
GNU/Linux Implementation of a Position-based Routing Protocol

Marc Heissenb̈uttel, Torsten Braun, Tobias Roth, Thomas Bernoulli
Institute of Computer Science and Applied Mathematics

University of Bern
3012 Bern, Switzerland

{heissen, braun, roth, bernoull}@iam.unibe.ch

Abstract

The Beacon-Less Routing protocol (BLR) is a position-
based routing protocol for mobile ad-hoc networks that
makes use of location information to reduce routing over-
head. However, unlike other position-based routing pro-
tocols, BLR does not require nodes to periodically broad-
cast hello messages and thus avoids drawbacks such as
extensive use of scarce battery-power, interferences with
regular data transmission, and performance degradation.
In this paper, we describe the implementation of BLR on
a GNU/Linux platform comprising laptops equipped with
802.11b WLAN cards and GPS receivers. We present re-
sults of BLR’s performance obtained from laboratory ex-
periments, which were conducted to validate the implemen-
tation for future planned outdoor experiments.

1 Introduction

In position-based routing protocols forwarding decisions
are solely based on location information. Each node is
aware of its own position, e.g., through GPS, and of its
immediate one-hop neighbors by the periodical broadcast
of hello messages. Additionally, a location service is re-
quired that allows determining the position of the desti-
nation node, e.g., GLS [1]. Each node simply forwards a
packet to a neighbor which is closer to the destination un-
til the packet eventually arrives at the destination. Many
position-based routing protocols have been proposed such
as GFG [2], GPSR [3], GOAFR [4]. An overview can be
found in [5]. A major drawback of those protocols is the
proactive transmission of hello messages which uses scarce
network resources such as battery power and bandwidth.
Recently, the Beacon-Less Routing protocol BLR was pro-
posed in [6] based on a new routing paradigm enabled by
the broadcast property of the wireless propagation medium.
Unlike all other routing protocols, forwarding decisions are
not taken at the sender of a packet, but in a completely dis-

tributed manner at the receivers. A sender does not have
to be aware of its neighbors and consequently nodes do not
have to proactively transmit hello messages (beacons) as in
other position-based protocols, which also saves scarce net-
work resources like battery energy and bandwidth. The per-
formance and the behavior of BLR was studied analytically
and by simulations in [6]. Results show that BLR provides
efficient and robust routing in highly dynamic ad-hoc net-
works and is immune to topology changes. Therefore, BLR
is especially suited for vehicular and sensor networks with
frequently changing topologies. The promising results are
the motivation to go a step further and implement the pro-
tocol in a real testbed. We developed a prototype system
and conducted measurements to obtain more insight on the
protocol’s performance and behavior in a real world envi-
ronment. In Section 2, we briefly review the BLR protocol
and describe its main features. Afterwards, the implemen-
tation on a GNU/Linux platform is presented in Section 3
and encountered real world challenges are discussed in Sec-
tion 4. Section 5 describes the experimental setup and pro-
vides measurement results. Finally, Section 6 concludes the
paper.

2 Beacon-Less Routing Protocol (BLR)

Unlike other position-based routing protocols, BLR does
not require the periodic broadcast of hello packets. BLR
selects a forwarding node in a distributed manner among
all its neighboring nodes without knowing the existence or
positions of neighbor nodes. BLR has three main modes of
operation; greedy mode, backup mode, and unicast mode.

2.1 Greedy mode

Packets are routed in greedy mode whenever possible be-
cause only in this mode BLR is really stateless and does not
require the transmission of hello packets, i.e., nodes are nor-
mally not aware of any neighboring nodes. Therefore, when
a node has to send a packet it simply broadcasts the packet.



Consequently, all neighbors receive the broadcast packet.
The protocol ensures that just one of the receiving nodes re-
lays the packet further. This is accomplished by different
forwarding delays and restricting the nodes that are allowed
to forward the packet to a certain area, called forwarding
area. Nodes within this area can mutually receive each oth-
ers transmissions. For the forwarding area BLR uses a cir-
cle with diameterr relative to the forwarding nodeS in the
direction of the final destinationD as depicted in Fig. 1. A

S D

A

Br

p

Forwarding Area

C

Figure 1. Forwarding Area with potential for-
warders A and B

receiving node can determine if it is within the forwarding
area from its own position and the positions of the destina-
tion D and the previous nodeS. Both positions ofS and
D are stored in the packet header. Nodes in the forward-
ing area are called potential forwarders, e.g.,A andB in
Fig 1. Potential forwarders calculate a Dynamic Forward-
ing Delay (DFD) in the interval[0,Max Delay] depending
on their position relative to the previous and the destination
node. The DFD is calculated by (1) withr as the trans-
mission radius of a node,p the node’s progress towards the
destination, andMax Delay as a system parameter. Nodes
outside the forwarding area simply drop the packet (node
C).

Add delay = Max Delay ·
(

r − p

r

)
(1)

According to this DFD function, the node with the most
progress (e.g., nodeB), i.e., closest to the destination, cal-
culates the shortestAdd Delay and thus rebroadcasts the
packet first. The other potential forwarders (e.g., nodeA)
overhear this further relaying and cancel their scheduled
transmissions of the same packet. The rebroadcast packet
is also received by the previous transmitting node and ac-
knowledges the successful reception at another node. Si-
multaneously, the neighbors of the rebroadcasting nodes
also received the packet and they determine if they are
within the forwarding area relative to nodeB and destina-
tion D. Potential forwarders calculate anAdd Delay and
compete to rebroadcast the packet again.

2.2 Backup Mode

If no node is located within the forwarding area, greedy
routing fails. This is detected if a node does not overhear
a further rebroadcast withinMax Delay of its previously
broadcasted packet. This node forwards the packet via uni-
cast further in backup mode. Therefore, the node broadcasts
a request for a beacon packet. All neighbors that receive this
packet reply with a beacon indicating their positions. The
packet is then forwarded to the replying node that is closest
to the destination. If none of the neighbors is closer to the
destination than the requesting node, the packet is routed
according to the face routing algorithm based on the ”right-
hand” rule, a concept known for traversing mazes, on the
faces of a locally extracted planar subgraph, see for exam-
ple GOAFR [4] for more details. As soon as the packet ar-
rives at a node closer to the destination than where it entered
backup mode, the packet switches back to greedy mode.

2.3 Unicast Mode

Routing in greedy mode makes BLR susceptible to
packet duplication as data packets are broadcast over mul-
tiple hops. Packet duplication occurs for each node in the
forwarding area, which does not detect that a packet was
already rebroadcast. In reality, there are many reasons that
prevent nodes from successfully receiving the rebroadcast
packets such as irregular transmission ranges, obstacles, and
simultaneously on-going transmissions in the vicinity. BLR
implements the unicast mode to minimize the number of
duplicated packets. After a node has detected that another
node has rebroadcast the packet, it is also aware of the for-
warding node’s position. Thus, the node may send the sub-
sequent packets to the same destination via unicast to the
node which relayed the broadcast packet. Due to the mo-
bility of the nodes, nodes located at a better position may
enter into the node’s transmission range. In order to be
able to detect these new nodes, a packet is broadcast in
greedy mode after a certain time again such that potential
forwarders compete to rebroadcast the packet.

3 Implementation

3.1 Overview

The target platform of the implementation is
GNU/Linux. We used Gentoo Linux [7], although
any other GNU/Linux distribution based on Linux 2.6 will
work for our implementation. We integrated BLR within
the protocol stack as depicted in Fig. 2, i.e., between the IP
and the link layer. Therefore, it is transparent to the upper
layers and applications. Consequently any application such
as HTTP, ssh, ping and also ICMP can run unmodified.



The BLR protocol was however implemented in the user
space of Linux due to simplicity reasons. Therefore, out-
going packets (solid line) have have to be intercepted and
processed accordingly before being passed to the wireless
network adapter. More specifically, we introduced a virtual
interfacetun0 provided by thetuntap [8] device. A
new route that redirects all traffic to the BLR network
(private destination IP-Addresses 10.0.1.0/24) through
tun0 is added to the system routing table. Consequently,
Internet traffic is not affected by the BLR application
and routed as normal directly to the 802.11 interface.
By listening on tun0 , the BLR application can catch
all traffic sent to the BLR network and inserts the BLR
header and updates the IP header. Afterwards, packets
are sent via thepf_packet facility, which allows the
sending of Ethernet and IP packets directly to the 802.11
network adapter. Incoming packets (dashed line) are passed

pf_packet

802.11

Application

I P

TCP/ UDP

tun0-I f.

BLR

Kernel

User Space

Figure 2. Implementation of BLR in the proto-
col stack

over pf_packet to the BLR application and are either
forwarded to the next hop or passed to localhost, depending
on the destination address in the IP header. When packets
are forwarded, the BLR application only updates the BLR
header and additionally delays the packets by the newly
calculatedAdd Delay before the packets are passed again
via pf_packet to the network adapter. On the other hand,
when the packet is destined for this host, the BLR header
is stripped off and the IP header modifications done by the
BLR application at the sender are reversed. Afterwards, the
packet is forwarded through thetun0 to the application.

A problem occurs becausepf_packet actually creates
a copy of all incoming packets. One copy is passed to the
BLR application, while the original packet is passed to the
kernel and from there to the application. The original packet

has to be blocked somehow. This is achieved by deploy-
ing the IPtables [9] packet filter right after thepf_packet
facility. This filter blocks all incoming traffic that has the
protocol number of BLR set in the IP header. For broadcast
packets, this blocking would not be necessary since the ker-
nel simply drops broadcast traffic with a protocol number
for which there is no open socket. However, when the ker-
nel receives unicast traffic with an unknown protocol num-
ber, it sends an ICMP destination unreachable message back
to the sender, which has to be avoided.

3.2 BLR Application

The BLR application is split into three separate
processes as depicted in Fig. 3. The main process
receives/sends the packet from/to the localhost/network,
transforms and updates headers, calculates theAdd Delay,
and manages packet timeouts, unicast route information, as
well as a list of duplicate packet IDs. The GPS process
is connected to an external GPS device and provides loca-
tion information. The sendqueue process receives outgoing
packets together with the calculatedAdd Delay from the
main process and sends the packet after the indicated delay.
If the main processes receives a packet frompf_packet ,
it calls the sendqueue process in order to determine if the
packet is queued for transmission. If so, another node for-
warded the packet first and the sendqueue process can re-
move the packet from the queue.

The size of the BLR header is 32 bytes and has the fol-
lowing fields.

• Packet type (1 byte): Data, Location request, Location-
Reply, Request for beacon, Beacon.

• Original protocol (1 byte): Protocol number of TCP,
UDP, ICMP, etc. This corresponds to the protocol field
in the IP header, because the BLR header is inserted
between the IP and transport layer header.

• Sequence number (2 bytes): This number together
with the source address allows to unambiguously iden-
tify a packet.

• Backup distance (4 bytes): This field is used to indi-
cate the distance to the destination from where greedy
routing failed, which is required in order to determine
when to switch back to greedy routing.

• Position information (8 bytes each): Position of the
previous, source, and destination node. The previous
and destination node positions are required to calculate
Add Delay. The source node’s position is used to up-
date location information at the destination in case of
bidirectional traffic.

In the following, we describe in more detail the processes
and how packets are handled.



WLAN

localhost

main

WLAN
send-
queueGPS

localhost

pf_packet

tun0-I f.

tun0-I f.

pf_packet

serial

(NMEA)

GPS-
recv.

Position/ Time

Figure 3. Running processes in the BLR ap-
plication

GPS Process

The GPS process is connected to an external GPS de-
vice, which it polls for changes in location information. It
parses the GPS data and passes position updates to the main
process. The connection is established through an RS-232
interface and the GPS information is transferred with the
NMEA-0183 protocol [10] from the GPS receiver to the
laptop.

Sendqueue Process

The sendqueue process is responsible for queuing the pack-
ets according to their respective dynamic forwarding delay.
It receives packet/delay tuples from the main process and
maintains an ordered list of all pending packets. When
the associated timer expires, the packet will be sent to
pf_packet . The sendqueue is implemented separately
from the main process since it its only tasks are to man-
age packet delays and to queue and send packets. The
sendqueue further handles the deletion of packets from the
queue, whenever the main process detects that another node
has already forwarded a pending packet.

Main process

This is by far the most complex process and is responsible
for switching packets between components, management
and coordination of the other components, execution of the
BLR functions, etc. When the main process receives an
IP packet throughtun0 , it inserts the BLR header and up-
dates the IP header. Changes are necessary in four IP header
fields.

• The source address needs to be changed from the IP
address of thetun0 interface to the IP address of the
outgoing interface.

• The packet length fields needs to be increased by the
size of the BLR header.

• The protocol field is changed to 254, which we used
for the BLR protocol. The original protocol number is
stored in the BLR header.

• Finally, the header checksum needs to be recalculated.

Furthermore, the main process calculatesAdd Delay and
forwards this along with the packet to the sendqueue
process. It also maintains ahosttable to store infor-
mation about known destinations, namely their most recent
positions and the next hop to reach them if unicast mode
is used. Thepacketlist caches packets that have been
sent and have not yet been acknowledged, together with a
timeout value for each packet.packetlist also handles
retransmissions in case of timeouts. Whenever BLR has to
switch to backup mode, it takes some time until the next
hop is determined due to the sending of the beacon request
packet and the time until the beacons from the neighbors
are received. Thebackupqueue caches outgoing pack-
ets that have to wait to be forwarded until the backup mode
setup is completed.

4 Challenges

In this section, we briefly review the main challenges we
faced during the implementation in the Linux testbed as op-
posed to the previous implementation in the simulator.

4.1 Location Service

Location services that provide the position of nodes is a
research aspect in itself and several solutions have already
been proposed (see [5] for an overview). Therefore, a com-
mon assumption of most position-based routing protocols is
that the position of the destination is somehow known. In
the network simulator, it can be implicitly assumed that this
position information is available. In reality, we have to im-
plement a mechanism that provides the position. As it was
not our goal to implement a fully functional location service
and it would not be appropriate for a small testbed with a
few laptops, we chose to implement a simple request-reply
mechanism based on flooding. The request and the reply
with the geographical position are piggybacked on data traf-
fic whenever possible. In case of unidirectional traffic, po-
sition information is invalidated periodically, and the source
broadcasts a new location request. In case of bidirectional
traffic, or simply if TCP is used, destination locations are
not invalidated, but the position can be simply extracted
from packets returning from the destination, namely from
the source field in the BLR header. Thus, the overhead can
be reduced to the initial flooding of one location request
packet in case of bidirectional traffic.



4.2 Duplicated Packets

The objective of the unicast mode is to reduce the num-
ber of duplicated packets. However, still transmissions are
broadcast over intermediate hops. In ideal conditions of a
network simulator, radio propagation is modeled by sim-
ple isotropic transmission ranges. In reality however, we
observed many duplicated packets due to irregular trans-
mission ranges. Therefore, we additionally implemented
a filtering mechanism. Each node compares the uniquely
identifying source address and sequence number of a packet
against a table containing the recently received and also
overheard packets. If this packet is a duplicate of a pre-
viously received or overheard packet, the node broadcasts
a control packet suppressing the further forwarding of that
duplicated packet by its neighbors. Therefore, the dupli-
cated packet can be again disposed.

4.3 IP Fragmentation

The BLR header is part of the IP payload in the current
implementation. Thus, if fragmentation occurs, only the
first IP fragment will contain the BLR header. The header
is however required to route packets by BLR. Subsequent
fragments will not contain the BLR header and will sim-
ply be dropped, because nodes do not know how to process
them. Therefore, IP fragmentation has to be avoided. To
achieve this, the MTU of the virtual tunnel interface is de-
creased by the size of the BLR header, which is inserted be-
fore Transport layer header, in order to avoid fragmentation
at the source node. Additionally the DF (Don’t Fragment)
bit is set in the IP header such that intermediate nodes do
not fragment the packet. PMTU (Path MTU) discovery is
used to handle links where the standard MTU is too large.

4.4 MAC layer control

If a unicast packet is not acknowledged, the 802.11 MAC
layer retransmits a packet up to seven times before giving
up. In the network simulator implementation, the MAC
layer can signal a failed transmission to the upper layer,
which in turn selects another next hop and passes the packet
again to the MAC layer. This mechanism is also applied by
BLR [6] and GPSR [3]. Without this optimization, many
unicast packets would be dropped due to unreachable neigh-
bors, and recovery is left to TCP or the application. This
severely decreases network performance as retransmissions
are end-to-end and not link retransmissions. In a Linux
implementation of BLR with WLAN cards however, the
MAC protocol is largely implemented in the firmware of the
802.11b card, which makes accessing the mentioned func-
tions in today’s card nearly impossible.

4.5 Interrupt granularity

The Max Delay can be chosen in the order of some
milliseconds based on the experienced network simulator
results. Basically,Max Delay indicates the range over
which potential forwarders schedule their retransmissions.
The Linux kernel has a limitation that severely affects
the possible value ofMax Delay, namely the granular-
ity of the timer interrupts. This granularity is defined by
a compile-time kernel constant calledHZ. On Linux kernels
2.6 or newer, this constant is set to 1000 resulting in timer
interrupts every 1 millisecond. (In kernel 2.4 and older,
the HZ was set to 100). This means that theselect()
system call returns at 1 millisecond intervals only. Conse-
quently the granularity ofAdd Delay is also only 1 mil-
lisecond. Therefore, a rather longMax Delay has to be
chosen to reduce the risk that all nodes transmit simultane-
ously and limit the usefulness of the DFD concept. In [6],
it was proposed to setMax Delay = 2 ms based on sim-
ulation results, which is definitely too short for the Linux
implementation. However, the longerMax Delay also in-
creases the end-to-end delay. While possible in theory, a
further increase of theHZ value is not yet completely sup-
ported by the Linux kernel. Even if possible, increasing
HZalso increases the overall timer overhead, because more
timer interrupts are generated. This may not be an issue
for our testbed where no other applications are running, but
definitely it will be an issue for small mobile devices with
limited computation resources.

5 Experiments

5.1 Equipment and Configuration

The testbed consists of 5 laptop computers running
Linux 2.6. Each laptop is equipped with an IEEE 802.11b
WLAN cards. The cards are configured to run in ad-hoc
mode without RTS/CTS, i.e., the DCF of 802.11b is used,
and the data rate is set to 2 Mbps. The hardware equipment
is heterogenous, i.e., the laptops are from different manu-
facturers. The same applies to the WLAN cards, some lap-
tops have built-in cards, while other use Orinoco WLAN
cards plugged in the PCMCIA-slot. Each laptop also has a
GPS receiver connected via the serial RS-232 line. The GPS
devices are not only used for providing positioning infor-
mation to the nodes, but we also use GPS for timing infor-
mation. This information is provided once per second. The
GPS timing information is actually not required for the BLR
protocol, but only for performance measurements. The ac-
curacy of the information is below5 m and200 ns for the
positioning and timing information, respectively.

In this paper, we present the results from experiments
that were conducted in the laboratory in order to validate



the implementation and for reference purposes, which al-
low a comparison with future outdoor experimental results.
As the GPS receivers do not work in indoor environments,
the position of the laptops had to be hardcoded to yield a
virtual topology. Therefore, the positions and the distances
between nodes in this virtual topology do not match the ac-
tual physical location of the laptops. Furthermore, all lap-
tops are placed on a table within a few meters of each other
and thus could physically receive all transmissions of all
nodes. To ensure that a laptop only processes the packets
from laptops within the transmission range in the virtual
topology, a filter based on MAC addresses has been imple-
mented. This filter operates directly on thepf_packet
socket and simply drops packets from out-of-range nodes
in order to match the physical and the virtual topology such
that the BLR application never sees packets from virtually
out of range nodes. This approach saves processing work
on the side of the BLR application since the kernel does
all the necessary filtering. The implementation of the MAC
filter is done by means of the Berkely Packet Filter (BPF)
language [11]. The GNU/Linux implementation is called
Linux Socket Filter (LSF) and is compatible with the BPF
language.

Traffic is sent by the ping utility, which yields the round
trip time RTT. For each measurement, 2000 ICMP echo re-
quests were sent, which together with the echo replies re-
sult in 4000 total data packets. The transmission rate had
to be limited to 10 echo request per second, because all
nodes are physically within each other transmission range.
A transmission of a node blocks all other nodes on the
MAC layer, and not only the neighbors in the virtual topol-
ogy. Therefore, experiments with higher data rates where
a new IMCP echo request is sent out before the previous
echo reply arrived back at the source do not make sense.
The default packet size was set to 56 bytes. Including the
ICMP, IP, BLR, and MAC header this yields 180 transmit-
ted bytes. The experiments were conducted with a rather
long Max Delay of 5 ms and 25 ms to reduce the risk
that nodes transmit simultaneously due to the low interrupt
granularity as explained before in Section 4.5. The trans-
mission range for calculating theAdd Delay was set to a
250 m. Except for one experiment, we did not use the uni-
cast mode in order to route packets as often as possible in
greedy mode. We used four topologies for the laboratory
experiments as depicted in Fig. 4, called chain, pairs, con-
tention, and backup topology. Additionally, we also com-
pared the measurements of these experiments with results
obtained from simulations conducted with the Qualnet [12]
network simulator and from analytical prediction. The sce-
narios for the simulations were identical to the experiments,
specifically the network topologies and the parameters of
the BLR protocol such asMax Delay.

S

249m

S

D

D

249m 249m

20m20m

Chain

Pairs

S

249m

D

249m

Contention

Backup
S D

Figure 4. Topologies for the experiments

5.2 Chain Topology

The chain topology is the most simple topology as no
contention occurs and only one node always will forward
the packet. The forwarding node is located at the boundary
of the transmission range and almost immediately forwards
the packet without introducingAdd Delay. Thus, the RTT
is basically independent of theMax Delay as shown in
the histogram in Fig. 5, which shows the distribution of the
measured RTTs. The average is in both cases17.4 ms and
the delivery ratio was always 100%. Considering the fact
that a packet pair is transmitted over eight hops (four hops
from the source to the destination for the echo request and
four hops back to the source for the echo reply), the mea-
sured RTT is approximately only2 ms per hop. When we
roughly estimate that 180 Bytes are transmitted over 8 hops
with a bandwidth of 2 Mbps, we would expect an RTT of
approximately6 ms. TheAdd Delay does only contribute
marginally to the RTT and is much less than1 ms per hop,
because the progress of249 m almost equals the transmis-
sion radius. In the simulations, we measured an RTT of
approximately8 ms, which is close to the analytical esti-
mation, considering that we did not take into account the
influence of the MAC layer. However, the RTT is only
about half the RTT measured in the experiments. The rea-
son is that the Qualnet network simulator does not intro-
duce any delay for processing packets at the nodes, i.e., the



 0

 200

 400

 600

 800

 1000

 1200

15.0-15.9

16.0-16.9

17.0-17.9

18.0-18.9

19.0-19.9

20.0-20.9

N
um

be
r 

of
 p

ac
ke

ts

Delay [ms]

5ms
25ms

Figure 5. Chain topology with
Max Delay = 5ms and Max Delay = 25ms

packets can be forwarded immediately, which is definitely
not the case in reality. Furthermore as mentioned in Sec-
tion 4.5, theAdd Delay has only a granularity of1 ms in
the experiments. This is unlike for the simulations were the
Add Delay is really the calculated value and not ”rounded
up” to the next millisecond.

5.3 Pairs Topology

The results from the pairs topology are given in Fig. 6
and Fig. 7. In this topology, a packet pair is again transmit-
ted over eight hops. However, the RTTs now vary strongly
for the two differentMax Delay as expected. The two
transmissions from the nodes with only20 m progress are
delayed significantly as they calculate a longAdd Delay,
which is close toMax Delay according to (1). In the
pairs topology, this yields RTTs of approximately30 ms
and80 ms for Max Delay = 5 ms andMax Delay =
25 ms, respectively. The delay introduced by BLR is ap-
proximately three times230250 ·Max Delay, two times from
S to D and only once fromS back toD, which is approx-
imately 14 ms and69 ms for a Max Delay of 5 ms and
25 ms, respectively. Together with the transmission delay
of 6 ms, we obtain an expected RTT of20 ms and75 ms
for the two differentMax Delay values. The respective
measured RTTs were21 ms and77 ms in the simulations.
These results are again approximately8 ms shorter than in
the experiments, independent of theMax Delay, which
confirms the previously stated reasons for the longer delay,
namely the zero processing time at the nodes in the simu-
lator and the interrupt granularity of the Linux implementa-
tion.

In the pairs topology, we also evaluated the impact of
the unicast mode. Although packet duplication is not an
issue as only one potential forwarder exists, the RTT is af-

 0

 200

 400

 600

 800

 1000

26.0-26.9

28.0-28.9

30.0-30.9

32.0-32.9

34.0-34.9

36.0-36.9

N
um

be
r 

of
 p

ac
ke

ts

Delay [ms]

5ms
mean = 29.618

Figure 6. Pairs topology with
Max Delay = 5ms

 0

 200

 400

 600

 800

 1000

80.0-80.9

82.0-82.9

84.0-84.9

86.0-86.9

88.0-88.9

90.0-90.9

N
um

be
r 

of
 p

ac
ke

ts

Delay [ms]

25ms
mean = 83.684

Figure 7. Pairs topology with
Max Delay = 25ms

fected. Recall that in unicast mode, the packets are for-
warded without introducingAdd Delay if the next hop is
known. In Fig. 8, the histogram of the measured RTTs with
Max Delay = 5 ms is shown. The RTT is significantly
shorter than when packets are always broadcast in greedy
mode and is reduced from29 ms to 16 ms. We can also see
that there are some packet with longer RTTs around25 ms.
The reason is that the unicast mode switches to greedy mode
every5 s in order to detect possibly better located neigh-
bors. Packets transmitted in greedy mode are again dynam-
ically delayed at each node and not immediately forwarded
as in unicast mode.

5.4 Contention Topology

In the contention topology, three nodes receive the
transmitted packet from the source node and schedule the
packet for forwarding as they are all within the forward-



 0

 200

 400

 600

 800

 1000

 1200

13.0-13.9

15.0-15.9

17.0-17.9

19.0-19.9

21.0-21.9

23.0-23.9

25.0-25.9

N
um

be
r 

of
 p

ac
ke

ts

Delay [ms]

5ms, with unicast
mean = 16.205

Figure 8. Pairs topology with unicast mode
and Max Delay = 5ms

ing area. They calculate differentAdd Delay however and
the first transmitting node suppresses the others accord-
ingly. In Fig. 9, the distribution of the RTTs is shown for a
Max Delay of 5 ms. The results were almost identical for
Max Delay = 25 ms due to the same reasons as for the
chain topology. We can observe that the RTT is quite short
compared to the previous investigated topologies because a
packet pair is only transmitted over four hops (two hops to
the destination and two hops back to the source). The the-

 0

 200

 400

 600

 800

 1000

 1200

6.0-6.49

7.0-7.49

8.0-8.49

9.0-9.49

10.0-10.49

11.0-11.49

N
um

be
r 

of
 p

ac
ke

ts

Delay [ms]

5ms
mean = 7.849

Figure 9. Contention topology with
Max Delay = 5ms

oretical transmission delay is approximately3 ms because
of the reduced hop count. Since theAdd Delay is again
for all nodes significantly below1 ms, the expected RTT is
around3 ms, which matches the measured RTT of4 ms in
the simulations. The difference to the RTT of the experi-
ments is again because of the required processing time at
the laptops.

5.5 Backup Topology

In a last experiment, we validated the backup mode of
BLR. There is no node located in the forwarding area and
the packets are routed in backup mode for three hops un-
til arriving at the node closer to the destination than the
source. We measured two different RTTs of approximately
40 ms and 60 ms as depicted in Fig. 10. The reason is
that while the backup mode acquires neighbor informa-
tion if greedy forwarding failed, i.e., during the beacon re-
quest reply dialog, other arriving packets are queued in the
backupqueue . When the backup mode setup is com-
pleted and the forwarding node has determined the next
hop by the “right-hand”, all queued packets are sent im-
mediately to this next hop, thus, some packets in the queue
encounter shorter RTTs. The backup mode is also stateless
and does not store positions of neighboring nodes, therefore
the first following packet after the queue has been emptied
again has to wait until the request reply dialog is completed
in order to acquire the positions of the neighboring nodes.
The RTT is still quite short considering the fact that nodes
have to transmit a request for beacon packet and wait until
neighbors have replied. In the simulations, we measured an
RTT of 51 ms which is again approximately1 ms less de-
lay per hop than in the experiments due to the same reasons
as mentioned before.

 0

 100

 200

 300

 400

 500

 600

 700

40.0-40.9

42.0-42.9

44.0-44.9

46.0-46.9

48.0-48.9

50.0-50.9

52.0-52.9

54.0-54.9

56.0-56.9

58.0-58.9

60.0-60.9

62.0-62.9

64.0-64.9

N
um

be
r 

of
 p

ac
ke

ts

Delay [ms]

5ms
mean = 50.807

Figure 10. Backup topology with
Max Delay = 5ms

5.6 General Observations

Until now, we only considered the measured RTTs in
the experiments. We can conclude that the RTTs are short,
are as expected, and vary only slightly around the mean.
Other quantitative performance measurements are briefly
discussed in the following. In all four topologies, the deliv-
ery ratio was always 100%. This is not surprising consider-



ing the fact that the nodes are physically close to each other,
even if they are distant in the virtual topology. Furthermore,
we observed that in the chain, pairs, and contention topol-
ogy, there was approximately one packet per thousand pack-
ets transmitted unexpectedly in backup mode. The reason
was that very rarely some packets showed a higher RTT and
collided with subsequent transmitted packets which caused
the required retransmissions in backup mode. This effect
is especially obvious in the laboratory where all nodes are
within transmission range. Furthermore, we observed very
infrequently duplicated packets, again in the order of some
few per thousand. However, they could be successfully sup-
pressed at the next node by transmitting a control packet as
described in Section 4.2. Thus, no duplicated packet ar-
rived at the destination node. Especially for the contention
topology, the few duplicated packets indicate that the first
transmitting node is able to successfully suppress the other
potential forwarders.

6 Conclusions

In this paper, we presented an implementation of the
position-based routing BLR on a GNU/Linux platform us-
ing laptops equipped with 802.11b WLAN cards and GPS
receivers. The advantages of BLR are that it is stateless
and does not require to have knowledge about its neighbors,
which allows the disposal of the periodical transmission of
hello messages and makes it immune to frequently chang-
ing network topologies. The BLR was implemented in the
user space of GNU/Linux and is transparently integrated
in the protocol stack, which allows to run arbitrary appli-
cations without modification. We discussed several prob-
lems encountered during the implementation and the exper-
iments and described possible ways to solve them. BLR is
implemented to retrieve position information provided by
GPS receivers. Unfortunately, this information could not
be used in our laboratory experiments as all laptops were
within a single transmission range and a virtual topology
had to be configured manually. We conducted several labo-
ratory experiments to validate the implementation. The for-
warding of the packets in the greedy, unicast, and backup
mode of BLR was as expected. The results also indicate
that BLR is able to deliver packet over multiple hops in a
short time. Packets are forwarded reliably and the delivery
ratio was always 100%. Furthermore, the forwarding nodes
successfully suppressed the other potential forwarders and
acknowledge also the previous node reliably, because basi-
cally no duplicated packets were observed. In a next step,
we will conduct outdoor experiments and use GPS posi-
tion information. In these experiments, the results may dif-
fer from the laboratory experiments because nodes may no
longer be within transmission range, which can cause du-
plicated packets and longer RTTs. We also plan to conduct

experiments with high mobility, for which BLR was origi-
nally designed, where the laptops are transported in cars.

References

[1] J. L. et al., “A scalable location service for geographic
ad-hoc routing,” inProc. of MOBICOM ’00, Boston,
USA, Aug. 2000, pp. 120–130.

[2] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia,
“Routing with guaranteed delivery in ad hoc wireless
networks,” inProc. of DIALM ’99, Seattle, USA, Aug.
1999, pp. 48 – 55.

[3] B. Karp and H. T. Kung, “GPSR: Greedy perimeter
stateless routing for wireless networks,” inProc. of
MOBICOM ’00, Boston, USA, Aug. 2000, pp. 243–
254.

[4] F. Kuhn, R. Wattenhofer, and A. Zollinger, “Worst-
case optimal and average-case efficient geometric ad-
hoc routing,” in Proc. of MobiHoc ’03, Annapolis,
Maryland, USA, June 2003, pp. 267 – 278.

[5] M. Mauve, J. Widmer, and H. Hartenstein, “A survey
on position-based routing in mobile ad-hoc networks,”
IEEE Network, vol. 15, no. 6, pp. 30–39, Nov. 2001.

[6] M. Heissenb̈uttel, T. Braun, T. Bernoulli, and
M. Wälchli, “BLR: Beacon-less routing algorithm for
mobile ad-hoc networks,”Elsevier’s Computer Com-
munications Journal (Special Issue), vol. 27, no. 11,
pp. 1076–1086, July 2004.

[7] (2005, Apr.) Gentoo linux website. Gentoo Founda-
tion, Inc. [Online]. Available: http://www.gentoo.org

[8] (2005, Apr.) Virtual point-to-point(tun) de-
vices. Maxim Krasnyansky. [Online]. Available:
http://vtun.sourceforge.net/tun/index.html

[9] (2005, Apr.) The netfilter website. Harald Welte.
[Online]. Available: http://www.netfilter.org

[10] (2002, Jan.) National Marine Electron-
ics Association (NMEA). [Online]. Available:
http://www.nmea.org/pub/0183/

[11] S. McCanne and V. Jacobson, “The BSD packet filter:
a new architecture for user-level packet capture,” in
Proceedings of the 1993 winter USENIX conference,
San Diego, CA, USA, Jan. 1993, pp. 259–269.

[12] (2004, Nov.) Qualnet. Scalable Network Technologies
(SNT). [Online]. Available: http://www.qualnet.com/


