
TARWIS - A Testbed Management Architecture for
Wireless Sensor Network Testbeds

Philipp Hurni, Markus Anwander, Gerald Wagenknecht, Thomas Staub, Torsten Braun
Institute of Computer Science and Applied Mathematics

University of Bern, Neubrückstrasse 10, 3012 Bern, Switzerland
{hurni, anwander, wagen, staub, braun}@iam.unibe.ch

Abstract—With research on Wireless Sensor Networks (WSNs)
becoming more and more mature in the past five years, re-
searchers from universities all over the world have set up testbeds
of wireless sensor networks, in most cases to test and evaluate
the real-world behavior of developed WSN protocol mechanisms.
Although these testbeds differ heavily in the employed sensor
node types and the general architectural set up, they all have
similar requirements with respect to management and scheduling
functionalities: as every shared resource, a testbed requires
a notion of users, resource reservation features, support for
reprogramming and reconfiguration of the nodes, provisions to
debug and remotely reset sensor nodes in case of node failures,
as well as a solution for collecting and storing experimental data.
The TARWIS management architecture presented in this paper
targets at providing these functionalities independent from node
type and node operating system. TARWIS has been designed as
a re-usable management solution for research and/or educational
oriented research testbeds of wireless sensor networks, relieving
researchers intending to deploy a testbed from the burden
to implement their own scheduling and testbed management
solutions from scratch.
Index Terms—Wireless Sensor Networks, Testbed Experimenta-
tion, Testbed Federation, Network Management

I. INTRODUCTION

For years, simulation has been the research tool of choice in
the majority of studies on wireless ad-hoc and sensor networks.
However, with a widening gap between simulation results and
real-world prototype results, the appropriateness of simulation
tools for simulating wireless phenomena has more and more
been been questioned. Especially in the wireless sensor and
ad-hoc network community, inappropriate parameter settings
and unrealistic radio, traffic and/or mobility models have been
identified and criticized as a general drawback of simulation
studies (c.f. [1] [2]). With research in this field growing more
mature, researchers have generally aimed at proofing the real-
world feasibility of their proposed protocols and mechanisms
on real-world devices. For the purpose of evaluating protocol
behavior in practice, experimental sensor network testbeds
have become indispensable.
In the past five years, numerous universities and research
institutions have started to set up real-world sensor network
testbeds. In most cases, these testbeds have been set up for
research and teaching purposes, in order to enable testing and
evaluation of real-world behavior of developed protocol mech-
anisms. An increasing number of stationary WSN testbeds
have been put into operation, with different node hardware
and very heavily differing architectural testbed design. These
design aspects include, but are not limited to the following
questions and trade-offs:
- Is the testbed an indoor or outdoor deployment? In indoor

deployments, nodes are often deployed in offices or other safe
locations. Node outages are generally less likely than in hostile
outdoor environments.
- Does the testbed setup require intermediate (gateway) nodes?
Small mesh routers are often utilized to remotely reset or
reprogram the sensor nodes, e.g. over the USB port.
- Is there a high-bandwidth backup channel, e.g., Ethernet or
IEEE 802.11? Reliable and high-bandwidth backup channels
are frequently utilized to obtain status information from the
sensor nodes during the experiment runtime, or to trigger node
reset or reprogramming operations.
- Are there provisions for remote access, e.g, over a web
interface? While some testbeds are only accessible locally at
the site of deployment, more and more testbeds have been
made available to other people intending to use the testbed
for their research purposes.

The testbed management solutions implemented for many of
today’s testbeds have generally been tightly coupled to one
particular testbed deployment, and are not easily re-usable for
further testbed setups - a bridge we intend to gap with the
TARWIS management architecture described in this paper.
TARWIS [3] is a flexible and generic testbed management
system for wireless sensor network testbeds - a re-usable
management solution for research and/or educational oriented
research testbeds of wireless sensor networks. TARWIS fea-
tures essential services for testbed operation, such as multi-
user access to testbed resources, online reservation, exper-
iment configuration and experiment scheduling, automated
data acquisition and logging as well as real-time experiment
observation.

II. RELATED WORK

While there are certainly many more testbeds which would de-
serve to be mentioned, we briefly discuss the most prominent
sensor network testbed deployments and their characteristics
in this section:
MoteLab [4] is a sensor network testbed on the campus of
Harvard University. It currently features roughly 200 TelosB
[5] sensor nodes. All sensor nodes are wired to programming
boards allowing for direct reprogramming and communication.
The TWIST testbed [6] resides in a building in the campus of
TU Berlin and spans across several floors. The total number
of sensor nodes belonging to the testbed is approximately
200, featuring two hardware types. The testbed is organized
hierarchically in 3 tiers, consisting of servers, super nodes and
sensor nodes. The testbed is open for job submissions to reg-
istered users. The employed management software TWISTv1



2

is available to the public. However, the software is generally
quite tightly coupled to the Ethernet-based wired setup of the
testbed and the 3-tiered-architecture.
Kansei [7] is a sensor network testbed located at Ohio State
University, which targets at research in large sensor networks.
Currently, about 200 sensor nodes are deployed, along with
the same number of gateway stations attached to each one of
the sensor nodes. The testbed features a web-based interface
for registered researchers for submitting jobs to the testbed.
PowerBench [8] is a testbed infrastructure specifically de-
signed for benchmarking power consumption. It includes
hardware and software components for capturing the power
traces the nodes in the testbed in parallel, which can be used
for later offline processing and debugging purposes.
The TutorNet testbed [9] uses a 3-tier network topology with
testbed servers, gateway stations, and sensor nodes, which
feature USB connections to the gateway stations. Each such
station together with a number of sensor nodes (at most 7)
forms a cluster. Currently, there are more than 100 nodes and
gateway nodes deployed.
Sensei-UU [10] is a relocatable testbed designed to enable
users to repeat experiments with mobile, heterogeneous nodes
in diverse environments, in contrast to using a static indoor
testbed with predefined hardware and sensor equipment. The
testbed has been set up in different locations in and around
the University of Uppsala campus.

III. TARWIS FEATURES

When studying the beforementioned work, it becomes obvious
that there has already been a lot of work dedicated to the
setup of WSN testbeds, as well as for tailormade software for
network administration tasks. One may therefore be urged to
ask the question where the benefit of the TARWIS Testbed
Management Architecture is. In this section, we pinpoint the
main advantages of TARWIS over their predecessors, before
we continue to describe TARWIS and its features in a more
detailed manner in the subsequent sections.

a) While most testbed management solutions have been
implemented around a specific testbed architecture and
node type, TARWIS has been kept as independent as
possible of most crucial design questions of its underly-
ing testbed hard- and software. TARWIS can hence be
used to control and manage testbeds with a single server
architecture (to which nodes are connected e.g. over
USB cables), with a two- or three-tiered architecture
where gateway meshnodes control the access to the
individual meshnodes, or to testbeds where no wired
backup channel is present at all. TARWIS only requires
that the nodes can be remotely controlled from within
the portal server, it makes no restrictions how this is ac-
tually achieved. The TARWIS components communicate
over standardized and programming-language indepen-
dent APIs, which keeps the re-usability and generality
of TARWIS on a high level.

b) Most of the above listed testbed management solutions
interact with specific features of the node and its op-
erating system, and thereby hence lose their generality.
TARWIS is totally independent from the node type and
node operating system. So far it been deployed on nine

different testbeds throughout Europe, using five different
node types and operating systems. Besides our testbed
at University of Bern, to date there are eight other
TARWIS deployments, often with heterogeneous sensor
node types and controller hardware operable at the
universities of Lancaster, Lübeck, Braunschweig, Berlin
(FU), Delft, Geneva, Patras and UPC Catalunya. These
testbeds are part of the pan-European testbed federation
of the WISEBED [11] project.

c) Unlike other testbed management solutions, where ex-
periments are usually set up and run invisibly in batch-
mode, TARWIS allows the testbed user to monitor and
interact with the ongoing experiment at run-time by
observing the output of the selected sensor nodes in
a browser window. TARWIS offers the same technical
capabilities to the experimenting testbed user as if the
sensor nodes would be attached to its desktop computer:
nodes can be reprogrammed, reconfigured or hard-reset
over the browser window at experiment run-time.

d) TARWIS has been designed to integrate testbeds from
different universities or research institutions into the
Shibboleth Federation [12] of the WISEBED [11]
project. TARWIS offers an integrated and federal ap-
proach for user authentication, authorization and account
management, and relieves the testbed operators from
designing user management solutions from scratch. Each
users account of the Shibboleth federation can be used
for all testbeds deploying TARWIS, and for institutions
deciding to join the Shibboleth federation in the future,
rendering a per-site registration obsolete.

e) TARWIS fully integrates the Wireless Sensor Network
Markup Language (WiseML) [13], an XML standard
schema for describing experimental data in WSNs. In
an attempt to achieve compatibility of sensor network
experimental data with several simulation tools, the
WiseML standard has been adopted by the well-known
COOJA [14] simulator in [15]. WiseML is a cornerstone
towards a unified representation of experimental data
in the field, may it be from experiments on simulators
or real-world data traces. TARWIS is to date the first
architecturally generic and fully WiseML-compatible
testbed management system.

IV. TARWIS ARCHITECTURE

The architecture of TARWIS is illustrated in Figure 1. The
figure displays the portal server, on which the essential parts of
TARWIS are hosted. Besides the TARWIS server component
(lower left corner), the portal server hosts the TARWIS web
interface (within an Apache web server), which is protected by
the authentication and authorization system Shibboleth [12].
In this section, we briefly describe the different components
visible in Figure 1 along with the applied technologies.

A. Portal Server

The portal server is any customary desktop PC with some
minimum 2 GB of RAM and a broadband Internet connection.
TARWIS comes with installation scripts to simplify the setup



3

which have been tested and optimized for Debian Linux [16]
Lenny (v.5.0.0).

B. TARWIS Web Interface

TARWIS offers an intuitive and easy-to-use web-based user
interface. This interface is implemented as a dynamic web
page using PHP, offering the user convenient access to the
testbed via a web browser. A MySQL Database Management
System (DBMS) is used to store personal configurations and
experiment definition data. In order to gain access to the
TARWIS web interface, a user has to log in using its Shibbo-
leth credentials. Based on the user identification credentials,
TARWIS offers fine-grained access to the testbed resources -
either as visitor (only being able to observe public-declared
experiments), as a normal testbed user (being allowed to
submit experiment jobs) or as a testbed administrator (a root-
like account which - besides submitting experiments - is also
capable of adding additional nodes, schedule maintenance
tasks, delete normal user’s experiments, etc).

C. Shibboleth

The TARWIS architecture separates the concerns of authenti-
cation and authorization to the resources. Authentication of
users logging to the portals is based on Shibboleth [12].
When signing in to any TARWIS deployment, a user has
to enter its user name and password at the so-called home
organization. Each users’ home organization is responsible for
authenticating its affiliated users. Shibboleth is a standards-
based, open source authentication and authorization system
used for web Single-Sign On (SSO) and user and account
management across organizational boundaries. To date, it is
widely adopted in European education and research networks
(e.g. SWITCH [17], DFN [18], eduGAIN [19]). Since recently,
the most widely used computer science libraries IEEE Xplore
[20] and Elsevier ScienceDirect [21] supports Shibboleth in
order to facilitate access from universities worldwide. Using
Shibboleth, users only require one account with user/password
credentials to log in to all present TARWIS deployments.

D. TARWIS Server Daemon

The TARWIS Server Daemon is the main process controlling
the entire experiment execution logic. It encapsulates the
database access and all the logic operations defined in the
WSDL description files. The TARWIS Server Daemon is
written entirely in Perl [22]. It forks a designated subprocess

as soon as any new experiment is scheduled. This subprocess
then fetches the experiment description from the database,
and checks with the TARWIS Reservation System whether
the submitted experiment has a valid reservation. It deter-
mines which nodes have to be reprogrammed with which
binary code image, then connects to the sensor nodes via the
WSDL interface definitions defined in Reservation System,
SessionManager and WSNService API in order to reset and
reprogram them. Over this API, the testbed user is later given
the opportunity to access and program the sensor nodes over
the TARWIS Web Interface at run-time. Then, the TARWIS
Server Daemon and its subprocesses retrieve the run-time
experiment data from the sensor nodes, which is subsequently
stored in specific tables in the database.

E. Web Services-based APIs/Interfaces

The TARWIS components communicate with each other over
the established Web Services standard [23], using clearly-
defined API descriptions available in the machine-processable
format Web Services Description Language (WSDL). Web
Services interface descriptions are programming-language and
operating-system-independent. There are Web Services/SOAP
bindings for any major programming language on all major
operating system platforms.
Figure 1 displays three examples of such API functions which
are invoked by TARWIS: reprogramming a node using the
flashPrograms, resetting nodes using resetNodes, and retriev-
ing output or status messages from a node with receiveStatus.
The implementation of these services can reside on the same
computer as the TARWIS components, or any other computer
that is accessible with high bandwidth from the portal server.

F. TARWIS Resource Reservation System

The TARWIS Reservation System is used to prevent con-
current access to the resources on the testbed, hence to
ascertain uninterruptible experimentation of multiple users on
the testbed. Reservations can be made for the entire testbed,
or for subsets of testbed resources, with a subset consisting in
at least one node. The TARWIS Reservation System exposes
its primitives to the TARWIS Web Interface, where it can be
manipulated in a browser window. Apart from that, it can
also be queried and manipulated in a machine-driven manner
(e.g., using a script) via the RSService Web Service. A fully
interoperable reservation client, which communicates over the
same WSDL functions, is furthermore available as iPhone

Fig. 1: TARWIS System Architecture - Testbed Generic Part (left) and Testbed Specific Implementation (right)



4

application, permitting to book time slots from within a simple
smartphone. The ReservationSystem API consists in primitives
to obtain a list of the current reservation (e.g. getReservations,
getConfidentialReservations) and to schedule or manipulate
reservations (e.g. makeReservation, deleteReservation).

G. TARWIS Sensor Network Authentication Service (SNA)

Each TARWIS deployment further exhibits a Web Service for
authorization. The process of authorization - granting rights to
authenticated users - is done locally for each TARWIS testbed.
Each testbed operating organization (e.g., research institu-
tion or university) can specify which access right is granted
for which specific user from any home organization in the
WISEBED federation. To ensure modularity and consistency,
the so-called Sensor Network Authorization Service (SNA) is
hence present as a Web Service on the Portal Server. It can
additionally be queried by any other Web Services enabled
client, e.g. a Perl or Python script.

V. CONCLUSIONS

In this paper we have presented the TARWIS, the Testbed
Management Architecture for Wireless Sensor Network
Testbeds. TARWIS is a Web Services-based management
system for administering and managing research testbeds
of wireless sensor networks. TARWIS to date runs on six
different testbeds of wireless sensor network testbeds of the
WISEBED [11] project, with node deployments between a few
10 to more than 100 nodes, with a total number of sensor nodes
of all TARWIS operated testbeds exceeding 1000. TARWIS is
designed to federate testbeds of WSNs. The generic Web In-
terface, the standardized programming-language independent
Web Service interfaces of the TARWIS backend system permit
interested research groups to use TARWIS for their projected
testbed, and to relieve them from the burden to implement own
scheduling and testbed management solutions from scratch.

ACKNOWLEDGMENTS

This work was supported by the European Commission under
contract number IST-2008-224460 (WISEBED) and the Swiss
National Science Foundation (SNF) under contract number
200021-126718.

REFERENCES

[1] S. Kurkowski, T. Camp, and M. Colagrosso, “MANET
simulation studies: the incredibles,” SIGMOBILE Mob.
Comput. Commun. Rev., vol. 9, no. 4, pp. 50–61, 2005.

[2] T. R. Andel and A. Yasinsac, “On the Credibility of
Manet Simulations,” IEEE Computer Magazine, 2006.

[3] P. Hurni, G.Wagenknecht, M. Anwander, and T. Braun,
“A Testbed Management System for Wireless Sensor
Network Testbeds (TARWIS).” European Conference
on Wireless Sensor Networks (EWSN), February 17-19,
Coimbra, Portugal, 2010.

[4] G. Werner-Allen, P. Swieskowski, and M. Welsh, “Mote-
Lab: a Wireless Sensor Network Testbed.” Information
Processing in Sensor Networks (IPSN), 2005.

[5] J. Polastre, R. Szewczyk, and D. E. Culler, “Telos:
Enabling Ultra-Low Power Wireless Research,” in Intl.

Symposium on Information Processing in Sensor Net-
works (IPSN), 2005.

[6] V.Handziski, A.Koepke, A.Willig, and A.Wolisz,
“TWIST: A Scalable and Reconfigurable Testbed for
Wireless Indoor Experiments with Sensor Network,”
in Intl. Workshop on Multi-hop Ad Hoc Networks
(RealMAN 2006), Florence, Italy, 2006.

[7] E. Ertin, A. Arora, R. Ramnath, and M. Nesterenko,
“Kansei: A Testbed For Sensing At Scale,” in Intl. Con-
ference On Information Processing In Sensor Networks
(IPSN), 2006.

[8] Haratcherev, I., Halkes, G., Parker, T., Visser, O. and
Langendoen, K., “PowerBench: a Scalable Testbed In-
frastructure for Benchmarking Power Consumption.” In-
ternational Workshop on Sensor Network Engineering
(IWSNE), 2008.

[9] Tutornet, “A tiered wireless sensor network testbed,”
http://enl.usc.edu/projects/tutornet.

[10] O. Rensfelt, F. Hermans, L.-A. Larzon, and P. Gunning-
berg, “Sensei-uu: a relocatable Sensor Network Testbed.”
ACM Intl. Workshop on Wireless Network Testbeds,
Experimental Evaluation and Characterization, 2010.

[11] Seventh Framework Programme FP7 - Information and
Communication Technologies, “Wireless Sensor Net-
works Testbed Project (WISEBED),” Ongoing Project
since June 2008, http://www.wisebed.eu.

[12] Shibboleth - an Internet2/MACE Middleware Project,
http://shibboleth.internet2.edu.

[13] Deliverable D4.1: First set of well-designed simula-
tions, “Experiments and possible Benchmarks. Tech-
nical report,” The WISEBED project group 2008,
http://www.wisebed.eu.

[14] J. Eriksson, F. Osterlind, N. Finne, N. Tsiftes,
A. Dunkels, and T. Voigt, “Cooja/mspsim: Interoper-
ability testing for wireless sensor networks.” Intl.
Conference on Simulation Tools and Techniques, 2009.

[15] Q. Li, F. Österlind, T. Voigt, S. Fischer, and D. Pfisterer,
“Making wireless sensor network simulators cooperate,”
in 7th ACM Workshop on Performance Evaluation of
Wireless Ad Hoc, Sensor, and Ubiquitous networks (PE-
WASUN), 2010.

[16] DEBIAN - The Universal Operating System,
http://www.debian.org/releases/lenny/.

[17] The Swiss Education and Research Network (SWITCH),
“Authentication and authorization infrastructure:
System and interface specification,” 2004,
http://www.switch.ch/aai/demo/.

[18] DFN, “Deutsches Forschungsnetz German Research
Network,” http://www.dfn.de.

[19] eduGAIN, “GÉANT Authentication and Authorisation
Infrastructure (eduGAIN),” http://www.edugain.org/.

[20] IEEE Xplore, “The IEEE Xplore Digital Library,”
http://ieeexplore.ieee.org.

[21] Elsevier, “Elsevier ScienceDirect Library,”
http://www.elsevier.com.

[22] The Perl Programming Language, http://www.perl.org/.
[23] The World Wide Web Consortium (W3C), “Web Services

Activity Group,” http://www.w3.org/2002/ws/.


