
Sensor Network Experimentation using TARWIS
Philipp Hurni, Markus Anwander, Gerald Wagenknecht, Thomas Staub, Torsten Braun

Institute of Computer Science and Applied Mathematics
University of Bern, Neubrückstrasse 10, 3012 Bern, Switzerland

{hurni, anwander, wagen, staub, braun}@iam.unibe.ch

Abstract—Research in the area of Wireless Sensor Networks
(WSNs) has become more and more driven by real-world exper-
imental evaluations rather than network simulation. Numerous
testbeds of WSNs have been set up in the past decade, often with
very much differing architectural design and hardware.
The Testbed Management Architecture for Wireless Sensor
Networks (TARWIS) presented in this paper provides the most
crucial management and scheduling functionalities for WSN
testbeds, independent from the testbed architecture and the
sensor node’s operating systems. These functionalities are: a
consistent notion of users and user groups, resource reservation
features, support for reprogramming and reconfiguration of the
nodes, provisions to debug and remotely reset sensor nodes in
case of node failures, as well as a solution for collecting and
storing experimental data. We describe the workflow of using
a TARWIS on a WSN testbed over the entire experimentation
life cycle, starting from resource reservation over experiment
definition to the collection of real-world experimental data.
Index Terms—Wireless Sensor Networks, Testbed Experimenta-
tion, Testbed Federation, Network Management

I. INTRODUCTION

In the wireless sensor and ad-hoc network community, network
simulation tools have generally been identified and criticized
for only providing a limited degree of realism. Researchers
today generally aim at proofing the feasibility of their pro-
posed protocols and mechanisms on real-world devices. For
evaluations of protocol behavior in practice, real-world sensor
network testbeds have become indispensable.

In the past decade, the most frequently used and cited ex-
perimental WSN testbed deployments were either Harvard
University’s MoteLab [1], the TWIST testbed [2] of TU Berlin
or the Kansei [3] testbed of Ohio State University. The
management software solutions implemented for these testbeds
have, however, generally been tightly coupled to one particular
testbed deployment, and are not easily reusable for further
testbed setups. Still today, researchers setting up a testbed are
often starting from scratch to implement testbed management
features, which are as simple as user account management,
experiment resource reservation, configuration and scheduling,
or a consistent representation of results.

II. THE TESTBED MANAGEMENT ARCHITECTURE FOR
WIRELESS SENSOR NETWORKS (TARWIS)

We bridge this discovered gap with our TARWIS management
architecture presented in this paper. TARWIS has been kept
independent of the underlying testbed organization or the
sensor node hardware and software. In [4], we thoroughly
discuss the software architecture of TARWIS, and outline the
advantages of the employed technologies over that of existing

testbed management solutions. These main advantages can be
summarized as follows:
• TARWIS has been kept as independent as possible of most

crucial design questions of its underlying testbed hard- and
software. TARWIS only requires that the nodes can be
remotely controlled from within the portal server, it makes
no restrictions how (i.e., using USB cables, Ethernet,
802.11 wifi, etc.) this is actually achieved.

• TARWIS allows the testbed user to monitor and interact
with the ongoing experiment at run-time. Nodes can be
reprogrammed, reconfigured or hard-reset remotely over
the browser window during the entire experiment run-time.

• TARWIS offers an integrated and federal approach for
user authentication, authorization and account management
basing on Shibboleth [5]. Nine WSN testbeds of the
WISEBED [6] project form the WISEBED testbed fed-
eration, with node deployments of several 10 to more than
100 nodes. Each user account of the Shibboleth federation
can be used for all testbeds.

• TARWIS fully integrates the Wireless Sensor Network
Markup Language (WiseML) [7], an XML standard
schema for describing experimental data in WSNs.

The WISEBED project, as well as the integration of TARWIS
into the WISEBED testbed software architecture is described
in detail in [8].

III. EXPERIMENTATION USING TARWIS

This section illustrates the workflow of using TARWIS to
schedule, configure and run an experiment on any TARWIS-
administered testbed. The subsequent screenshots have been
made at the TARWIS deployment of University of Bern.
The TARWIS Web Interface has four main tabs for actions
related to Reservation, Experiment Configuration, Experiment
Monitoring, and Testbed Management, as depicted in the upper
half in Figure 1. Depending on the role of the user in the
testbed (visitor, user, administrator), access rights are defined
such that some tabs are accessible and some are not (e.g. the
testbed management tab is only accessible for administrators).

A. Reservation

The Reservation tab offers a user interface for querying
and manipulating the Web Services-based TARWIS Resource
Reservation system. The main reservation overview screen is
depicted in Figure 1. The screenshot per default depicts the
current day. The screen lists the node resources, sorted by the
node types, on the y-axis versus the time on the x-axis. The
time is divided into indivisible units of 15 minutes.
At that particular day, the testbed of University of Bern
consisted of 21 TmoteSky/TelosB [9]. In the meanwhile, the978-1-4673-0269-2/12/$31.00 © 2012 IEEE

2

Fig. 1: TARWIS Reservation Screen

network has been extended to roughly 50 nodes, including
7 MSB430 [10] sensor nodes.
Figure 1 depicts three scheduled reservations, of which one
is already past, one is ongoing. The experiments scheduled
by the current user are colored in dark blue. The user taking
the screenshot obviously had scheduled two reservations on a
subset of 7 TmoteSky/TelosB nodes (listed on the left). The
free time slots are colored green, whereas the time that is
already past and that has not been allocated is colored grey.
Past or partly-past reservations are colored with a grey shade,
as clearly visible in Figure 1 before 12.30 UTC. At the time
of accessing the testbed, an experiment of another testbed user
that is using all nodes at the same time is currently running,
which is indicated by the red reservation between 13.30 and
17.45 UTC.
Clicking on a rectangle and dragging with the mouse cursor
selects a rectangle of nodes and time units, which define the
time and the affiliated resources of that particular reservation.
Nodes 18, 19, 20 and 21 are just about to be selected for a

reservation starting at 18.00 UTC, as displayed in the bottom
right of the figure.

B. Experiment Configuration

The third tab in the TARWIS Web Interface implements the
Experiment Configuration process. All user-specific experi-
ment and configuration data can be manipulated in this tab. In
the first sub-tab, the user can store sensor node code images
- the binary images, which are usually compiled with the
mspgcc toolchain [11] for the majority of the sensor node
platforms. These images are uploaded to the database with
a user-supplied name and a unique identifier. The second
sub-tab of the Experiment Configuration tab relates to the
configuration (or modification) of the scheduled reservations
of the visiting TARWIS user. Figure 2 depicts the screen
where the user can define the experiment configuration for
the reservation he/she scheduled beforehand. On the left, each
sensor node has to be assigned a sensor node code image.
One can assign one image to all nodes, or configure nodes

Fig. 2: TARWIS Experiment Configuration Screen

3

individually. In the middle of the screen, the experiment can
be given a name and a brief description in the input and text
fields. With the public checkbox, the user can let other users
observe his experiment at run-time, and also permit other users
to later download the experiment results. The map on the right
depicts the selected nodes and their position within the testbed.

Experiment Runs: As researchers often have to carry out ex-
periments several times in a row in order to obtain statistically
significant results, TARWIS integrates the Runs option in order
to easily define how many experiment runs the experiment
shall consist of. The entire duration of the reservation is then
split into this specified number of runs. After each run, the
output is written to an output file and subsequently added to a
zip archive. This archive is then made available for download
and sent to the user as an attachment of an email.

Automated Commands: On the bottom of the page just
below the experiment description box and the Runs option,
the user may add so-called automated commands. These
commands are issued after a specified number of seconds
after the flashing operation finished. The target destination of
these automated commands can be specified in the dropdown-
box. A user may broadcast a command to all the sensor
nodes in his selected set of nodes, or select only one unicast
command recipient. The option is particularly useful in case an
experiment needs to be started synchronously, e.g. by sending
a startExperiment command to all nodes at the same time in
order to initiate an algorithm.

Templates: Entering the configuration data for an experi-
ment can become an exhaustive and time-consuming job, es-
pecially if there are many nodes that need to be reprogrammed
with different code images, if all the input text fields have to be
edited and if many automated commands need to be scheduled.
Practice has shown that these steps can become tedious and
repetitive especially in the case where many different but

similar experiments need to be scheduled. In TARWIS, the
user is hence given the opportunity to save the experiment
settings as a template. When later scheduling another similar
experiment, he/she may just select this saved template and
reload it with the load template button. The previously saved
experiment configuration is then loaded automatically (ex-
periment description, run settings, public settings, automated
commands, assignment of images to the nodes, etc.) and the
user can just modify the changing parameters to reflect the
new experiment settings.

My Experiments/Finished Experiments: When the user has
finished configuring the experiments, he/she presses the Finish
Experiment Configuration button. In the My Experiments sub-
tab, he/she may still edit its pending experiment configurations
given that the experiment has not yet started. The results of
the finished experiments are available for download in the
Finished Experiments tab.

C. Experiment Monitoring

The Experiment Monitoring tab offers to monitor running
experiments at run-time. It is definitely one of the most
crucial advantages of TARWIS over other testbed management
systems, which usually run experiments in batch mode without
giving the user the opportunity to monitor or even interact with
them. Figure 3 depicts an excerpt of a running experiment
in the Experiment Monitoring tab. With different experiments
running on different subsets of the testbeds, one can choose
the experiment to be observed, and switch between them
arbitrarily. In the left part of the figure, an illustration of the
testbed with the selected nodes positioned in the building of
the testbed is displayed. On the top of the figure, the user can
see the so-called Experiment Controller Output log. This text
field logs the status messages of the TARWIS Server Daemon
experiment-dedicated subprocess, which emits certain status

Fig. 3: TARWIS Experiment Monitoring Screen

4

information, e.g. at what time the nodes where reprogrammed
(flashed), whether the operation was successful, which run is
currently being executed, and much more. On the right of
the figure, the user can monitor the output of the selected
sensor nodes. The six displayed output windows list the last
20 lines of each node, which were captured from the sensor
nodes’ serial interfaces. This output information is particularly
useful for debugging sensor node applications. Our practice
has shown that with observing the output windows from the
individual sensor nodes concurrently at run-time, erroneous
and unintended behavior and possible reasons for the latter
can be much easier identified, compared to tedious offline trace
analysis in log files.

Below the output windows of the nodes, the user can enter
commands to the sensor nodes, which are subsequently sent
to the sensor nodes via the backend implementation and
written to their serial interfaces. The user can hence interact
with the nodes and, e.g., obtain status information using the
TARWIS web interface in order to get a clearer picture why
the examined protocol is not behaving as expected.

IV. EXPERIMENT RESULTS IN TARWIS

TARWIS retrieves the experiment output and subsequently
stores this output in a database. When the experiment expires,
all the retrieved output is exported to a file adhering to
the Wireless Sensor Network Markup Language (WiseML).
This WiseML file comprises all the significant information
about an experiment, e.g., where the experiment took place
geographically, what kind of nodes were used, what their
configuration was, and much more. Using the Wireless Sensor
Network Markup Language (WiseML) [7] standard for the
representation of the results further allows for making the
experiment data public to research partners in a common well-
defined language, giving them the opportunity to repeat the
same or similar experiment and e.g. trying to improve results.
WiseML is a cornerstone towards a unified representation of
experimental data in the WSN field, may it be from experi-
ments on simulators or real-world data traces. Three network
simulators have to-date adopted the WiseML standard, among
them the popular Contiki simulator COOJA [12].

V. CONCLUSIONS

In this paper we have presented TARWIS, our system for
testbed-based experimental research in WSNs, and we have
thoroughly discussed its workflow for conducting experimental
evaluations based on it’s convenient and clear user-interface.
Our practical experiences have shown that using TARWIS,
researchers working in the field of WSNs have a power-
ful instrument for prototyping and evaluating various sensor
network protocols and mechanisms. The option to monitor
experiments and interact with the entirety of the sensor nodes
at run-time using a web browser is a powerful and unique
feature of TARWIS and has not existed in any of the reviewed
testbed management solutions before. The availability of the
system notably expedited experimentation with our real-world
distributed WSN testbed facilities. The WISEBED testbeds
are to date regularly used by students as well as international
researchers. Research results from these testbeds have yet been
used for numerous scientific publications, e.g. [13][14].

ACKNOWLEDGMENTS

This work was supported by the European Commission under
contract IST-2008-224460 and the Swiss National Science
Foundation (SNF) under contract 200021-126718.

REFERENCES

[1] G. Werner-Allen, P. Swieskowski, and M. Welsh, “Mote-
Lab: a Wireless Sensor Network Testbed.” ACM/IEEE
International Conference on Information Processing in
Sensor Networks (IPSN), Los Angeles, USA, April 2005.

[2] V. Handziski, A. Koepke, A. Willig, and A. Wolisz,
“TWIST: A Scalable and Reconfigurable Testbed for
Wireless Indoor Experiments with Sensor Network.” In-
ternational Workshop on Multi-hop Ad Hoc Networks
(REALMAN), Florence, Italy, May 2006.

[3] E. Ertin, A. Arora, R. Ramnath, and M. Nesterenko,
“Kansei: A Testbed For Sensing At Scale.” ACM/IEEE
International Conference on Information Processing In
Sensor Networks (IPSN), Nashville, USA, April 2006.

[4] P. Hurni, M. Anwander, G. Wagenknecht, T. Staub, and
T. Braun, “TARWIS - A Testbed Management Architec-
ture for Wireless Sensor Network Testbeds.” Interna-
tional Conference on Network and Service Management
(CNSM), Paris, France, 2011.

[5] Shibboleth: A Standards-based Open-Source Internet2
Middleware Architecture Project.

[6] Seventh Framework Programme FP7 - Information
and Communication Technologies, “Wireless Sensor
Networks Testbed Project (WISEBED),” FP7 Project
2008-2011. [Online]. Available: http://www.wisebed.eu

[7] Deliverable D4.1: First Set of well-designed Simulations,
“Experiments and possible Benchmarks,” June 2008.
[Online]. Available: http://www.wisebed.eu

[8] G. Coulson, B. Porter, I. Chatzigiannakis, C. Koninis,
S. Fischer, D. Pfisterer, D. Bimschas, T. Braun, P. Hurni,
M. Anwander, G. Wagenknecht, S. P. Fekete, A. Kröller,
and T. Baumgartner, “Flexible experimentation in wire-
less sensor networks,” Communications of the ACM,
vol. 55, Jan. January 2012.

[9] J. Polastre, R. Szewczyk, and D. Culler, “Telos: Enabling
Ultra-Low Power Wireless Research.” International
Conference on Information Processing in Sensor Net-
works (IPSN), Los Angeles, USA, April 2005.

[10] M. Baar, E. Koeppe, A. Liers, and J. Schiller, “The
ScatterWeb MSB-430 Platform for Wireless Sensor Net-
works.” SICS Contiki Workshop, Kista, Sweden, 2007.

[11] mspgcc - A port of the GNU tools to the
Texas Instruments MSP430 microcontrollers. [Online].
Available: http://mspgcc.sourceforge.net

[12] J. Eriksson, F. Osterlind, N. Finne, N. Tsiftes,
A. Dunkels, and T. Voigt, “COOJA/MSPSim: Interop-
erability Testing for Wireless Sensor Networks.” Inter-
national Conference on Simulation Tools and Techniques
(SimuTools), Rome, Italy, March 2009, pp. 27:1–27:7.

[13] P. Hurni, U. Bürgi, T. Braun, and M. Anwander, “Per-
formance Optimizations for TCP in Wireless Sensor
Networks.” European Conference on Wireless Sensor
Networks (EWSN), Trento, Italy, February 2012.

[14] P. Hurni and T. Braun, “On the Accuracy of Software-
based Energy Estimation Techniques.” European Con-
ference on Wireless Sensor Networks (EWSN), Bonn,
Germany, February 2011.

