the situation depicted in figure 5.5. The sender has neigh-
bors A,B,C, D, and already is aware of their individual wake-up schedules. As depicted
in 5.6, calculating the best instants for sending a preamble and the frame is much more
efficient than using a full-cycle preamble in WiseMAC in figure 5.5. The gray and red
area illustrates the time that nodes have to spend in receive or transmit mode.

The procedure to obtain the minimal set of instants for a node to broadcast a mes-
sage to its neighbors is slightly different than proposed in [3]. It was adapted to the
WiseMAC medium access scheme, which consists in only sampling the medium for a
minimum amount of time to detect a preamble signal. Finding intersections between
such small wake-ups is very improbable. But it is possible to make efficiency gains with
an extended concept of the intersections, designed for application with the preamble
sampling technique. In contrast to the concept of the intersections of the duty cycles in
[3], the mechanism of searching intersections was adapted to consider groups of nodes
with near wake intervals, such as nodes B and C in figures 5.5 and 5.6.
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Figure 5.7: Near wake-ups Figure 5.8: Not near enough wake-ups

Wake intervals are considered to be near if the difference between their startpoints is
smaller than the transmission time it takes to transmit a node’s preamble and the actual
payload. It might pay off to group near wake-up intervals of neighboring nodes and
transmit a slightly longer preamble, as sending a preamble and the message twice would
be costlier than grouping these two instants and sending the payload only once. We can
express the notion of near wake intervals analytically as a function of the cycle duration
T , the bandwidth b and the size of the frames to be transmitted d - omitting the state
transition delays and the cost for the sleep state in this analytical discussion. To be near
enough, the node with the later wake interval has to be at maximum two halve preambles
PA

2 , PB

2 and the duration of a packet’s transmission d
b away. Two nodes’ wake intervals

tA, tB are near if the following condition holds:

near(tA, tB) := ((tB − tA) <
PA

2
+

d

b
+

PB

2
)

Near nodes are depicted in figure 5.7. When the difference between the startpoints of the
medium samplings is lower than the actual transmission time for the first node’s halve
preamble and the second node’s halve preamble and the payload, it makes sense to group
these nodes and calculate the preamble that is necessary to reach both of the nodes, and
yet transmit the payload only once.

Figure 5.9: Preamble duration when grouping near nodes

In case of near nodes, the preamble must suffice to alert both nodes. Let them denote as
the sooner node A and the later node B with estimated wake-ups tA, tB and WiseMAC
preambles PA, PB . Figure 5.9 illustrates how the preamble for a group of near nodes is
composed. The actual instant when the transmission of the preamble must be scheduled
for is

tgroup = tA − PA

2
The duration of the preamble calculates as

Pgroup =
PA

2
+ (tB − tA) +

PB

2
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Proof: sending a preamble of size Pgroup plus the frame d
b in order to reach two nodes

A,B pays off when exactly when their wake intervals are near. It pays off if Pgroup + d
b

is smaller than sending two preambles PA, PB and twice the frame d
b .

PA

2
+ (tB − tA) +

PB

2
+

d

b
< PA + PB + 2

d

b

simplifying the inequation yields

(tB − tA) <
PA

2
+

PB

2
+

d

b

which is exactly the property near(tA, tB) two wake-ups tA, tB have to fulfill. �

The algorithm for figuring out the best instants to reach all neighbors that has been
used in simulation and on the sensor testbed works as follows:
Given the estimated wake-ups t1, t2, . . . , tn of all neighbors N1, N2, . . . , Nn. Let R denote
the set of uncovered instants and T denote the resulting set of instants.

R =
n⋃

i=1

ti

T = ∅

∗ ∗ ∗∗ if there are near nodes, group them ∗ ∗ ∗∗

FOR each pair of instants (tu, tv) in R do
IF ( (tv − tu) < Pu

2 + d
b + Pv

2 ) do
T = T ∪ {min(tu, tv)}
R = R \ tu
R = R \ tv

ENDIF
ENDFOR

∗ ∗ ∗∗ if not, add the instants separately ∗ ∗ ∗ ∗

T = T ∪R

T contains the minimal set of instants t1, . . . , tk for broadcasts to be sent to reach all
neighbors. The set is sorted and instants with which two near nodes can be reached are
listed first. The concept can be extended to consider three, four or more near nodes,
which is however increasingly improbable. The question whether it pays off to apply the
algorithm depends on the question how many neighbors there are in the neighborhood
to be alerted and how many of them ultimately have to receive the message. For the
sender, it pays off to apply the technique if the cost of all preambles P1, . . . , Pk and all
transmissions for the respective instants t1, . . . , tk, denoted as cbest−instants, is less than
the respective cost for one WiseMAC full-preamble broadcast. This can be expressed as

cbest−instants =
k∑

i=1

Pti
+ (k

d

b
)

whereas cfull−preamble−broadcast can be expressed as

cfull−preamble−broadcast = PT +
d

b
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For the sender, it pays off to apply the best-instants technique if

cfull−preamble−broadcast > cbest−instants

In the case of the receiver, the best-instants technique pays off in any case, as listening
to a full-cycle preamble is costlier than listening to a preamble that only serves to com-
pensate for the individual clock drift.

The multi-hop flooding technique of the k -best-instants as discussed in [3] now proposes
to choose the first k elements of this sorted set and transmit the packet at the particular
instant. If the number of nodes n is smaller than k, every node will be reached. If n > k
and no intersections can be exploited, the node reaches only a subset of its neighbors.
There are cases where it is advantageous not to reach the whole set of neighbors with each
node’s rebroadcast, as the broadcast storm problem [33] can lead to bad performance in
radio-channel networks applying uncontrolled flooding techniques. With the parameter
k, the network designer can control the count of rebroadcasts, and has a means to control
and circumvent the occurrence of the broadcast storm problem.

In the following, we outline two experiments to measure and quantify the performance
gain of the (k)-best-instants broadcasting technique. In the first experiment, we mea-
sure the lifetime of a node broadcasting messages with a certain rate to its neighboring
nodes when applying either the WiseMAC full-preamble broadcast or the best-instants
broadcast, but not limiting the number of neighbors that are reached with a broadcast.
In the second experiment, we test out the performance in an AODV route request sce-
nario. We simulate and measure how much energy can be saved within all nodes when
each node establishes a route to the sink by initiating an RREQ-RREP route discovery
cycle.

5.3.2 Lifetime Experiment

Figure 5.10: Broadcasting scenario

The experiment setup is very simple. Node 1 broadcasts frames to its three neighboring
nodes 2, 3 and 4, as outlined in Figure 5.10. By increasing the rate of broadcasts, we aim
to analyze how the rate of packet transmissions impacts on the power consumption. We
run the experiments with both broadcasting techniques, the original WiseMAC broad-
cast prepending a full-cycle T preamble to each frame, and the best-instants-technique.
In order to make reasonable comparisons, the best-instant broadcast is not restraint to
a certain amount of transmits, and considers every node’s wake interval. Both broad-
casting techniques therefore aim to reach all three neighboring nodes. We applied the
comparison parameters for this simulation. The values are listed in section 3.3 and are
tailored to model the ESB as close as possible.
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Figure 5.11 depicts the lifetime of the broadcasting node as a function of the broadcast
rate measured on the ESB prototype platform. Figure 5.12 illustrates the lifetime of a
broadcasting node on the OMNeT simulator when being supplied with an initial amount
of energy. As expected, lifetime sinks when increasing the rate of transmitted frames.
Both figures show that the best-instants technique leads to a limited performance im-
provement. The measured lifetimes on the ESB prototype are only very slightly longer,
and do not exceed 5% in any of the traffic situations. On the simulator, the picture is
a bit clearer. As expected, the gap between the both techniques becomes bigger with
increasing broadcasting rate. The more the broadcast is being used, the more it pays off
to use the best-instants technique.

Figure 5.11: Sending node using both
broadcast techniques on the ESB

Figure 5.12: Sending node using both
broadcast techniques in simulation

Figure 5.13: Receiving node using both
broadcast techniques on the ESB

Figure 5.14: Receiving node using both
broadcast techniques in simulation

Figures 5.13 and 5.14 depict the measurements when running the same scenario but
equipping the receiving node 2 with an initial amount of energy. The performance gain
of the best-instants-technique should not only concern the sender node, but also the re-
ceiving nodes, as listening to a very long preamble is much costlier than only listening
to short preambles. As figures 5.5 and 5.6 illustrate, sending short preambles and the
payload several times is especially advantageous for the receivers.
The results confirm the performance improvement in both cases, but again the net gain
is very small. The net gain does not exceed 5% in any of the lifetime measurements
pursued on the ESB platform. The results of the simulator state similar results, but
the gap becomes clearly visible with increasing broadcasting rate. The performance gain
reaches approximately 10% with the rate of 0.4 frames per second.
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Still, when dealing with only a few neighboring nodes, the approach of the best in-
stants makes sense. If the neighborhood is known and does not change frequently, there
is no need to use full-preamble broadcasts. One has to keep in mind that the perfor-
mance gain on the receiver’s side concerns every neighbor covered. Not only node 2 has
a slightly lesser consumption when applying the best-instants-technique, but also node 3
and node 4. Sending long preambles of the full cycle should be avoided whenever it does
not serve to discover or rediscover neighboring node and their respective wake-patterns.
Whenever there is a limited amount of neighboring nodes, the best-instants technique
should be applied to save energy both at the sender and at the receiver’s side.

Furthermore, the best-instants-scheme is more suitable for broadcasting over multiple
hops, as the channel will be occupied only for short transmissions. As WiseMAC applies
the extended carrier sensing range concept for the collision avoidance, every transmission
blocks the medium not only for stations in the transmission range, but also for stations
in the larger carrier sensing range. The impact of sending long preambles of duration T
is therefore much bigger, in respect to energy wastage and throughput limitation. Every
node in the larger range will sense the tone have to stay in the receive mode.

Figure 5.15: Reliability of both broadcasting techniques on the ESB

Figure 5.15 depicts the reliability of the broadcast techniques implementations on the
Embedded Sensor Boards. The three bars correspond to the receiver nodes 2, 3, 4 in fig-
ure 5.10 and illustrate how many of the packets that were sent by the broadcasting node
actually were successfully received. The red bars correspond to the original WiseMAC
full-preamble technique, where for every packet, a preamble of duration T is prepended.
The green bar illustrates the reliability for the best-instants technique. The reliability
proved to be independent from the rate of broadcasts. It reached approximately 90%
with both techniques, with a bigger variance for the best-instants technique approach.

As we did not incorporate another error model in our simulation other than transmission
errors caused by other nodes’ interference, investigating on the reliability in the simulator
in the same scenario yields a rate of 100% for both approaches. As there is only one
sender, there is no interference, and every transmission reaches the receiver as intended.
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On the Impact of Simulation Parameters

Figure 5.16: Both broadcasting
techniques on the Embedded Sensor
Boards

Figure 5.17: Both broadcast
techniques in simulation with the
datasheet parameters

Figure 5.16 again depicts the results of the same experiment carried out on the ESB,
whereas 5.17 depicts the results of the same simulation setup, but with the simulation
parameters chosen according to the transceiver datasheet, as listed in section 3.1.2. One
instantly notices the much bigger gap between the graph of the best-instants technique
and the WiseMAC broadcast when comparing both figures, and reasons why the tech-
nique pays off that much better with the datasheet parameters. The reason lies in the
different ratios of the parameters for the operation modes. The parameters applied in
figure 5.17 assume an energy consumption ratio of approximately 1

1000 : 1 : 2 for the
states sleep:receive:transmit, whereas the measurements in section 4.2.5 yield different
ratios. Saving some amount of time in one of the costly states receive and transmit
likewise pays off by a much longer lifetime. With a rate of 0.4, the lifetime is almost
twice as long with the best-instants technique.

Obviously, these parameters do not appropriately model the energy consumption of the
ESB nodes in their respective states. They only account for the energy spent by the
transceiver unit and deliver no reasonable energy model for cross-comparisons between
simulation and real sensor experiment result, at least not for the Embedded Sensor
Boards. With the ESB nodes, the sleep mode is indeed cheapest, but as the CPU still
consumes the same amount of energy, an ESB in the sleep state still consumes half the
energy of the receive state.

The comparison of the figures above illustrates the impact of parameter values chosen for
network simulations. In order to obtain an authentic sensor network model, one has to
choose realistic and appropriate parameters and verify them with hardware. One has to
incorporate implementation-specific issues, such as the longer transceiver switches with
ScatterWeb, to obtain meaningful results that can be cross-compared to experimental
results. When only considering the scarce information about the energy consumption of
some node’s components found on manufacturer datasheets, the simulation results will
be restrained to an artificial horizon.
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5.3.3 AODV Route Discovery Experiment

simulation parameters
topology:
area 300 m × 300 m
nodes 90 uniform distribution

routing parameters:
routing header 80 bit
data packet payload 80 bit
RREQ retries 2
RREQ retry timer 3s
best instants k 2

We ported the k-best-instants broadcasting technique to the WiseMAC implementation
in the network simulator (see 4.1), and integrated it with a popular on-demand routing
protocol. The MAC layer broadcast mode is of high importance when implementing
flooding mechanisms in on-demand routing protocols, such as AODV [14], DSR [15], but
also in the data-centric Directed Diffusion protocol. Nodes aiming to transmit a packet
will search their destination by initiating costly route request queries. Typically, the
source node initiates such a cycle by emitting a route request, which is then rebroadcast
in every intermediate node, until it either reaches the destination or an intermediate
node knowing a path to it. We chose to use AODV as a well-established, efficient routing
protocol, because the AODV one-hop paradigm fits well to WiseMAC with its schedule
offset table of the one-hop neighbors. AODV is both energy- and memory-efficient. It
neglects to transmit and store the full routing information between two endpoints. The
route knowledge itself is distributed in the network, which makes sense in a resource-
constrained wireless sensor network.

We tested out the performance of the upper schemes in an AODV route establishment
scenario where every node in the network aims to find a route to the sink in a 90 nodes
uniformly distributed topology on a 300 m × 300 m plane. In the following, the nodes
first go through a bootstrapping neighborhood discovery process of a few seconds during
which they find their respective neighbors by sending a few HELLO messages using the
original WiseMAC full-preamble broadcast mechanism. After 1 minute, the first node
emits a route request for the sink node, as it wants to start reporting data. The request
is flooded over the network until reaching the sink, which answers the request. After
receiving a route reply, the packet is forwarded hop by hop to the source by unicast. In
intervals of 5 seconds later, one node after the other searches a path to the sink, until
every node has found a route to the sink. The route request procedure is limited to 2
retry attempts, permitting up to 3 route request query cycles. After 500 seconds, the
simulation is stopped, and the total energy consumption of all nodes summed up.

With both broadcasting techniques, every node managed to find a path to the sink
and transmit the unicast packet. All route requests were successfully answered with a
respective route reply.

As figure 5.18 illustrates, the k-best-instants approach already leads to an efficiency gain
of ∼ 40% for the overall energy consumption in this simple AODV route establishment
scenario. The performance gain of the k-best-instants broadcasting technique weights as
much as broadcasting and flooding mechanisms are used in the wireless sensor network.
In an application scenario where queries are subsequently flooded to the nodes, using the
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k-best-instants broadcast might also perform better than the original WiseMAC broad-
cast scheme.

Figure 5.18: Performance of the broadcast schemes

The reason for the much better performance of the k-best-instants scheme is that with
the full-preamble technique, every node in an ad-hoc network will have to listen to every
other nodes rebroadcasting RREQ’s. The extended carrier sensing range that is applied
with WiseMAC also has a heavy impact. Nodes in this extended range will be kept awake
with every preamble tone they hear. This leads to much more nodes staying awake than
with the short transmissions of the k-best-instants technique.

65



5.4 Moving Intervals Wake-up Pattern

The WiseMAC protocol switches the transceiver between receive and sleep state in a
simple periodic manner. In each cycle, the transceiver is switched to receive for a very
short duty cycle that only serves to sense the carrier for the preamble signal. The time
in-between two wake-ups however stays constant for each node. Once a node has been
turned on, it starts alternating between receive and the sleep state with a constant period
and individual wake-up pattern. When applying no synchronization measures at all, and
nodes are not synchronously booted, the simple scheme leads to uniformly distributed
medium samplings of the nodes over time. According to [5], systematic overhearing, as
it occurs in synchronized MAC protocols like SMAC and TMAC, does only seldomly
occur, as in most cases, the wake-up intervals of the nodes will not intersect.

WiseMAC designer El Hoiydi argues in [5] that non-synchronization inherently leads
to a so-called probabilistic overhearing avoidance. Short transmissions between a sender
and receiver pair will most probably not be heard by any other nodes, as all nodes have
their independent sampling pattern. Short transmissions are likely to fall in between the
independent sampling instants of potential overhearing stations.

Figure 5.19: WiseMAC probabilistic overhearing avoidance

Figure 5.19 illustrates the property of the probabilistic overhearing avoidance. When
a source sends a packet to a certain destination, the frame exchange is most likely not
overheard by most of the nodes, as WiseMAC nodes sample the schedule in their inde-
pendent wake-up pattern. Only two stations partially overhear the transmission in the
figure, as they wake up and sample the medium during an ongoing transmission.

In this section, we show that the WiseMAC fixed periodic wake-up pattern can be dis-
advantageous and lead to severe problems when the preamble samplings of neighboring
nodes are near each other. We especially show that indeed, systematic overhearing can
occur with WiseMAC. We show that this problem can harm network service character-
istics and we identify the root cause. We outline a mechanism and modification on the
WiseMAC fixed periodic sampling pattern and prove that this scheme is suitable to de-
liver better results than original WiseMAC with increasing traffic rate. We underline our
observations with experiments carried out on the simulator and on the sensor hardware
testbed.
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5.4.1 Drawbacks of the WiseMAC Static Wake-up Pattern

The fixed static wake-up pattern of WiseMAC leads to some drawbacks which are not
apparent from a first point of view. The deployment of a wake-up and carrier sampling
pattern with a constant period makes it impossible for nodes with non-intersecting wake
intervals to learn about the presence of their local neighbors just by overhearing messages
originated by them. As pointed out in section 2.1, systematic and repeated overhearing
is a source of energy waste and should be avoided.

WiseMAC Rediscovery and Schedule Update Problem

When applying WiseMAC with its fixed static wake-up pattern, most of the nodes will
have non-intersecting wake-ups. Short transmissions are likely to fall in between the in-
dependent sampling instants. The so-called probabilistic overhearing avoidance achieves
that transmissions between other stations are in most cases not overheard, which is a pos-
itive issue. One drawback however comes with this property: to overcome the problem
of discovering the local neighborhood, one will have to introduce a bootstrapping phase
where neighboring nodes are discovered using some full-preamble WiseMAC broadcasts
right after node deployment. The WiseMAC fixed wake-up pattern will not allow nodes
to rediscover each other again by overhearing each others transmissions.
If the nodes want to retain knowledge about the presence, the current state and the activ-
ity of their neighbors, they periodically need to stay awake for the full cycle period T in
order to rescan and discover neighboring nodes’ transmissions, or request and distribute
schedule updates with own full-preamble WiseMAC broadcasts. In addition, a single
bootstrapping phase does not guarantee that all neighboring nodes are discovered. It is
possible that the broadcast is interferred by other distant transmissions or fails due to
bit errors. In some scenarios, networks have to deal with slight movement of the nodes,
what can lead to nodes getting out of range and others getting into it. It is a conceptual
advantage if the wake-up pattern allows periodic but infrequent overhearing, in order to
maintain knowledge about the local neighborhood.

WiseMAC Near Wake Intervals Shadowing Problem

Figure 5.20: WiseMAC with cycle duration T and independent wake-up pattern

Another disadvantage of the WiseMAC fixed static wake-up pattern arises when there
are several nodes with nearly identical wake-up pattern. In situations with increased
traffic, such nodes systematically hinder each other from receiving messages. Consider
node B and C in Figure 5.20, which share almost the same wake-up pattern. We assume
that all nodes are at least in interference rage of each other. Node C always slightly
precedes the wake-up period of node B. If two respective neighbors A, D want to reach
B and C, the transmission A → B will always be shadowed by the transmission D → C,
as node C always wakes up earlier. D will always be capable of sending the preamble
and start transmitting the frame to C, whereas B will wake up, notice that there is a
transmission going on that is not destined to itself and go back to the sleep state after
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the medium is idle again. A will have to wait until there is no message transfer to C such
that it can finally transmit to B. This leads to a high latency for A’s packets whenever
there is traffic destined to C. We note that the wake pattern of C shadows the wake
pattern of B and hinders it from receiving frames.

Notice that the later node B will always overhear messages that are destined to node C.
When nodes transmit frames to C, node B will always wake up and overhear it. Depend-
ing on the preamble length and the gap in between the patterns of B and C, the danger
that node C overhears messages or at least halve frames destined to B likewise is also
present. The probabilistic overhearing avoidance of WiseMAC yields that neighboring
nodes either never overhear each others transmissions or that they constantly overhear
each others transmissions. This is an undesirable property, as nodes hearing every trans-
mission of a neighbor will be prone to a much higher energy wastage and will drain out
of energy first. Depending on their location in a wireless sensor network, this might have
heavy consequences. The WiseMAC static wake-up pattern therefore inherently yields
the danger of systematic overhearing.

The problem can have severe impact on the service properties for a large part of the
nodes, especially if C and D are neuralgic spots in the WSN which have to forward
data packets from whole subtrees. If D continuously generates or forwards packets, the
traffic that needs to be forwarded by B is blocked. This can lead to high delays and even
buffer overflows, and turns out to be a fairness problem. Furthermore, node B is likely to
drain out of energy first, as it will have to stay awake for its own transmissions and the
transmissions to C. The problem with WiseMAC is that the sampling pattern remains
unchanged in every cycle. Once nodes shadow each other, they will shadow each other
forever.

Figure 5.21: minimum gap in between wake intervals

The probability that wake patterns are too near depends on the wake cycle duration T ,
the bandwidth b and the size of the frames to be transmitted d. Figure 5.21 above de-
picts the case when a sooner node and a later node receive messages by their neighbors,
SRC1 and SRC2. Their respective wake intervals yield exactly the desirable minimum
gap 4t such that the transmission to the sooner node does not hinder the transmis-
sion to the later node. As illustrated in the picture, the wake pattern of the later node
yields a minimal gap of at least two halve preambles Psooner

2 , Plater

2 , the duration of a
frame transmission d

br , the turnaround delays of the transceiver trxtx, and the respective
acknowledgement tack. If not, the transmission to the later node is not possible when
there is a transmission going on to the sooner node. A sender would wake up, attempt
to access the medium for transmission, notice that the medium is busy and back off and
try in the next cycle.

Assuming that all node’s wake intervals are uniformly distributed over time, we can
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express the probability that the problem occurs that a sooner node’s wake-pattern shad-
ows a later node’s wake pattern as the probability that two wake-patterns have a gap
that is smaller than 4t. Given a random value t in the interval [0, T ], the probability
that the value is smaller than 4t is 4t

T . The probability that the shadowing problem
occurs between two nodes therefore yields:

p =
4t

T
=

Psooner

2 + d
br + trxtx + tack + Plater

2

T

When assuming an inter-delay of 10 seconds and the parameters of the WiseMAC simula-
tion of section 4.1, the probability that the sooner nodes’ wake interval shadows the later
node’s wake interval is 6.92%. Likewise, the probability that the vice-versa case occurs
is also 6.92%. The probability that one node shadows the other is therefore 13.84%, for
any two neighboring nodes in the network.
Another drawback of WiseMAC’s simple periodic wake pattern occurs when applying the
k-best-instants broadcasting scheme described in section 5.3 to reactive RREQ-RREP
query based protocols. When disseminating RREQ flood across a multi-hop topology,
nodes will always consider the same nodes’ intersections for rebroadcasting a frame. The
network will stick to the same behavior in every retry attempt and will distribute the
request always to the same set of nodes, and therefore probably not find appropriate
routes. This is especially the case when there are bottlenecks in the network topology.
Similar questions and topics are investigated furthermore in [3].
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5.4.2 Moving Intervals Wake-up Pattern Concept

The WiseMAC fixed periodic wake-up mechanism that consists in sampling the medium
with a common basic interval T can be improved in a quite simple manner. We can
achieve a medium allocation scheme with similar properties but a better probabilistic
overhearing avoidance by introducing a time movement function for the wake intervals.
This function shall determine the instants for the wake intervals. An initially chosen
cycle shall be kept as base for the movement function, but the medium samplings shall
not always begin at the start of the interval.
There are different possibilities to integrate moving wake periods. We can introduce a
moving interval in between two fixed intervals, similar to the mechanism proposed by
Braun et al. in [2] with fixed and random wake intervals. The authors motivate the
choice of a fixed wake-up interval repeating with a constant period and a random wake-
up interval in between to solve the problem that nearby nodes are possibly never detected
due to non-intersecting wake patterns. Our motivation for the choice of moving wake
intervals is threefold:

� The behavior of a moving wake period is deterministic and follows a simple linear
movement function which is identical and predictable in every node. If a node
wants to transmit a frame to one of its neighbors, it determines its next wake
interval by consulting its schedule offset table, where previously received wake-up
announcements are stored and the next wake intervals of the respective neighbors
are regularly calculated according to the movement function. The sender node can
therefore determine the current position of the wake interval in the node its aims
to deliver a message to. It prepends a preamble to the frame and then awaits
its neighbor’s wake-up. It appends its own wake-up announcement to the frame
to update the receiver and likewise receives a schedule update from the receiver
piggybacked on the acknowledgement. Everything is done exactly as in WiseMAC,
the only difference is that the wake intervals follow a movement function.

� The problem referred to as Rediscovery and Schedule Update Problem in 5.4.1 that
non-intersecting wake-up patterns could lead to nodes never discovering each other,
is also resolved using moving wake intervals. Sooner or later, nodes will overhear
frames or acknowledgements, even from or to nodes with non-intersecting wake-up
patterns. The moving wake interval ensures that - given some periodic traffic - this
will happen within a limited amount of time. In contrast to WiseMAC, nodes will
infrequently overhear messages originated by their neighbors and will be able to
adjust their neighbor schedule offset tables accordingly.

� The problem of nodes being shadowed by nodes with a slightly sooner wake-up
interval and the systematic overhearing of each others transmissions described in
5.4.1 is solved in an elegant manner. By incorporating timely moving wake intervals,
the situation that two nodes share almost the same behavior can still occur, but is
far less probable than in the case with only a fixed wake-up interval. The situation
that one node is shadwed by another nodes’ wake-up pattern is less probable, as
for such a case, the nodes would have to share the same wake-up pattern and the
moving wake intervals would also have to be accurately in the same movement
state in each timestep. Randomly choosing the initial configuration of the moving
interval in every node makes this case less probable. The movement function of the
moving wake period leads to a floating spreading of the node’s wake periods over
time, which is a more flexible and adaptive scheme than the fixed periodic wake
pattern of WiseMAC.
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In the following, we analyzed four variants for timely shifting movement functions, which
are depicted in figure 5.22 and labeled I, II, III and IV. They differ in the function
determining the instants of the wake-up intervals over time. All variants however work
with the same average rate of wake-ups over time - the actual amount of wake-up intervals
and time spent in receive mode is the same for all variants.
To simplify the illustration, a basic interval duration T is segmented into eight timeslots.
Each timeslot has a duration t and represents the wake intervals to sample the medium.
The four variants depicted below illustrate how the wake-up are assigned to the slots to
accomplish the movement pattern.

Figure 5.22: Variants: fixed wake periods (green) and moving wake periods (yellow)

� case I: Fixed and Moving (forwards)
One possibility is retaining a fixed wake interval which starts constantly at position
1 in the fixed cycle, and integrating a moving wake interval in each cycle. The
movement function is linear and only in forward direction. When the moving wake
interval reaches position 8, it jumps back to position 2 and starts moving forwards
again.

� case II: Fixed and Moving (forwards and backwards)
The second variant we analyzed is closely related to the first. The only change
consists in the movement function of the moving interval. The movement function
in this case oscillates stepwise between states 2 and 8. When position 8 is reached,
the interval shifts back to 7 and stepwise back to 2.

� case III: only Moving (forwards)
The third variant consists in maintaining only the fixed cycle, but not using the
beginning of the cycle for the wake-up intervals. It is the first variant without
any fixed wake intervals. Movement is - as in the first variant - only in forward
direction. In order to keep the service parameters comparable, the cycle duration
is only half of the one applied in the first two cases such that the expected value
of the wake-up frequency is the same in all scenarios and the wake-up patterns
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remain comparable. In between T , there are still two moving intervals. To ease
the illustration, we changed the numbering of the slot in figure 5.22. The intervals
move forward and then jump back to the beginning of their cycle.

� case IV: only Moving (forwards and backwards)
The fourth variant also has no fix wake-up interval, and differs from the third
variant only in the movement function of the moving interval, which now moves
forwards and then backwards inside the cycle.

To make our point clear, we deliver a combinatorial proof of the advantage of the moving
wake intervals in the simplified model of figure figure 5.22. Let us assume that each
node’s cycle is segmented into slots to implement the movement function. When boot-
ing, every node starts alternating in its own wake pattern, but as a simplification, the
start of every node’s pattern exactly comes to be in one of the slots. This assumption
is no limitation at all, it only serves to illustrate the mechanism that leads to a better
overhearing avoidance with the approach of moving intervals, and helps to make our
point clear. As slots can be of arbitrarily small duration, the assumption is not limiting
the scope.

In figure 5.23, nodes follow a fixed static wake-up pattern as in WiseMAC. Nodes sample
the medium in every fourth slot. The problem that two nodes share exactly or nearly the
same sampling pattern, such that one node shadows the other, as described in 5.4.1, can
be modelled in our simplified slotted model as the case when two nodes always sample
the medium in exactly the same slots. This is the dangerous case we aim avoid, as the
node’s serviceability will become dependent from traffic to each other in this case, and
nodes will be prone to systematic overhearing of each others transmissions and therefore
spoil energy. Figure 5.23 depicts four possible combinations of two node’s wake patterns.
As we can see, the first case out of four is dangerous. The probability that nodes share
the same behavior is therefore 1

4 = 25% in our model.

Figure 5.23: four combinations with the WiseMAC fixed static wake-up pattern

Figure 5.24 below displays the first 9 possible combinations of two nodes applying the
wake pattern of case I. Nodes sample the medium with one fixed and one moving interval
in each basic wake cycle T . The wake-sleep ratio is the same as in the WiseMAC case
in figure 5.23, as every fourth slot is allocated for a wake-up in average. In contrast to
WiseMAC, there are now a lot more combinations possible, as every nodes chooses the
initial position of its initial fixed slot and of its moving interval randomly. There are
7×8 wake pattern combinations possible for two neighboring nodes applying one of them.
The dangerous situation that two nodes share exactly the same behavior is only one of
them. The probability that this case happens is only 1

56 = 1.78% in the slot model.
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Figure 5.24: Fixed and Moving (forwards)

Thanks to the mobility of one wake interval, the probability that nodes share exactly the
same behavior and constantly hinder each other from receiving messages, and system-
atically overhear each others transmissions is much lower. We have obtained a scheme
that offers an overhearing avoidance that is more or less equal between arbitrary nodes,
and have yet retained the deterministic nature of the wake intervals. The scheme does
not avoid that there are wake-ups where two nodes are awake at the same time for some
slots, but makes it improbable that nodes’ wake-up patterns are identical such that they
constantly wake up in the same slots and spend energy on overhearing each others traffic.
In figure 5.24, one can observe that the count of slots that nodes share for the 9 first
combinations averages to 2-3. It is better if there is an average count of shared slots
rather than having either no or all slots in common. As mentioned, infrequent overhear-
ing can be advantageous to correct relative clock drifts. We neglect to similarly analyze
the three further cases II, III and IV in the simplified slot model, and instead test out
their performance in the simulation environment in the following section.
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5.4.3 Wake-up Pattern Simulation and Evaluation

Figure 5.25: 90 nodes uniform distribution

In order to evaluate and compare the properties of the different cases I-IV suggested in
the prior section, we deployed and simulated them on the 90 nodes uniform distributed
network topology depicted in figure 5.25. We applied the parameters on the MAC layer
outlined in sections 3.1 and 4.1. As the goal consists in the analysis of the properties
of the four MAC-layer wake-up schemes alone, influences of a specific routing or broad-
casting scheme were kept away by using static-shortest path routing. Applying a specific
route discovery procedure could impose an undesired impact on the performance of the
different movement schemes and tamper the results. By applying shortest path-routing,
we inhibited these influences. Every node calculates the shortest path to the sink with
Dijkstra’s shortest path algorithm and picks its gateway node accordingly. If there is
more than one gateway with the same cost, a node picks a gateway at random and keeps
forwarding all packets over this node during the simulation run.

We compared the four approaches denoted as cases I, II, III and IV to the WiseMAC
wake-up pattern with the fixed static wake-up pattern. In the case of WiseMAC, sam-
pling interval is T = 250 ms between two wake-ups. For the four approaches I-IV we
chose T = 500 ms, but every node samples the medium twice in each cycle, as illustrated
in figure 5.22. The expected value for the inter-delay then calculates as T

2 = 250 ms and
is therefore equal for WiseMAC and for all four variants I-IV. The only modification in
comparison to original WiseMAC is the wake-up pattern, the arrangement of the wake-
ups so to say.
After simulation start, nodes go through a bootstrapping phase of 20s, where they all pe-
riodically emit a small amount of HELLO packets in order to discover their neighboring
nodes. To make sure every node initially discovers its neighbors, this is achieved using
full-preamble WiseMAC broadcasts. In this phase, nodes learn each others wake pattern
and fill their neighbor schedule offset tables.
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We investigated on the network characteristics in two simulation scenarios. In the first
scenario, every node reports data to towards the sink station at position (0,0) in the lower
left corner. By linearly increasing the traffic rate, we could observe how the transmission
characteristics over multiple hops behaves with increased load.
In a second scenario, we analyzed the behavior of the network characteristics when trig-
gering events on the topology. By linearly increasing the rate of events per time, essential
insights could be gained.
The parameters of the simulation scenarios of the following sections are summarized in
the table below.

simulation parameters
area 300 m × 300 m
nodes 90 uniform distribution
routing shortest path (dijkstra)
header 80 bit
payload 80 bit
simulation runs: 100
simulated time: 3600 sec

5.4.3.1 Node-to-Sink Periodic Traffic Scenario

In this scenario, we sticked to the most simple sensor network activity - the reporting
of data with a certain rate of traffic by every node in the topology. Simple sensor
networks i.e. for environmental monitoring purposes over a long time might have to
fulfill such tasks. After the bootstrapping phase, every node starts sending packets over
their shortest-path gateways. The gateways receive and forward the packets hopwise until
they finally reach the sink. The sink station is energy-unconstrained, as it is assumed to
be wired or fed with another power source.
Data traffic is generated by the node’s respective application layers. The application
generates traffic using the Poisson traffic model. The Poisson model is by far the most
widely used and oldest traffic model in the literature to simulate network traffic. It is
a simple and concise model that generates traffic of varying rate. Poisson traffic has
a constant rate traffic over a long time and a bursty traffic behavior in short periods.
In the Poisson traffic model, the parameter λ denotes the intensity of the traffic. With
the Poisson traffic model, the expected value of packets during N seconds is Nλ. We
ran the simulation with constant reporting rate in each node and each run for values of
λ = 0.01, . . . , 0.19. All simulation runs last for 3600 s. After simulation time, we count
together sent packets, received packets, dropped and lost packets.

Figure 5.26: Energy Consumption Figure 5.27: Throughput
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Figure 5.26 depicts the sum of all energy consumed by all the nodes in the network to-
gether. It shows that all the approaches with moving wake intervals result in a slightly
lower energy consumption than the approaches carried out with either one fixed and one
moving interval or only fixed intervals in WiseMAC.
We investigated on the reason for this effect, which is however not easy to find, as the
measured effect only sums up to approximately 5-10% difference for the whole network.
We find that the problems arising with the fixed wake-up pattern account for the major
difference. If there are wake-up patterns, the probability that there are nodes in the
vicinity sharing the same or a similar behavior is much higher, as pointed out by the
model proof in section 5.4.2. If this case occurs, then nodes will stay awake for every
transmission destined to the node with the similar wake pattern and overhear it, which
is costly. Systematic overhearing can indeed happen in WiseMAC, and is not that im-
probable as it may seem from a first point of view.
The probability that two nodes share the same behavior and tamper each other is raised
in WiseMAC by the application of the extended carrier sensing range. Interference from
many stations inside this range can lead to nodes being kept awake. Having only mov-
ing intervals, the probability that the stations share the same behavior is much lower.
What might not be well-visible as the curves are almost not distinguishable from each
other is that both mechanisms with one fixed and one moving (I,II), as well as both
approaches with only moving intervals (III, IV) perform almost identically. Obviously,
the two approaches with only moving intervals perform best in respect to the overall
energy consumption, as clearly visible in figure 5.26.

Figure 5.27 illustrates the throughput with increasing traffic rate. Comparing the ap-
proaches I-IV with the original WiseMAC wake-up pattern, we can claim a slight per-
formance improvement with increasing traffic rate, which however remains in the range
of 10-15%. It is insightful that the mechanisms incorporating moving wake periods are
only measurable with increasing traffic. As long as there is not much traffic, the situation
that two stations need to be contacted with a similar wake-pattern does not yet occur.
With low traffic, stations can wait for one cycle if one is shadowed, and then transmit
their packets. This effect is yet already measurable in the energy discussion in figure
5.26. With increasing traffic, the problem that two nodes with similar wake-pattern need
to be contacted concurrently, as they might need to forward packets from their subtrees,
leads to congestion problems. As illustrated in 5.27 congestion problems arise earliest
with the fixed static wake-up pattern of WiseMAC. In respect to throughput, the ap-
proaches I, II, III and IV do not differ at all. The only conclusion one can draw is that
the introduction of moving intervals has led to a slightly better throughput. The better
overhearing avoidance impacts similarly on throughput and energy consumption.

Figure 5.28: Packet Loss Figure 5.29: One-Way Delay
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Figure 5.28 and 5.29 depict packet loss and the average end-to-end latency of the packets
when arriving at the sink station. The figures confirm our conclusions and observations.
The fixed static wake-up pattern of WiseMAC again performs worse than the approaches
that incorporate at least one moving interval. Again, the better overhearing avoidance
between any two neighboring nodes is responsible for the efficiency and performance
gains. In respect to the one-way delay, the performance gain comes to 20-30% with
increasing traffic rate λ. This is a direct consequence from the congestion problems that
arise earlier in WiseMAC. If there are crucial nodes that need to forward a lot of packets
near the sink, it comes to congestion problems when they share a similar behavior. In
respect to packet loss, some improvement of 5-10% could be claimed.
It seems that retaining a fixed wake interval is obsolete and the solutions without any
static wake-up interval should be favored. When keeping a fixed wake interval, the
situation where one node is shadowed by another can still occur, although it is much
less probable than with WiseMAC. The overhearing avoidance of the approaches with
only one moving interval seem to perform best. Cases III and IV with only moving
intervals shifting in their cycles yield the best performance in respect to overall energy
consumption and one-way packet delay.

5.4.3.2 Node-to-Sink Distributed Events Scenario

Figure 5.30: Event on the 300 m× 300 m plane

Similar results as in the periodic reporting scenario of section 5.4.3 could be observed
in a distributed events scenario. On the same network topology, we triggered events on
randomly chosen spots on the 300 m× 300 m plane. When an event happens in such a
position, each node in the vicinity of 50 m starts reporting data with between 1 and 3
packets. In figure 5.30, an extraction of the topology is illustrated. A fire indicates the
event position. In this case, nodes 37, 12, 40, 41, 67 and 62 would start reporting data
packets to the sink. Again, we applied Dijkstra’s static shortest-path routing algorithm
to omit influences from the routing scheme. Using this scenario setup, we aim to model
applications where sensor networks are used for event-detection and monitoring purposes,
i.e. fire detection, movement detection or object tracking.
In event-based sensor networks, events trigger data to be reported from nodes in the
actual vicinity. There are techniques to aggregate and preprocess data inside the network
and only deliver results to the sink. In this simplified scenario however we omitted to do
so. Every packet is hopwise sent to the sink node.
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Figure 5.31: Energy Consumption Figure 5.32: Throughput

Figure 5.33: Packet Drops and Losses Figure 5.34: One-Way Delay

The results overall approve the observations and conclusions of the periodic traffic sce-
nario in the prior section (5.4.3). We can observe the best operation characteristics when
applying the mechanism with only one moving interval (Case III and IV in 5.4.2). These
approaches perform better than WiseMAC in regard of throughput, delay and packet
loss, and are energetically slightly superior to the approaches with one fixed and one
moving interval (I,II).
We conclude that the integration of moving intervals has a slight but nevertheless posi-
tive impact on the network characteristics in respect to energy-consumption, throughput,
latency and packet loss. In the next scenario, we aim to prove the simulated efficiency
gain in a simplified scenario and an implementation on real sensor hardware.
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5.4.4 Moving Intervals on the Embedded Sensor Boards

We implemented the scheme with one moving interval moving inside a tact window and
referred to as case IV in 5.4.2 on the Embedded Sensor Boards platform. The wake
interval is now segmented into 128 slots. Depending on the basic wake interval duration,
nodes shift their wake-ups forward and backward in respect to the beginning of each
cycle for a certain timedifference 4t which calculates as T/128 = 3.9 ms or exactly 4
ticks of the DCO internal clock (1024 ticks = 1 second). However, the slot structure only
serves to accomplish a precise and transmissionable movement pattern, nodes still begin
alternating in their own wake-up pattern and the cycle and slot starts of all individual
nodes are not synchronized at all. In order to tell other nodes how and when their next
wake-up will take place, nodes now transmit an additional byte in each packet, signalling
the current state and the direction of the inter-temporal movement-function to their
neighbors. The byte’s semantics is organized as outlined in figure 5.35.

Figure 5.35: Basic wake cycle interval T segmented into slots

The most significant bit denotes the movement direction of the wake intervals. If the
node shifts forwards in the next timestep, it sets the bit to ’1’, or ’0’ if it shifts backwards.
The bits 0 to 6 denote the slot the node will allocate for its wake-up in the next cycle.
The node of figure 5.35 is currently in the first cycle in the slot indexed 2, and the
respective byte is displayed. If during the first cycle the node transmits a packet to a
neighboring node, it appends the beginning of the next cycle and this byte, and thereby
announces that its next wake-up will take place in the slot with index 3, and that it is
moving forwards. The neighboring node can now determine the state of this node’s wake
interval in the future.

> ptb
> p r i n t i ng WiseMAC neighbor tab l e
>
> neighbor tab l e :
>
> ID |LUPS |LUPM |NEXS |NEXM |STATE |FWBW |X |Y
> 23 |429 |704 |446 |137 |7 |1 |0 |0
> 17 |423 |125 |446 |382 |98 |0 |0 |0
> 4 |421 |824 |446 |293 |27 |0 |0 |0
>
> cur rent time : 446 s e c s − 122 m i l l i s
> [ ptb ] OK

Listing 5.1: print table command output

Listing 5.1 depicts a neighbor table of a node as printed out by the print-table command
(ptb) on the ESB prototype implementation. Nodes regularly update their neighbor table
and estimation about the start of the next cycle of their neighboring nodes. Columns
NEXS (=Next Tact Seconds) and NEXM (=Next Tact Millis) contain the next-soonest
beginning of the neighboring nodes’ cycle. The listing lists three neighbor entries with
ID’s 23, 17 and 4. The column STATE contains the information about which slot is
being allocated in the next cycle. The FWBW column determines the direction of the
inter-temporal movement function, ’1’ for forwards and ’0’ for backwards.
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5.4.4.1 Near Wake Intervals Experiment

Figure 5.36: scenario setup

Figure 5.37: WiseMAC nodes with near wake
intervals

The WiseMAC fixed static wake-up pattern can be disadvantageous when there are nodes
with near wake intervals and similar sampling pattern in range of each others. The prob-
lem was referred to as Near Nodes Shadowing Problem and is described in 5.4.1. In this
section, we aim to prove that the solution with the moving wake intervals solves this
problem and provides a better and more reliable overhearing avoidance. We show that
systematic overhearing of neighboring node’s transmissions can be avoided, in practice,
with the ESB implementation of the moving intervals scheme.
The setup of the experiment is outlined in 5.36. All nodes A,B,C,D are in range of
each other. Technically, they build up a full mesh, as indicated by the grey links, but
only the links in bold black are used. In a multi-hop topology with many nodes, the
situation is quite probable to happen, as it is not necessary that all nodes are in range
of each other that the problem occurs. It suffices when nodes A is in interference range
of C and D in interference range of B. When node C’s wake interval is slightly before
another node B’s interval, as depicted in 5.37, transmissions to C will always shadow
and tamper transmissions to the later node B. Node B will always wake up and overhear
transmissions destined to node C and spoil energy on systematic overhearing.

The probability that this problem arises is determined by environmental parameters
and is analytically discussed in 5.4.1. We ran 100 tests by independently booting two
nodes and testing if their respective wake pattern hinders each other from receiving mes-
sages. We found that the probability that this problem happens on the ESB is significant.
Out of 100 independent tests, the problem occurred 23 times. As discussed in 5.4.1, the
problem is approximately as probable as the duration of a entire packet transmission
including the acknowledgement in relation to the duration of the basic wake cycle T .
When applying again the comparison parameters, the duration to transmit one packet
and respective acknowledgement denoted as ttransmission calculates as

ttransmission= E(tMRP ) + tMP + tframe + trxtx + tack

∼ 3 ms + 5 ms + 20 ms + 4 ms + 10 ms = 42 ms

Where tMRP denotes the medium reservation preamble, tMP the minimal preamble and
trxtx the transceiver switch from receive to send. The probability that the first node hin-
ders the second therefore yields as 42 ms

500 ms = 8.4%. Again, we have to double this value
as the vice-versa case might happen also. The analytical probability therefore comes to
16.8%, which is again a value that is not negligible, as the problem may occur between
any two nodes in the network with this probability. The reason why we measured a
value of 23% might be because in reality, there is a bigger gap in between frame and ac-
knowledgement transmission than indicated with the analysis above. On the Embedded
Sensor Boards WiseMAC prototype, a frame transmission with 12 bytes payload and the
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respective acknowledgement comes to approximately 50− 60 ms.

In this simplified scenario, we show that the static wake-pattern of WiseMAC leads
to bad service characteristics for nodes of type C with increasing traffic rate. We show
that the problem can be solved or at least softened with the moving intervals approach
with only one timely moving wake interval moving forwards and backwards, denoted as
case IV in the prior sections. We focus our investigation solely on the case if the situation
of near intervals occurs. By synchronizing the nodes B and C in every experiment run
and letting them choose a slightly different wake-up pattern, we achieved that the wake
interval of C always precedes the respective wake interval of B by some milliseconds. We
then generated traffic from nodes A to B and node D to C and measured the service
characteristics of the traffic arriving at the sooner node C and the later node B. Traffic
is generated according to a Poisson process of rate λ. We carried out the experiment
with different values of λ ranging from 0.1 to 0.8 packets per second.

Figure 5.38: WiseMAC static wake-up
pattern on ESB nodes

Figure 5.39: Moving Wake Intervals on
ESB nodes

Figures 5.38 and 5.38 depict the behavior of the end-to-end delay of packets generated
by the application layer in node A and D arriving at nodes B and C. Again, the delay
is measured as the time the application generates the packet and the time the receiver
node application layer receives end decapsules the packet.
The mechanism that now develops is the following: in any case D transmits a packet to
C, node A can not deliver own packets to B and has to backoff and wait for the next
cycle where D has no traffic to send. Node B’s received packet delay therefore increases
steeply with increasing traffic rate, as traffic to it is shadowed by node C’s wake-up. As
expected, C does not suffer from increasing delay with increasing rate λ, as its wake-up
precedes the one of D. At λ = 0.8, we stopped the experiments, as the generated packets
led to buffer overflows in A. Lacking of memory, the buffer only suffices to store up to 5
packets with the MAC header and the small payload of 12 bytes.
As displayed in 5.38, the MAC scheme with the Moving Intervals indeed performs better.
As the wake interval shifts inside a cycle in respect to the movement function, chances
are low that the two receiving nodes B and C systematically hinder each other from
receiving messages. The latency of packets destined to both nodes is not distinguishable.
The moving scheme leads to a more robust probabilistic overhearing avoidance. In con-
trast to the fixed static pattern of WiseMAC, it is less probable that both the start of
the cycle and the initial configuration of the nodes’ wake intervals lead to the problem of
permanently near wake intervals. It leads to the property that the wake intervals come
near each other and cross each other infrequently, which however is not so bad as nodes
may exploit these moments and overhear each others wake schedules.
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Figure 5.40: WiseMAC static wake-up
pattern in OMNeT

Figure 5.41: Moving Wake Intervals in
OMNeT

Figures 5.40 and 5.41 depict the results of the same experiment setup carried out in the
OMNeT simulator when applying the comparison parameters. Again, the wake interval
of node C slightly precedes the respective interval of node B. The negative impact for
node B being slightly later than C is clearly visible in the graph of node B’s delay. The
latency increases more or less linearly with increasing traffic rate λ until it steeply in-
creases in the value of 0.95. This being a bit later than in our measurements on the ESB
testbed. However, simple scenario shows in 5.41 that the scheme can be improved with
the Moving Intervals approach. As in the measurements on the ESB nodes, transmissions
to both nodes then have a comparable latency.
The Moving Intervals scheme allows that two nodes sooner or later wake-up in the same
slot. This effect is clearly visible with the ESB nodes, as it happens every 128 slots or
128 × 500 ms = 64 secs, when their movement function reaches the end of the cycle
and changes direction. When generating some traffic from A to B and D to C, this
effect led to nodes discovering each other after some time by overhearing messages and
their respective acknowledgement during the intersection. The nodes therefore aggregate
knowledge without any further cost, just by exploiting the infrequently occurring over-
hearing.

5.4.4.2 6 Nodes Chain Experiment

Figure 5.42: Chain topology

In order to analyze the behavior of the Moving Wake Intervals scheme with multi-hop
traffic, we again chose the scenario setup with the 6 hop chain of section 4.3. We ana-
lyze the performance of the Embedded Sensor Boards Moving Intervals prototype and
cross-compare the results with corresponding results of measurements with the same
experiment in the OMNeT simulation and the corresponding results obtained with the
WiseMAC prototype in section 4.3. Again, nodes are all in range of each other, and
technically build up a full mesh topology, but only the links that are painted in bold
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solid black are used.
We measured the one-way delay of packets being generated by the application layer in
node 1 and being hopwise transmitted towards node 6. Traffic is generated with rate r
and a jittering scheme is introduced to omit that results are effects of a certain periodicity
of the traffic pattern. The inter-delay 4t between two packets calculates as:

4t =
1
r

+ djitter djitter ∼ uniform[+T,−T ]

Figure 5.43 again depicts the results of the same experiment run with WiseMAC in
section 4.3, and figure 5.44 the results of the Moving Intervals approach. Both figures
illustrate the corresponding delays obtained on the simulator and on the ESB implemen-
tation. Again, we applied the comparison model parameters. Obviously, simulation and
measurements on the ESB prototype are not that far from each other. In each figure,
the simulator and ESB curves’ differences are in the range of only around 5% or even
lower. The reason for the difference between modelled experiment and the experiment on
the ESB might be that a transmission on the ESB is still a bit longer as the comparison
parameters actually model it in OMNeT, due to the delay in between frame transmission
and acknowledgement. Some implementation-specific issues may also play a role.

Figure 5.43: One-Way delay with
WiseMAC static wake pattern

Figure 5.44: One-Way delay with Mov-
ing Intervals

Figures 5.43 and 5.44 both illustrate a delay of 1500− 1600 ms for the transmission over
6 hops, or a 300 ms per-hop delay. When moving from the WiseMAC sampling pattern
to the Moving Intervals, one can not expect much to change in this delay. As the wake
intervals move in between the same cycle of duration T = 500 ms, the end-to-end latency
still depends on the transmission delay and on the time a node has to wait for the next
wake-up of the next node in line. With wake intervals moving inside a fixed cycle, the
expected time to wait for the next instant therefore remains E(twait) = T

2 = 250 ms.
Again, we estimate the expected delay per hop E(dhop) as the time necessary to wait for
the next wake interval of the receiver node plus all delays that are necessary for frame
transmission and acknowledgement, i.e. the time for the medium reservation preamble
tMRP , the minimum preamble tMP , the transmission of the frame tframe, the transceiver
switches trxtx and ttxrx and acknowledgement tack. As we again applied the comparison
parameters of section 3.3, we can incorporate the expected value E(tMRP ) = 3 ms of the
medium reservation preamble tMRP , which is a uniformly distributed value in between
[0,6]. When incorporating all particular delays of the transceiver switches of section 3.3
into the calculation, we analytically obtain an average per-hop delay of

E(dhop)= E(twait) + E(tMRP ) + tMP + tframe + trxtx + ttxrx + tack

∼ 250 ms + 3 ms + 5 ms + 20 ms + 4 ms + 2 ms + 10 ms = 294 ms
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As the analytically obtained value does not change when applying the Moving Intervals
approach, we do not expect the mechanism to deliver different results than WiseMAC.
This expectation is met when comparing figures 5.43 and 5.44. The Moving Interval
leads to more or less the same results as the original WiseMAC scheme in respect to the
average one-way latency.

Figure 5.45: Advantageous WiseMAC
wake-up patterns

Figure 5.46: Disadvantageous
WiseMAC wake-up patterns

Yet another effect could be observed in both simulation and measurement results, and
is clearly visible in figures 5.43 and 5.44: The variance among the simulation run values
for the one-way delay is smaller with the Moving Intervals approach. The significance
intervals in both curves are approximately twice as long with the WiseMAC approach
than with the Moving Intervals approach. This property can be explained as follows:
Figures 5.43 and 5.44 depict the results of 20 independent experiment runs for each traf-
fic rate. Independent because in each run, all nodes were rebooted and every node began
alternating between sleep and wake states in its very own independent wake pattern.
With WiseMAC, the one-way delay is very much bound to the wake-up pattern of the
intermediate nodes. In one run, the pattern of the intermediate nodes between node 1
and node 6 favors the transmission in the direction 1 → 6, as illustrated in figure 5.45.
Every node only has to wait a few milliseconds until the next node’s next wake-up, which
results in a quite short one-way delay for this simulation run. With WiseMAC, this pat-
tern stays fixed in the whole experiment run. The delay of a experiment run is therefore
determined to a large degree by the wake-up pattern of the intermediate nodes.
In the next simulation run, the intermediate nodes’ wake-up pattern might not favor
the transmission along the chain, as the wake-ups might be quite far from each other.
Figure 5.46 illustrates such a situation. The one-way delay is in this case much higher.
Obviously, when applying WiseMAC, the different wake-up patterns in independent ex-
periment runs therefore result in very strongly differing end-to-end latencies for the single
experiment runs, which results in a stable average, but a high variance.

When running the 20 experiment runs with Moving Intervals, the wake-ups follow the
movement function inside a fixed cycle. The inter-delay between two nodes wake-ups
therefore changes between each packet delivery along the chain, as the wake-up inter-
vals move inside a cycle. For one packet, the state of the intervals might just favor the
transmission along the chain, whereas for the next packet, it might take a bit longer.
Overall, the Moving Intervals approach leads to a more balanced one-way delay among
the experiment runs, which results in lower variance in the observed values. This effect
can be observed when comparing the standard deviations of the observations with the
WiseMAC approach in Figure 5.43 with the standard deviations of the observations ob-
tained with the Moving Intervals approach in Figure 5.44. The effect was encountered
both in simulations and with the ESB prototype.
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We found that measuring the lifetime of the nodes applying the Moving Intervals ap-
proach on the ESB is obsolete, as the only difference to the WiseMAC implementation
that somehow requires more energy consists in the single byte being transmitted to keep
track of the state of the moving wake interval (see figure 5.35), and the update mechanism
of the neighbor table. The additional cost for transmitting one single byte and increasing
and decreasing the state variables of some neighbor entries is negligible, and certainly
not measurable at all with the methodology applied in this thesis (section 3.2.4). The
superiority of the Moving Intervals scheme in respect to throughput and latency observed
in the simulator would anyway not be observable in this small scenario. One would need
more nodes and higher traffic rates, as the effect only pays off when signs of congestion
arise.
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5.5 Traffic Adaptivity

WiseMAC’s approach of lowest-possible duty cycles and the preamble sampling technique
proved to be a very efficient communication scheme. As WiseMAC applies no channel
reservation to mitigate the hidden node effect, and solves this problem with the cheaper
carrier access policy of the so-called extended carrier sensing range, no additional control
messages are necessary. The only pure control message in WiseMAC is the acknowl-
edgement frame. Overall, WiseMAC proved to be suitable and more energy-efficient for
application in wireless sensor networks than existing WSN MAC protocols under vari-
able traffic conditions, such as S-MAC or T-MAC. Many sensor MAC proposals that
have occurred since the suggestion of WiseMAC have adapted and integrated variants of
the preamble sampling technique, also called low-power-listening.

Figure 5.47: Energy Consumption with WiseMAC

WiseMAC achieves a main goal of energy-efficient MAC protocols - it manages to use
the radio interface in an on-demand manner. If no traffic has to be sent, the protocol
overhead is very low. It consists in the simple periodic preamble samplings. WiseMAC re-
nounces on costly centralized or distributed synchronization schemes. More energy is only
spent when actually traffic is being handled. The good traffic adaptivity of WiseMAC
is clearly visible in figure 5.47, which depicts the overall energy consumption with the
original WiseMAC approach carried out in the experiment of section 5.4.3 on the left
and the lifetime results of the WiseMAC ESB prototype on the right. With no traffic,
the energy consumption remains very low. With linear increase of traffic, WiseMAC is
able to react with a more or less linear increase of the total energy consumption, which
is a desireable property.

Problems arise when dealing with packet bursts and when neighboring stations are also
intending to send traffic. One problem that can arise is quite similar to the early-
sleeping-problem occurring in TMAC (as described in 2.1.2). When a node wants to
reach a station in its wake interval, but fails to gain access to the medium, may it be be-
cause there is another station sending to the node or another distant sender is currently
blocking the medium, it is quite probable that the preamble sampling period is missed
and that the destination node goes back to sleep too early. The very short duration of
the duty cycles to sense the carrier has a vast impact on the maximum traffic rate. By
limiting the duration of the sleep intervals to only a few percent of the cycle interval, the
boundary values for the maximum traffic rate are determined. If there are many senders
aiming to transmit packets to one receiver, the transmission rate is more or less limited
to one packet exchange per wake-up. WiseMAC only offers a simple concept to signalize
pending transmissions between one sender and one receiver, the so-called more bit.
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5.5.1 Increasing the Duty Cycle

Aiming to make the WiseMAC protocol more adaptive for varying or increasing traffic
load, we followed the idea to let nodes react with increasing duty cycles when the traffic
load exceeds a certain threshold. We let nodes react to the increased load by doubling
or tripling their duty cycles. It soon turned out that an increase of the duty cycles alone
does not help at all, but only causes additional costs. The problem is the intrinsic infor-
mation asymmetry of the communication problem. Nodes increasing their duty cycles
will have to actively notify this increase to their neighbors.
We simulated a stepwise increase of the duty cycles when the incoming packets during
the last few cycles exceeded a certain threshold. But as every node assumes that its
neighboring nodes sample the medium with the minimum default sampling period, a
node increasing its duty cycle has to notify the increase to its neighbors, and transmit a
message for every neighboring node, as every neighbor follows its own wake-up pattern
- or prepend a preamble of the duration of the main interval T to reach all neighbors.
We tried to broadcast the increase of the duty cycle with the broadcast concept of the
best instants. The approach turned out not to lead to an improved traffic adaptivity
and energy efficiency, but to massive control messages being generated right when it
was least desired. More energy was spent for control messages and overhearing. The
service characteristics delay and throughput could not be improved, on the contrary the
mechanisms performed worse than the WiseMAC scheme. We ceased the investigations
on this idea and pursued another approach.

5.5.2 More Bit and Extended More Bit

Figure 5.48: more bit scheme in WiseMAC Figure 5.49: Tree structure in
a wireless sensor network

To increase the maximum achievable throughput in case of packet bursts and higher
traffic load, WiseMAC suggests an optional fragmentation scheme called more bit mode.
WiseMAC sets a flag bit in a unicast MAC frame whenever a node has more packets
to send. The more bit in the frame header signalizes to the receiving node that it shall
not turn the transceiver off after the reception and acknowledgement of the frame, but
switch to the receive mode again in order to receive the next packet. A sender thereby
does not need to wait for the next wake-up of the receiver to transmit the next frame,
what leads to a throughput increase. The scheme proved to be very effective in scenarios
with varying traffic, especially with packet bursts generated by single nodes.
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We tried to adapt the more bit idea one step further. The scheme only serves to im-
prove traffic adaptivity between one sender and one destination, and therefore has its
limitations. In a WSN scenario, there are often nodes which have to forward data from
large subtrees. Such bottleneck nodes have to forward messages generated by many other
nodes, supposedly large subtrees in the routing hierarchy, such as the node depicted in
5.49. The more bit scheme does not help at all if more than one node aim to concurrently
transmit a packet to a node. One after the other will have to wait for a wake-up of the
bottleneck node in order to forward their frame. We aimed to develop a strategy where
nodes will automatically stay awake for a longer time than just the sampling period,
when more traffic has to be handled, and tell and signalize this to all nodes waiting
to forward traffic to it, such that the information asymmetry is resolved. We therefore
extended the semantics of the more bit to an extended more bit, accomplished by the
stay awake promise of the receiver.

Figure 5.50: Extended more bit scheme based on stay awake promise

The scheme is depicted in Figure 5.50. The illustration shows two sources SRC1 and
SRC2 simultaneously aiming to transmit some packets to the same node DST, possibly
because an event has occurred. If SRC1 and SRC2 both aim to reach DST in the same
wake interval, the medium reservation preamble will decide who is first. SRC1 wins the
contention and sends its first two frames with the more bit set. The destination node
acknowledges the more bit in the ACK packet and stays awake for at least one basic wake
interval T . As SRC2 has lost the contention, it will wait and overhear the transmission
to DST. By hearing the stay awake promise in the ACK, SRC2 knows that it can start
sending its own data frames right after SRC1 has finished its transmissions, as it knows
that DST will stay awake.
The advantage of this scheme is that no time of the DST node is wasted, as the transmis-
sion of SRC1 can start immediately after node SRC1’s transmission. The mechanisms
however only gets in charge when there is a node buffering more than one frame, which
is a signal of increased load. The scheme is certainly not applied after every unicast
transmission, as this would cause much energy waste and rather not be energy-efficient,
especially not when the traffic is of only low rate.

The results of this section are published in [12]. The scheme might be further investigated
to account for other signs of increased load or congestion, such as failing transmissions
due to interferences, the overhearing of retransmission attempts or other detected over-
loading situations.
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5.5.2.1 Node-to-Sink Periodic Traffic Scenario

simulation parameters
area 300 m × 300 m
nodes 90 uniform distribution
routing shortest path (dijkstra)
header 80 bit
payload 80 bit
simulation runs: 100
simulated time: 3600 sec

We implemented the WiseMAC more bit scheme and the extended more bit scheme and
ran the same simulation of section 5.4.3 with the 90 nodes generating Poisson traffic of
rate λ, and measured the common traffic characteristics at the sink.

Figure 5.51: Energy Consumption Figure 5.52: Throughput

Figure 5.53: Packet Loss Figure 5.54: One-Way Delay

Figure 5.52 shows that indeed, an increase of maximum throughput is possible. As il-
lustrated in figures 5.52-5.54, the extended more bit scheme accomplished by the stay
awake promise proved to be superior to the WiseMAC more bit scheme in respect to
throughput, packet loss and one-way delay. However, as illustrated in 5.51, the improve-
ment comes with an increase of the overall energy consumption.
It is quite difficult to improve the WiseMAC scheme coupled with the more bit mechanism
in respect to traffic adaptivity, and yet to retain the energy efficiency. When intending to
provide a mechanism with least-possible energy consumption for low-traffic-scenarios, the
original WiseMAC scheme seems to be already quite suitable. If throughput increase is
necessary and mandatory, the figures above show that measures can be taken to increase
the maximum throughput, with a considerable increase of the energy consumption.
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5.5.2.2 More Bit and Extended More Bit on the ESB

We implemented the more bit scheme and the extended more bit scheme based on the stay
awake promise on the WiseMAC prototype implementation on the ESB, and tested out
the performance in two simple scenarios. Implementing the schemes was quite straight-
forward, signalizing to stay awake is achieved by altering a single bit in the MAC header.
We faced difficulties with the memory limitation and with the system stability when
increasing the load. As the memory only allows to store 5 packets, a lot of packets are
dropped due to buffer overflows.

Figure 5.55: WiseMAC with and without more bit scheme on the ESB

In a first step, we tested out the more bit scheme of WiseMAC in a simple sender-to-
receiver scenario over one link. We applied constant rate traffic of rate r (packets per
second) with the same parameters of the prior investigations and experiments carried out
with the ESB, as described in section 4.2, and measured the throughput at the receiver
node. The experiment setup and results are depicted in figure 5.55.
The black line illustrates the behavior of the WiseMAC protocol without the more bit
scheme. It can only deliver one packet per wake-up, and therefore, throughput is re-
strained to maximum two packets per second with the basic cycle duration T = 500 ms.
When increasing r further on, packets are subsequently queued in the buffer. When the
buffer is full, packets are simply dropped. No more than one packet per wake-up can be
sent, and the throughput remains below the two packets per second. This behavior is
visible in the black curve between 2 and 2.5 packets per second.
With the WiseMAC more bit scheme, more than one packet can be sent with each wake-
up of the receiver. The sending station receives packets from its application layer and
buffers them until the receiver node’s next wake-up. The sender then transmits frames
with the more bit set, listens for the acknowledgement and continues sending the next
packet in line, until its buffer is empty. The implementation succeeds to send 4−5 packets
in a row. Sometimes, the acknowledgement is missed or not received correctly, what leads
to one long burst being segmented into two shorter bursts. Yet, by applying the more
bit scheme, we could increase the throughput to much higher values. When comparing
to WiseMAC without the more bit, the transmission rate could be approximately tripled.

With increasing traffic rate, the system became instable and likewise crashed during
some measurement runs. The memory limitation and the fast switching between send,
receive and sleep seemed to negatively impact on the system stability, as stack-overflows
occurred with increased traffic generation rate. As we could observe a stagnation of the
throughput at rate r = 6, with packet loss values varying heavily between the measure-
ment runs, we decided to cease the investigations and measurements at this point.
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In the second experiment, we tested out the two schemes more bit and extended more bit
when generating traffic of equal rate in two senders S1 and S2 destined to one receiver
R, as illustrated in figure 5.56 on the left. When both sending nodes S1 and S2 aim to
concurrently forward packets to R, the node R becomes a bottleneck, as both nodes aim
to concurrently transmit their packets during the limited wake-ups. In section 5.5.2.1,
we could claim some limited throughput increase with high traffic when applying the
extended more bit or stay awake promise, compared to the WiseMAC more bit scheme.

Figure 5.56: WiseMAC, More Bit and Extended More Bit

With the extended more bit scheme, the receiver node receives the more bit in the data
frame header and promises to stay awake with a single bit in the respective acknowl-
edgement frame. It promises to stay awake for at least T = 500 ms When receiving or
overhearing the promise bit in the acknowledgment, nodes mark the time of arrival of the
promise in the respective neighbor entry, such that they can later seamlessly continue
sending their own packets when the neighboring node’s burst is over, as illustrated in
figure 5.50.

The black graph illustrates the behavior of WiseMAC without the more bit scheme,
the red graph the more bit and the blue graph the extended more bit scheme. The x-axis
corresponds to the aggregated traffic generated by both nodes. At the traffic of rate r in
the x-axis, every sender node S1, S2 generates traffic of rate r/2. Again, the limitation
of one transmission per wake-up in WiseMAC is obvious. Throughput is limited to the
frequency of the wake-ups, no more than 2 packets a second can be delivered. When
increasing r further on, packets are subsequently queued in the buffer and dropped when
the buffer is full.

When two stations apply the WiseMAC more bit or the extended more bit scheme, they
can alternately empty their transmit buffers in packet bursts with increasing traffic. The
throughput reaches 4.5 − 5 packets per second. Beyond the rate of r = 5, the behavior
of the system again became very instable and also node-dependent. Many packets were
dropped due to buffer-overflows and many measurement runs had to be restarted when
nodes suddenly crashed and had to be flashed. The throughput increase and benefit of
the stay-awake promise compared to the more bit scheme could not be proved on the
on the ESB nodes, both schemes behaved more or less equal. The extended more bit
scheme at least delivered more or less the same measurement values as the simple more
bit scheme for the traffic rates that were evaluated.
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5.6 Convergecast and Data Aggregation

Sophisticated data aggregation techniques in wireless sensor networks try to construct
cost-minimal spanning trees over the network topology, such as the Tree-based Converge-
cast mechanism described in 2.5.1. The mechanism requires total topology knowledge in
the root node, and introduces costly control messages.

Figure 5.57: DCE nodes combining and aggregating data

We aimed to find a reasonable and cheap solution for low-traffic scenarios, which we
could integrate with the flat-based low-duty cycle WiseMAC and an on-demand rout-
ing scheme, and which would further not require too heavy and complex system- and
network-wide computations and communications. We found that the simple approach
of the data combining entities (DCE-nodes) discussed in [29] and summarized in 2.5.2
would fit to our needs quite well. We renounced on costly mechanisms to find optimal
schedules or optimal aggregation points, but sticked to an approach that is distributed,
both easy to implement and requires no additional energetic cost.

We tested out the DCE-nodes approach in the OMNeT simulator on the 90 nodes topol-
ogy under the assumption that DCE nodes are randomly distributed across the network,
as illustrated by the black nodes in figure 5.57. Each node decides to act as data com-
bining entity in the bootstrapping procedure with a certain probability PDCE . We chose
1 sec as buffering interval limit and a maximum convergence limit of 5 packets meaning
that a DCE node converges the application payload of incoming data packets of up to
5 packets, thereby maximally saving 4 headers. We applied the mechanism with a DCE
probability PDCE of 10%, 30% and 50% to the 90 nodes uniformly distributed network
and the same environment parameters as outlined in sections 3.1 and 4.1. We ran the
same simulation of section 5.4.3 with every node reporting data with Poisson traffic of
rate λ. Again, we applied static routing to omit effects that the results are biased by the
routing scheme.

simulation parameters
area 300 m × 300 m
nodes 90 uniform distribution
routing shortest path (dijkstra)
header 80 bit
payload 80 bit
simulation runs: 100
simulated time: 3600 sec
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Node-to-Sink Periodic Traffic Scenario

Figure 5.58: Energy Consumption Figure 5.59: Throughput

Figure 5.60: Packet Loss Figure 5.61: One-Way Delay

The results confirm our expectations and an increasing performance gain can be claimed
in respect to the maximum achievable throughput and the energy consumption of the
network. The performance gain comes with the cost of a higher end-to-end delay with
low traffic-scenarios. Surprisingly, the end-to-end latency then increases less steeply.
When applying the DCE nodes approach, congestion problems arise much later. The
mechanism allows to keep the network operable with much higher traffic rates. This
must be the effect of the lesser transmissions. Without aggregating the data in DCE
nodes, every node transmits every packet alone. There are much more transmissions
going on which hinder each other in forwarding data, as the increased carrier sensing
range tells them that the medium is not free. With DCE nodes, nodes wait until they
have gathered some packets and forward them in one big transmission. This leads to
fewer interference, a more efficient medium allocation and results in lower packet loss
and better throughput.
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Chapter 6

Routing Layer Issues

The initial goal of the thesis consisted in the development of an integral energy-efficient
MAC and routing solution for wireless sensor networks. We aimed to exploit cross-layer
information passing from MAC to the routing layer to achieve performance optimiza-
tions, preying upon the special properties of MAC protocols with the individual and
unsynchronized wake intervals. We indeed tackle this issue in this chapter, and find
some possible optimizations by cross-layer information passing. However, the length of
the chapters 5 and 4 compared to this chapter 6 makes it apparent that the investigations
on the MAC - the analytical and practical improvement and evaluation of our very own
suggestions to optimize unsynchronized wireless sensor MAC protocols have become the
main focus and the center of attention of the thesis. Nevertheless, this chapter briefly
outlines the ideas and inspirations pursued on the network layer.

This chapter discusses the efforts that were undertaken on the integration of an on-
demand routing protocol to the WiseMAC protocol. We chose AODV as a well estab-
lished, efficient routing protocol for different reasons.
The flat-based non-hierarchical AODV protocol with its one-hop paradigm of the rout-
ing table fits well to WiseMAC with its schedule offset table of the one-hop neighbors.
AODV is both energy- and memory-efficient. It calculates routes only if they are really
needed, and easily adapts to changes in the network topology. This might be of use in
sensor networks, as nodes might be prone to slight mobility and move in and out of range
of each other, or paths might break with forwarding nodes draining out of energy.
AODV neglects to transmit and store the full routing information between two end-
points. The route knowledge itself is distributed in the network, which makes sense in
a resource-constrained wireless sensor network. The ratio between header overhead and
payload yields a better energy-efficiency than DSR. AODV routing headers are consider-
ably small, as AODV does not send the full route with every packet. Nodes do not have
to maintain large route caches, a few entries for the sink stations will suffice.

Furthermore, different multipath routing variants of AODV have been proposed that
offer to establish multiple paths by exploiting particular properties of the route request
flooding, which consolidates our choice for AODV. In this chapter, we summarize the
investigations that were undertaken on the issue of load-balanced routing to achieve a
longer lifetime of the sensor network and the problems that were encountered with this
approach in simulation and with the Embedded Sensor Boards prototype.

6.1 AODV Evaluation

We implemented the Ad Hoc On-Demand Routing protocol (AODV) both on the OMNeT
simulator and on the Embedded Sensor Boards testbed within some simplifications. In
the following, we briefly describe what features of AODV were implemented and which
options were left out.
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6.1.1 AODV Routing in OMNeT

We integrated the following AODV control messages on top of the WiseMAC simulation
in OMNeT:

� Hello Message (HELLO)

� Route Request (RREQ)

� Route Reply (RREP)

� Route Error (RERR)

In AODV, a node offers connectivity information by broadcasting local HELLO mes-
sages. By periodically sending and receiving HELLO messages, nodes learn to know their
neighbors and keep their knowledge about the local connectivity up to date. Within
a bootstrapping phase of 20 secs, nodes broadcast a few HELLO messages by means
of full-preamble WiseMAC broadcasts to make sure that nodes discover each other
within the discovery phase. Thereafter, nodes broadcast HELLO messages only with
a HELLO INTERVAL of 100 secs, to make sure that network capacity is not eaten up
entirely by HELLO messages.

A node aiming to transmit data first checks whether it knows a valid route to the des-
tination. If not, it floods a RREQ across the network. When receiving the broadcast,
an intermediate node checks if it has a fresh enough routing entry to the desired desti-
nation node. If it does, it generates an unicast RREP message towards the originator.
AODV proposes to optionally send a so-called gratuitous RREP to the destination node
to inform also the destination about this route. Our implementation omits this feature,
as later incoming AODV data packets fulfill this purpose anyway.

If a link failure is recognized, AODV offers two options. The first option is to send
a RERR to inform the other nodes about that link failure and the second option is to
try to repair the link by generating RREQ to the affected nodes (so called local repair).
We decided to stick to the first approach. When a node receives a data message for a
destination it does not have a valid route for, it will return a RERR. The RERR will
be unicast towards the originator, and erases the respective failing route to the desired
destination in every intermediate node.

Figure 6.1: OMNeT Simulator with WiseMAC/AODV
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6.1.2 AODV on the Embedded Sensor Boards

struct routing entry struct {
UINT16 destAddr;
UINT16 destSeqNr;
UINT16 nextHop;
UINT16 hopCount;
UINT32 installTime;

};

struct rreq struct {
UINT16 sourceAddr;
UINT16 sourceSequenceNr;
UINT16 broadcastId;
UINT16 destAddr;
UINT16 destSequenceNr;
UINT8 hopCount;

};

struct rrep struct {
UINT16 sourceAddr;
UINT16 destAddr;
UINT16 destSequenceNr;
UINT8 hopCount;

};

struct hello struct {
UINT16 sourceSequenceNr;
UINT8 force;

};

Figure 6.2: AODV control message structs in the ESB prototype

We improved and adapted previous work on the AODV routing protocol for the Embed-
ded Sensor Boards contained in version 3.2 of ScatterWeb [42] and integrated it into our
WiseMAC prototype implementation. Figure 6.2 lists the AODV table entry structs as
well as the structures used to implement the AODV control messages RREQ, RREP and
HELLO.
We were confronted with different serious problems when implementing the main features
of the AODV protocol on the ESB nodes. It turned out that the memory limitation was
a massive restriction for the programming task. The ESB nodes feature only 2 kbyte
RAM and 60 kbyte ROM. Out of the 2 kbyte, ScatterWeb uses approximately two thirds
for send and receive buffers and other variables (i.e. timers, variables, configuration
settings). We had already used quite much memory for the WiseMAC implementation
where we had needed large arrays for the schedule offset table of the neighbor entries,
countless variables for the implementation and some buffers for the preamble duration
calculations and k-best-instants related calculations. We therefore had to limit the MAC
layer to have at maximum 4 neighbor entries and the AODV table to maximum 3 entries.
The same problems were encountered for the text segment that contains the code. Out
of the 60 kbyte ROM, the ScatterWeb code already allocates approximately 55 kbyte.
We removed all parts of the ScatterWeb code that seemed unnecessary for our tasks,
i.e. all all commands and all instructions for accessing and reading out sensor data from
the infrared, the temperature and the vibration sensors. Still, the memory limitation
imposed a massive restriction. We had to keep the implementation as small as possible.
We decided to only implement the key features for bidirectional route establishment and
data transfer and neglected to implement features such as the local repair, route error or
route maintenance.
Finally, we managed to run the main features of the AODV protocol on top of the
implementation of the WiseMAC prototype, which allowed to make some small-scale
experiments.
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Route Establishment Experiment

Figure 6.3: Lattice Square Topology with ESB nodes

We lay out out 16 nodes in a 4x4 lattice square topology, as depicted in 6.1.2. We
assigned positions to the nodes. Position (0,0) was assigned to the node in the lower
left corner. For each hop in each direction the positions were likewise increased by 10.
Position (30,30) was therefore assigned to the node in the upper right corner. We set
the virtual range parameter MAX RANGE of of the MAC filter methodology outlined
in 3.2.4 to 10. Nodes are all in complete range of each other, but packets from nodes
that are too far are filtered out. Only the links depicted in the graph of Figure 6.1.2 are
actually used. A node therefore has 4 neighboring nodes at maximum.

We triggered 30 Route Requests (RREQ) from the source node S in the lower left corner
(0,0) to the destination node D in the upper right corner (30,30), and measured

� if the request succeeds and a route is found to the destination (success ratio)

� how long it takes from the first emitted RREQ broadcast to the first incoming
RREP (path discovery duration)

� path optimality as ratio of the length of the path found compared to the length of
the optimal route

The results give an insight how robust the implementation of the routing protocol works.
It can be seen as a proof of concept that the work on the WiseMAC prototype in sections
4.2 and 5 can be successfully deployed in a multi-hop wireless sensor network operating
with an on-demand routing protocol. Given the opportunity to test out the suggested
broadcast scheme of section 5.3, we ran the experiments with both, WiseMAC full-
preamble broadcast and k-best-instants broadcast technique to compare and analyze the
respective behavior and robustness.
We figured out the parameters that were most appropriate and delivered the highest
success ratios for each broadcast variant. The parameter RREQ JITTER denotes the
jitter between incoming RREQ and the rebroadcast and is a random value in the given
interval. The parameter RREQ RETRY TIMER denotes the time between the first
RREQ broadcast of the originator node that searches a path and its first retry attempt.
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Parameter WiseMAC Broadcast k-Best-Instants Broadcast
HELLO INTERVAL 500 s 500 s
RREQ RETRIES 3 3
RREQ RETRY TIMER 15 10
RREQ JITTER uniform [0,3000] ms uniform [0,1000] ms

We had to choose higher values for the RREQ JITTER and the RREQ RETRY TIMER
when applying the WiseMAC full-preamble broadcast. When choosing lower values,
collisions occurred and hindered the RREQ from spreading across the network, which
led to starvation of the flood. The reason is in the most cases the ScatterWeb carrier
detection, that is still not very reliable. As the carrier detection merely relies on the
recognition of startbytes, and the preamble signal is not always recognized correctly,
nodes often misinterpret the medium to be idle when in fact it is not. Nodes then
forward a RREQ and access the medium for transmission, not detecting already ongoing
transmissions and interferring with them, what leads to packet losses due to collisions.
When choosing a higher jitter and a higher retry timer, we could lower the probability
that collisions occur, and increase the chance that a route request actually could get
through and reach the destination node D. The results we then obtained are depicted in
the bars below.

We measured a success ratio of roughly 76.66% with the WiseMAC broadcast approach
and a success ratio of 93.33% with the k-best-instants technique. These success ratios
prove our concept that the very energy efficient WiseMAC power saving scheme can be
quite reliably applied in multi-hop sensor networks based on on-demand routing.
The results furthermore delivered better results with the k-best-instants approach in
respect to success ratio, path discovery duration and optimality than the WiseMAC
full-preamble broadcast. However, the interpretation of this gap is according to our ob-
servations, a direct consequence of the unreliable ScatterWeb carrier detection. As the
carrier detection is unreliable to a certain degree, it is likely that a node will wrongfully
consider the medium to be idle when it actually is not during the very long full-preambles
of the WiseMAC broadcast. Simultaneously transmitting stations will most likely inter-
fer with each other and thus hinder the broadcast from spreading across the network.
With the k-best-instants broadcast, forwarding incoming RREQ’s blocks the medium
only for the multiple short transmissions, so only for roughly 50 ms. The danger that
rebroadcasts collide with each other and hinder the RREQ from spreading across the
network is then much lower.

The satisfactory conclusion remains that the AODV implementation managed in most
cases to find a route between the most distant nodes in the network, which is 6 hops
away. As the thesis already experiments with traffic along a linear chain in chapter 4
and 5, we omitted to do so in this part of the thesis, as no new insights can be expected.
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6.2 Multipath Routing

In this section, we outline the efforts that were undertaken to integrate a load-balancing
multipath routing scheme into the WiseMAC simulation in OMNeT, and to the ESB
prototype, with the focus of increasing the sensor network lifetime. We begin with the
implementation of a multipath extension of the AODV protocol on top of WiseMAC in
OMNeT, with which we failed to prove performance gains. We then slightly altered and
extended this implementation with own policies and an approach to exploit MAC layer
information on the routing layer, until we could claim some theoretic performance gains
on the simulator. We finally discuss the challenges we met to achieve lifetime improve-
ments in sensor networks that apply WiseMAC on the MAC layer, and the attempt to
implement the load-balancing approach on the ESB nodes.
We investigated on techniques to obtain more than one route in a cheap manner, prefer-
ably by exploiting duplicate RREP’s of an initial RREQ query. Two multipath extensions
of AODV for finding multiple routes in one RREQ-RREP query cycle have been recently
proposed, called AOMDV [26] and AODVM [27].

We found that the AOMDV approach described in 2.3.3.2 is applicable with WiseMAC.
The second extension AODVM relies on intermediate nodes overhearing RREP’s that
are subsequently sent back to the originating node, and bookkeeping of the transmis-
sions of the intermediate nodes to ensure node-disjointness. Overhearing of intermediate
node’s transmissions can unfortunately not be guaranteed when applying the WiseMAC
protocol on the MAC. Nodes have their radio only turned on for very small duty cycles.
They might overhear some transmissions, but certainly not all of them.
We therefore sticked to the AOMDV approach, which does not rely on the property of
overhearing. AOMDV finds node-disjoint paths by exploiting a particular property of
flooding, as described in section 2.3.3.2. We applied the route discovery mechanism to
find only the node-disjoint paths of AOMDV, leaving out the option to discover more
link-disjoint routes. According to the AOMDV route update rule, a each routing entry is
only added if the first hop is different than the ones of prior received duplicate RREQ’s.
The scheme succeeded in finding multiple paths in some cases, but the results in respect
to network lifetime became even worse than pure AODV routing, approximately 10% in
respect to the achieved lifetime. Even when weighting the transmissions over suboptimal
paths with a lower probability, such that these routes would only be taken occasionally
into account, as proposed by Ganesan et al. in [24] and described in 2.3.3.5, the perfor-
mance resulted slightly worse than pure AODV.
It turned out that the redundant paths were often much longer than the optimal paths.
We assume that the long detours of redundant paths impacted negatively on the lifetime,
as more transmissions become necessary when paths are suboptimal, and each transmis-
sion may influence other nodes in the large carrier sensing range. We therefore ceased
to follow this strategy and renounced to elaborately examine the performance of this
approach.

We began altering the table update policies and observed what happens if we changed
one or another condition. The upcoming section discusses the modifications that led to
a slightly better performance on the simulation platform.
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6.2.1 AODV- and AOMDV-inspired Multipath Approach

6.2.1.1 Altering the Table Update Policy

As AODV is tailored for the use in mobile ad hoc networks, it always keeps the freshest
route to every destination. A node receiving a path advertisement for a given destination
node checks if the advertisement provides a higher destination sequence number, or if it
provides an equal destination sequence number and a shorter path. If it does, the current
entry for this destination is deleted and the packet source is taken as new gateway for
the destination node. As AODV has been designed for use in MANETS where nodes
move and get in and out of range of each other, the sequence number condition ascertains
that a node always uses the path known to be the freshest. Wireless sensor networks
can however be assumed quasi-static, and node mobility does not play a major role.
We therefore softened the condition of prioritizing route advertisements with highest
sequence number. Our approach considers route advertisements to a destination with
higher sequence number only if the route is not longer than the current. The approach
incorporates the basic mechanism of the AOMDV protocol to find node-disjoint paths,
but restricts to add such paths only if they advertise the same hopcount. Incoming
RREQ duplicates are treated as in AOMDV, they are answered if they advertise a node-
disjoint path to a destination but only if the advertise the same hopcount. We add an
additional path entry to the same destination to which a path is already known if:

� a) the sequence number is equal or higher

� b) the first-hop is different from all already known paths to the same destination

� c) the hopcount is equal

Figure 6.4: RREQ and different table update policies
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When a path-advertisement arrives with lower hopcount, all existing routes are deleted
and the new route is added. When receiving a duplicate that fulfills the conditions of
node-disjointness of AOMDV and is optimal in terms of hop count, the routing table is
extended to contain more than one path entry.
The routing table entry update rule modification in comparison with AOMDV and AODV
can be explained with figure 6.4, where the dissemination of a route request from node 1
searching a path to node 16 is depicted. After flooding the whole network, the destination
node receives path advertisements to node 1 from its neighbors 9, 11 and 14.
With AODV, the destination node only answers to the first incoming RREQ with a
corresponding RREP, let it be from 9. The duplicate RREQ from 11 is simply discarded
and left unanswered, as it advertises the same sequence number. Although it took another
route and would provide path redundancy, AODV discards the request and leaves it
unanswered. In contrast, AOMDV considers all routes that are advertised by 9, 11 and
1, as the respective RREQ’s all took another first hop.
We altered the table update policy such that only the hop-count optimal routes are added
to the table and answered with a RREP. In the upper case, the RREQ’s received over 9
and 11 are answered with a RREP, but not the one over 14. The resulting routing tables
for the source node 1 and the destination node 16 are depicted figure 6.4. With AODV,
only one path entry is considered, whereas AOMDV adds all paths to its table. With
our approach, only the hop-count optimal routes over 9 and 11 are added to the table.

6.2.1.2 Shortest Inter-Delay Routing

AOMDV only topics the question how to establish multiple routes, but not how to spread
the load over them. There are probabilistic schemes which assign a certain probability to
a route and choose the route for each packet in a random manner. We suggest to exploit
information provided by the MAC layer to achieve some performance gains in respect to
the latency. As all redundant path entries to a destination advertise an optimal route in
terms of hop count, the next soonest wake-up of the gateway leading to the destination
shall be the only selection criterion, also in each intermediate node. For a transmission
of a packet from source to destination, each intermediate node shall forward the packet
to the gateway of the destination with the soonest wake-up. A lower latency as well as
the desired load balancing among the intermediate nodes can thus be expected.

Figure 6.5: packet forwarded from 1 to 16 choosing the soonest wake-up gateways

As the source knows two paths towards node 16, it chooses the path according to the
inter-delay to the next-wake-up of the gateway node. In the first figure, we can see that
the time remaining to the next wake-up of node 4 is in 4t = 132 ms, and the next
wake-up of node 2 is in 4t = 54s. Therefore, the source node chooses to send the packet
over node 2, as it can deliver the packet and empty its buffer earlier. Accordingly, the
packet is routed in every intermediate node. As we only added hop-count-optimal routes,
packets are never routed away from the destination.

102



6.2.1.3 Simulation and Evaluation

Topology Setup As the choice of the network topology may have an impact on the
results, we considered the following three network topologies:

� uniformly distributed network topology of 90 nodes (see section 5.4.3)

� 3x10 nodes grid topology

� 7x7 nodes lattice square topology

Lifetime Metric We defined the lifetime of the network as the time until 10% of the
nodes deplete or the network becomes partitioned, and in a second run as the time until
the first node depletion.

Traffic Patterns For each topology setup, we measured two different traffic patterns.

� Evenly distributed traffic: Every node starts reporting data according to the Poisson
model with λ = 0.01. When every node generates the same amount of traffic,
multipath routing might not pay off, as the load is already balanced. As common
single path routing protocols establish source-sink trees with some nodes having
the burden to forward traffic of large subtrees, multipath routing still might help
to redistribute the load over more and other hops.

� Neuralgic spots traffic: If there are neuralgic spots in the network that generate
much traffic, whereas other parts stay more or less inactive, multipath routing can
pay off more. We assume that the three most distant nodes from the sink generate
20 times more traffic (λ = 0.05) than all other nodes (λ = 0.0025).
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Lifetime Results

Figure 6.6: Network Lifetime and One-Way Delay with Evenly distributed traffic

The results show an overall performance gain when applying the AOMDV-related scheme
coupled with the next-soonest-wake-up routing paradigm of ∼10-15% concerning the
network lifetime and the one-way delay. When considering the low cost of some additional
RREP messages in the initial route discovery flood, the results state that on-demand
multipath routing may provide a limited but valuable contribution to prolong the network
operability. In our simulation, the mechanism only paid off when sticking to the hop-
count-optimal routes only.

Figure 6.7: Network Lifetime and One-Way Delay with Neuralgic spots traffic

The exploitation of the MAC-layer information about the next-soonest wake-up of the
neighboring nodes paid off in respect to the one-way delay. This might stand opposite to
the OSI design paradigm of least possible coupling between the layers, but in a wireless
sensor networks with scarce energy resources, such measures are acceptable when they
serve a higher purpose.
When comparing figures 6.6 and 6.7, we conclude that neither the different traffic pat-
terns nor the topology setup has a vast influence of the results. More or less the same
performance gains could be claimed with each scheme.
In a second run, we ran all the experiments with the lifetime metric of the first node
depletion. However, the results differed only slightly from the results depicted in the
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upper figures. The overall lifetime gain also reached 10-15% in respect to the lifetime
and the one-way delay for all topologies and both traffic patterns.

6.2.2 Challenges of Multipath Routing with WiseMAC

The WiseMAC protocol introduces an extended carrier sense range in order to mitigate
the hidden node problem. A low carrier sense threshold on the measured received signal
strength lets nodes consider the medium busy much earlier than in other wireless channel
protocols, where the carrier sensing range equals the transmission range. This more pro-
hibitive carrier access policy makes it much much more probable that routes do interfer
with each other. The extended carrier sensing range leads to much more potential inter-
ference with the transmissions of other nodes, even if the routes do not share a common
link or node.

Figure 6.8: Route Coupling with increased Carrier Sensing Range

The impact of Route Coupling, as discussed in 2.3.2, is much bigger with WiseMAC. In
figure 6.2.2, nodes form a route without any connection in between. The two routes are
node and link-disjoint. When extending the carrier sensing range, two or more nodes of
the lower path fall into the reach of each node in the upper path, and vice-versa. When
one node of the upper path is transmitting, the nodes of the lower path will have to
remain silent, as they recognize the medium to be busy. When a node aims to transmit
a frame to the next node in the path, the probability that it cannot access the medium
due to the concurrent transmissions of nodes in its carrier sensing range is much higher
than in the single path case. Spreading the traffic over multiple routes when applying
an increased carrier sensing range leads to much harder route coupling and interference
problems.

We analyzed and observed the network functioning when applying different table up-
date policies and different traffic patterns. We find that the route coupling problem is
responsible for the problems encountered in sections 6.2.1.1 and that the results of the
multipath approach remained below our expectations in general. With the much bigger
carrier sensing range, the danger that transmissions along multiple paths interfer with
each other is much higher and the load balancing effect is soon exceeded by the additional
cost of coping with the path interference. This is the essential insight gained during the
work pursued in this chapter. The impact of the extended carrier sensing range on the
route coupling problem could be subject to future research.
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6.2.3 Multipath Routing on the Embedded Sensor Boards

We implemented the AOMDV mechanism to find multiple node-disjoint paths based on
the first-hop field in the RREQ on the ESB nodes, and aimed to find multiple routes in
the 4x4 nodes lattice-square topology network of section 6.2.
We faced several difficulties to make useful measurements with the experiment setup and
the methodology available. It turned out that it is not possible at all to measure the
lifetime of the sensor network with the methodology of the GoldCap capacitors, as we
can only power one single node with a capacitor and not the entire network. The network
initialization phase itself already needs some 200 seconds until every node has found its
respective neighbors, which is more or less the energy a node can live of the initial charge
of the capacitors.
After all, it turned out that the AOMDV route discovery scheme failed to deliver two
node-disjoint routes with sufficient probability. In some experiment runs, the scheme
indeed delivered two routes, but we neglected to make actual measurements of the one-
way delay of packets routed over multiple paths as this case was too rare. AOMDV does
not guarantee to find node-disjoint paths, even if the topology would allow to find some.
In order to find two node disjoint paths, the RREQ must spread over both first-hop
nodes of the source node with position (0,10) and (10,0) in two concurrent waves and
each RREQ wave must reach one neighbor of the source. The RREQ over node (0,10)
would have to reach the first neighbor of the destination (20,30) and the RREQ over
(10,0) would have to reach the second neighbor of the destination (30,20). If this does
not succeed, and the RREQ does not spread equitably in two waves over the network,
node disjoint paths are not found. As this case even proved to happen only occasionally
on the simulator, we ceased our investigations on multipath routing on the ESB, and
invested our time on further investigations on the MAC.
According to our observations, the inherently unreliable ScatterWeb carrier detection
is accountable that in most cases, only one RREQ makes it to the destination, as this
RREQ wave suppresses all other RREQ transmissions. The unreliable carrier detection
lets nodes often misinterpret the medium to be idle when in fact it is not, whereafter
they begin transmitting and interferring other nodes’ RREQ transmissions.
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Chapter 7

Conclusions and Outlook

This thesis combines features and ideas of previous work on unsynchronized MAC proto-
cols for wireless ad hoc and sensor networks, mainly the basic concepts of the WiseMAC
[4] and the Unsynchronized Fixed and Random Intervals protocol [2] protocol. In con-
trast to a huge amount of energy-saving MAC protocols, unsynchronized power saving
MAC protocols suggest to renounce on any kind of network-wide or clusterwise synchro-
nization for the channel access coordination, as it is done in many scheduled protocols,
nor for the coordination of a common wake and sleep pattern. They neglect to exchange
costly MAC layer control messages in the belief that for wireless sensor networks with low
traffic requirements, maintaining a multi-hop synchronization scheme to control slotted
medium access is too costly. The thesis aims to design an integral medium access control
and routing mechanisms solution tailored for use in wireless sensor networks renouncing
on costly synchronization measures.

The implementation of the unsynchronized power saving protocol WiseMAC forms the
entry point for the thesis’ investigations on the MAC. The implementation of the pream-
ble sampling technique basing on least-possible duty cycles necessites a very exact and
precise exchange and bookkeeping of the schedule information about the neighboring
nodes. The WiseMAC prototype permits to lower the duty cycle to 1% or 5 ms every
T = 500 ms, but still offering reasonable connectivity properties. The WiseMAC im-
plementation of this thesis is quite likely the most energy-efficient power saving MAC
protocol for low-rate traffic scenarios currently implemented on the ESB research plat-
form. The thesis discusses the performance of the WiseMAC protocol in simulation and
in practice. Cross-comparisons of the respective investigations’ results yield the opportu-
nity to discuss the choice of appropriate and realistic parameter values for the simulator
model, with which similar results are obtained both on the simulator and on the sensor
hardware platform. The thesis demonstrates how the choice of parameters impacts on
the obtained results and that careful investigations on simulation parameters pay off
when aiming to prove simulated effects in practice.

The thesis suggests performance optimizations considering the broadcast operation mode
to achieve a higher energy-efficiency both at the sender and the receiver. It carries out
experiments to quantify the energy-saving effect in simulation and in practice on a sensor
hardware testbed. The experiments approve the energy-efficiency of the scheme further
called best-instants broadcast when a limited amount of neighbors has to be reached. The
thesis further tests out this broadcasting technique in on-demand routing schemes both
in simulator and on a sensor hardware testbed and advices especially to apply this tech-
nique whenever multi-hop network-wide flooding is required. The later implementation
of an on-demand routing scheme approves that the technique leads to a lower medium
utilization and fewer interference problems.

An alternative allocation and arrangement scheme of the node wake-up’s is discussed to
avert performance degrading systematic overhearing and fairness effects of the WiseMAC’s
fixed static wake-up pattern, as problems may arise when two neighboring nodes share a
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similar wake patterns. The thesis suggests a scheme to let the node’s wake-up intervals
move in inside fixed cycles in respect to a linear movement-function. The thesis models
a proof that this scheme leads to a more reliable overhearing avoidance and a lower dan-
ger of systematic overhearing than the WiseMAC fixed wake-up pattern, yet retaining
the deterministic nature of the wake-ups. Different variants are tested in simulation, and
the advantages of one variant is proved in practice on the sensor testbed implementation.

The thesis outlines a mechanism to improve the traffic-adaptivity of the WiseMAC pro-
tocol in cases of traffic between multiple senders and one receiver basing on a so-called
stay-awake promise. Cases with multiple nodes aiming to forward data over certain
receivers are likely to occur in wireless sensor network topologies. Bottleneck nodes of-
ten have to forward data of large subtrees. Experiments on the simulator approve the
performance gain in respect to throughput and latency. The scheme is ported to the sen-
sor testbed implementation where it succeeds in increasing the throughput in comparison
with WiseMAC, but fails to prove a higher throughput in comparison with the WiseMAC
fragmentation scheme more bit, as the effect pays off only with very high traffic rates,
which are yet unsupported in the implementation.

On the routing layer, the thesis integrates the on-demand routing protocol AODV and
tests out the performance of the combination with the energy saving MAC. Efforts are
undertaken to integrate a multipath-protocol to balance load in a wireless sensor net-
work and claim a higher network lifetime. Problems are encountered, as the properties
of WiseMAC with the extended carrier sensing range do not favor the application of
multipath-protocols. Route coupling problems arise earlier and have a stronger impact
on the performance when applying a more prohibitive carrier access policy to mitigate
the hidden node problem. By exploiting cross-layer optimizations between MAC and
routing, and altering path update policies, the thesis finds a scheme that delivers slightly
higher lifetimes on the simulator. The thesis however fails to prove the efficiency gain on
the sensor hardware testbed.

Further work on the MAC could topic the question how to analytically express and
quantify the overhearing avoidance effect of the moving wake intervals. Further advan-
tages, or drawbacks and limitations of this scheme might be found when investigating on
this issue in a solid mathematical manner.
On the routing layer, further investigations could topic the question how the properties
of the unsychronized MAC and the moving intervals could be exploited in cross-layer
approaches, i.e. to find paths with the least-possible delay when gathering the informa-
tion about the wake-patterns of not only the one-hop neighbors, but all nodes between a
station and the sink. Gathering more information about the neighborhood could furher
help to construct multiple paths that do not interfer with each other. Nowadays estab-
lished on-demand multipath routing protocols for ad-hoc networks do not account for the
problem of route coupling at all. The introduction of path construction algorithms that
set up maximally interference free paths and redundant paths towards one or a few sinks
in an initial deployment phase might likely pay off when aiming to keep a wireless sensor
network operable for weeks, months or even years. Furthermore, the correlation between
the route coupling problem and the extended carrier sensing range collision avoidance
scheme could be subject to future investigations.
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