
Management of Multi-Provider Internet
Services with Software Agents

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakult¨at

der Universität Bern

vorgelegt von

Manuel Günter

von Aarwangen

Leiter der Arbeit:

Prof. Dr. T. Braun

Institut für Informatik und angewandte Mathematik

Management of Multi-Provider Internet
Services with Software Agents

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakult¨at

der Universität Bern

vorgelegt von

Manuel Günter

von Aarwangen

Leiter der Arbeit:

Prof. Dr. T. Braun

Institut für Informatik und angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakult¨at angenommen.

Bern, den 14. Juni 2001 Der Dekan:
Prof. Dr. P. Bochsler

iii

Preface

The following work was performed during my employment as research and
lecture assistant at the Institute for Computer Science and Applied Mathematics
(IAM) of the University of Berne. I would like to thank Prof. Dr. Torsten Braun,
head of the Computer Network and Distributed Systems group (RVS), for super-
vising this work and for his insightful advises. Prof. Dr. Braun encouraged and
motivated me to publish my research results and he provided me the opportunity to
present the work on various conferences, for which I thank him.

I would also like to thank Prof. Dr. Burkhard Stiller, responsible for the Ko-
referat of this work, for his leadership in earlier common work and for his helpful
advises and comments.

Also, Prof. Dr. Oscar Nierstrasz who was willing to be the co-examinator of
this work deserves many thanks.

Many thanks go to my colleagues of the RVS group and of the IAM for our
various interesting discussions, and fruitful collaboration on organizational and
research issues. Special thanks go to Florian Baumgartner for support in many
areas, Ruth Bestgen for administrative support, Linqing Liu and Ibrahim Khalil for
the collaboration on research papers, G¨unther Stattenberger for his measurement
tool, and Marc-Alain Steinemann for travel tips.

I would especially like to thank Roland Balmer and Silvia Bechter for their
reliable support of the operating systems lecture.

The work presented here was performed in the framework of two projects with
participants from several Swiss Universities. I would like to thank my colleagues of
these two projects for the good team spirit. Special thanks for particularly close col-
laboration go to Dr. David Billlard, Dr. Gabriel Dermler, Dr. George Fankhauser,
Placi Flury, Noria Foukia, Dr. Jarle Hulaas, and Helmut Kneer. I thank the Swiss
National Science Foundation who funded these projects and thus also my work.

The following students performed a student project or a diploma thesis work
which supported this thesis: Marc Brogle, Emmanuel Granges, and Thomas Jam-
pen. They all invested a remarkable effort and delivered innovative research results.

Last but not least I would like to thank my family which supported me through-
out my studies and my friend Monika who helped me through difficult times.

iv

Contents

Preface iii

Contents v

1 Introduction 1
1.1 Overall Scenario . 2
1.2 Advanced IP Network Services. 2

1.2.1 Internet-based Virtual Private Network (VPN). 3
1.2.2 The Security Architecture for the Internet Protocol. . . . 5
1.2.3 Differentiated Services (DiffServ). 10

1.3 Agent Technology . 11
1.4 Network and Service Management. 12
1.5 The Problems and the Proposed Approach. 14
1.6 Outline . 15

I Management of Advanced IP Services with Agents 17

2 An IP Service Broker Architecture 19
2.1 Introduction to IP Service Management. 19
2.2 Bandwidth Brokers. 20
2.3 The IP Service Broker Architecture. 22

2.3.1 Basic Components of the Service Broker Hierarchy. . . . 24
2.3.2 The Structure of the Agents. 26
2.3.3 Interaction of the Components. 28
2.3.4 A Broker Signaling Protocol (BSP). 31
2.3.5 An Example of a New and Valuable Service: QoS-VPN. 37
2.3.6 Charging and Accounting Enhanced Services Operation. 38
2.3.7 Security Issues. 40

2.4 Implementation of Service Brokers. 45
2.4.1 A Bandwidth Broker Prototype. 46
2.4.2 A Prototype Implementation of Brokers for QoS-VPNs on

Demand. 46
2.5 Conclusions and Outlook. 49

v

vi CONTENTS

3 Differentiated Services Signaling 51
3.1 Signaling Granularity and End-to-End QoS. 51

3.1.1 Trade-off . 51
3.1.2 Signaling and SLA Update Options. 53

3.2 Differentiated Services Signaling Simulator. 54
3.2.1 Terminology and Assumptions of the Simulation. 54
3.2.2 Simulation Rounds. 55
3.2.3 Simulator Architecture and the Control Flow. 56
3.2.4 Traffic Generation.. 57
3.2.5 Networks Types . 58

3.3 The Adaptive Reservation Scenario. 60
3.3.1 Reservations Based on Traffic Measurements. 60
3.3.2 Traffic Estimation . 64

3.4 Limited Notification Scenario 64
3.4.1 The Dumbbell Problem. 65
3.4.2 Lack of Destination Information in Notifications. 67
3.4.3 Proposed Solutions. 68
3.4.4 Simulation Results of the Proposed Solutions. 69
3.4.5 Impact of the Backbone Size. 70

3.5 End-to-End Signaling . 71
3.5.1 The SLA Update Decision. 73
3.5.2 The Relation of Overprovisioning, SLA Updates, and Uti-

lization . 73
3.6 Evaluation of the Signaling Options. 78

II Customer-Based Service Monitoring 81

4 Architecture 83
4.1 Introduction and Motivation . 83
4.2 Mobility and Service Monitoring 86

4.2.1 Terminology . 86
4.2.2 Advantages of Service Monitoring with Mobile Agents. 86

4.3 A Supporting Infrastructure. 88
4.3.1 Location of the Control Points. 88
4.3.2 Node Architecture. 88
4.3.3 Authorization and Filtering 90
4.3.4 Security Issues. 91

4.4 Mobility Models and Agent Forwarding. 91
4.4.1 Supported Mobility Models. 92
4.4.2 Forwarding Security. 93

4.5 Deployment of the CSM Infrastructure in the Internet. 94
4.5.1 Advanced Infrastructure Support. 94

CONTENTS vii

4.5.2 Integration of the CSM Infrastructure with the Service Bro-
ker Architecture . 95

5 Implementation 97
5.1 The CSM Protocol . 98

5.1.1 Overview . 98
5.1.2 Internet Communication with Java. 99
5.1.3 Layering of the CSM Protocol. 100
5.1.4 The Protocol Object. 100
5.1.5 Message Objects. 102
5.1.6 CSM Message Exchange Sequences. 104

5.2 The T-Component and the Raw Packet Protocol. 106
5.2.1 T-components Implementations. 106
5.2.2 The Interaction between the Node and the T-component. 107
5.2.3 Other Options for T-components. 108

5.3 The CSM Node. 109
5.3.1 Node Overview . 109
5.3.2 Welcome Procedure for an Agent. 110
5.3.3 The Execution Environment. 111
5.3.4 Node Services. 113
5.3.5 User Profiles and Policies. 117

5.4 Agent Interface. 118
5.5 Security and Resource Control. 120

5.5.1 Communication Protection. 120
5.5.2 Security Layers of the Node. 120
5.5.3 Resource Control . 121
5.5.4 Agent Security. 123

5.6 The Home Application. 124
5.6.1 Implementation Overview. 124
5.6.2 The Transmission of a Request to the Node. 125
5.6.3 The Callback Displayer. 127
5.6.4 Generic Views of the Agent Results. 130

5.7 CSM Internetworking Support. 132
5.7.1 Name and Topology Information. 132
5.7.2 Routing. 133

5.8 Organization of the Source Code. 134

6 Applications of Service Monitoring Agents 137
6.1 Monitoring a Virtual Private Network Service. 137

6.1.1 Functionality of a VPN Control Agent. 138
6.1.2 Statistical Tests on Cryptographic Algorithms. 140

6.2 Service Level Agreement Monitoring. 145
6.3 Agents for Measuring QoS Parameters. 147

6.3.1 Throughput Measurements. 147

viii CONTENTS

6.3.2 Coordination of Distributed Measurements. 151
6.3.3 One-Way Delay Measurements. 152
6.3.4 The Ping Measurements. 154

6.4 Agent Security . 158
6.4.1 Classification of Attacks. 160
6.4.2 The Semantics of the Agent. 162
6.4.3 Attacks on the Input of the Agent. 165
6.4.4 Evaluation of the Threat Situation. 166

6.5 Extended Application Scenarios. 167
6.5.1 Further Applications Independent of New Node Services. 167
6.5.2 Future CSM Extensions. 168

7 Performance Evaluation 173
7.1 Performance of the Node Environment. 173

7.1.1 Throughput of the Execution Environment. 174
7.1.2 Node Throughput Including the TCP Receiver. 177

7.2 Agent Performance. 179
7.3 Communication Performance of the CSM System. 179
7.4 The T-Component. 184
7.5 Discussion and Improvements. 187

8 Comparison with Related Work 189
8.1 The Internet2 Initiative and the QBone. 189

8.1.1 QBone Architecture . 190
8.1.2 Architectural Comparison of the QBone. 192
8.1.3 QBone Signaling. 192
8.1.4 QBone Measurements. 195

8.2 Further IP Service Related Initiatives. 197
8.2.1 The IEEE P1520 Project for Programmable Networks. . 197
8.2.2 EURESCOM Project P1008-PF: Inter-operator Interfaces

for Ensuring End-to-End IP QoS. 199
8.3 Network Measurements and Monitoring. 200

8.3.1 IP Measurement Methodology. 200
8.3.2 The Simple Network Management Architecture. 202
8.3.3 Measurement Testbeds. 205

8.4 Mobile Agents for Management and Monitoring. 207
8.4.1 Network Management with Mobile Agents. 207
8.4.2 The Script MIB . 208
8.4.3 Network Management with Active Networks. 210

8.5 Pitfalls of Agent Based Software Engineering. 211
8.5.1 Political Pitfalls. 211
8.5.2 Conceptual Pitfalls. 212
8.5.3 Analysis and Design Pitfalls. 212
8.5.4 Agent-Level Pitfalls . 213

CONTENTS ix

8.5.5 Society-Level Pitfalls. 214
8.6 Open Issues. 215

8.6.1 Multicast Support. 215
8.6.2 Collaboration of Monitoring Agents. 215
8.6.3 Service Advertisement and Discovery. 216
8.6.4 Routing. 216
8.6.5 Artificial Intelligence. 217

9 Summary and Conclusion 219
9.1 Management of IP Services with Intelligent Agents. 220
9.2 Service Monitoring with Mobile Agents. 222

List of Figures 227

List of Tables 231

List of Abbreviations 234

Bibliography 237

Curriculum Vitae 249

x CONTENTS

Chapter 1

Introduction

The Internet service providers are eager to create new and enhanced Internet Pro-
tocol (IP) services in order to support advanced network applications and to create
new revenues. IP services may for example be enhanced by traffic prioritization
and security guarantees. Yet, for Internet-wide service coverage IP services de-
pend on the collaboration of several providers. Such multi-provider services profit
from the economy of scale and attract more potential users. Ideally, such services
span the whole Internet so that they can support a broader range of applications.
Yet, today there is no service management platform for advanced multi-provider
IP services available.

The Internet is a heterogeneous network and the providers use different man-
agement platforms for their IP networks. Today, coordination of management is a
tedious process involving manually established business contracts. The first part
of this thesis proposes a scalable architecture to manage new Internet services that
involve the collaboration of multiple providers. The architecture is service inde-
pendent and designed to fit into the autonomous domain structure of the Internet.
The architecture introduces intelligent software agents and refers to them asser-
vice brokers. Service brokers act on behalf of the service providers and establish
enhanced IP services on customer demand. This thesis studies how these service
brokers communicate to establish a multi-provider service. It proposes a dynamic
and flexible broker signaling protocol. Care must be taken that the automated col-
laboration of the brokers does not introduce scalability problems.

An important aspect of the service management is themonitoring of the ser-
vice. Today, the providers try to hinder external insight into their network manage-
ment because of security considerations. The customer of an enhanced network
service is also denied of insight. Yet, the customer should be able to verify the
enhancement of the service. For example, customers will not buy a secure network
service if they cannot verify that the providers are really securing the service. The
customer needs a way to verify that the IP service is indeed enhanced. Otherwise
the customer will not pay the additional service charges. In case the service is
provided through collaboration of multiple providers, they themselves may want

1

2 CHAPTER 1. INTRODUCTION

to monitor if all partners collaborate as negotiated. The second part of the thesis
presents a non-intrusive and generic customer-based service monitoring infrastruc-
ture (CSM) to address the latter problem. The proposed infrastructure exploits
the unique ability of mobile software agents. The agents can roam to the network
devices where the IP service is being delivered and thus monitor the service effi-
ciently. The thesis also shows that service monitoring nicely fits into the service
broker architecture.

The rest of this chapter introduces terminology and presents the state of the
art of relevant technology. Section1.1 describes the overall scenario. Section1.2
presents two prominent examples of enhanced IP services: Differentiated services
and virtual private IP networks. Throughout this thesis these services are used as
motivating examples. This thesis proposes to deploy agent technology to solve
multi-provider service management problems. The state of the art in agent tech-
nology is described in section1.3. Section1.4gives an overview of a widely used
management reference model which is relevant to IP services, too. Given that in-
troductory information, we will be able to restate the problems addressed in this
thesis in more detail (see section1.5). Section1.6outlines the thesis.

1.1 Overall Scenario

This thesis refers to an Internet model with actors, roles, and relations as depicted
in figure 1.1. There are business entities called Internet service providers (ISP)
that sell IP services to customers. The business relation between customer and
provider concerning this service is specified in a Service Level Agreement (SLA).
This is a contract that describes the scope of delivery of the service in question. The
SLA may be a traditional paper contract or an electronic contract. ISPs control
an IP infrastructure in order to be able to provide Internet services. They may
own network infrastructure or buy network services from other providers. Some
Internet services such as priority traffic services require the collaboration of the
involved ISPs. Throughout this thesis this is the case of most interest, because
multi-provider collaboration is an open issue in many areas of Internet research.

The collaboration between providers is also regulated by service level agree-
ments. Sometimes, one provider plays the role of the customer and sometimes both
contracting parties play a symmetric provider role (peering agreements). Neverthe-
less, the SLAs between providers also describe what actions each party takes and
what resources the parties devote to the deployment of the service. Thus, in many
cases it is not necessary to distinguish between these different types of SLAs.

1.2 Advanced IP Network Services

The Internet technology introduced a new philosophy into the telecommunication
world: the philosophy of the ‘stupid’ best-effort network [Ise97]. Such a net-
work implements only a simple packet forwarding service without additional intel-

1.2. ADVANCED IP NETWORK SERVICES 3

Manuel H. Guenter

Internet Service Provider

Network

Internet Service Provider

Network

The public Internet

End-to-end IP service

Customer Premises

Network

Internet Service Provider

Network

SLA

Customer host machine Customer host machine

SLA

SLA

Figure 1.1: Overall scenario.

ligence. Advanced services must be implemented in the end devices (computers).
Furthermore, the network capacity is shared. All packets are forwarded equally
and as quickly as possible (best-effort). The rapid growth of the Internet reflects the
success of this philosophy. Now the Internet is globally present and commercial-
ized. Internet end-users try to handle as many telecommunication tasks as possible
with the inexpensive Internet. However, some networking applications demand for
service quality. For example IP telephony applications impose upper limits on net-
work delays and delay jitter. Financial applications require communication privacy
and real-time video transmission requires bandwidth guarantees. The deployment
of service quality in the Internet requires control mechanisms in the network. The
Internet must therefore become smarter. Service providers can deploy such intel-
ligent mechanisms and use them to offer quality enhanced Internet services. This
section describes two new and emerging Internet services: a virtual private net-
work service and a quality-of-service related service differentiation. Throughout
the thesis these two enhanced services serve as motivating examples.

1.2.1 Internet-based Virtual Private Network (VPN)

Large corporations used to interconnect local headquarters and branch offices with
leases lines provided by telecommunication companies. They ran private networks,
so called corporate networks. With the rise of the Internet technology more and
more corporate networks switched from various networking protocols (such as
Novell) to the TCP/IP protocol suite. Such private networks based on the Inter-
net technology are also referred to as Intranets. Since leased lines are expensive
and the corporations often already have Internet connectivity there is an economic
pressure to replace the expensive leased lines and use the wide area interconnec-
tivity of the global Internet instead. However, there are two problems that must be
addressed: (1) The Intranet may use private addresses that are not unique in the
global Internet and thus not routable [RMK+96]. (2) The Internet protocol does
not assure privacy of the transmission. While the IP packets travel through the
public Internet they may be eavesdropped or even altered. Virtual private networks

4 CHAPTER 1. INTRODUCTION

[FH98a, FH98b, GHAM00] encapsulate the packets with private addresses into
packets with public addresses. This process is referred to as tunneling. If privacy
and authenticity of the encapsulated packet is desired then this can be ensured with
cryptographic means. Internet based VPNs encapsulate IP packets in IP packets.

Figure 1.2 shows the two most prominent VPN types: subnet-to-subnet VPNs
and access VPNs.

� The subnet-to-subnet VPN interconnects geographically distributed private
IP subnets. All traffic leaving one subnet destined for another one is tunneled
through the public Internet.

� The access VPN allows roaming users to dial into the virtual network from
their home machines or from arbitrary Internet points-of-presence.

Figure 1.2 also illustrates the tunneling mechanism. It shows the structure of a
tunneled IP packet originating from an application that runs within the private sub-
net X. The packet’s destination is a machine in a remotely located part of the VPN
(the private subnet Y). The subnets X and Y use private IP addresses. These are not
routed in the public Internet. The address structure of the VPN is invisible from
the outside. The access routers of subnets X and Y incorporate VPN functionality.
They have an interior network interface with a private IP address and an exterior
network interface with a public IP address. The access router at X recognizes that
the packet in question must be tunneled. It knows the public interface of the access
router of subnet Y. It uses that address as destination address and its own public
address as source address. The access router (also referred to as tunnel endpoint)
creates a new IP packet with this new addresses and puts the original packet in the
payload of the new packet. The payload is then encrypted. The new packet is sent
to the tunnel endpoint at Y. The router there extracts the payload of the packet and
decrypts the contents. So, the original packet is restored and can be routed on the
private subnet Y towards the originally intended destination. The access VPN case
also use tunnels. However there are two distinct possibilities. Either the home PC
acts as a tunnel endpoint or the point-of-presence (POP) of an ISP acts as tunnel
endpoint.

The address translation between private and public networks and the involved
routing and cryptographic mechanisms make virtual private networks hard to man-
age. While a VPN may be useful for a small-to-medium sized company, the man-
agement of the VPN would require additional equipment and personnel. Therefore,
there is a market for VPN services that let the customers outsource the management
of their VPN. The Internet service provider can deploy VPN capable border routers
and use them to introduce a VPN on-demand service [KBG00]. So several VPNs
can be managed on the same infrastructure by the same personnel (of the ISP) thus
both the customer and the provider can profit from the economy of scale.

1.2. ADVANCED IP NETWORK SERVICES 5

Manuel H. Guenter

POP

Src: X.7

E
ncrypted V

PN
 tunnel

Corporate subnet Y

Pub.2

<Data>

Src: Pub.1

Corporate subnet X

Dst: Pub.2

Dst: Y.3

Home PC

Pub.1

Internet

Figure 1.2: Virtual private network types.

1.2.2 The Security Architecture for the Internet Protocol

The Internet Engineering Task Force (IETF) standardized IP version 6 (IPv6) [DH98]
to solve pending problems (such as address shortage) of current version of the IP
protocol (IPv4). A spin-off development of this process was the IP security archi-
tecture (IPSec) which introduces per-packet security features. While the IP version
6 deployment has been delayed the security architecture has been adopted in the
current IP version (IPv4). A key motivation for this was that IPSec includes all
mechanisms needed to implement VPNs.

The Internet security architecture comprises of a family of protocols. IPSec
describes IP packet header extensions and packet trailers that provide security fea-
tures. The per-packet security features come from two protocols: The Authenti-
cation Header (AH) [KA98a] that provides packet integrity and authenticity and
the Encapsulating Security Payload (ESP) [KA98b] that provides privacy through
encryption. AH and ESP are independent protocols that can be used separately and
that can be concatenated. One reason for the separation was that there are coun-
tries that have restrictive regulations on encrypted communication. There, IPSec
can be deployed solely using AH because authentication mechanisms are not regu-
lated. Both ESP and AH have two modi: the transport mode and the tunnel mode.
The transport mode extends the IP headers by adding new fields. The tunnel mode
adds a complete new IP header (plus extension fields). The transport mode allows
the user to run IPSec end-to-end. The tunnel mode is ideal for implementing a
VPN tunnel at Internet access routers (see figure 1.2). In tunnel mode both AH
and ESP can be used to implement IP-VPN tunnels. AH and ESP dispose of a

6 CHAPTER 1. INTRODUCTION

small standardized set of cryptographic algorithms to ensure authenticity and pri-
vacy. This set is required in order to guarantee interoperability between different
IPSec implementations. Beside of that both protocols are specified independent of
cryptographic algorithms. A new encryption algorithm for example can easily be
added to IPSec. Both AH and ESP assume the presence of a secret key. This key
material may be installed manually. A better and more scalable approach is to use
the third protocol of the IPSec family: the Internet Key Exchange protocol (IKE)
[HC98].

At some point in the network both AH and ESP perform a transformation to IP
packets. The IPSec compliant machines always form sender-receiver pairs where
the sender performs the transformation and the receiver reverses it. The relation
between sender and receiver is describes as a security association. Note that the
security association describes just one transformation (and its inverse). Concate-
nated AH and ESP transformations are described by concatenated security associ-
ations. Security associations can be seen as descriptions of ’open’ IPSec connec-
tions. Both IPSec peering machines store representations of security associations.
The representation include information about what kind of protocol is used (AH
or ESP) in what mode, the cryptographic algorithms used and the secret key. Each
IPSec compliant machine may be involved in an arbitrary number of security asso-
ciations. The security associations are identified by a 32-bit number, the so-called
Security Parameter Index (SPI). The sending party writes the SPI into the appropri-
ate field of the IP protocol extension. The receiver uses this information to identify
the correct security association. In that way the receiver is able to invert the trans-
formation and to restore the original packet. Let us have a closer look at the IPSec
protocols and their security features.

The Encapsulation Security Payload

The Internet Assigned Numbers Authority (IANA) has assigned the protocol num-
ber 50 for the IPSec encapsulation security payload. ESP ensures privacy of the IP
payload. For that purpose an ESP header and an ESP trailer clamp the IP payload
between them. The payload and the trailer is encrypted. The ESP also provides
optional authentication. Figure 1.3 depicts an IP packet transformed by ESP in
transport mode. The ESP header is located after the IP header. It contains the se-
curity parameter index to identify the security association. Furthermore, there is
a sequence number that increases by one for each consecutive packet. This helps
to detect replay attacks, where the attacker records a packet and re-sends it later.
After the payload the ESP trailer is added. The trailer includes a padding. The
padding is necessary because the encryption algorithms often require the payload
to come in blocks of fixed length (e.g. 8 bytes). The pad length field encodes the
length of the padding in bits. The next header field contains the protocol number of
the next (eventually higher layer) protocol in the payload (e.g. IP or a concatenated
IPSec protocol). Note that the trailer up to here is also encrypted. So, an attacker
can for example not read what protocol is in the payload data. The ESP trailer may

1.2. ADVANCED IP NETWORK SERVICES 7

end with optional authentication data. The data is a message authentication code
(MAC) computed by a secure hash function. The input of the hash is a secret key,
the ESP header, the ESP payload, and the rest of the ESP trailer. The MAC does
not protect the initial IP header.

IP Header
ESP
Header Payload

ESP
Trailer

Encrypted

Authenticated

Security Parameter Index

Authentication Data (optional).

Sequence Number

Payload Data (variable)

Next Hdr

Padding (0-255 bytes)
ESP Trailer

ESP Header

ESP Authentication

Pad length

ESP
Authentication

(optional)

Figure 1.3: The encapsulation security payload.

The Authentication Header

The IANA has assigned the protocol number 51 for the IPSec authentication header.
AH authenticates the packet so a receiving IPSec peer can know for sure that the
packet originates from the sending peer. Furthermore, the packet integrity is guar-
anteed. The receiver can verify that nobody has changed the packet while it was
in transit between the peers. AH ensures this by calculating authentication data
with a secure one-way hash function. The calculation also includes the secret key.
An attacker that does not know this key is neither able to forge a valid packet nor
to authenticate the packet. Figure 1.4 depicts an IP packet transformed by AH in
transport mode. The AH header includes the next header field and encodes the
payload length. The length is necessary because the authentication data is variable
in length. The AH header, just like the ESP header, contains a security parameter
index and a sequence number. Finally, there is the authentication data (the secure
hash value). In contrast to the optional authentication of ESP the authentication
of AH covers also the original IP header. However, some fields of the IP header
are excluded from the authentication, because their values may change during the
forwarding of the packet. These exceptions are the time-to-live field that is decre-

8 CHAPTER 1. INTRODUCTION

mented by each router and the Differentiated Services Code Point (DSCP) (see
section 1.2.3).

IP Header Payload

Authenticated

ReservedNext Hdr Payload Lgth

Security Parameter Index

Sequence Number

Authentication Data
(Integrity Check Value)

(variable size)

AH
Header

Figure 1.4: The authentication header.

The Internet Key Exchange Protocol

As mentioned before, a Security Association (SA) describes an open IPSec connec-
tion including the involved secret keys. The Internet key exchange protocol allows
two machines to securely set up a security association. IKE allows these peers to
negotiate the protocol (AH or ESP), the protocol mode, and the cryptographic al-
gorithms to be used. Furthermore, IKE allows the peers to renew an established
security association.

IKE uses the Internet Security Association and Key Management Protocol
(ISAKMP) [MSST98] to exchange messages. ISAKMP provides a framework
for authentication and key exchange but does not define a particular key exchange
scheme. IKE uses parts of the key exchange schemes Oakley [Orm98] and SKEME
[Kra96].

IKE operates in two phases. In phase 1 the two peers establish a secure au-
thenticated communication channel (also called ISAKMP security association). In
phase 2 security associations can be established on behalf of other services (most
prominently IPSec security associations). Phase 2 exchanges require an existing
ISAKMP SA. Several phase 2 exchanges can be protected by one ISAKMP SA
and a phase 2 exchange can negotiate several SAs in behalf of other services.

ISAKMP SAs are bidirectional. The following attributes are used by IKE and
are negotiated as part of the ISAKMP SA: encryption algorithm, hash algorithm,
authentication method, and initial parameters for the Diffie-Hellman algorithm
[Sch96].

1.2. ADVANCED IP NETWORK SERVICES 9

Phase 1 Exchange. IKE defines two modes for phase 1 exchanges: main mode
and aggressive mode. The main mode consists of three request-response message
pairs. The first two messages negotiate policy (e.g. authentication method), the
next two messages exchange Diffie-Hellman public values and ancillary data nec-
essary for the key exchange. The last two messages authenticate the Diffie-Hellman
exchange. The last two messages are encrypted and conceal the identity of the two
peers.

The aggressive mode of phase 1 consists of only three messages. The first
message and its reply negotiate policy, exchange Diffie-Hellman public values,
ancillary data necessary for the key exchange, and identities. In addition the second
message authenticates the responder. The third message authenticates the initiator
and provides a proof of participation in the exchange. The final message may be
encrypted. Aggressive mode securely exchanges authenticated key material and
sets up a ISAKMP SA, but it reveals the identities of the ISAKMP SA peers to
eavesdroppers.

Note, that the choice of the authentication method influences the specific com-
position of the payload of this exchange. Note also, that IKE assumes security
policies that describe what options can be offered during the IKE negotiation.

Phase 2 Exchange. A phase 2 exchange negotiates security associations for other
services and is protected (encrypted and authenticated) based on an existing ISAKMP
security association. The payloads of all phase 2 messages are encrypted. A phase
2 exchange consists of three messages. The initiator sends a message contain-
ing a hash value, the proposed security association parameters and a nonce. The
hash value is calculated over ISAKMP SA key material an proves authenticity.
The nonce prevents replay attacks. Optionally, the initial message can also contain
key exchange material. Such optional phase 2 key exchange generates key material
which is independent of the key material of the ISAKMP SA. If the new SA should
be broken, the ISAKMP SA is thus not compromised. The initial message may also
contain identifiers in case the new SA is to be established between different peers
than the ISAKMP SA peers.

The responder replies with a message of the same structure as the initial mes-
sage: an authenticating hash value, the selected SA parameters and a nonce. If the
initial message contained optional parameters, then these are also part of the reply.
Finally, the initiator acknowledges the exchange with a third and final message
containing yet another hash value.

Authentication. IKE establishes authenticated keying material. IKE supports
four authentication methods to be used in phase 1: pre-shared secret keys, two
forms of authentication with public key encryption, and digital signatures. To-
day’s IKE implementations support X.509 certificates. So, two machines that do
not know each other can initialize a security association through the help of the
commonly trusted third party that verified the certificates.

10 CHAPTER 1. INTRODUCTION

1.2.3 Differentiated Services (DiffServ)

The best-effort nature of IP forwarding hinders for example the deployment of real-
time applications. The most recent approach to bring Quality-of-Service (QoS)
features such as small traffic latency or jitter, guaranteed bandwidth, and low loss
rates to the Internet is called Differentiated Services (DiffServ).

Differentiated Services [BBC+98] is a scalable technique that provides QoS
in IP networks by traffic aggregation based on Differentiated Services Code Points
(DSCP) [NBBB98]. The DSCP is a one-byte field in the IP header. The routers use
the DSCP to map each packet to a per hop behavior. Inside of a DiffServ network,
all IP traffic using the same code point is called a DiffServ behavior aggregate and
is treated the same way. Since there are only a handful of PHBs, the DiffServ
architecture scales also to large core networks.

The IP packets are classified and processed by traffic conditioners at the edge
of a DiffServ domain. Thus, most DiffServ related processing is done at the edges
of the domains. DiffServ domains are typically equivalent to administrative do-
mains, i.e. a customer premises network or the network of an Internet Service
Provider (ISP). A DiffServ service is specified in so-called Service Level Specifi-
cations (SLSs). These SLS must be established among the various DiffServ do-
mains. Theses SLSs form the basis for traffic conditioning actions such as shaping,
policing, and remarking at the edge routers.

For providing QoS guarantees similar to what customers have been used from
leased line services, the Expedited Forwarding (EF) Per-Hop Behavior (PHB) is
the appropriate choice [JNP99]. The EF PHB can be used to build a low latency
assured bandwidth end-to-end service through DiffServ domains. Such a service
appears to the endpoints like a point-to-point connection or a virtual leased line.
A typical SLS for such a service might include the ingress and egress point of
the DiffServ domain that shall provide the service and a peak rate which can be
guaranteed to the traffic stream.

The Assured Forwarding (AF) PHB group [HBWW99] provides different lev-
els of forwarding assurances for IP packets. Four AF classes are defined with three
drop precedences each. A typical SLS includes rates for low and medium drop
priority packets and might also specify ingress and egress points. AF is considered
as more complex to be configured in DiffServ domains, but it allows the provider
to compose a more elaborate and fine-tuned quality-of-service support.

Management of a DiffServ domain can be done using so-called Bandwidth
Brokers (BB) [NJZ99, TWOZ99]. Bandwidth brokers are software agents (see
section 1.3) that manage DiffServ allocations on behalf of the provider organization
(see section 2.2). The bandwidth brokers can be configured with organizational
policies, keep track of the current allocation of marked traffic, and interpret new
requests to mark traffic in the light of the policies and current allocation. Inter-
domain DiffServ traffic is regulated by the bandwidth brokers according to bilateral
SLAs.

1.3. AGENT TECHNOLOGY 11

1.3 Agent Technology

Software agent technology is an ongoing research issue in the computer sciences.
The term ‘agent’ is occupied by several research communities. Researchers of the
artificial intelligence community originally initiated work on so-called intelligent
agents [MJ99] in order to study computational models of distributed intelligence.
Later, the software engineering community (see e.g. [WJ99]) initiated a new wave
of interest in software agents which should help to simplify the complexities of
distributed computing and which could overcome the limitations of current user
interface approaches [Bra97].

A software agent is a computer program acting autonomously on behalf of a
person or organization. Software agents usually have one or several of the proper-
ties [Mil00] of the following list. Note, that different agent research communities
focus on different sets of these properties. Software agents are:

� Autonomous.The agents are proactive; they work goal-directed. The intelli-
gent agent research focuses on how artificial intelligence (inference systems,
theorem provers) can enable the agent to autonomously find a solution to a
given problem.

� Adaptive and Reactive. Agents can react and adapt their behavior to the
current state of their environment. Thus, they are ‘aware’ of their current en-
vironment. This property renders agent-based solutions interesting for het-
erogeneous environments such as the Internet. Agents may also have the
ability to learn and to adapt to uncertainty and to change. This makes agent
technology suitable for the interaction with the real world.

� Mobile. The autonomy of the agent may also express itself as agent mobility.
Such an agent is able to roam self-directed from one execution environment
to another execution environment. So called mobile agents [Kna96] are usu-
ally smaller and less adaptive than intelligent agents.

� Communicative and cooperative.One strength of the agent paradigm lies
in the rich functionality that may emerge when many (small) systems inter-
act based on (even simple) rules. All agent systems provide facilities that let
agents communicate (possibly across computer networks). Some researchers
consider communication and cooperation aspects as so important to the agent
paradigm that they simply define a software agent as an entity able to com-
municate in an Agent Communication Language (ACL). Research on ACLs
has produced high level languages that do not only communicate sentences
in some language, but rather communicate an attitude about the content (e.g.
belief, assertion, query etc.). These languages are inspired by the speech act
theory of linguistics. A recent language example which gains importance
in the said research community is the Foundation for Intelligent Physical
Agents (FIPA) ACL [http://www.fipa.org].

12 CHAPTER 1. INTRODUCTION

� Interactive. Agents can inter-operate with other agents, with legacy sys-
tems, other information sources, and with humans. The agent paradigm is
also used as a metaphor to facilitate the human-to-computer interaction.

� Delegation. A human should be able to delegate some of his/her tasks to
the agent which will filter, extract, and present the relevant information from
bodies of information larger than the human could ordinarily digest. Often,
the metaphor of a ‘digital butler’ is used in this context.

Since the agent paradigm is used by several research communities there is
no consensus on a specific agent definition. Yet, there is a rough consensus that
the presented properties are relevant. Properties that are relevant to all agent sys-
tems are the goal-driven autonomy, the environment awareness and the collabora-
tion/communication. Intelligent agents and mobile agents are specialized instances
of the software agent paradigm.

1.4 Network and Service Management

In order to be able to offer new IP services such as DiffServ or VPNs, the providers
must deploy a management system. This system must set up the device configura-
tions necessary, manage the available network resources and monitor the ongoing
services. The telecommunication industry which is the largest player in the IP
network provisioning business has standardized the Telecommunications Manage-
ment Network (TMN) model [IT]. The model provides a way to think logically
about how the business of a service provider is managed. The model consists of
five layers where each layer provides capabilities to its upper neighbor and each
layer imposes requirements on its lower neighbor. The components of the lower
layers are more distributed and technically oriented. The higher the layer, the more
information is concentrated into high-level abstractions. The higher layers can thus
be more centralized which allows the management system to maintain consistency
in the operations. The TMN model is thus usually depicted as a pyramid (see fig-
ure 1.5). The business layer contains processes that deal with the corporate strategy
and customer relations of the provider. The service layer deals with the products
that are offered to the customers, namely the services. The network management
layer incorporates the management processes necessary for the provider’s overall
network infrastructure. The element management deals with processes concern-
ing single devices in the network (servers, routers, switches etc.). Finally, there
is an element layer representing the heterogeneous hardware devices that form a
network.

The processes at all layers go through a more or less similar life cycle (see
figure 1.6). After planning (e.g. what equipment to buy, or what service to offer)
and deployment there is a third phase consisting of operation, maintenance, and
monitoring. This phase is supposed to generate revenues for the provider. At the
end of the cycle is a evolution/upgrade phase which may lead to a new planning

1.4. NETWORK AND SERVICE MANAGEMENT 13

Network Element Layer

Business
Management

Network Management

Element Management

Service Management

Figure 1.5: Telecommunication management network model.

Operation,
Maintenance,
Monitoring

Deployment
Upgrade

Evolution,

Planning

Withdrawal

Figure 1.6: Life cycle of management processes.

phase or to withdrawal. The operation phase is ideally the longest phase and is not
directly related to strategic decisions. It includes many repetitive tasks (monitoring,
accounting etc.). For these reasons it offers a great potential in automation.

This thesis focuses on the service level of the TMN model. The particular
goal of part I of this thesis is to design a provider network management system
that allows the customer to request and to access new IP services on demand. The
provider management system should thus be as much automated as possible. Part
II focuses on a monitoring infrastructure for these services. Both parts of the thesis
thus mainly deal with the operations phase of the service life cycle.

14 CHAPTER 1. INTRODUCTION

1.5 The Problems and the Proposed Approach

The TMN is just a reference model. Implementation efforts have been started but
usually they start bottom-up. There is no standardized service management yet that
would allow the provider to offer network services on demand, thus automate the
service operation phase. The TMN is also insufficient to model the collaboration
between providers for the provisioning of multi-provider services. Such enhanced
Internet services need multi-provider support in order to be delivered end-to-end
over the global Internet. Otherwise, the scope of the enhanced service is limited
to single provider networks and it is questionable whether a critical mass of users
will order the service. Further, the customers must be able to activate the enhanced
service online and on demand. Today for example VPN services must be ordered
off-line by fax or telephone. Also, the customer must have means to verify the
enhancement of the IP service. Finally, in such a large environment as the Internet
is, management systems face scalability problems.

This thesis is going to address these problem areas:

� How should the provider’s service management architecture look like, which
allows the provider to offer enhanced IP services such as VPN or DiffServ
on demand?

� How does this architecture use electronic SLAs to automate the collaboration
between providers?

� Is the management communication able to scale to the huge size of the public
Internet?

� How can the correct operation of a multi-provider network service be veri-
fied (by either the customer or the providers) in a dynamic, convincing and
scalable way?

Part I of the thesis presents a generic management architecture for new and en-
hanced IP network services. The architecture bases on intelligent software agents.
It introduces a set of specialized agents with logically separated functionality.
These agents form an architecture with the same layers as the TMN model. The
agents act on behalf of the service provider, thus the provider delegates specific
management functions to the agents. The agents have a variable level of auton-
omy which is constrained by rules (policies). The agents of adjacent providers
collaborate to set up advanced IP services along several provider networks. Col-
laboration is expressed as SLA. The architecture shows how agent technology can
be deployed to allow the service providers to offer on-demand multi-provider IP
services.

An important aspect of part I of the thesis is the management communication,
more specifically the communication between agents of different providers. The
thesis particularly focuses on the scalability of the management communication

1.6. OUTLINE 15

since the sheer size and growth rate of the Internet make scalability a key concern.
A newly developed simulator helps to evaluate the trade-off between communi-
cation complexity and end-to-end service quality guarantees on the example of
DiffServ resource reservations.

Part II of the thesis presents a customer-based service monitoring infrastruc-
ture based on mobile software agents. Service monitoring is an important aspect
of service management. Both customers and collaborating providers can use the
infrastructure to test the smooth operation of the service and to gather traces and
evidence of problems. The proposed infrastructure allows the user to delegate mon-
itoring tasks to mobile agents. The agents are programmable, thus they can test any
kind of emerging IP services. The mobility of the agents can be exploited to effi-
ciently pre-process the monitoring data close to the data source. Further, mobile
agent technology eases the deployment of new service testing procedures. Based
on an implementation and practical examples (VPN monitoring, active and passive
QoS monitoring) this thesis shows that service monitoring is a fruitful application
area for mobile agent technology.

1.6 Outline

This thesis is structured into the following chapters:

� Chapter 2 motivates and describes a generic architecture that allows providers
to offer enhanced IP services on demand. The architecture bases on intelli-
gent software agents called service brokers that manage the provider net-
works and that collaborate in order to dynamically set up multi-provider ser-
vices.

� Chapter 3 focuses on a special instance of the service broker architecture:
the bandwidth broker for Differentiated Services. The chapter discusses the
trade-offs between management communication complexity, signaling scal-
ability, and end-to-end service quality.

This concludes the first part of the thesis. The second part presents a customer-
based monitoring infrastructure for advanced IP services.

� Chapter 4 motivates why enhanced IP services need a monitoring infrastruc-
ture and how the unique abilities of mobile agents can be exploited to im-
plement a flexible and secure monitoring system for advanced IP services.
It introduces the architecture of a mobile agent based service monitoring in-
frastructure.

� Chapter 5 describes a customer-based service monitoring implementation
based on the programming language Java. It focuses on the implementation
of the execution environment for the agents. Further, an important aspect is
the implementation of security and resource control mechanisms.

16 CHAPTER 1. INTRODUCTION

� Chapter 6 describes the implementation of mobile agents that monitor a num-
ber of advanced IP services such as a virtual private network service and
Differentiated Services. The chapter also presents future applications.

� Chapter 7 presents performance statistics of the implemented monitoring in-
frastructure. Is shows that the performance is sufficient to enable interesting
monitoring applications.

� Chapter 8 discusses related research efforts in the area of management and
monitoring of advanced IP services. The chapter compares the related work
with this thesis.

� Chapter 9 concludes the thesis.

Part I

Management of Advanced IP
Services with Agents

17

Chapter 2

A Service Broker Architecture for
Multi-Provider IP Services

2.1 Introduction to IP Service Management

The Internet technology was developed to inter-connect heterogeneous networks.
The primary design goals were connectivity and the demonstration of the feasibility
and economy of scale for simple packet forwarding networks. However, in recent
years, the technology’s enormous success and its original design goals are source
of conflicts. Today’s Internet is no longer seen as a shared resource. One instance
of this problem is the network security. Internet users do not think of themselves as
part of a big community, but they want to experience privacy when communicating.
Furthermore, most of todays networks are commercial. Network carriers do not
want to provide connectivity, unless somebody pays for it.

The Internet Engineering Task Force (IETF) has standardized new protocols for
such upcoming needs. For policy based routing (BGP), for remote network man-
agement (SNMP), for secure communication (IPSec), for QoS support (IntServ
and later DiffServ) to mention only a few. All these protocols struggle with the
same problem, namely the ‘stupidity’ of the Internet [Ise97]. A fundamental dif-
ference between the Internet and connection-based networks such as the telephone
networks is the idea of pushing the intelligence out of the network towards the
end-user equipment. Personal computers are ubiquitous and get smarter every day.
This is also referred to as the end-to-end argument [SRC84]. The idea is that PCs
as end devices use the stupid packet delivery service to create complex services for
the users.

While the rise of the Internet illustrates that this approach has many benefits,
there are also severe drawbacks. Some services simply have to be implemented
inside the network. The first problems occurred, when the routing system had to
be changed. Two-tiered routing was introduced because of the rapid growth of
the number of hosts, the routing became policy based because of the commercial-
ization, and the routing became more fine-grained (classless) because of address

19

20 CHAPTER 2. AN IP SERVICE BROKER ARCHITECTURE

shortage (CIDR). Another problem is the network resource reservation, which has
to be solved inside of the networks. Security services and caching are further ex-
amples. After each of these problems had been identified, the IETF developed a
protocol which had to be implemented in the network routers. Routers are thus
constantly being upgraded. Today, they are able to support a large number of pro-
tocols, and thus are quite intelligent. However, the deployment time of a new
protocol is very large, since all routers must be upgraded. This takes time and may
eventually never happen (IPv6).

Furthermore, the new capabilities of todays network elements adds manage-
ment complexity. Therefore, tools and protocols were developed to administer
network equipment site-wide. However, for the most pending problem of inter-
network services, no automated management support exists. This is not aston-
ishing, since an administrative domain does not want to let others configure their
network equipment. The misuse potential would be devastating. In practice, the
administrators of peer networks negotiate with each other about all network con-
figurations that have implications to each other. This results in a service level
agreement, which is also a business contract. Each domain will then set up their
network configurations with the tools and protocols of their choice.

In the domain of resource reservation another solution for this procedure is
proposed. Intelligent software agents, with sufficient knowledge of the network
they administer, negotiate automatically to trigger bandwidth reservations in their
network. These so called bandwidth brokers can be seen as just one instance of
a generic approach to the problem of inter-domain network configurations. This
part of the thesis proposes a generic service management architecture based on the
bandwidth-broker idea. It will also discuss scalability problems of broker commu-
nication on the example of differentiated services.

Project Context. The work presented in this part of the thesis was performed
within the Charging and Accounting Technology for the Internet (CATI) project
[SBGP98, CAT]. The main goal of the CATI project has been the design, evalua-
tion and implementation of charging and accounting mechanisms for value-added
Internet services such as Integrated Services, Differentiated Services and Virtual
Private Networks (VPNs). CATI was a CNEC (Competence Network Electronic
Commerce) project within the Swiss Priority Program for Information and Com-
munications Structures (SPP ICS) of the Swiss National Science Foundation (SNF)
running from July 1998 to March 2000.

2.2 Bandwidth Brokers

In the common usage of the term, a broker acts as an intermediary to negotiate con-
tracts of purchase and sale. In the context of networks services these contracts are
Service Level Agreements (SLA). The term bandwidth broker was introduced in
[NJZ99] in the context of Differentiated Services. A Bandwidth Broker (BB) is a

2.2. BANDWIDTH BROKERS 21

software agent that has some knowledge of an organization’s priorities and policies
and allocates bandwidth with respect to those policies. It acts autonomously and
in behalf of its ISP. Thus, the bandwidth broker is an intelligent agent [MJ99] (see
also section 1.3). Bandwidth brokers are agents that are responsible for resource
allocation and traffic control of one administrative domain, as well as for maintain-
ing bilateral agreements between peers in adjacent domains. BBs have their own
policy databases that specify which customers can use the resources and how much
they are allowed to use. Figure 2.1 illustrates an end-to-end communication using
BBs. Between each network domain a bilateral agreement is established specify-
ing the traffic profile each domain can send/receive. The traffic profile includes a
DiffServ service class, and can include a service level specification with properties
such as the rate, the maximum burst size, and the time period when the service is
required. An end-to-end service guarantee is achieved through a chain of bilateral
agreements (SLAs).

Bandwidth broker Bandwidth broker Bandwidth broker

Network

Customer Premises

SLA SLA

ISP Network ISP Network

End-to-end IP service

Figure 2.1: Bandwidth brokers.

Bandwidth brokers are an alternative to reservation schemes that use signaling
to set and enforce flow specifications in routers throughout an end-to-end path.
Bandwidth brokering has the following advantages:

� A bandwidth broker is a single point1 of contact that acts as an intermediate
between customer and provider. The (large number of) network elements do
not have to deal directly with customer requests. The bandwidth allocation
thus follows the organizational hierarchies in the Internet.

� Bandwidth brokers negotiate bilateral agreements. This simplifies the trust
relationship because instead of a large number of network devices that must
trust each other, the peering providers only need to establish trust between
their bandwidth brokers.

� The bandwidth broker serializes the requests and can thus perform effective
admission control.

1Conceptually, the BB is a single entity, yet it may include redundancy to avoid reliability prob-
lems.

22 CHAPTER 2. AN IP SERVICE BROKER ARCHITECTURE

� The bandwidth brokers can keep abstract and thus compact network state in-
formation. Per-flow state representation kept in all network devices (routers)
can become very large and also inconsistent.

� Bandwidth brokers can work on traffic aggregates which makes the approach
scalable.

In the DiffServ architecture the bandwidth brokers are responsible for the fol-
lowing tasks:

� Accept service requests.The customer can negotiate an SLA with the band-
width broker that specifies the DiffServ service level.

� Admission control. The BB ensures that all conditions (policy compliance,
resource availability) are met before a given request can be fulfilled.

� Resource management.The bandwidth broker allocates available network
resources. It optimizes the use of the available capacity and minimizes the
risk of SLA non-conformance.

� Provisioning through local configurations. The broker organizes the roll-
out of network device configurations when necessary. For DiffServ this
mainly concerns the border routers. After the configurations are adapted
the service for the customer runs without intervention of the broker.

� Peering negotiations. If the requested service level has implications on
peering provider networks then the bandwidth broker negotiates with its peer.
This task is crucial for the establishment of end-to-end DiffServ guarantees.

2.3 A Generic Broker Architecture for On-Demand Inter-
net Network Services

Quality-of-service support with Differentiated Services is just one one of many
services an Internet service provider (ISP) could offer. In order to make effective
use of the available infrastructure, the ISPs needs to collaborate with each other
and automate their interaction processes. You can compare this to exterior routing
which is a multi-provider IP service. If the ISPs would not perform this routing
then their networks would still exist but the global Internet would break apart.
Thus, the total value of their networks increases drastically through collaboration.

The ISPs are eager to not only sell best effort transport services, but also to sell
new and value added services. Such services can include QoS guarantees or privacy
guarantees as offered by VPN. The planning, accounting and the management of
these new services are further business services an ISP can provide. We can assume
that the future Internet ISPs will have the following features:

2.3. THE IP SERVICE BROKER ARCHITECTURE 23

� Networks are remotely controllable (configurable) by the ISP and whose net-
work elements are able to support the new service. The rapid growth in size
and complexity of the networks will force the providers to automate the ele-
ment management.

� The intra domain resource management is able to provide service guarantees.
This can be a fine grained mechanism (e.g. per flow) if the domain is small.
New technologies such as MPLS [DR00] may accelerate this development.

� Application level interfaces exist for service requests by customers. Today,
the world-wide web technology offers an ubiquitous graphical interface.

In order to produce the full revenue of these investments, the ISPs need to col-
laborate. One of the key advantages of the Internet is its global presence. If service
providers support enhanced services only locally then these services are less valu-
able and may not be more interesting than alternative network technologies (e.g.
ATM). Today the collaboration is done by human network administrators com-
municating with each other by phone or fax. However, with automatically config-
urable networks and appropriate communication protocols, an automated approach
is much more favorable.

We envision the following requirements: Electronic bilateral SLAs exist be-
tween adjacent ISPs. Also, there is an inter domain resource management proce-
dure which allows the new services to span multiple ISPs. For scalability in large
backbone networks, this management must handle aggregations of the intra do-
main resource management entities; it must be coarse grained. The architecture
we present in the following shall allow the automatic provision of new services
spanning multiple ISPs based on the mentioned assumptions.

The bandwidth broker architecture for DiffServ (presented in section 2.2) was
developed for exactly this scenario. Therefore, we took up this approach, made it
service-independent and refined the architecture. All the advantages of the band-
width broker approach listed in section 2.2 are also true for other enhanced IP
services such as VPNs. The Internet Engineering Task Force (IETF) may also
come up with new IP enhancements that pave the way for even more new IP ser-
vices. Therefore, it makes sense to introduce a broker architecture that is able to
cope with the common tasks of arbitrary new IP services. These include resource
allocation and service negotiation and service management which is just what the
BB does for DiffServ.

Generalizing the BB idea was also useful for the CATI project (see section 2.1),
since we were looking into ways how to combine VPNs with DiffServ (see also
section 2.3.5). Having a unified service management architecture simplifies this
task. The architecture also allowed us to study charging and accounting problems
for new IP services.

The architecture that is going to be presented identifies and describes the com-
ponents and communications necessary for service brokering. The architecture
consists of a hierarchy of service brokers. It is described in more detail in [GBK99].

24 CHAPTER 2. AN IP SERVICE BROKER ARCHITECTURE

2.3.1 Basic Components of the Service Broker Hierarchy

Service Brokers. A service broker accepts service specifications for the specific
IP service it sells. It can query the cost of the service and negotiate its price with
a customer. Upon agreement, the broker can setup the service. The broker keeps
the knowledge about the services provided in the form of service level agreements.
It can thus accept requests to change the specifications of a service for a given
customer. Note that the service broker may synchronize and coordinate multiple
service requests. Furthermore, a service broker is an autonomous entity. It can
proactively change an SLA. For such decisions, it needs access to various policy
databases.

Broker classifications. Services can be classified as follows:
(1)(a) The service can be provided by an ISP alone or

(b) it needs collaboration with other ISPs.
(2)(a) The service configuration is orthogonal to other services or

(b) it must be coordinated with configuration of other services.
For the case of (2a) (orthogonal) we propose two kinds of brokers. The In-

ternal Service Broker (ISB) can be used to manage an ISP’s service that is solely
supported local to the ISP. The ISB can configure the ISP’s network via an commu-
nication interface to element managing agents of each relevant network equipment
(e.g. the border routers). The ISB manifests the fine grained resource management
mentioned before. If the (orthogonal) service needs the collaboration of other ISPs
we propose an External Service Broker component (ESB). The ESB has knowledge
of the adjacent ISPs and can negotiate the necessary services of the adjacent ISP
through its peer ESB broker. Therefore, an ESB can control the corresponding
ISBs and thus the network configurations. The ESB manifests the coarse grained
resource management mentioned before. Note that ESB and ISB represent the
Internet-wide used two-tier hierarchy which allows for a scalable solution. The
separation matches the topology found in todays Internet. Figure 2.2 depicts the
situation.

Class 2b services (non-orthogonal) must be handled by brokers that are spe-
cially designed to offer a service bundle. Such Composite Service Servers (CoSS)
can use and coordinate several ISBs and ESBs (of the different services influenced
by this special service). Note that the management of such services is very com-
plex. In general such a service can only be automated if the different sub-services
only interfere in few specific and well-known areas. A good example of such a ser-
vice bundle is the provisioning of VPNs with QoS guarantees with DiffServ (see
section 2.3.5).

Layering of the Broker Hierarchy. The broker hierarchy is layered. A compo-
nent of a higher layer represents information in an abstract way (e.g. SLAs) while a
component of lower layers represents information in a more concrete specific way
(e.g. a router configuration script). Components issue configuration commands to

2.3. THE IP SERVICE BROKER ARCHITECTURE 25

SLA

Network equipment

EM EM

Network equipment

EMEMEM

ISP BISP A
Trust border

Composition

Inter ISP

Domain
dependent

Machine
dependent

External Service Broker

Composite Service Server

Internal Service Broker

External Service Broker

Internal Service Broker

Manager
Element

Figure 2.2: Service broker hierarchy.

components of the next lower layer. Components receive notifications of events
from the next lower layer. The layering of the components is depicted in figure 2.3.
It is compliant to the TMN model (see section 1.4).

The external service broker includes business related functionalities. It can ne-
gotiate prices and buy and sell network services. However, it focuses on the
IP service that it sells so it is mainly located at the service management layer.

The internal service broker also focuses on a service, but it knows the imple-
mentation details of the service and hides them from the upper layer com-
ponents. It has knowledge about the provider’s network infrastructure and it
knows how to trigger service relevant network management functions. The
ISB is unaware of business issues.

The element managing agentknows a specific network device and hides the de-
vice specific details from the upper layer. The element managing agent (EM)
focuses on a single network element.

Customer contact. Principally, only the external service brokers negotiate with
a broker of another domain. Therefore, larger customers can simply run their own
external service broker to order services. The smaller customers, however, may not
want to run such a complex piece of software. Therefore, it is useful that also a
human can interact with a foreign service broker. We propose a customer server
that provides a graphical user interface and that translates between a human and an
ESB. A straight forward solution is web based.

26 CHAPTER 2. AN IP SERVICE BROKER ARCHITECTURE

Network Element Layer

Element Management

ESB

ISB

EM

Network Management

Service Management

Business Management

concret

abstract

C
onfiguration N

ot
if

ic
at

io
n

Figure 2.3: Service broker hierarchy in the TMN model.

2.3.2 The Structure of the Agents

The External Service Broker

The External Service Broker (ESB, see Figure 2.4) component bundles the most
functionalities of all presented components. It is controllable by the network ad-
ministrator via a master interface and it controls ISBs via a slave interface. The
peer interface must implement an ESB-ESB protocol including form exchange, ne-
gotiations and electronic payment. The current state of the service collaborations
between adjacent ISPs is stored in an SLA repository. The ESB can be equipped
with a quite complex autonomous behavior because it should be able to automat-
ically detect necessary updates to SLAs. Furthermore, it should be able to react
to changes requested by the other ISPs and it can vary its behavior depending on
the network state and the e.g. the daytime. A central module of the ESB must
coordinate its own activities, since there may be a lot of requests being processed
at a given time.

Internal Service Broker

The internal service broker has a similar agent structure as the ESB (see figure 2.5).
The master interface includes an interface for the network administrator as well as
for local ESBs. The Internal Service Broker (ISB) coordinates the configuration
of a service across its network. Therefore it needs an interface to control EMs and
a repository of the current configurations. An autonomous behavior module can
be attached to an ISB that e.g. monitors a service relevant subset of the network
equipment and triggers actions under certain conditions (e.g. alarms). The ISB
needs coordination facilities as well.

2.3. THE IP SERVICE BROKER ARCHITECTURE 27

Multi thread
handling.
Coordinator

External Policy
Query Interface

Autonomous
Behavior

(to) Slave Interface

Peer ESB
Interface

(to) Master Interface

SLA Repository

SLA Interface

External Service Broker

Figure 2.4: The external service broker.

Multi thread
handling.
Coordinator

Autonomous
Behavior

Service Configuration
Repository

Master Interface

Towards Network
Administrator

Towards

Slave Interface

ESB

Towards Configuration Daemons

Internal Service Broker

Figure 2.5: The internal service broker.

28 CHAPTER 2. AN IP SERVICE BROKER ARCHITECTURE

Element Managing Agent

The element managing agent (see figure 2.6) is controlled by its master interface
(usually by an ISB). It can log its configuration actions and may use this log for roll-
backs of configurations. Only a simple coordination module is necessary unless the
underlying network equipment is hard to configure on-line. The EM can support a
limited autonomous behavior for monitoring and notification of the network equip-
ments state. The EM includes several modules for the support of different services
(e.g. a tunnel establishment module or a DiffServ classifier configuration module).
The slave interface of the EM depends on the the managed network element. If
security would not be an issue here, the interface could use e.g. Telnet. Another
possibility is to use the serial console port. Ideally, a secured management connec-
tion (e.g. SSH) to the network element exists.

Autonomous
Behavior

Simple
Coordinator

Master Inteface

Configuration Log

Service Dependent
Modules

Machine Dependent
Slave Interface

Element Managing
Agent

Figure 2.6: The element managing agent.

2.3.3 Interaction of the Components

The interaction of components is implemented with communication protocols. Note
that there is no complete protocol suite for this service broker architecture avail-
able today. The next subsections describe the purpose of the different interactions
between components.

Element Managing Agent - Network Equipment Interaction

The element managing agent (EM) is a configuration server specialized for a cer-
tain kind of network equipment such as one type of commercial routers from a
specific vendor. It accepts a machine independent, abstract configuration request

2.3. THE IP SERVICE BROKER ARCHITECTURE 29

and then starts to interact with the network equipment through a secured channel. It
uses whatever authorization and configuration mechanism the network equipment
requires to satisfy the configuration request. The EM notifies when its network
equipment has installed the new configuration. It can keep a log of configurations
done or even a complete backup configuration.

Element Managing Agent - Internal Service Broker Interaction

The Internal Service Broker accepts requests concerning a service provided by the
ISP’s network. It uses an abstract configuration language to send configuration
requests to EMs and waits for the correct establishment of the service at different
places in the network. The configuration requests must be authenticated by the
ISB. The ISB is responsible for guaranteeing that no two service requests that the
ISB is handling interfere with each other. This can be complicated if an ISB is
implemented in a distributed manner.

Internal Service Broker - External Service Broker Interaction

In order to handle external requests and agreeing on SLAs, an ESB must interact
with the corresponding ISBs. It must be able to query the state of the current ser-
vice configurations in the ISP’s network. Furthermore, the ISP can signal changes
to these configurations. The ESB must wait for ISBs to react, and coordinate their
effort to provide given services before it can complete its negotiation with peer
ESBs of adjacent providers. Note, that the brokers for each new service may use
different (even proprietary) protocols to interact since there is no need for standard-
ization of intra-domain management.

ESB - ESB Interaction

This is the most complex of the interactions we are going to discuss. Like in the
previously described interactions we need an authenticated and possibly private
connection between the ESB peers. This is more complicated to establish since the
peers are not in the same domain. Therefore, the peers do not trust each other. In
the interaction between two brokers, one broker plays the role of a customer (client)
the other one the role of a provider (server). The ESBs store and manipulate SLAs.
The ESB-to-ESB communication must be standardized because different broker
implementations of different vendors must be able to communicate with each other.
The communication protocol must be flexible to facilitate a rich negotiation scheme
and various service descriptions. It must be extensible so that future IP services can
be deployed easily. Here are some tasks that the ESB-ESB protocol should support:

� Advertise services (asynchronous)

� Query SLAs and their state.

� Negotiate SLAs.

30 CHAPTER 2. AN IP SERVICE BROKER ARCHITECTURE

� Establish SLAs.

� Cancel SLAs.

� Renegotiate/update SLAs.

� Regulate payment.

� Trigger error/ recovery procedures

Note that the ESB also communicates with other entities such as a network
administrator and various policy databases (e.g. for pricing, authentication, action
triggering thresholds etc.).

Composite Service Server Interactions

The composite service servers (CoSS) can be seen as an stub that has access to
several ESBs. Their structure and interaction patterns very much depend on which
services they bundle.

Customer - Customer Server

The Customer Service Server (CSS) must be accessible by a well known protocol
such as HTTP. A customer contacting the CSS can choose a stub ESB for the de-
sired service. With this graphically enhanced stub ESB the customer can negotiate
a service level agreement. Note that the stub ESB has only reduced ESB function-
alities, it cannot signal local ISBs or accepting another ESB as its customer. An
Interaction Example for Provisioning a New Service A user learns about a service
provided by an ISP through the WWW. She loads a GUI enhanced stub ESB (e.g.
a Java Applet) which can invoke the appropriate ESB. The stub ESB lets the user
negotiate with the ESB and visualizes the results. In general, the interaction takes
place between the stub ESB (customer, controlled by a human) and the ISP’s ESB
(broker, automated) as follows:

1. Customer: Authenticated service request.

2. Broker: Answers a list of service forms. This list may include exemplars and
partially pre-filled forms.

3. Customer: chooses and requests a form. Broker: sends form.

4. Customer: sends back the form now containing the parameters of the service
requested.

5. Broker: internally checks the cost of the service (may also turn the request
down rightaway).

2.3. THE IP SERVICE BROKER ARCHITECTURE 31

6. Broker answers the cost of the request. Along with the message the broker
may suggest a payment method.

7. Customer: accepts or rejects. May also start renegotiation. Here, a variety
of negotiation schemes can be implemented.

8. Customer: triggers the payment method and signals acknowledgment.

9. Broker: provides the service and acknowledges the customer upon establish-
ment.

Note that the forms contain unique identifiers. The customer must keep these
identifiers in order to cancel the service contract later. The cancellation can be
done with a single authenticated message to the broker. This description of the
interaction between components allows us to derive a more detailed picture of the
components of the architecture.

2.3.4 A Broker Signaling Protocol (BSP)

This section presents how the components exchange messages to accommodate
service requests. The exact format of the messages is not specified in detail here
but the section describes the message types, sequences, and proposes a generic
message syntax.

The broker signaling protocol has the following requirements:

� It must be extensible. The protocol must be able to cope with new and emerg-
ing IP services. The protocol should be capable of describing the various
service parameters of emerging services.

� The protocol must cope with synchronization problems. The service brokers
will allocate resources in a distributed fashion thus synchronization is needed
and must rely on the communication between the brokers.

� The protocol must be secure (see section 2.3.7).

The messages of the broker signaling protocol are exchanged top down (ESB
(client)! ESB (server)! ISB! EM) and bottom up (EM! ISB! ESB (server)
! ESB (client)). There are six message types: queries, requests, commitments and
cancellations go top down, replies and notifications go bottom up.

Message Types

� Queries. A broker requests information from a peer or subordinate compo-
nent about the service that the query target provides.

� Request. A broker announces that it will order a given service. Upon a
request, resources for the service will be reserved, but the service will not yet

32 CHAPTER 2. AN IP SERVICE BROKER ARCHITECTURE

be established. This is the first part of a two phase commitment (as needed
for distributed databases [RSS81]). A request number will be assigned with
which the announced service request can be identified.

� Commitment. This communication message activates the service under the
given conditions. Commitments are only accepted after a successful request.
The commitment may carry the payment for the service. The commitment
carries the request number of the request that it refers to.

� Cancellation. A broker cancels an established service or a service request.

� Reply. This message type carries the reply of a peer or subordinate compo-
nent, e.g. the results of a query or the acknowledgment of a request.

� Notification. A subordinate component sends information updates that were
triggered by a third party (e.g. a warning about a network congestion).

The two-phase commitment ensures the consistency the configuration of a ser-
vice. In the request phase, the ISB takes care that the service to be established is
consistent with the already installed services. This happens at many places in the
network an may thus fail at some places. When the request phase terminates suc-
cessfully, the service can be established by a commitment message which should
not fail unless something drastic2 has happened. The message sequence of both
the request as well as the commit phase is the same. Here are the processing steps
of a request message from the point of view of an ESB:

1. The ESB checks if the request is policy compliant (admission control). If
not it replies a rejection message.

2. Then, the ESB forwards the request to the local service management (the
ISB). The ISB tries to allocate the necessary local resources and replies
whether this was successful. If not, the ESB replies a rejection message
to the requesting party.

3. The ESB decides whether other provider networks are affected and if so it
forwards the appropriate request to the involved ESB(s). If all involved peer
ESB return an acknowledgment the ESB returns an acknowledgment.

Here is the processing of a commitment (see also figure 2.7):

1. The ESB checks if the commitment matches a successful request.

2. Then the ESB demands commitment for the local deployment of the service
to the ISB.

3. The ESB also demands commitment from the involved peering ESBs.

2.3. THE IP SERVICE BROKER ARCHITECTURE 33

ESB (customer) ESB ESBISB Policy
Database

commit(request nr)

reply(ack)

reply(ack)

reply(ack)

reply(ack)

commit

commit

commit

Figure 2.7: A successful request for a service establishment.

The domain internal forwarding of these messages may be implemented with
various management protocols. Yet, the messages between ESBs cross domain
boarders and thus need standardization. The main goal of these messages is to
manage service level agreements between providers.

Contents of a Service Level Agreement

Here is the SLA definition that we developed for the CATI project. A service
level agreement consists of a mandatory part and a procedure how to extend the
agreement. Here’s the mandatory part:

� The two involved business partners (legal entities).

� A service type identifier (e.g. VPN, DiffServ).

� The scope of the service.

� IP-addresses possibly using wildcards or autonomous system numbers.

� A service description, containing the concrete parameters of the service (e.g.
delay, bandwidth, security level, tolerance level). May contain statistical
statements such as: 99.9 percent of the customer’s traffic presented to the
provider of the service will experience the described treatment.

� Calculation base for the price (e.g. fixed costs, costs depending on reserva-
tion amount, costs depending on usage of service.)

� Start time and end time of the SLA.

2For example destroyed infrastructure due to a natural disaster.

34 CHAPTER 2. AN IP SERVICE BROKER ARCHITECTURE

� A digital signature or certificate covering the whole contents of the SLA.

Here are some optional fields:

� Identifier for this SLA, which is unique to the SLAs of the SLA peers.

� Payment method description.

� Reimbursement method (e.g. in case of not delivered services).

� General terms of contract.

� Metering functions/ control procedures.

Note that these fields are rather pointers (e.g. URL) than complete descriptions
of procedures. However such descriptions should be stored in trusted third-party
locations.

Broker Signaling Protocol Message Syntax

The broker signaling protocol needs a flexible way of describing data. This is nec-
essary because the SLA and especially the parameters of the service description to
be negotiated are not known in advance. Therefore, a binary data format with fixed
field lengths is not the appropriate choice. Instead, the proposed BSP protocol is
byte oriented and uses three special bytes as listed in table 2.1. During transmis-
sion each protocol entity is surrounded by the byte value 123 indicating the start
of an entity and a byte value 125 indicating the end of an entity. Whenever one of
the three special bytes occur inside of an entity, the byte is preceded by a byte with
value 92 (escape character).

Table 2.1: BSP special characters

Byte value ASCII Purpose
92 n Escape character.

123 f Start of a protocol entity.
125 g End of a protocol entity.

The BSP protocol defines 5 data-types: Entity, Collection, Object, List, and
ObjectCollection. All types other than the Entity are sub-types of Entity, thus all
other types are BSP entities. List and ObjectCollection are sub-types of Collection.
This situation is depicted in figure 2.8.

The sub-type inherits the byte structure of its super-type. The BSP data type
Entity consists of the start byte, then a type byte (indicating one of the 5 data-
types), and an arbitrary number of bytes followed by the end byte. Since all BSP
types are sub-type of Entity, they are all structured like Entity.

Here is a list of the sub types of the BSP entity:

2.3. THE IP SERVICE BROKER ARCHITECTURE 35

Entity

Object Collection

List ObjectCollection

’has (a)’

’ is a’

Figure 2.8: The BSP object types.

� List. Like all BSP entities the BSP list is surrounded with the start and the
end byte and the second byte indicates the type of the entity. The type byte
value for lists is the ASCII value for the letter ‘L’ . The next byte of the list is
interpreted as a contents type, followed by a byte stream of arbitrary length.
The content type byte tells what primitive data type the list represents. Cur-
rently defined are the following byte values (as ASCII character values): ‘A’
for an ASCII string, ‘B’ for raw bytes, ‘H’ for a hexadecimal number, ‘E’
for a floating point number, ‘ I’ for an IP address, ‘D’ for a date.

� Collection. The BSP collection represents a list of entities. The BSP collec-
tion is not used directly, but its sub-types List and ObjectCollection are.

� ObjectCollection. This entity holds an arbitrary number of BSP objects.
The BSP type byte value for BSP object collections is the ASCII value for
the letter ‘C’ .

� Object. A BSP message (e.g. a query, a reply etc.) is encoded as one BSP
object. The type byte value for objects is the ASCII value for the letter ‘O’ .
The next byte of the object is interpreted as the state of the object. Then
there are two Lists and finally a Collection. The state byte is used for the
negotiation of service parameters. It shows the negotiation state of the par-
ticular parameters that are encoded in this BSP object. The first of the two
lists within an object encodes the object type of this BSP object. The second
list encodes an identifier of the object. Finally, the collection holds the con-
tents of the object. This is either a List or an ObjectCollection consisting of
a list of BSP objects. The ObjectCollection allow the BSP peers to construct
complex data structures. An object of such a collection is also referred to as
field of the object in which it is contained.

BSP messages as BSP objects.BSP messages (see section 2.3.4) are encoded as
one BSP object. The BSP object type identifies the BSP message type. The BSP
object identifier allows the BSP peers to keep track of the exchanged messages, for

36 CHAPTER 2. AN IP SERVICE BROKER ARCHITECTURE

example to match a commit message to a previous request message. The IP service
parameters to be negotiated can be encoded as fields (or fields of fields etc.) of the
BSP message. With the BSP syntax arbitrary complex object hierarchies can be
constructed, thus any kind of service parameter can be described.

BSP object state. The BSP object state byte shall allow the peers to dynamically
negotiate the service parameters. Here are the currently supported states (noted as
ASCII byte values):

� Fixed (value ‘F’): The contents of this object should not be changed during
negotiation.

� Please complete (value ‘P’): The contents of this object is not complete and
should be completed by the receiver of the object.

� Erroneous (value ‘E’): The contents of this object is flawed.

� Unknown (value ‘U’): The structure or contents of this object could not be
interpreted.

� Informational (value ‘ I’): The contents of this object may be ignored.

� Omitted (value ‘O’): The contents of this object was ignored.

Example. Figure 2.9 shows a simplified example of a BSP message. The mes-
sage is encoded as an object with the identifier number zero (the number being
encoded as a list of bytes that contain a hexadecimal number). The state of the
object indicates that the receiver should insert missing parameters. The message is
a BSP query as a customer may send it to a service broker. This is indicated by the
BSP list that encodes the object type. The message contains an object collection
with two fields (BSP objects). One field is incomplete. It contains a price object
with an empty list that is supposed to contain a number (the price). The second
field is fixed and it indicates a currency that shall be used for the answer to this
query.

{OP{LAquery}{LH0}{C{OP{LAprice}{LH1}{LH}}{OF{LAcurrency}{LH2}{LAUS$}}}}

Object 2Object 1

Type byte

State byte

Object type

Identifier
ObjectCollection

Figure 2.9: Example of the BSP message syntax.

2.3. THE IP SERVICE BROKER ARCHITECTURE 37

Implementation of a BSP parser. The object-oriented implementation of a BSP
object parser is straight forward. You implement an object hierarchy that mirrors
the BSP type hierarchy (see figure 2.8). Each class must contain BSP type specific
code to export itself to a byte stream and to parse itself from a byte stream. BSP
entities that consist of other BSP entities parse their specific type bytes and delegate
the parsing of the sub-entities to the respective classes.

Note, that BSP objects should be encrypted and authenticated. The work in
[Gra00] describes how BSP messages can be secured (see also section 2.3.7). For
more details of the BSP message syntax see [BG99].

The BSP protocol is now also being used by the StreamCom project [STR] for
the communication with a DiffServ broker.

2.3.5 An Example of a New and Valuable Service: Quality-of-Service
enabled VPNs

The reason why we introduced the generic service broker architecture was that our
research was focusing on more than one network level service. The architecture
should not only support both VPN and DiffServ but also a combination of both.
Such a bundling is both feasible and economically interesting.

The major competitor of IP-VPNs are private leased lines (Frame Relay, ISDN).
While the leased lines are more expensive because the user has to pay even when
not using the line, they usually come with guaranteed QoS. Enhancing todays VPN
solutions with QoS will eliminate the IP-VPN’s only real disadvantage compared
to the leased line solutions. Currently, the most promising technologies for imple-
menting such a QoS-VPN service are DiffServ and IPSec. Differentiated services
technology seems to be simple enough to enhance VPNs without restricting the
global reachability of the Internet or without introducing scalability problems. In
order to ensure interoperability between these technologies, the tunnel endpoints
and the ISP ingress nodes must be located in the same machines. Otherwise, the
tunneling and encryption of the VPN service may hide information necessary for
DiffServ. But if an ISP provides both the VPN service and DiffServ support to-
gether, then it can unify the tunnel endpoint and the DiffServ border router. Al-
though DiffServ and VPNs are two different services, they have similar concepts
and can enhance each other: DiffServ can provide QoS guarantees for a VPN as
a whole or it can be used to differentiate the treatment of traffic classes within a
VPN. VPNs are traffic aggregations with known traffic destination points. Diff-
Serv also operates on traffic aggregations. The fact that VPN tunnel endpoints are
known and relatively static can furthermore ease the specification of the service
level agreements [DGG+99]. DiffServ and VPNs both need enhanced functional-
ity of border routers of the ISP but not of intermediate routers. Both share some
similar functionality in the border routers, e.g. the traffic classification. The sim-
plicity and the coarse grained traffic classification make DiffServ a scalable tech-
nology. DiffServ is therefore suitable for the QoS support between different ISPs.
On the other hand, a VPN tunnel that crosses intermediate ISPs is transparent to

38 CHAPTER 2. AN IP SERVICE BROKER ARCHITECTURE

them and therefore does not allow fine grained QoS support.
Figure 2.10 shows an instance of the broker hierarchy which is able to provide

QoS enabled VPN services. The customer contacts a service server that bundles
QoS features to the VPN service. The external broker for VPN services can negoti-
ate the implementation of a tunnel endpoint. The external QoS broker arranges re-
source reservation in other involved networks. The network devices support IPSec
VPNs and DiffServ QoS support. The appropriate ISBs transform the service re-
quest they receive from the ESBs into IPSec and DiffServ configurations.

Network equipment

EMEMEM

Customer
Network

ISP B

QoS VPN Server

VPN
ESB

ISP A

DiffServ
ISB ISB
IPSec

QoS
ESB

Figure 2.10: The broker hierarchy for establishing QoS VPNs.

Figure 2.11 shows a QoS enabled VPN tunnel that was set up through broker
driven collaboration of several service providers.

2.3.6 Charging and Accounting Enhanced Services Operation

Our architecture does not restrict the choice of a payment method or pricing model
to a given solution. In this section we discuss the access points for ISP individual
charging and accounting modules. From a high-level view revenue is generated as
follows. A customer (administrator of a customer premises network) needs an IP
network service (e.g. wants to set up a branch office VPN). The customer is willing
to pay for that service. This will be the revenue source. The customer contacts his
ISP on-line via the ESB. It negotiates the service and the payment (price specs
including payment method). In general, the initial deployment of the service will
cost the customer a one time fee. In order to propose a price for the service, the
ESB needs to check whether other ISPs are involved and ask their ESBs what they
would charge. This leads to a query chain that involves all participating ISPs and
results in the distribution of the revenue. Finally the customer agrees on a SLA.

2.3. THE IP SERVICE BROKER ARCHITECTURE 39

SLA

SLA

SLA

SLA
ESB

BB BB
ESB

BB
ESB

Stub network

Stub network

VPN tunnel
Endpoint

(encrypted)

CoSS

VPNB
ESB ESB

VPNB

ISP BISP A ISP CEndpoint

Composite Service Server
Advanced ESB

VPN & QoS
stub-ESB
Web based

Figure 2.11: A multi-provider QoS enabled VPN.

From now on, the customer pays a flat- or usage based fee as negotiated in the
SLA. The revenue is shared by the involved ISPs as described implicitly in the
SLAs between the ISPs. The following subsections describe the different charging
aspects.

One Time Charging

As mentioned before, the ESB - ESB communication may not be free of charge.
The query messages can be served for free or for a small charge. The request and
the commitment messages must contain a payment (digital cash) or a promise for a
payment (e.g. digital checks). Cancellation of services may be subject to charging
if this is legal. An ISP in the role of a service seller must take into account, that it
may have to use other ISPs services and pay for them, when it prices its service. Be-
side of that, it is free to define its pricing policy for ESB-ESB communication. For
example it might even reimburse costs to its customer when the customer decides
to commit to the service. The ISP would then generate its revenues by continuous
charging.

Continuous Charging

The price continuously charged for the provided configurable service is specified
in the SLA. Thus the SLA record structure must be flexible enough to represent
a vast variety of payment schemes. It may contain a usage and time of usage
based price specification. Attributes can be bandwidth, peak traffic, total traffic,
daytime and many others. The payment method must also be specified. When an
ISP classifies incoming traffic (e.g. for tunneling or DiffServ marking) it can also

40 CHAPTER 2. AN IP SERVICE BROKER ARCHITECTURE

account it. Later, it can accumulate the continuous costs for a customer by using
this accounting information and the appropriate SLA price specification.

Cost Calculations

In the case of an end-customer, a human will probably decide whether a SLA is
acceptable. On the ISP side however the ESB must be able to automatically handle
most of the negotiations. Only in few cases it should be necessary to contact a
human administrator. This is one of the big challenges for ESBs. The ISP is sup-
posed to have its pricing models and policies available for the ESB. Upon a service
request the ESB will contact other ESBs and also check with the local ISBs how
much work and cost the request generates. Based on that it should be able to calcu-
late a competitive price specification for the service. In this field, intelligent agent
research results may be applied successfully. However, such business intelligence
is out of the scope of this thesis.

2.3.7 Security Issues

This section discusses vulnerabilities of- and protection mechanisms for the com-
ponents and interactions of the architecture.

General Security Observations and Conclusions

Some observations:

� Security adds overhead (it lower performance and increases management
complexity).

� Threat potential compared to security overhead should be in a reasonable
relation to each other.

� In general, the threat potential is underestimated.

� Threat potential composes of effort needed by an attacker to cause damage
compared to the size of that damage. The size of the damage must also
incorporate the time and effort to detect and repair the damage.

We can conclude that not every component and interaction necessarily needs
the maximum of security mechanisms available. Looking at the architecture it is
obvious, that the lower layer components and interactions (e.g. EM to network
equipment) need less protection that the upper layer components. Of course, care
must be taken that a security breach in the lower part of the architecture cannot
corrupt the upper parts.

2.3. THE IP SERVICE BROKER ARCHITECTURE 41

Simple but Mandatory Security Measures

The implementation of security measures depends also on the implementation of
the architecture. This section discusses an implementation variant, that foresees
the implementation of one (or more) architectural component as processes running
on a server. Interaction between components not running on the same server use
dedicated communication media, or if that is not available, they use the underly-
ing3 Internet infrastructure. Whenever possible, the infrastructure (servers, com-
munication medium) should be physically protected. Servers should be located in
secured areas, where only authorized personnel has access. Their access points
should also be protected. Of course this is hard to accomplish for all network de-
vices (routers/switches) of an ISP and completely impossible to accomplish with
interconnecting communication lines due to the geographic extent and the number
of equipments to protect.

Basic Security Measurements for Network Equipment and Components Im-
plemented in Hosts.

� Internal network equipment (Routers / Switches) do not need extensive pro-
tection. A minimal physical protection (e.g. against theft and demolition)
as well as the protection provided by a modern operating system can suffice.
This holds also true for hosts running EMs, which are usually located near
the equipment that they manage.

� Network equipment (and its EM) at the boundary of the ISPs domain must
include (see later) additional security functions. Therefore they need stronger
physical protection.

� Servers running brokers (internal and external) need strong physical secu-
rity measurements. Intrusion of unauthorized personnel must be very hard
to achieve. Authorized personnel must be monitored. Additional hardware
mechanisms, such as an automatic alert (or even an emergency erase of the
memory) in case that somebody physically opens the server, as well as spe-
cial operating system support is necessary.

� The availability of network components can be improved by redundancy.

Note that all network devices should run an operating system which includes
user authentication and protection of the local resources such as processes and
storage. There should be a regular maintenance of the installed operating system.

Basic Security Measures for the Management Communication. Unfortunately,
it is much harder to physically protect communication media. Still, some tech-
niques are (or will become) available.

3An ISP should have Internet access.

42 CHAPTER 2. AN IP SERVICE BROKER ARCHITECTURE

� In case of short-distance connections (such as a connection from the EM to
its managed device) the whole area may be physically secured (a secured
server farm).

� Static management lines may be protected using link-layer cryptography
techniques.

� Static management lines may use new fiber-optic based connections which
are completely secured by quantum technology [TGG98].

� If management communication is in-band with data transfer, the ISPs have
to ensure at their borders, that no management traffic (e.g. Telnet) bound
for internal network equipment is allowed to enter the domain from external
interfaces. Furthermore, the border routers discard traffic, that arrives at an
exterior interface but pretends to be coming from the inside the domain (IP
spoofing). With such a (relatively simple) firewall around its domain, the
ISP can rule out many possible attacks.

Nevertheless, the communication between the components imposes the biggest
security problems in the broker architecture.

Securing the Management Communication

The broker architecture imposes several management communication infrastruc-
tures. Unfortunately, (from the perspective of security) some of these communica-
tion infrastructure must rely on the data transport infrastructure. In our case this
is the IP network that can also be used to transport management traffic (in-band).
Special care must be taken, to protect management traffic from data traffic. Cryp-
tography is the only solution for secure in-band management traffic available today.
Figure 2.12 shows the components and communications of the architecture. We as-
sume that the security measures described in the previous sections are installed to
sufficiently protect the components. The management communication infrastruc-
tures depicted here can be physical or virtual lines. They can be in- or out-of-band
and they can use specific protocols. The security of the architecture depends on
how these protocols are implemented. Usually, the simple measures described ear-
lier cannot fully protect the management traffic. In that case cryptography needs to
be deployed [Sch96].

Intra-ISP communication management infrastructures

All management communication infrastructures except of the ESB-to-ESB com-
munication (inter-ISP management communication) is within the responsibility of
the service provider. If the provider neglects its internal security, it will mostly hurt
itself to the point of going out of business. This section discusses requirements and
security measures of this intra-ISP management communication. We start from

2.3. THE IP SERVICE BROKER ARCHITECTURE 43

Manuel H. Guenter

Device

EM

Device

EM

ISB

CoSSESBCoSS/ESB

Device

EM

Component

Communication
Infrastructure

Communication
Infrastructure

Virtual

Broker Management

Internet

ISP Domain

Broker Signaling Protocol,

Ssh, SNMP, serial line

SSL, dedicated medium

SNMP, dedicated medium,Network Management

Device Management

E2E Service Management

management VPN.

(Public Key Infrastructure)

Figure 2.12: Components and communication in the broker hierarchy.

44 CHAPTER 2. AN IP SERVICE BROKER ARCHITECTURE

figure 2.12 in a bottom-up fashion The Internet is inherently insecure. All network
equipment must be configured to accept management requests only from the de-
vice management infrastructure. This can be realized by blocking all management
access from public interfaces and having a dedicated management line (e.g. serial
cable) on a dedicated interface. Another possibility is only accepting configura-
tions via secured shells (ssh).

The network management infrastructure must span the whole network under
the ISP’s control. It must be able to reach each EM. Thus, the network manage-
ment medium is responsible for the dissemination of the management traffic. It is
therefore very likely that this kind of management traffic must be in-band with the
data traffic. Management protocols with built-in security features exist for exactly
that purpose (e.g. SNMPv2). In order to increase the security, the network man-
agement infrastructure can also be implemented as a virtual private (management)
network owned and used exclusively by the ISP. IPSec (see section 1.2.2) can be
used to connect the ISBs host machine to the different hosts of the EMs.

The broker management communication infrastructure exposes a large threat
potential, since external brokers have the authority to handle payment and charging
information. Furthermore, a broker (that was corrupted via broker management)
can misconfigure the complete network of the ISP and order misconfigurations of
other networks in the name of the ISPs. Thus we propose to physically protect the
broker management communication, by having the brokers running in the same
protected area. Furthermore, (and especially if brokers need to be physically sep-
arated) the strongest available cryptography should be used. This includes the use
of long keys (128 bits symmetric keys, 2048 bits for asymmetric keys) and the fre-
quent refreshment of the keying material. Proprietary as well as open solutions for
such application layer security protocols exist.

As mentioned before, the ISP can select the technologies of its own choice to
implement and secure the internal parts of the broker architecture. However, for the
establishment of end-to-end services an external broker communication protocol is
needed, which must be standardized (see below).

The Security of the ESB-to-ESB Communication

The communication between peering brokers crosses the border of two administra-
tive domains. Therefore, the communication has particular security requirements:

� Authenticity. Authenticity is the proof of the identity of a communication
partner. The ESB protocol must allow the broker to authenticate itself as the
intermediary of a service provider.

� Integrity. The brokers must be able to verify that the protocol data has not
been changed in transit.

� Confidentiality. This is a nice-to-have feature. Nevertheless, confidentiality
may not be necessary for some services. It is even possible that confidential-

2.4. IMPLEMENTATION OF SERVICE BROKERS 45

ity is ruled out by local laws that enforce an open market or that forbid the
use of strong cryptography for communication encryption.

� Non-repudiation. Once the ESB communication has led to the establish-
ment of an SLA, both communication parties should be able to proof the
other party’s commitment.

� Availability. The ESB communication protocol should discourage denial-
of-service attacks.

Securing the ESB Protocol is a typical case of applying application layer se-
curity mechanisms. Integrity, authenticity and non-repudiation can be achieved by
the brokers themselves by adding digital signatures to each message exchanged.
The signature can be a message authentication code computed using a secret key
only known by the sending broker and a Certificate Authority (CA) in the Pub-
lic Key Infrastructure (PKI) and the contents of the message using a secure hash
function. Upon request, the certificate authority can validate the message for the
receiver. If the message was changed, or the wrong key was used, the message can
be discarded. Another possibility is that the customer and the provider exchange
public keys, which are certified by the PKI. Then, they can verify the authentic-
ity of the exchanged messages without further interactions with the PKI. A PKI is
useful for many other applications, too. Today, PKI become available. Yet, they
are not subject of this thesis.

The receiver can store the messages of the sender in order to be able to prove
that the message was sent (e.g. an order for a service was made). Note, that one
message typically contains the payment method and a trusted payment provider.
Having agreed on a trusted payment provider allows the settlement of abuse con-
cerning payment (e.g. late payment, acknowledgment of payment that took place).
A customer can also prove, that a provider sold a service with certain guarantees
(e.g. guaranteed bandwidth). With the digital signature the receiver can verify and
prove, that the sender has sent this message (e.g. request for a service or acknowl-
edgment of a service) at least once. However, an attacker can record the message
and send it again (e.g. request a service a thousand times). To prevent such replay-
attacks, the message must contain an sequence number and a time stamp. The
overflow of this number should happen infrequently (only after years), so that the
service duration has exceeded already, when an attacker can safely replay the mes-
sage.

2.4 Implementation of Service Brokers

The proposed architecture was never fully implemented. The reason for that is
twofold: First, implementing a complete version that ’solves’ all multi-provider
problems was beyond our capacities. Second, only a consortium of large Internet
providers can enforce the large-scale deployment of such a system. Nevertheless,

46 CHAPTER 2. AN IP SERVICE BROKER ARCHITECTURE

the architecture led to several partial implementations in the area of DiffServ and
VPN services. This section I presents two of these implementations.

2.4.1 A Bandwidth Broker Prototype implementing the Broker Sig-
naling Protocol

In the Diploma work [Gra00] we developed a prototype of an external broker that is
compliant with the architecture presented in section 2.3. The implemented broker
is structured as it was depicted in figure 2.4 (see section 2.3.2). The prototype im-
plements the broker signaling protocol (BSP - see section 2.3.4) in order to evaluate
its flexibility and extensibility. DiffServ specifications can be represented as object
hierarchies in order to be transmitted. The protocol allows the dynamic refinement
of specifications using the state byte of the objects. Thus, the brokers can negotiate
during several rounds and propose different kind of representations for specifica-
tions until both parties are satisfied. The communication protocol is secured using
PGP [Zim01]. The prototype can be used to establish DiffServ SLAs as described
section 2.3.4. However, the implementation does not include an underlying internal
agent hierarchy (ISB and EMs). Nevertheless, the implementation also contains a
customer GUI that allows the customer to dynamically guide the SLA negotiation
process. The GUI dynamically updates its layout to represent any kind of BSP ob-
ject hierarchy. Thus a user can interactively steer the service negotiation process.
Figure 2.13 shows the GUI window for the composition of BSP message. Here,
a user has composed a BSP request for an expedited forwarding SLA (encoded as
service number 239). The request includes the customer and the provider ID, a
proposed payment method, a proposed Certificate Authority (CA), the geographic
scope of the service (service ingress and egress points), the temporal scope of the
service (service start and end time), a price field, and a service description field.
Note, that the GUI shows the object hierarchy by putting the fields of the objects
into framed boxes. The service description, for example consists of two sub-objects
(the bandwidth amount and the bandwidth unit).

2.4.2 A Prototype Implementation of Brokers for QoS-VPNs on De-
mand

Within the CATI project (see section 2.1) we have developed a prototype system
[KBG00, BGK01] to demonstrate dynamically establish QoS enabled VPN tun-
nels. Upon customer requests the system can of generating user records. The
implementation focuses on the single-provider case. This eased the implemen-
tation since the ESB-to-ESB interaction can be neglected. We implemented the
remaining functionality of the ESB and the functionality of the ISB into a central
component simply called Service Broker (SB). This broker is the heart of our VPN
management system that acts as a QoS manager to optimally configure network
resources and adaptively decides based on user preferences and resource availabil-
ity. These decisions could take place with minimum user intervention with respect

2.4. IMPLEMENTATION OF SERVICE BROKERS 47

Figure 2.13: The BSP message composition window.

48 CHAPTER 2. AN IP SERVICE BROKER ARCHITECTURE

to specifying the user’s requirements. The customer contacts the service broker
through a web interface. The web interface bundles the DiffServ support and the
VPN support (see figure 2.14). The customer does not have to hassle with all pos-
sible configuration combinations. Instead, the customer can select from a couple
of useful service bundles that were composed by the provider.

Figure 2.14: VPN Web interface

Our service broker interacts with a specialized element managing agents (EM)
that adapts the configuration of a network device. Our EM it script based. We
wrote EMs for a commercial router and for a PC based Linux router [BGKL00a].
The structure of the Service Broker is compliant with the presented service broker
architecture but simplified (see figure 2.15). The basic operation of the system is
as follows: based on the selection made by the user, the SB first contacts a SLA
database to check the validity of the user and it’s request parameters. It then checks
with the connection database whether a similar requested connection (VPN tunnel)
already exists or not. If this is not the case, the SB looks at its resource database
to identify if the tunnel can be established. A positive answer would then lead to a

2.5. CONCLUSIONS AND OUTLOOK 49

tunnel establishment by the element managers. When a user disconnects the VPN
tunnel, the SB releases resources and invokes the pricing database to calculate the
pricing for that tunnel.

Towards spec-
iallized router
configuration
daemon

Connection

Interface
Web based user

Database
Pricing

Resource

Database

Towards

Gateway

Network Interface

Billing
Database

Database

RSVP-DiffServ

Database
SLA

Charging Repository

Database

Repository

Master Interface
Towards Network
Administrator

Coordinator

Slave Interface

Service Configuration

Figure 2.15: The structure of the implemented service broker.

2.5 Conclusions and Outlook

The presented service broker architecture refined the original proposal for DiffServ
bandwidth brokers (see section 2.2). Instead of a single software agent that does
everything the proposed architecture consists of a hierarchy of intelligent agents
that are specialized to a specific task. These service brokers sell enhanced IP ser-
vices on behalf of the Internet service provider organizations. The service brokers
need to be: autonomous, rule-driven, heterogeneity hiding, distributed, collabora-
tive, and interactive. Agent technology excels in providing these capabilities.

The proposed service broker architecture allows the provider to introduce and
offer on-demand IP services. The agent architecture is layered according to the
TMN reference model (see section 1.4). A novelty is the closer discussion of the
communication between service brokers of peering providers which enables the
provider to offer multi-provider IP services. The scope of such services is not
limited to the network of a single provider but may span the whole Internet. Elec-
tronic service level agreements regulate the interaction between service brokers of
peering providers. Service brokers use a broker signaling protocol to set up, rene-
gotiated and cancel SLAs. The protocol can also support business aspects such as
charging of the service and sharing of the revenues between collaborating providers
(see section 2.3.6). Section 2.3.7 discusses the security threats that the architecture
is exposed to and also countermeasures.

Two implementations used the proposed architecture (see section 2.4): A ser-

50 CHAPTER 2. AN IP SERVICE BROKER ARCHITECTURE

vice broker for QoS-VPNs on demand and a external service broker implementa-
tion for DiffServ.

For DiffServ the inter-domain communication between brokers is particularly
interesting. There is currently no consensus on how this should be done. The
particular problem there is that the signaling complexity should not break the scal-
ability of the DiffServ approach. The following chapter studies the problem in
more detail.

Chapter 3

Differentiated Services Signaling

The broker architecture presented in the previous chapter automates and controls
the deployment of multi-provider IP services. A multi-provider service is set up
through brokers that communicate with each other. One instance of the service
broker is the so called bandwidth broker for Differentiated Services that originally
inspired the architecture. This section focuses on DiffServ because bandwidth bro-
kers are the service brokers that will most probably be deployed. Furthermore,
DiffServ broker communication has concrete and stringent requirements. For a
given traffic flow potentially all brokers on the network path are involved. Also,
the broker communication workload should not break the DiffServ philosophy of
scalability. DiffServ was designed to scale to the size of the growing Internet.
However, its scalability in the multi-provider case has not been studied. The com-
munication (signaling) between the bandwidth brokers of different domains may
become a problem. This study of real problems of the existing DiffServ bandwidth
broker architecture may thus become exemplary for other multi-provider network
services.

3.1 Signaling Granularity and End-to-End QoS

3.1.1 Trade-off

When the customer wishes end-to-end service guarantees for traffic that crosses
several networks then DiffServ becomes a multi-provider service. This is for
example the case when the customer wishes guarantees about e.g. latency and
throughput that hold for his/her premium traffic independent of the traffic source
or destination. Obviously, all network providers on the traffic path must reserve
sufficient resources for such a service guarantee. As said before, the broker ar-
chitecture proposes a chain of service level agreements that reflect the aggregated
resource requirements on a per-peer basis. The service level agreements are set
up in advance and can be updated by means of ESB communication (see section
2.3.3). Figure 3.1 shows an example of a working DiffServ scenario. Here, two

51

52 CHAPTER 3. DIFFERENTIATED SERVICES SIGNALING

host networks (H1 and H2) have each established an SLA with an ISP A for 500
Kbit per second guarantee for DiffServ traffic. They inject that amount of DiffServ
traffic plus a large amount of best-effort traffic through fast access links. ISP A for-
wards all traffic to ISP B. The brokers of the two ISPs have already established a
sufficient SLA (1Mbps) between them, thus the DiffServ traffic can continue on its
path to the destinations. The link between ISP A and B is only of limited size, thus
it can be congested. However, this congestion only affects the best-effort traffic.

500
Kbps

500
Kbps

ISP A

...

SLA

SLA

SLA

BBBandwidth Broker (BB)

Host network H1

Host network H2

ISP B

Congestion !
Dropped best effort traffic.

Best effort traffic

1Mbps

Figure 3.1: The ideal DiffServ scenario.

Unfortunately, the DiffServ architecture does not describe how the SLAs are
established in the first place. The only thing said is that the brokers communicate
with each other. The problem addressed in this chapter is how frequent such com-
munication takes place and how the service guarantees and the scalability are af-
fected. In one extreme case each customer application signals its QoS requirements
to the bandwidth brokers of the access ISP. The brokers forward these requirements
from one to another in order to assure end-to-end QoS. The advantage of this ap-
proach is that the application which knows them best) signals the requirements.
Furthermore, the application may block the traffic and wait for an acknowledgment
by the brokers. The brokers can thus perform a fine-grained admission control. The
brokers have total knowledge about all traffic flows that they have to accommodate.
However, this centralization of information is also a huge problem since a broker of
a backbone network would have to keep track of millions of traffic flows. The Inte-
grated Services architecture pursued this fine-grained QoS approach. Yet, it could
not be deployed successfully in the global Internet because of this huge complexity
it introduces to the Internet backbone management. It simply did not scale. The
DiffServ architecture has been designed with scalability in mind. The DiffServ
broker signaling must therefore be more coarse grained than the presented extreme
approach. However, if the brokers do not have the fine-grained view of the network
traffic demand then admission control is less efficient and end-to-end service de-
livery may be affected. This chapter is going to discuss alternative coarse-grained

3.1. SIGNALING GRANULARITY AND END-TO-END QOS 53

signaling schemes. It studies the trade-off between end-to-end service guarantees
and scalability given a signaling granularity level.

3.1.2 Signaling and SLA Update Options

All of the options that follow are more coarse grained than the like IntServ ap-
proach. The traffic is not treated on a per-micro-flow1 basis as in IntServ. All
proposed signaling options deal with traffic aggregates. The fate of the IntServ
architecture showed that this is necessary. So it is not the customer application that
signals a micro-flow. Instead, customers negotiate SLAs with the brokers of their
ISPs. These customer-provider SLAs may have various granularity levels, but they
too should not deal with single flows but with traffic aggregates. They may for ex-
ample deal with traffic between two IP addresses or even two autonomous systems
numbers. The broker can react to customer SLA requests by updating its SLAs
with peer providers and/or by signaling the event to them. Note, that the customer
SLA request is thus used as an implicit signal. The SLA updates between providers
can also be used as an implicit signal, but the following results show that this is not
to be recommended (see section 3.4.1). Here are the three basic options for the
reaction of brokers that are studied in the rest of this chapter: adaptive reservation,
limited signaling and end-to-end signaling. The first two options were presented in
[GB99] and the third option was discussed in [DGBS00].

Adaptive Reservation. The broker does not react to SLA changes. Instead, it
constantly measures its SLA conformance. Once it sees that in fact it sends
more DiffServ traffic to the upstream provider than agreed in the SLA then
it updates the SLA. This option does not use any signaling at all.

Limited signaling. The broker forwards signals only in certain cases. The bro-
ker thus needs a heuristic to decide which requests have a heavier impact
and thus need to be forwarded to other brokers. For example, large Diff-
Serv requirements can be signaled and an admission control can take place.
However, during normal operation no signals need to be exchanged.

End-to-end signaling.For each signaled event the broker checks if it must adapt
its SLAs. It always forwards the signal. Each signaled aggregated flow is
subject to admission control.

In the following sections (3.3, 3.4, and 3.5) refine these three options, describe
the advantages and problems of them in terms of scalability, uncertainty of ser-
vice guarantees and SLA update rates. Data provided by a specialized simulator
underline the findings.

1A micro-flow is a end-to-end communication identified by a source and destination address pair,
a protocol number and (if these exist) a pair of port numbers. A TCP socket communication is a
typical example of a micro-flow.

54 CHAPTER 3. DIFFERENTIATED SERVICES SIGNALING

3.2 Differentiated Services Signaling Simulator

At the time when we carried out this work there was no public simulator avail-
able that was useful to simulate bandwidth broker signaling. Therefore we wrote
a simulator using the programming language Java [Fla96, Sunb]. The simulator
should to provide insight into the big picture of broker signaling. The simula-
tor simulates the behavior between autonomous provider network. To simulate at
such a large scale the simulator must omit details like e.g. arrival times of single
packets etc. Even more than traditional Internet simulations [PF97] the DiffServ
simulation must deal with many variables of which little is known, for example the
user behavior. The user behavior is influenced by the service differentiation and
the pricing scheme [EV99] of future DiffServ providers. The simulations waive
to predict the exact quantitative influence of choosing a signaling scheme. The
simulator produces qualitative results instead in order to point out weaknesses of
schemes.

3.2.1 Terminology and Assumptions of the Simulation

Our simulation uses a coarse grained Internet model. The inter-network is mod-
eled as interconnected autonomous systems. Some of these systems are customer
networks, which act as traffic sources and sinks, the rest are ISP networks2 which
act as pure transport networks. The routing between the network is dynamically
calculated based on the distance vector routing algorithm using the the number of
intermediate networks as distance metric.

Business Assumptions. Each bandwidth broker represents a business entity, namely
the ISP of the network that it controls. Business models for traffic forwarding may
be complex. The simulator reflects the following three basic assumptions:

1. ISPs demand money from other networks that want to reserve for the injec-
tion of DiffServ traffic into their networks.

2. Customer networks do not demand money for incoming DiffServ traffic.

3. ISPs avoid breaking SLAs.

The assumptions (1) and (2) enable the simulator to simulate the exchange of
money between the brokers. However, this is not subject of this thesis. Assumption
(3) is highly important in the context of this paper. This is because the desired end-
to-end QoS can only be achieved if the ISPs are collaborative. Customer network
do not need to stick to their SLAs, since their traffic is policed by the ISPs.

2For notation convenience we will often refer to such networks simply as ’ ISPs’ .

3.2. DIFFERENTIATED SERVICES SIGNALING SIMULATOR 55

Service Level Agreements. The service level is described as reserved bandwidth
for the traffic of one service class. The SLA simply declares the maximum bit-rate
with which one network can send traffic of that class to its neighbor network. For
the purpose of this simulation it was not necessary to introduce more complex
service level specification (SLS) such as token bucket based rate descriptions or
delay bounds. For such SLS the simulator is not suited well.

DiffServ Traffic. The simulator only models one prioritized service class. The
assumption is that the DiffServ marking mechanism sufficiently protects this ser-
vice class from best-effort traffic. So the simulation omits to generate best effort
traffic. It simulates only the behavior of one prioritized service class. The focus
is on how reservations for this traffic class are set up. The simulation keeps track
if too little or too much is reserved and what the reservation effort is (e.g. num-
ber of notification messages exchanged). If not enough capacity was reserved for
the upcoming traffic load then the simulation ’eliminates’ the overhead traffic. We
refer to this overhead as traffic loss. The DiffServ architecture foresees that such
out-profile traffic be either remarked (AF changes the traffic class) or be dropped
(EF service). So either way, the traffic is not part of the simulated service class any
more so calling it loss makes sense. Note, that in the simulation all ISPs perform
such policing at the network edge.

The simulation models DiffServ traffic as traffic aggregates. The simulation
does not generate micro-flows micro-flows. The simulation generates aggregated
flows which are not resolved down to IP addresses but only down to customer
networks.

3.2.2 Simulation Rounds

The simulator runs a given number of atomic simulation steps also referred to as
rounds. A single round has four different phases. Thus, a round represents the
temporal resolution of the simulation. Here are the four phases of a simulation
round:

Traffic calculation. Based on the previous traffic load the simulation generates
the new load of the next round. The load is represented as aggregated flows.
The traffic property (amount and variance) are parameterizable. The traffic
models are described in section 3.2.4. Note, that the simulation usually starts
with an empty network.

Traffic notification and injection. All generated flows are now forwarded through
the network. This can be preluded by notification and reservations between
the bandwidth brokers. A notification signals an (aggregated) flow possibly
along several domains. A reservation is equivalent to an SLA renegotiation.
In case notifications are used the flows may also be subject to admission
control. Furthermore, the traffic is policed if at any point an SLA is violated.
Dynamically, measurements are taken and stored.

56 CHAPTER 3. DIFFERENTIATED SERVICES SIGNALING

Usage based charging.The traffic is charged according to the measured usage.

Adaptive reservation. The ISPs can adapt their SLAs based on the usage mea-
surements. Note, that these reservations do not trigger notifications.

3.2.3 Simulator Architecture and the Control Flow

The main object of the simulation is of class is NetworkSimulator. It controls
the program flow and holds the main routine. Figure 3.2 shows the data and
control flow of a simulation run.

Data flow

Object

4) Online evaluation

NetworkGenerator

Evaluator

User

TrafficGenerator

...
Simulation results3) Simulation

iterations

NetworkSimulator

5) File output

2) Complete network
ISPs SLAs etc

1) Simulation
parameters
e.g. networktype
nr of rounds etc.

...

Figure 3.2: The data flow of the simulation.

1. The user starts the simulation with various parameters describing the reser-
vation and notification options the broker signaling should use, as well as the
number of simulation rounds, and the network type to use.

2. The class NetworkGenerator can generate different types of parameter-
izable networks (see section 3.2.5).

3. The simulator iterates for the specified number of simulation rounds.

4. The class Evaluator describes what measurements an values to extract in
each round.

5. After the simulation, the extracted measurements are written to a log file.

At run time, the ISP objects are interlinked via channel objects and SLA ob-
jects. A channel object represents the peering link(s) between two ISP networks.
The SLA objects are set up and updated by bandwidth brokers. Figure 3.3 shows
two interlinked ISPs objects. For one ISP object, the object relations are described
in more detail.

Without going into detail, each ISP needs a routing instance to forward traffic
and a bandwidth broker to renegotiate SLAs. For each connection between ISPs

3.2. DIFFERENTIATED SERVICES SIGNALING SIMULATOR 57

Object

’Has a’ relation

BusinessPolicies PriceModel

RoutingTable

Channel

ISP

Broker

Estimator

ISP
SLA

SimplexAgreement

SimplexAgreement

Figure 3.3: The implementation of an ISP-ISP relation.

(channels) there is an SLA describing the inbound and outbound differentiated ser-
vice agreements. The broker uses a price model to individually negotiate prices for
DiffServ offerings. Furthermore, it has a business policy, which e.g. describes how
to treat notifications, when to request SLA negotiation (when to buy bandwidth)
and the chosen level of overprovisioning. An estimator object helps to analyze
traffic tendencies in the network.

3.2.4 Traffic Generation.

Throughout the simulation, the customer networks do not generate more traffic than
permitted by the SLA with their access provider. Thus, if the simulation shows lost
traffic then this indicates insufficient SLA provisioning between providers.

The simulation uses two traffic models: a Markovian model which is heav-
ily aggregated and used for the study of the adaptive reservation and the limited
signaling scenario, and a more fine grained binomial one for the study end-to-end
signaling.

Markovian traffic model. In an inter-network with n customer networks, each
customer network generates n� 1 aggregated flows, one for each destination net-
work. This adds up to a total of n(n� 1) aggregated flows. The simulation allows
the flow generation to be parameterized in two ways: (1) The total amount of traffic
that a single customer network generates can randomly vary between a minimum
and a maximum value. (2) The percentage of traffic assigned to an aggregated flow
can change randomly with a parameterized speed which we call the fluctuation of
the traffic distribution.

58 CHAPTER 3. DIFFERENTIATED SERVICES SIGNALING

Binomial traffic model. At each customer network a limited number of new
flow aggregates can be generated in each simulation round. In each round each
customer network checks for a maximum number of times m, if a new flow has to
be generated. For each check the probability that a new flow is generated is pn. For
each simulation round each existing flow may terminate with a given probability
pt.

Our basic setting is: pt = pn = 0:1 and ma = 10 (Binomial-distribution).
Thus, for each host network, an average of 1 new flow is injected per round. The
average lifetime of a flow is 1=pt = 10 rounds. Note, that the lifetime is distributed
exponentially. At the beginning of the simulation, more new flows are created than
old flow terminate. Then, the network reaches a more or less stable state where
about the same number of flows are newly created as existing flows terminate. We
can use this fact to calculate the expected number of flows e in the simulated inter-
network (with n customer networks):

pnmn| {z }
average new flows

= ept|{z}
average terminated flows

(3.1)

The equation can be solved for e:

e =
pn
pt
nm (3.2)

This formula allows the simulation user to parameterizes the average total load
for a simulation setting.

The simulation generates flows at the source networks. The destination net-
work is chosen by random. However, the simulation implements a limiting factor
for destination networks for a given source network. This factor can reflect, that
most of the time the users call only a specific subset of the destinations. The fac-
tor represents the ratio of selectable destinations compared to all possible destina-
tions3. The selectable destinations are the ones that have a close network number.
The network number is assigned by the network generator (see next section). Note,
that in the generated networks a close network number in general means that the
networks are also geographically close to each other. Thus the limiting factor can
also be used to express locality of the communication.

3.2.5 Networks Types

For the evaluation of the adaptive reservation and the limited signaling scenario
the simulations used two kinds of customizable networks: the Dumbbell- and
the Slalom networks.

Dumbbell. This network has two interconnected backbone networks. As shown
in figure 3.4 there is an equal number of n customer networks attached to
each of the two core network. Thus, the channel between the two core net-
works is a possible bottleneck.

3There is always at least one destination available, even if the ratio is set to zero.

3.2. DIFFERENTIATED SERVICES SIGNALING SIMULATOR 59

Host networks

Backbone ISPs

Host networks

network n

network 2

network 1

network 0
ISP ISP

network
2*n+1

network

network

network

n+1

n+2

2*n

Figure 3.4: The Dumbbell network.

Slalom. This network is shown in figure 3.5. The number of backbone networks
is customizable. The purpose of this network is to evaluate the end-to-end
QoS behavior, when the DiffServ traffic crosses many autonomous systems.

......

Backbone ISPs

Host networksnetwork
2*n

network 2network 0

2*n-1
network 1 network 3

ISPISP ISP
network

Figure 3.5: The Slalom network.

A Hierarchical Network Model. For the evaluation of the end-to-end signaling
option we introduced a richer network model. The model (depicted in figure 3.6)
is hierarchical albeit not as complete as e.g. the method described in [ZCD97]
(e.g. no multi-homing). Our network generator for this model creates backbone
networks rings at different hierarchy levels. Each backbone network can have a
downlink to a backbone network ring of one level below. The number of ISP net-
work per ring is random and parameterizable, and so is the number of downlinks.
The final network rings in the backbone hierarchy represent the access providers.
Each of these ISP networks can have a random number of customer networks. The
capacity of the links is proportional to the hierarchy level. The hierarchy depth is

60 CHAPTER 3. DIFFERENTIATED SERVICES SIGNALING

parameterizable. Note, that the dumbbell network model is a special case of the
hierarchical model, where the hierarchy depth is set to one (only one backbone
ring), and where the ring is fixed two two provider networks. Figure 3.7 shows
a screenshot of an inter-network with three hierarchical levels that was generated
by the network simulator. Note, that disks represent networks and bars links. The
thickness of the bars indicate the capacity. The simulator’s display tool distorts the
backbone rings towards the network edges so that the networks are not drawn over
each other, as far as this is possible. Note, that the display tool is also able to show
the traffic load of the links during an ongoing simulation.

ISP networks

Links

Uplink

Access ISPsBackbone ring

T
ow

ards custom
er netw

orks

Figure 3.6: The hiearchical network model.

After this presentation of the context, terminology, assumptions, and structure
of the simulations, the next section presents the simulation results.

3.3 The Adaptive Reservation Scenario

3.3.1 Reservations Based on Traffic Measurements

In this scenario here, the bandwidth brokers do not exchange notifications. They
simply measure the current outgoing DiffServ load and check whether this is com-
pliant with the peering SLAs. If not, they renegotiate the SLAs. In the simulation
this takes one round. So for one round overhead traffic is lost. Stringent service
guarantees in the adaptive reservation scenario can therefore only be achieved using
massive overprovisioning. We used concrete numbers for Frame Relay overprovi-
sioning from [FH98b]. There, a Frame Relay provider would conduct network ca-
pacity management on a weekly basis. They provision new trunks between Frame
Relay switches when trunk utilization exceeds 50 percent. The provider will reim-
burse a user if the delivery success rate is below 99.8 percent. This maps nicely

3.3. THE ADAPTIVE RESERVATION SCENARIO 61

Figure 3.7: Screenshot of a generated inter-network scenario.

62 CHAPTER 3. DIFFERENTIATED SERVICES SIGNALING

to a DiffServ simulation where the corresponding overprovisioning is 100 percent.
Thus, if a broker measures, that outgoing DiffServ traffic exceeds 50 percent of
the agreed value in the appropriate SLA, it will renegotiate the SLA. Using only a
medium traffic fluctuation our simulation showed that 99.87 percent of the injected
DiffServ traffic reached the destination (0.13 percent loss). This seems to be an
encouraging result because it shows that the coarse grained nature of the simulator
can still produce appropriate results, and because the end-to-end QoS in this sce-
nario is economically interesting. However, it cannot be assumed, that all ISPs will
want to deploy such a high overprovisioning. Furthermore, measurements with
larger traffic fluctuation and with more intermediate ISPs showed a poorer end-to-
end behavior. Namely, more reserved traffic was lost, as the following figures and
numbers show.

Figures 3.8 and 3.9 each show the results of a simulation of 100 rounds on
the Slalom network with 9 backbone ISPs and 10 customer networks. There are
therefore 90 different aggregated flows. A total amount of 200 traffic units4 is
injected into the network at each simulation round. The simulation depicted in
figure 3.8 uses a moderate traffic fluctuation factor, while the traffic that led to
figure 3.9 changes its amount and destination quickly (see section 3.2.4). The
brokers arrange for an overprovisioning of 30 percent. Both graphs illustrate a
similar behavior: At the beginning of the simulation, no SLAs were set up, thus
there is no reservation. All DiffServ traffic generated from the customer networks
is therefore not policy-conform and is ’ lost’ . After the 10th round, the content of
the provider SLAs are adapted and the loss reaches a stable level. Furthermore,
the reservation and usage is shown as average per channel. The graphs reflects the
overprovisioning as the difference between the average reserved bandwidth and
the average used bandwidth. In figure 3.8 there is already a non-negligible loss
rate even after the initial adaption phase. This is due to the fact that we use a
network where some flows must travel through many networks. In the scenario
depicted in figure 3.9 there is a massive loss of DiffServ traffic (about 20 percent)
because of the heavy traffic fluctuations.

The adaptive reservation scheme imposes no inter-provider signaling overhead.
However, the simulations suggest the conclusion that adaptive reservation has prob-
lems delivering end-to-end QoS guarantees in the following situations:

� When there are many intermediate ISPs.

� When traffic destinations vary quickly.

� When there are rapid global traffic trends, e.g. when all sources begin to
send in the beginning of the simulation.

In order to still provide reasonable end-to-end guarantees all providers must
overprovision their SLAs. Overprovisioning leads to inefficient network usage.

4Given the coarse grained structure of the simulator, it would be misleading to use concrete traffic
units. Furthermore, the units used here allow a nice integration into the figures.

3.3. THE ADAPTIVE RESERVATION SCENARIO 63

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90 100

(*) Average per channel

Simulation rounds

Lost Traffic (End-to-end)

Reserved bandwidth (*)

Used bandwidth (*)

T
raffic units

Figure 3.8: Adaptive reservation with weak fluctuations.

0

50

100

150

200

0 10 20 30 40 50 60 70 80 90 100

(*) Average per channel

T
raffic units

Simulation rounds

Lost Traffic (End-to-end)

Reserved bandwidth (*)

Used bandwidth (*)

Figure 3.9: Adaptive reservation with strong fluctuations.

64 CHAPTER 3. DIFFERENTIATED SERVICES SIGNALING

However, DiffServ allows the best-effort traffic to use up free reserved capacity.
Another problem is admission control of customer SLAs. The bandwidth brokers
at the network edge cannot know if an SLA request can be supported in the back-
bone, because there is no signaling. The performance of the adaptive reservation
scheme also depends on the transformation from measurements to reservations.
The simulation uses a simple estimation function to calculate the new reservation.

3.3.2 Traffic Estimation

In order to estimate the upcoming traffic load tn+1 (and to reserve for it) at round
n+1 the broker uses the exponential average �(n+1) of the previously measured
loads t1:::tn. The exponential average is defined recursively as:

�(n+ 1) = �tn + (1� �)�(n) (3.3)

The properties of the exponential average are: 1) It uses only the assumption
that the more recently measured values are more significant than older values. 2)
Averaging smoothes the estimations thus making it more robust (stable) against
’runaway’ values (outliers). 3) It is very fast to calculate and needs almost no mem-
ory. Because of these nice properties the exponential average is used in many ap-
plications to estimate future values. Examples are the estimation of the round-trip
time and its standard deviation in TCP [Jac88] (which is crucial for the TCP timer
management [Tan96]), estimation of the mean allowed cell rate in ATM (ATM-
Forum) and estimation of burst times for CPU scheduling [SG98]. However, in
[GB01] we show that estimations based on the exponential average global trends
are not good in predicting global trends. We propose an improved alternative with
similar properties. Figure 3.10 shows measurement data with an trend to increase
over time. The proposed alternative exploits the trend while the exponential aver-
age keeps lacking behind the measurement values. The high loss rate of the initial
simulation phase illustrated in the figures 3.8 and 3.9 is thus not only due to the
adaptive reservation approach but also due to the estimation function used. Figure
3.11 shows how the new proposed estimator reduces the duration of the initial loss
phase significantly. With the exponential average estimation the loss and the reser-
vation reach a stable state not before round 15. With the improved estimation the
simulation reaches a stable loss and reservation state at round 7. Thus the adaptive
reservation scheme can be improved by more elaborate estimation schemes.

3.4 Limited Notification Scenario

In the limited notification scenario, a broker only notifies and reserves upon sig-
nificant notifications. The idea is to avoid signaling that is not necessary and thus
improve the scalability of the approach. Figure 3.12 illustrates the approach. The
customer network H1 establishes an SLA with its access ISP A. The broker of
ISP a sees that it should establish an SLA with ISP B in order to provide service

3.4. LIMITED NOTIFICATION SCENARIO 65

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14

M
ea

su
re

m
en

t a
nd

 e
st

im
at

io
n

va
lu

es

Measurements

Approximation with different estimators

Measurements
Expo. average estimation

Proposed estimation function

Figure 3.10: Performance of the exponential average estimation.

guarantee. The broker B sees that its SLA with C is sufficient and stops negoti-
ating further. The DiffServ traffic of H1 is then admitted. There are two kind of
problems here. The first is the ’dumbbell’ problem, named after the network type
that reveals this problem. The other problem is that of the missing destination in-
formation in notifications. The next sections describe the problems and propose
particular solutions.

3.4.1 The Dumbbell Problem

The first approach for limited notification was to see the notification and reserva-
tion as one process. Thus, a broker reacts upon reservation requests by checking
its outgoing SLAs and propagating reservation requests, if necessary. In this ap-
proach, the broker includes a reservation threshold. If a new inbound reservation
causes the reservation on an outbound SLA to exceed this threshold, the broker
would issue a new reservation there, before accepting the inbound request. The
threshold effectively limits the number of notifications. However, it can have se-
vere impact on the end-to-end QoS as the following simulation run indicates:

In the dumbbell network of the simulator (presented in figure 3.4), the customer
networks have only one channel to an access ISP. Using the naive limited notifica-
tion approach, the customer networks reserve a constant amount of DiffServ traffic
which suffices all their future needs. Although the weight of the traffic sent for the
different destinations changes during the simulation, the total amount of the traffic
a customer network presents to its access ISP stays within the SLA. However, since
the traffic distribution scheme of each customer network changes, the traffic going

66 CHAPTER 3. DIFFERENTIATED SERVICES SIGNALING

0

50

100

150

200

250

0 10 20 30 40 50 60

Rounds

Limited SLA changes

Used.
Reserved.

Lost

0

50

100

150

200

250

0 10 20 30 40 50 60

Rounds

Limited SLA changes

Used.
Reserved.

Lost

Figure 3.11: Longer initial loss phase with exponential average estimation (bottom)
than with the proposed estimation (top).

3.4. LIMITED NOTIFICATION SCENARIO 67

Bandwidth
broker (BB)

BB BB

1 Mbps

SLA 1 Mbps

SLA

ISP B ISP CISP A

1) Notification

Host network H1
4) DiffServ Data

3) Establishment

SLA
155
Mbps

2) Notification limit:

available.
large bandwidth

Figure 3.12: Limited notification.

through the bottleneck channel between the backbone ISPs may also change. Un-
fortunately, since the customer networks don’ t reserve new bandwidth, there is no
notification sent, and thus no renegotiation of the SLA between the backbone ISP
takes place. Consequently, traffic is shaped at the bottleneck channel. Figure 3.13
shows the situation for the Dumbbell network with four customer networks on
each side. Only in the first round, when no reservation is set up at all, notifications
are exchanged. Then, no notification is sent at all for the reason mentioned above.
Therefore, as reflected in the figure, the reservation stays constant. Subsequently,
traffic is lost without hope for the better. Therefore, SLA updates should not be
used as implicit notifications.

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20

(*) Average per channel

Notifications

N
r. of notifications

T
raffic units

Used bandwidth (*)

Reserved bandwidth (*)

Lost Traffic (End-to-end)

Simulation rounds

Figure 3.13: The dumbbell problem.

3.4.2 Lack of Destination Information in Notifications

One approach to limit the notifications is to use one notification to cover several
subsequent aggregated flows. Usually, when customer networks set up SLAs these

68 CHAPTER 3. DIFFERENTIATED SERVICES SIGNALING

SLAs should last some time, thus covering several subsequent flows. However,
in that case the notification of such an SLA cannot (in general) include the infor-
mation of the destination of these flows. There are some special cases however,
such as virtual private networks (VPN) (see section 1.2.1). If a customer network
wants to establish a QoS enabled VPN (see section 2.3.5) it could set up an SLA
describing the VPN requested. Usually, the VPN peers are known in advance, such
as a company’s head-quarters and its branch offices. Therefore, the notification
of a new QoS VPN can lead to SLAs that cover several aggregated flows and can
include their destination information.

3.4.3 Proposed Solutions

For the two presented problems with limited notification this section proposes sev-
eral solutions and show their viability by simulation. The dumbbell problem can
be addressed by decoupling notification from reservation. The dumbbell problem
occurs, because necessary notifications are not propagated. The notification chain
was interrupted, because it did not lead to a reservation in some place. For the
problem concerning the lack of destination information we propose the use of esti-
mation based on measurements.

Decoupled Notification Limitation Mechanism. The decoupled notification lim-
itation mechanism is only a small extension to the presented reservation threshold
mechanism. Here, the notification is not directly coupled to a reservation. Upon the
reception of a notification, that announces DiffServ traffic on an incoming channel,
the bandwidth broker reacts according to the following scheme:

� Estimate the impact on the local network.

� Estimate the impact on the outgoing channels. Use destination information
if provided.

� Use the estimation and a reservation threshold to determine whether to re-
serve bandwidth (renegotiate the SLA).

� Use the estimation and a notification threshold to determine whether to no-
tify other bandwidth brokers. Typically, this threshold is lower than the reser-
vation threshold. Furthermore, the ISPs should all agree on the value of this
threshold.

� Use a minimal notification size threshold that stops the propagation of noti-
fications concerning only small changes of DiffServ traffic. Such small noti-
fications might occur when estimating the impact of incoming notifications
in absence of destination information (see next paragraph).

Further, the brokers should use adaptive reservation and overprovisioning to
smooth out the coarse grained nature of the limited notification approach. For the

3.4. LIMITED NOTIFICATION SCENARIO 69

estimation of the size of the needed reservation and notification in case of missing
destination information we propose to use the measurements described in the next
section.

Destination Estimation. An ISP with n channels (n > 1) can use a distribution
matrix D (n � n matrix). The entry dij of the matrix D contains the probability
that DiffServ traffic coming in on channel i will leave on channel j. Initially, D
contains equal probabilities. However, under the assumption that no routing loops
occur, no traffic will leave the ISP the same way it entered it. Furthermore, as
mentioned before, the ISPs do not act as traffic sinks. Thus the initial D is:

dij =

(
0 : i = j

1

n�1
: i 6= j

Periodically, the ISP can compile measurements of DiffServ traffic into the
matrix M , where mij contains the amount of traffic measured, that entered the
network from channel i and left it through channel j. The matrix M can be used
to update the matrix D in the following way:

Dnew = �Dold + (1� �)normRows(M)

Here � 2 [0::1] expresses, to what extend the old estimation is still valid af-
ter new measurements. In the simulations, � was set to 0.5. The normRows()
function normalizes the absolute traffic measurements to relative values:

normRows(mij) =
mijPn
k=1mik

To estimate the impact p on an outbound channel j of a notification about
DiffServ traffic of the amount a coming from channel i we can simply calculate
p = adij . Note, that the proposed destination estimation is also based on an ap-
proach related to the exponential average (see section 3.3.2). It is possible that
more elaborate estimation schemes may improve the accuracy.

The next section shows, how using such exponential estimation together with
the extended limited notification mechanism improved the DiffServ performance
in the simulation.

3.4.4 Simulation Results of the Proposed Solutions

Without having the destination information of aggregated flows, there are more
unknown factors, and there need to be more notifications. However, this more
realistic scenario is feasible and reasonable as the following example will show.
Figure 3.14 shows the performance under the same conditions as the example for
the adaptive reservation scenario (figure 3.9). Even though there are up to nine
intermediate ISPs for a flow, high traffic fluctuation, little overprovisioning (30
percent), and the destination information is not included in the notifications, the
performance is reasonable. The percentage of DiffServ traffic that is lost is only5

5Compared to the adaptive reservation that lost 20 percent in the same situation.

70 CHAPTER 3. DIFFERENTIATED SERVICES SIGNALING

11 percent of the total amount of DiffServ traffic presented to the network.

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90 100

(*) Average per channel

N
r. of notifications

T
raffic units

Used bandwidth (*)

Reserved bandwidth (*)

Lost Traffic (End-to-end)

Simulation rounds

Notifications

Figure 3.14: Performance of proposed solution.

In the first rounds of the simulation, many notifications are necessary to set up
the SLAs, but soon the notification limitations restrict the number of notifications
to a reasonable level. The heavy signaling at the beginning has the positive effect
that there phase of initial loss is much shorter than for adaptive reservation.

Assuming the special case, when the destination information is included in the
notifications (e.g. for VPN flows) the result is even improving. Figure 3.15 depicts
the simulation results in this case, using the same harsh network conditions as in
the previous example. The shaping decreases to 8 percent of the total DiffServ
traffic and there are also less notifications necessary.

Clearly, the proposed limited signaling approach is also sensitive to the traf-
fic fluctuation. The next section studies the limited signaling’s sensitivity to the
number of intermediate networks.

3.4.5 Impact of the Backbone Size

For the limited signaling the size of the backbone (the average number of ISP net-
works between two communicating customer networks) may have two kinds of
negative impact: (1) Just as for adaptive reservation the end-to-end QoS may de-
crease when more networks are traversed. (2) The signaling effort may increase
thus hurting the scalability of the approach. In order to test the impact we ran a
series simulations on the slalom network (see section 3.2.5). Between each run the
size of the backbone was increased. All runs used a mild traffic fluctuation and rel-

3.5. END-TO-END SIGNALING 71

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90 100

(*) Average per channel

N
r. of notifications

T
raffic units

Used bandwidth (*)

Reserved bandwidth (*)

Lost Traffic (End-to-end)

Simulation rounds

Notifications

Figure 3.15: Proposed solution using destination information.

atively little overprovisioning (20%). The simulation measures the average number
of notification propagation per aggregated flow. We also measured the loss rate and
compared it to the loss rate generated when adaptive reservation is used under the
same conditions. Note, that the limited signaling performs destination estimation
here. The graph of figure 3.16 shows the result. The result is interesting. While the
adaptive reservation is indeed sensitive to the number of intermediate backbone
networks, the proposed limited signaling seems less affected. In fact for a large
number of ISPs the loss rate even shrinks. The signal limiting is effective. For
40 intermediate ISPs in the slalom network the flows travel through an average of
about 20 ISPs. Nevertheless, the signal is only forwarded 2.45 times in average.
The graph indicates that this notification number does not linearly grow with the
number of intermediate ISPs. These results are encouraging. However, the simu-
lation does not prove that the limited signaling would indeed perform as expected
in a real life network with real traffic. Yet, the simulation runs were encouraging
even for unfavorable (simulated) network conditions.

3.5 End-to-End Signaling

The effort for end-to-end signaling directly depends on the scope of the SLAs that
the customers establishes with their ISPs. There are the following problems:

� The customer SLA scope must be coarse grained. If such SLAs are nego-
tiated per IP address then there is a significant signaling overhead because

72 CHAPTER 3. DIFFERENTIATED SERVICES SIGNALING

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35 40

Number of intermediate backbone networks

Limited signaling loss (%)
Signals per aggr. flow

Adaptive reservation loss (%)

Figure 3.16: Limited Signaling in a growing inter-network.

the traffic of each DiffServ host must be signal through the whole backbone
network.

� The destination of the DiffServ traffic must be known else no end-to-end
signaling can take place.

For work presented next the assumption is that the SLA scope deals with traf-
fic between two autonomous systems. It is thus quite coarse grained. Still, the
end-to-end signaling will produce a significant overhead (compared to limited sig-
naling), but this may be manageable. Note, that the end-to-end signaling approach
presented here is more scalable than IntServ because the reservations are not stored
in each router but by the brokers. Furthermore, the SLA between two ISPs does
not distinguish between different flow reservations but reflects the aggregate of
all these reservation. On the positive side, end-to-end signaling allows the the
providers to reserve the exact amount of resources. Therefore, end-to-end service
quality can be assured; there is no ’ loss’ as in the previous signaling options. How-
ever, there are other issues that can be analyzed here. SLA updates are an expensive
operation. Therefore, it is desirable that the resource allocation takes place in ad-
vance and accommodates several flows. Thus an SLA between providers should
be overprovisioned. Then, some signals can be forwarded without an SLA update.
This reduces the number of SLA updates but it increases the number of admission
denials that were not really necessary, because capacity is reserved that is not used.
Thus, the trade-off between frequent SLA updates and overprovisioned SLAs is
the main topic of this section.

3.5. END-TO-END SIGNALING 73

3.5.1 The SLA Update Decision

An SLA update is a heavy operation. Two brokers of different ISPs have to negoti-
ate with each other, not only about traffic rates, but also about prices and payment.
Strong cryptographic measures and protocols that guarantee non-repudiation are
necessary. Therefore, the number of SLA updates should be limited. Not ev-
ery signaled new or terminated flow should cause an SLA update. In our simula-
tion, we propose a scalable and parameterized mechanisms using two thresholds,
namely the increase-threshold (i) and the decrease-threshold (d). The thresholds
are proportional to the reservation. An i of 0.9 means that if the total signaled traf-
fic exceeds 90% of the total reserved bandwidth, the SLA should be renegotiated
(more bandwidth should be reserved). The situation with d is analogous. If the
proportion of signaled traffic is smaller that d, the SLA should also be renegotiated
(reserve less bandwidth). The amount of the new reservation is calculated so that
the new proportion of signaled to reserved traffic has a maximum distance to both
thresholds (it is placed in the middle):

newReservation =
totalSignaled
0:5i + 0:5d

(3.4)

Usually, i is set to 1.0. This means that a new flow triggers an update only if the
reservation is not sufficient any more. The value d can parameterize the overprovi-
sioning. Overprovisioning in this context means, that the SLA has reserved more
bandwidth than actually requested through signaling. Overprovisioning allows the
broker to accept some calls without renegotiating the SLA. With the presented
mechanism, the overprovisioned bandwidth o averages to o = (i � d)=2. One
special case is worth mentioning, namely when d = i = 1:0. In this case every
new flow, triggers an update, as well as every deleted flow. It can be easily seen
from the formulae that the reservation then always equals the signaled bandwidth,
and that there is no overprovisioning. This case is very similar to the situation in
IntServ. Thus, d = i = 1:0 is a benchmark of our simulation results.

3.5.2 The Relation of Overprovisioning, SLA Updates, and Utilization

The first test series use the network depicted in figure 3.17, with sufficient capacity.
Every flow passes the admission-control, no flow is rejected. Here we investigate
how overprovisioning affects the number of (expensive) SLA updates. Note, that
there is a financial trade-off, since overprovisioning comes at a cost. Figure 3.18
shows the average reservations (for the complete inter-network) over time, for sim-
ulation runs using different decrease-threshold values (d). It shows the overprovi-
sioning compared to the benchmark (d = 1:0). Figure 3.19 shows the number of
SLA updates that occurred during these simulations. Note, that since the simula-
tion runs used the same initialization for the random generator, the traffic pattern
is exactly the same for all four runs.

Clearly, there is a significant reduction of updates, when the decrease-threshold
is equal or smaller than 0.6. On the other hand, a small d-threshold causes more

74 CHAPTER 3. DIFFERENTIATED SERVICES SIGNALING

Figure 3.17: The hierarchical inter-network for E2E simulations.

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120

B
an

dw
id

th

Rounds

Bandwidth reservation (average per SLA)

decrease thresh. 0.4
decrease thresh. 0.6
decrease thresh. 0.8
decrease thresh. 1.0

Figure 3.18: Overprovisioning given different decrease thresholds.

3.5. END-TO-END SIGNALING 75

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120

S
LA

 u
pd

at
es

Rounds

SLA updates per round

decrease thresh. 0.4
decrease thresh. 0.6
decrease thresh. 0.8
decrease thresh. 1.0

Figure 3.19: The number of SLA updates given different decrease thresholds.

overprovisioning (reserved, but ‘unused’ bandwidth). Reserving additional band-
width introduces additional costs. However, if all providers use the same d, these
costs are leveled out to zero over the whole network (each provider pays more to
its neighbor, but also gets more from its neighbor). Nevertheless, overprovisioning
blocks some of the available capacity, which leads to a sub-optimal usage of the
network. The simulation reveals this when it uses a modified inter-network that
has reduced interconnection capacity. While most of the traffic still fits in the net-
work, some flows have to be rejected by the broker at the bottlenecks. The results
show, that a small d leads to unnecessary rejections. Table 3.1 shows the number
of rejections during a 60 round simulation. Note, that again the d = 1:0 case is the
benchmark since it shows which rejections are due to true capacity limitations, and
not due to overprovisioning inefficiency.

Table 3.1: Denied admissions due to overprovisioning.

d Rejected flows Unnecessary rejections
1.0: 79 0
0.8: 90 11
0.6: 107 28
0.4: 132 53

76 CHAPTER 3. DIFFERENTIATED SERVICES SIGNALING

Clearly, overprovisioning leads to sub-optimal network utilization, but there
are other factors that influence the number of rejections. Using the same limited-
capacity network the next simulation shows, how different user behavior can influ-
ence the number of rejected calls. For that purpose the simulation uses different
limiting factor for destination customer networks for a given source network (see
section 3.2.4). All previous results were calculated with a limiting factor of 1.0,
which means that the destination of a flow is not restricted. For the following lo-
cality test series d is set to 0.4, which showed many unnecessary flow rejections in
the previous table.

0

20

40

60

80

100

120

140

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
ej

ec
te

d
flo

w
s

Locality of flow destinations (1.0=random)

Rejected flows depending on destination restrictions

Number of rejections

Figure 3.20: Influence of traffic destination patterns.

The result depicted in figure 3.20 shows, that here the traffic destination pat-
terns have a more relevant influence on the number of rejected flows than the over-
provisioning has. When the individual destinations are limited to 30 percent, there
was not a single rejected call. Note, that the destination limitation is not random.
Note, that limited traffic destinations are more local destinations. The rise of re-
jected calls in the range of 0.2-0.1 is due to the fact that the access networks get
congested because all traffic is sent to neighbor ISPs. The rise of rejected flows for
locality factor larger than 0.3 is due to congested backbone networks.

SLA Update Rate Limits

SLA updates are heavy and probably relatively slow. Therefore, the next simulation
results deal with SLA update rate limitations applied to each SLA. The simulation

3.5. END-TO-END SIGNALING 77

implements an update-wait time parameter w (in rounds). If w = 0, this means,
that an SLA can be updated at any time. If w = 1, then after an update the broker
has to wait for the next round for the next update (only one update per round). If
w = 2 and the broker performs an update in round r, then it has to wait for the next
update until round r + 2 (in general r + w). I tested this mechanism for different
d. If d is large, then the overprovisioning is small and thus there are a lot of SLA
updates. However, these updates are necessary. If the updates are restricted, new
flows cannot be admitted, thus the rejected flow rate rises. With d = 0:8 and
w = 2 the simulation shows the unacceptable behavior that 60% of all new flows
are rejected.

The situation is different when there is more overprovisioning, e.g. with d =
0:4. Figure 3.21 serves as benchmark, it depicts the SLA updates and overpro-
visioning when there is no restriction on the updates. With this larger overprovi-
sioning an update limit of w = 2 is still acceptable. This is shown in figure 3.22.
The rejection rate drops to a low stable state. However, this adaptation to global
traffic changes happens only slowly. At the beginning of the simulation, there are
no flows, so many new flows are generated and few terminated. With w = 2 the
network needs about 50 rounds to adjust to this situation. For comparison, there
is also the results with w=0 (no restriction). Here, there are no rejections. In the
first round, there are many more SLA updates (134). Then, the network rapidly
adapts and is stable after round 20. Note, that overprovisioning and rejected flows
are plotted in percent, while the number of reservations are plotted in absolute
numbers.

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250

Rounds

Limited SLA changes

Nr of Res.
% rejected flows

% real overprovisioning

Figure 3.21: Unrestricted update rate.

78 CHAPTER 3. DIFFERENTIATED SERVICES SIGNALING

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250

Rounds

Limited SLA changes

Nr of Res.
% rejected flows

% real overprovisioning

Figure 3.22: SLA update rate limited to w=2.

3.6 Evaluation of the Signaling Options

DiffServ broker signaling is only vaguely described in the DiffServ architecture.
However, it coordinates the ISPs in their effort to provide a multi-provider network
service. This thesis therefore studied different options of broker signaling. The
presented options cover different signaling granularity levels. The results do not
clearly favor one of the options but they provide a framework to judge future ap-
proaches. Here is a comprehensive overview of the trade-offs that broker signaling
faces:

� Adaptive reservation.

– Advantages: The approach is light-weight because the brokers do not
need to communicate with each other.

– Problems: The approach is sensitive to both local and global traffic
behavior and to the size of the backbone. Reasonable end-to-end guar-
antees can only be provided with large overprovisioning. Customer
SLA admission control is not supported.

– Open issues: The collection of measurements and the estimation func-
tion to extract reservation needs from the measurement data.

� Limited signaling.

3.6. EVALUATION OF THE SIGNALING OPTIONS 79

– Advantages: The approach is relatively insensitive to the size of the
backbone. It needs significantly less signaling effort than end-to-end
signaling. It does not need destination information.

– Problems: We must make sure that the signaling is not limited in the
wrong places (dumbbell problem). The scheme is sensitive to the lo-
cal traffic behavior. The improvements over the adaptive reservation
scheme are not ground-breaking.

– Open issues: Instead of the two thresholds more intelligent (maybe
heuristic) notification decisions could be implemented.

� End-to-end signaling.

– Advantages: The approach ensures that no DiffServ traffic is lost (hard
guarantees). Overprovisioning reduces the SLA update effort (but not
the signaling effort).

– Problems: The customer SLAs must contain specific destination infor-
mation. The scalability of the approach depends on the scope of these
SLAs and on how frequent the customer updates the SLAs.

– Open issues: specification of the scope of customer SLAs.

Business Issues. As mentioned before, the simulation also includes money ex-
change between brokers. SLA based reservations come at a price (see also section
2.3.6). Therefore, some providers may try to save money by not renegotiating
their SLAs (reserve enough resources). However, if only one single provider of a
multi-provider service (such as DiffServ is) does not reserve enough resources then
this already hurts the end-to-end service performance. Therefore, the providers of
multi-provider services have a vital interest to ensure that all peers collaborate.
Note, that it does not suffice to test if the bilateral SLAs are met. For the adap-
tive reservation the providers must e.g. all use the same thresholds and they must
use the correct measurements. For notification based approaches the providers
must react to notifications by upgrading SLAs if necessary. Therefore, providers
that collaborate to deploy a multi-provider service need a monitoring infrastructure
that allows them to detect misbehavior of peer providers. The service monitoring
infrastructure that proposed in part II of this thesis is ideal for this work.

Outlook. The DiffServ architecture is not yet mature enough that an end-to-end
signaling infrastructure will be built for it (see also section 8.1). The limited sig-
naling approach seems to be the best of both worlds but in fact it needs a signaling
infrastructure and still it is unable to provide hard service guarantees. The adaptive
reservation scheme can be deployed incrementally and needs relatively little infras-
tructure. It is able to provide soft guarantees, especially in small DiffServ clouds.
The service is going to be overprovisioned but this is not so dramatic because if
no DiffServ traffic is using the reservations then best effort traffic can fill out the

80 CHAPTER 3. DIFFERENTIATED SERVICES SIGNALING

available capacity. So it is probably the adaptive reservation scheme that is going
to be deployed in the near future. The adaptive reservation scheme requires a mea-
surement infrastructure that the bandwidth broker can access. The infrastructure
that the thesis proposes in part II is one possible candidate but it can provide more
than that. The service monitoring infrastructure described there would allow the
broker to take measurements in foreign ISPs. These measurement probes can thus
warn the broker early about incoming DiffServ traffic.

Part II

Customer-Based Service
Monitoring

81

Chapter 4

Architecture

4.1 Introduction and Motivation

Traditional network management includes monitoring of the network. The moni-
toring serves several purposes: it verifies the smooth operation of the network, it
alarms the administration in case of an anomaly and it provides usage and perfor-
mance data for future network provisioning and planning [CC98]. The customers
of an Internet service provider are neither directly interested in monitoring the net-
work of the provider nor should they be allowed to do so. However, the customers
may want to monitor their enhanced IP service. The enhancement of the service
is normally transparent to the customer, because it consists of packet processing
that happens in the provider networks. The providers offer enhanced services to
generate new revenues. Therefore, enhanced services will cost more than basic IP
services. Since the customer pays for the service enhancement, the customer has a
vital interest to possess an explicit mean to verify the enhancement and thus justify
the additional expenses.

The monitoring needs vary from customer to customer and from service to ser-
vice. In order to convince the customer of the usefulness and stability of a new ser-
vice the provider must offer a generic service monitoring interface. The interface
should allow the customer to verify the correct operation of the service function-
alities sold by the provider. We refer to this process as Customer-based Service
Monitoring (CSM). The provisioning of such a monitoring interface may be cru-
cial for the successful introduction of new commercial Internet services because
only that way the customer sees what (s)he buys. Consider the virtual private net-
work service described in chapter 1.2.1. How can a customer know that the traffic
traveling through the Internet is indeed encrypted by the provider and e.g. not just
compressed? How can the customer see if regular Internet traffic backs off when
the customer sends prioritized DiffServ traffic? How can the customer find out that
prioritized traffic has been dropped in the network (and not e.g. by an application)
and where (by whom) it was dropped? How can the customer verify that a specific
service level agreement with the provider is indeed fulfilled?

83

84 CHAPTER 4. ARCHITECTURE

A generic Internet service monitoring infrastructure provided by the ISPs to
their customers can answer such questions. It provides a mean for the service
providers to convince customers of the usefulness of new Internet services. The
provider can also describe the service level guarantees in terms of the monitoring
infrastructure. The more powerful the monitoring interface is the more sophisti-
cated service level agreements can be formulated. Thus, a generic CSM infrastruc-
ture allows the provider to differentiate their service offerings. There are however
many problems that make customer-based service monitoring significantly more
complex than simple network monitoring:

� Service-specific monitoring. New Internet services provide different add-
on features to traditional IP forwarding. These features can have all kinds of
service specific parameters. The monitoring infrastructure must be generic
enough to support different metrics for service-specific traffic parameters.

� Individual customer wishes. The customers may order a service based
on different requirements resulting from different business backgrounds. It
should be possible for each customer to test the service against his/her indi-
vidual requirements using customer defined metrics. The customer should
also be able to test the service at any time.

� Multiple providers. In case several providers collaborate to provide an end-
to-end service, the monitoring should provide per-provider information. This
is desirable especially when providers are customers of each other and to
detect malicious/cheating providers.

� Security. Network monitoring data is sensitive, revealing it to others vio-
lates the customers’ and the providers’ privacy. The data may reveal organi-
zational details that competitors can use against a provider. Also, a provider
will lose its customers if they ever find out that other parties may monitor
customer service traffic. Thus, the service monitoring infrastructure must be
protected against malicious customers. Further, the integrity of the monitor-
ing data must be protected. It is desirable that the monitoring infrastructure
discourages malicious providers.

� Standardization. Although the parameters to be monitored may vary
greatly, the monitoring infrastructure should be standardized. This eases the
deployment in a multi-provider scenario and allows for rapid development
of application software by third-parties.

Today, no service monitoring infrastructure exists that meets these require-
ments. If a customer happens to detect a problem (which is usually when the
customer needs that service badly and does not get it), phone-calls between admin-
istrators, local measurements, and manual browsing of log-files will eventually lead
to the identification of the problem source. Unfortunately, it is also not uncommon
that the involved parties will suspect each other and repudiate any guilt. Note, that

4.1. INTRODUCTION AND MOTIVATION 85

this problem not only concerns the relation between customer and provider but also
between providers themselves. It is to be expected that the problem becomes worse
when new and more expensive network services are deployed that require provider
collaboration. First steps towards a service monitoring infrastructure are SLA re-
ports [Ver99]. The provider calculates a performance statistic over a regular period
of time (e.g. a month). The statistic usually reflects the traffic properties guaran-
teed in the SLA (e.g. uptime and response time). The provider then delivers this
statistic to its customer on a regular basis (usually once a month). This approach
does not satisfy the requirements to a generic service monitoring infrastructure.
The customer is not able to formulate individual queries whenever (s)he feels like.
The provider can very easily manipulate the statistics to meet a given SLA. The
statistics, the collection of their raw data and their delivery to the customer are not
standardized and the customer cannot tailor them to individual wishes.

This part of the thesis proposes a generic service monitoring infrastructure
based on mobile agents. Mobile agents provide a flexible way to monitor the
services within provider networks (for further motivation see section 4.2). The
customer thus sends mobile test agents to relevant locations in the provider net-
works. The agents perform tests on behalf of the customer. Mobile agents thus
allow the customer to test the service where it is delivered. A customer-based
service monitoring infrastructure based on mobile agents can solve the problems
mentioned above. With agent technology service performance is no longer formu-
lated as statistics of some network parameters. Agents are programmable and can
thus measure any metrics on the raw data. Therefore, agent technology provides
a generic interface that the customers, providers or third-party vendors can easily
adapt to new services or individual customer wishes. The mobility of the agents
reduces communication overhead and supports the distribution of monitoring tasks
which increases the scalability of the approach. The mobility of the agents also
helps to detect misbehavior of providers since the customer can collect distributed
measurements and compare their global consistency. Agent security is a well-
known research area where complete solutions exist today. Standardization and
internationalization can be achieved through the use of state of the art technology
such as the Java programming language.

Project Context. The work presented in this part of the thesis was performed
within the Advanced Network and Agent Infrastructure for the Support of Federa-
tions Of Workflow Trading Systems (ANAISOFT) project [ANA]. The main goal
of the ANAISOFT project is to study and the creation of secure and responsive
Federations of Workflow Trading Systems (FWTS) using intelligent and mobile
agent technology. Customer-based service monitoring with mobile agents is one
task of the project. ANAISOFT is a project in the framework of the 2nd phase
of the Competence Network for Electronic Commerce (CNEC) within the Swiss
Priority Program for Information and Communications Structures (SPP ICS) of the
Swiss National Science Foundation (SNF) running from January 2000 to Decem-

86 CHAPTER 4. ARCHITECTURE

ber 2001.

4.2 Mobility and Service Monitoring

4.2.1 Terminology

Mobile agents [Whi94, CHK97] are program instances that are able to move self-
directed through a network to locally perform a task on behalf of their sender. Dif-
ferent mobile agent platforms have been proposed e.g. for the programming lan-
guages Java [LO98, VB99, Fün98] and Tcl [Gra98]. Mobile agents are proposed
for different tasks such as network search (more recently e-commerce [HGF+99]),
network management [BGP97] and network intrusion detection [JMKM99].

On the network level, the emerging mobile agents technology is called active
networking [TSS+97, CBZS98]. There, a mobile agent is often referred to as cap-
sule and is directly integrated into the network traffic packets. Thus, the code flows
directly on the communication path that is subject of the code’s computation and it
can be executed on a per-packet granularity. Here, the abstraction and intelligence
aspect is secondary. The focus is on the interaction with the network infrastruc-
ture. Active network packets access the networking functionalities of the routers
they pass (e.g. forwarding and routing) and change these functionalities for packets
or classes of packets. Furthermore, performance is a crucial issue, since the code
should be able to manipulate data at the line speed (in todays backbone network
this can be up to several gigabits per second). Active networking is often proposed
for intelligent multicasting. Another possible application is secure communication
[GBB01, Bro00, Tsc00].

There is no solid line between mobile agents and active networking. For ex-
ample the active networking testbed ANTS [WGT98] can also be seen as a mobile
agent testbed, since capsules are Java objects, and the code is not included in net-
work data packets but is dynamically loaded upon need. The approach that we
describe in this paper is mobile agent based. This is because the monitoring code
(the mobile agents) is transported out-of-band. Yet, service monitoring agents ex-
amine network services down to the structure of forwarded network packets. Also,
the performance of the CSM agents is an issue since one of their goals can be to
monitor the network at wire speed. For these reasons, CSM can also be seen as
an application of active networking. The implementation of the CSM system pre-
sented in this part of the thesis is mobile agent based. Nevertheless, similar results
could have been achieved when choosing active networking technology instead.

4.2.2 Advantages of Service Monitoring with Mobile Agents

Mobile Agents have the questionable reputation of being a solution in search of
a problem (J. Ousterhout). However, there are application areas where the use of
mobile agents has undeniable benefits [Kna96]. This section outlines their benefits
for service monitoring. The programmability of mobile agents has the following

4.2. MOBILITY AND SERVICE MONITORING 87

advantages already mentioned in the beginning of this part: flexibility, available
security solutions and standard technology. The mobility of the agents also brings
substantial benefits:

� Working at the monitored site. Network services are per-definition de-
livered in the provider network. In the case of multi-provider services the
service enabling functions even take place in several networks. On the other
hand it is mainly the customer who wants to perform the service tests and not
the administrator of the networks in question. Given the already mentioned
advantages of being able to formulate service test as programs the solution
obviously is that the customer sends the test program to the interesting loca-
tions in the network. The proper way to do so from the software engineering
point of view given security and multi-user requirements is to send mobile
agents.

� Performance. Generic measurements such as packet traces produce a huge
amount of raw data which is of the same order of magnitude as the traffic
being monitored. Therefore, traditional customer-based monitoring infras-
tructures always calculate statistics over the raw data for a medium to large
period of time. Thus, the raw data is compressed before delivered to the cus-
tomer. Mobile agents can do this compression in a flexible way thus keeping
the communication path short. This can also reduce latency between a ser-
vice anomaly and the appropriate reaction. Further, the mobile agents can
implement the extraction of relevant data in optimized ways. Thus, the may
execute faster than general purpose filters. If one compression step does not
reduce the communication sufficiently, the mobility of the agents can be ex-
ploited to built a communication hierarchy. In general, mobile agents are
a powerful method to structure distributed computing thereby enabling the
customer to collect computing power to analyze the traffic.

� Global view of the service. A malicious provider can easily fool a cus-
tomer that relies on the measurements published by the provider. In a multi-
provider service scenario the situation is even worse. CSM agents can be
sent out to perform active measurements by producing and measuring traffic
at different sites that are out of the administrative domain of the provider to
be tested. The agents can thus provide different views of the current ser-
vice state, that a malicious provider cannot directly influence. In general,
provider that tries to fake a service state cannot keep the views consistent.
Mobility therefore allows the agents to virtually ’ track-down’ the problem
source (see section 6.4).

� Independence.In case of a service interruption (e.g. a complete network
failure) at least some CSM agents are still running and can continue to record
the service performance. Later, that information may help to find the source
of the problem or to negotiate about refunding.

88 CHAPTER 4. ARCHITECTURE

4.3 A Supporting Infrastructure for Service Monitoring
Agents

Like any other network monitoring system, the CSM agents need a supporting in-
frastructure. In this section we discuss the required components and their location
in the providers’ networks.

4.3.1 Location of the Control Points

The Internet is a heterogeneous network, it consists of thousands of administrative
domains. The interior network of these domains is administered in different ways
and consists of different kinds of networking technologies such as Frame Relay,
ATM, MPLS or Sonet. This may render the access to the traffic inside of the do-
main very difficult (e.g. for optically switched technology). The least common
denominator of these networks is the Internet Protocol (IP). The IP traffic is ex-
changed between the domains at so-called peering points, according to peering- or
service level agreements. While the network engineering and management of the
interior network of the domains is usually hidden, the peering points are by their
nature open (at least to the peer). For service monitoring the peering points are
thus of high interest. Note, that for CSM it suffices to track down a problem to a
provider. Once the problem is found to relate to a given administrative domain, it is
up to its administration to further locate the problem in the inside of their network,
using the network management system of their choice. Therefore, the CSM agent
nodes should be located at the peering points. This guarantees, that the monitoring
has access to the IP traffic and that the control can relate identified problems to a
specific provider. Note, that not all CSM applications will need a platform at all
peering points. Of course, a provider can also offer additional node environments
in the inside of its network as an additional service to its customers or for its own
service and network monitoring purposes.

Figure 4.1 illustrates CSM agents which were sent out by a customer applica-
tion running on a machine owned by the customer. The customer application also
coordinates the agents, processes their feedback and forwards the results to the
user. The agents migrate to the peering points to perform particular local checks
on the service.

4.3.2 Node Architecture

The CSM agents should be able to perform any kind of passive measurements,
however they should not be able to eavesdrop or analyze traffic of other customers.
Spoofing of foreign IP addresses or denial-of-service attacks should not be facil-
itated. Given these requirements we propose the following node architecture as
depicted in figure 4.2: At the peering router, there is a T-component that serves as a
high-performance and configurable packet copying mechanism. The T-component
can be configured to copy network packets according to filtering rules based on

4.3. A SUPPORTING INFRASTRUCTURE 89

Manuel H. Guenter Manuel H. Guenter

Manuel H. Guenter

Agent

(Access network)

Domain C

Peering Router

Peering Router

Customer Application

network
Customer premises

Domain A Domain B

Agent

Figure 4.1: Measuring at peering points.

IP packet information such as source and destination address (see section 4.3.3).
It adds a high-accuracy time-stamp to the packet. Note, that this is in fact the
generic Internet service monitoring interface. By being able to examine all rel-
evant IP packets and their arrival times, each IP service and its service level can
be analyzed. The T-component forwards the requested packet copies to the Node
environment. Note, that for security reasons the agents do not have direct access to
the T-component.

The node environment is hosting and executing the CSM agents. Separating
the node environment and the T-component enables the provider to run the node
environment on a separate machine (with network connection to the T-component).
Most providers probably won’ t want to run foreign code on such a crucial machine
as the peering router. Customers send their agents to the node using a standardized
protocol (see section 5.1). The agent does not necessarily have to be encrypted, but
a strong authentication protocol is needed. This ensures that the node can properly
authorize the agent. When the agent arrives at a node, it has to undergo a welcome
procedure. After the authentication, the agent asks the node for resources (CPU
time, memory and specific traffic). The agent also specifies a packet filter for the
bypassing packets it is interested in (see section 4.3.3). Based on policies, the node
authorizes the agent for these resources. It provides an execution environment that
protects the node from the agent and agents from other agents. The agent execution
environment also contains an inbound and an outbound packet queue. The inbound
queue provides the agent with the monitored IP packets. The outbound queue lets
the agent communicate across the Internet. Using another pair of queues the agent

90 CHAPTER 4. ARCHITECTURE

Manuel H. Guenter

Manuel H. Guenter

Node Environment

Node services

Sa
nd

bo
x

T-Component

Peering router

Filter

Agent

Policy Database
Q

ueues
Q

ueues

W
elcom

e procedure

Figure 4.2: The node environment.

can order services from the node and receive the results of these services (e.g.
information about neighbor nodes - see section 5.3.4).

4.3.3 Authorization and Filtering

Each agent is associated with a customer of Internet services and has to authenti-
cate itself as an agent of that customer. The customer digitally signs the agent to
guarantee its authenticity. Note, that in some cases customers may want the pos-
sibility to send anonymous agents. These agents should not be signed in order not
to reveal the identity of the customer. Anonymous agents must have little access
rights.

The node has access to profiles that describe amongst other things the admin-
istrative domain of the customer (e.g. what subnets are owned by that customer -
see also section 5.3.5). The profiles also refer to a agent policy which describes
what kind of actions the agents of that customer are allowed to perform. An im-
portant part of that descriptions is the filter. It describes what IP packets can be
forwarded to the agents of that customer. The filter holds a set of integer numbers
for different parts of the IP header (source and destination addresses, and protocol
numbers). A filter can also contain a maximum number of matches, a maximum
number of bytes per packet to be copied and a matching probability. The filter
will only match packets until the maximum number of matches is reached. The

4.4. MOBILITY MODELS AND AGENT FORWARDING 91

agent will be terminated afterwards. The maximum number can be set to infin-
ity. The maximum number of bytes per packet can be used e.g. to formulate an
agent that only analyses the IP header. This reduces the workload of both node and
T-component significantly. The maximum number of bytes per packet can be set
to any (216 bytes). The matching probability is usually set to 1.0. The matching
probability is useful to support an Embedded Advanced Sampling Environment
(EASE) [CC98] architecture where only a certain percentage (usually 2%) of the
traffic is analyzed. The matching probability also provides a mean to reduce the
workload of the CSM infrastructure especially in backbone environments.

The node will only serve the agent those IP packets that match the set. The
agent also carries a filter with it to tell the node what kind of IP packets it is in-
terested in. The node calculates the mathematical cut between the policy filter and
the agents filter and uses this newly created filter to serve packets to the agent. The
new filter forwards all packets that were requested by the agent (that match the
agent’s filter) and that are also compliant with the filter of the policy. The agent
can query if the new filter is empty (matches no packets at all) or not equal to
what it has requested, and react upon this (e.g. terminate gracefully). The node
holds generic filters in its policies so that it does not need to keep a filter for each
potential customer. See section 5.3.5 for implementation details.

4.3.4 Security Issues

The security of the proposed infrastructure bases on three concepts. First and fore-
most, the agents must authenticate themselves with strong cryptography. Devel-
oping these mechanisms from scratch is tedious and probably insecure. Rather
the CSM implementation relies on existing and stable technology such as PGP
[Zim01], or built-in mechanisms of available agent platforms. Authentication al-
lows the node to relate each agent to a customer, which is responsible for the behav-
ior of the agent. Second, the agents do not run on the controlled network devices
but rather on a dedicated general-purpose computer. Thirdly, the agents run in a
sand-box. They have no direct access to neither node nor network resources. Their
only communication mechanism uses the in- and outbound queues which are con-
trolled by node filters. The cutting of agent filters with a default filter provided
by the node assures in a convenient way that the agents cannot eavesdrop or spoof
other peoples traffic. The implementation of these security features is described in
more detail in section 5.5.

4.4 Mobility Models and Agent Forwarding

CSM uses a simple mobility model that is inspired more by the active networking
community than by the mobile agent community. One reason is that the envisioned
applications for mobile measurement agents can be implemented by agents that are
sent to a location, perform their measurement there while sending some results and

92 CHAPTER 4. ARCHITECTURE

then terminate. For such an application it is simply not necessary that the agent can
roam self-directed through the networks [BLP00]. Self-directed agents need well
funded knowledge about the network and a more complex communication infras-
tructure. But measurement agents should be small and simple so that customers
can program them. This favors a simple send-execute-terminate style of mobility.
Nevertheless, sending out many agents one-by-one is a tedious and inefficient pro-
cedure. Therefore, this thesis proposes mobility support that is simple, secure and
efficient.

4.4.1 Supported Mobility Models

As mentioned above the proposed mobility model is inspired by active network-
ing. There, executable data packets (capsules) are forwarded through the network
and get executed wherever there is an execution environment. Ideally, they are ex-
ecuted in every router. This is convenient because then the capsules do not need
sophisticated knowledge about the network. They can rely on the local routing in-
formation. For CSM however there is no built-in support that extracts the agents
from the data stream. CSM is a non-intrusive Internet application that does not as-
sume CSM specific execution environments in the routers. Instead, the CSM nodes
provide agent forwarding functionality: an agent that arrives at a node is copied,
just like a data packet would have been and the copy is forwarded to other nodes,
if requested.

We foresee different kinds of forwarding modes:

� No forwarding. An agent arriving in this trivial mode is executed at the
node but not forwarded to any other node. This model is also referred to as
sending an agent end-to-end.

� Broadcast. A broadcasted agent is first started in the target node. If the
agent starts without causing problems (e.g. false authentication) the agent
is forwarded (in broadcast mode) to all neighbor nodes. Agents have an
identity which is defined by a serial number and the owner’s identifier. Each
execution environment executes only one agent of a given identity. Thus, the
broadcast terminates similarly to a flooding algorithm.

� Hop-by-hop. The agent carries a destination IP or node address. The node
starts the agent. If the agent starts without causing problems the node for-
wards it (in hop-by-hop mode) to the next node on the route towards the
destination address. For that purpose the nodes need access to routing infor-
mation (see section 5.7.2).

The broadcast mode allows the customer to easily and efficiently spread agents
e.g. to monitor a service at as many locations as possible. The hop-by-hop mode
is useful to watch the service behavior along a path, e.g. between two customer
subnets connected through the Internet with a VPN tunnel (see chapter 6). It is

4.4. MOBILITY MODELS AND AGENT FORWARDING 93

obvious that both broadcasting and hop-by-hop forwarding save communication
capacity when a user wants to install an agent at many nodes. Of course the for-
warding of the agents must be limited. Therefore, the agent transmission protocol
should carry a time-to-live field that is decremented for each agent instance that
is executed. Also, it is important that a node only executes an agent if no agent
of that type and of the same user is currently running. This is necessary to avoid
that a broadcasted agent fills all available agent places. Another interesting feature
is the use of forwarding probabilities. For example, broadcasting an agent with a
small forwarding probability could be used to cover a local area with the agent.
Another interesting scheme is the hop-by-hop scheme combined with a probabil-
ity regulated broadcast to cover an area around a network path. The probability
idea could be extended with the introduction of an execution probability. The for-
warding would then be decoupled from the execution. Some nodes would e.g. just
forward an agent but not execute it. This allows sparse distribution of agents. Yet,
when only agents that execute without a problem are forwarded this increases secu-
rity and reduces the possibility of a denial-of-service attack. Note, that a possible
model extension is described in section 6.5.2.

4.4.2 Forwarding Security

Since forwarding of agents allows a customer to request resources at many places
at (almost) the same time, all agents that request forwarding (and thus multiplying)
must be strongly authenticated. The customer signs the agent before sending it.
Note that this scheme rules out strong mobility for the agent. To support strong
mobility the node has to send the run-time state of the agent. The state changes
when the agent is roaming in the network and so the signature is invalidated. The
solution would be that the executing node signs the agent. But how can the node
take responsibility for the agent in the new state? Think of an agent that develops
malicious behavior if it gets in a certain state. The customer signs the static code
while the node signs the state. Who is to blame for the malicious behavior? Maybe
a previous node manipulated the state so that the agent became unsafe or maybe the
customer planned the whole attack. In the CSM approach the customer is fully re-
sponsible and it signs the whole agent code. The node only forwards copies of that
code. The customer’s signature stays valid. However, the node first executes the
agent and thus when it forwards the agent it guarantees that the agent is executable.
The node can also additionally sign the forwarded agent to increase security. As
mentioned before, the forwarding must be limited to a finite number of executions
by a time-to-live field value which may be authenticated by the nodes. It cannot be
authenticated by the customer because the hosting nodes decrement the number in
the field.

94 CHAPTER 4. ARCHITECTURE

4.5 Deployment of the CSM Infrastructure in the Internet

The CSM architecture is non-intrusive. It can be deployed step-by-step. There is
no need to change the network topology or the protocol stacks. The CSM infras-
tructure be deployed based on off-the-shelf technology (see chapter 5). The CSM
node can e.g. run in any Java enabled device; it does not require specialized hard-
ware. The architecture can be deployed by a single provider in order to offer an
additional service to its customers that offers transparency in the providers service
operation and thus builds trust. Of course, the more providers deploy the CSM
infrastructure the more value it will get.

4.5.1 Advanced Infrastructure Support

If the customer only uses the end-to-end transmission of agents and if the customer
only sends agents to a handful of well-known nodes then no further infrastructure
support is needed. However, if there are thousands of nodes and some of their
network addresses change from time to time then the customer will have trouble to
distribute its agents to interesting places. One option that the customer has is to use
the forwarding modes when sending agents. However, then it is the providers that
face the same problem. Especially for the hop-by-hop mode the node then needs
solve a node routing problem. There are three distinct problems to be addressed:

� Naming. CSM nodes and the customers need a name space in which they
posses a unique identity. This is also important for signing and encrypting
messages. There, the name must identify a public key.

� Contact information. Nodes may have different addresses than the routers
to be monitored. Nodes may also be moved. Several nodes may be located
on a single machine. There must be a way to lookup the contact information
matching a node name. This may include the IP address, port numbers and
eventually a public key.

� Routing information. For agent broadcasting each node must know its
neighbor nodes. For hop-by-hop forwarding each node must have access
to the IP routing and must also know the node topology.

A solution to these problems must be flexible. It must automatically adapt to
changes. The solution should also scale to the large size of the Internet. Never-
theless, these problems are not new. Other IP technologies such as electronic mail
have faced the naming and contact information problem. Also, IP routing was im-
proved to meet the requirements. Therefore, these solutions can also be extended
to incorporate support for the CSM infrastructure.

The naming and contact information could rely on the domain name lookup
system (DNS) [Moc87a, Moc87b]. Nodes and providers are thus identified by

4.5. DEPLOYMENT OF THE CSM INFRASTRUCTURE IN THE INTERNET 95

email-style names. The DNS node records are extended to contain a record which
contains the contact information. Customer can then use DNS queries that use the
available name server hierarchy to learn about the CSM nodes.

For the routing information a node should be able to query the routing table
of the router that it monitors. This provides IP routing support. For node routing,
the border gateway protocol (BGP-4) [RL95] could be extended. BGP is the state-
of-the-art Internet routing protocol for the routing between autonomous systems
(provider networks). The node routing also takes place at the inter-domain level.
Therefore, it makes sense to add CSM parameters to BGP’s optional parameters
in order to propagate reachability information of CSM nodes. Note, that we did
not specify or implement these extensions in more detail. The implementation
provides this functionality with an overlay routing system (see section 5.7.2) and
is prototypical (see section 5.7).

4.5.2 Integration of the CSM Infrastructure with the Service Broker
Architecture

The service brokers are the central part of an architecture to setup new Internet ser-
vices for customers (see section 2.3 in part I). Providing the service and checking
if it is delivered as promised are complementary tasks. However, the delivery may
itself depend on service measurement functionality:

� The service broker must know about problems in the operation of the service
in order to stop selling the same service to other customers.

� The service broker may need detailed information about the current state of
the network in order to calculate if new service request can be admitted. The
adaptive reservation scheme for DiffServ is such an example (see section
3.3).

� The service broker may want to find local problem sources of the service
operation. This is necessary for trouble-shooting which may also happen
automatically,for the start of fail-over procedures (e.g. the use of backup
links).

� The service broker may want to find peering providers that do not keep up
with the guarantees fixed in inter-provider SLAs. The service broker negoti-
ates new SLAs. It may then generate test agents on the fly that monitor the
SLA.

With CSM the broker architecture has access to distributed measurement func-
tionalities. It can use privileged agents on the broker’s administrative domain and
regular agents to monitor service level agreements.

This presented customer-based service monitoring architecture is the basis for
service monitoring with mobile agents. Since the architecture is non-intrusive and

96 CHAPTER 4. ARCHITECTURE

only relies on basic agent mechanisms such as authentication and an execution
sand-box which is state of the art, such a platform can be deployed in the Internet.

Chapter 5

Implementation of a
Customer-based Service
Monitoring System

This chapter describes an instance of the proposed customer-based service moni-
toring infrastructure that is implemented in Java [Sunb, Fla96] (version 1.1.8). For
several reasons the Java language is suitable for the implementation. First of all
Java is a modern and object-oriented language with powerful built-in support for
Internetworking (see section 5.1.2). Java is platform independent, supports charac-
ter internationalization and is a widely-accepted industry standard. Today, most of
the modern mobile agent platforms are implemented in Java (see e.g. the mobile
agent list [Hoh], [LO98, VB99, Fün98, SBB+00] to mention but a few).

The implementation is divided into three distinct programs that communicate
over TCP sockets as depicted in figure 5.1. A home application allows the customer
to send agents into the network. The program provides a graphical user interface
that can also display the measurement and monitoring results that the agents send
back. The application can also store these results on non-volatile media for analysis
with other tools. Section 5.6 describes the home application in more detail.

The CSM node executes the customers’ agents ensuring that no policy is vio-
lated. The program is run by the providers. The CSM node is the most complex
part of the CSM implementation and is described in section 5.3. It is connected
to one or several border routers and aware of the neighbor providers’ peer nodes.
This is necessary for agent forwarding which was described in section 4.4.

The CSM node gets the monitored IP packets form the T-component. The
node tells the T-component what traffic its agents want to monitor and then gets
matching IP packets encapsulated in a TCP connection.

This chapter first describes the CSM protocol (section 5.1) because this proto-
col provides the interface between the customer (home application) and the provider
(CSM node). Then section 5.2 describes the T-component and the protocol to trans-
mit the IP packet copies towards the CSM node. After these two protocols which

97

98 CHAPTER 5. IMPLEMENTATION

Home Application Client

GUI

Server

Server

Client

TCP dataflow

TCP socket

Program

Agent

in Java

in Java

C
SM

 P
ro

to
co

l (
tc

p)

R
aw

 P
ac

ke
t P

ro
to

co
l

(tcp)

T-Component
in C++

ClientCSM node
forwarding
Agent

Figure 5.1: Implementation overview.

are important to the CSM node are described, section 5.3 describes the node im-
plementation. Section 5.4 describes the CSM agent interface that customer agents
must implement. Then, section 5.5 discusses the implemented security features of
the agents, the node, and the CSM protocol. Section 5.6 describes the implementa-
tion of a home application. Section 5.7 presents the implemented Internetworking
support (routing, naming) and section 5.8 presents the implementation’s source
code packaging.

5.1 The CSM Protocol

5.1.1 Overview

The CSM protocol mainly implements the sending of an agent to the CSM node.
However, it also provides further means of communication between the home ap-
plication and the node. The home application can e.g. query the node about the
node policies and available resources. Furthermore, the forwarding/multicast of an
agent from one node to other nodes is also implemented by the CSM protocol. The
CSM protocol is a client-server protocol. The home application (or a forwarding
node) acts as a client and contacts the server of a CSM node. Messages are en-
coded as Java objects. The Java object serialization [Suna] is used to transform the
objects into a byte stream that can be transmitted along a TCP connection.

5.1. THE CSM PROTOCOL 99

5.1.2 Internet Communication with Java

This section presents useful Java Internetworking features that made Java the first
choice for the implementation of an agent platform. It also presents how these
features be combined to create an open, extensible, and generic interface for CSM
communication. Java is the first programming language designed from the ground
up with networking in mind [Har97]. The necessary classes are bundled in the
java.net and the java.io package. Network programming in Java is simple
and intuitive. The client creates a new socket object, opens the socket and writes
to the sockets output stream or reads from its input stream. The accept method
of a server socket returns an open (client) socket, that can be used by a separate
thread to allow multiple clients to connect to the server concurrently. Java provides
built-in primitives for the handling and coordination of concurrent threads [Lea97].
Furthermore, Java includes a uniform concept for exception handling that allows
the programmer to catch network exceptions and to react in appropriate ways. With
Java the programmer can thus more easily write compact networking code than
with other comparable languages such as C or C++.

Besides of these basic Java features the implementation of the CSM protocol
uses two higher level networking concepts of the Java programming language: ob-
ject serialization and class loaders.

Object serialization. In object oriented languages [Bud91, BL94] such as Java
the data at run-time is represented as objects. An object holds a reference to its
class which in turn defines the methods (operations) that can be called on that ob-
ject. The class also defines the instance variables that each object holds during its
lifetime. The instance variables can be primitive data types such as integer num-
bers or they can hold references to other objects. Thus, at run-time data is usually
represented in object hierarchies (objects that recursively refer to other objects via
instance variables). Java’s object serialization [Suna] provides the programmer a
powerful mechanism to transform an object (and recursively all objects referenced
by instance variables) into a byte stream. Of course, the serialization mechanism
also allows objects of the same class to be instantiated by such a byte stream (dese-
rialization). The bytes of a byte stream can e.g. be stored on disk for later retrieval
and deserialization (new instantiation) of an object. The byte stream is also ideal
for the transmission of an entire object hierarchy along a network connection.

With few exceptions (such as e.g. java.io.Stream) all Java objects and
objects of user defined classes can be serialized. All the programmer has to do is
to declare his/her new class to be serializable. A user defined class is serializable
when it implements the interface java.io.Serializable. Doing this is in
fact trivial since the declaration does not imply the implementation of new meth-
ods. Note, that all classes of the instance variables must be declared serializable as
well, else a runtime exception will occur.

Java’s object serialization renders the tedious task of defining a message data
format superfluous. We do not have to fix the format of the messages exchanged

100 CHAPTER 5. IMPLEMENTATION

in the CSM protocol down to the bits and bytes. Instead, the CSM implementa-
tion provides a message class who’s objects carry the necessary data in instance
variables. The protocol is thus very easily extendible through subclassing of the
message class. To wrap up, the serialization mechanism allows us to use objects as
flexible and extensible data structures that can be sent over a network connection.
Furthermore, Java’s object serialization also features basic version control. If the
class definition has changed between serialization and deserialization Java throws
an exception.

Class loader. The Java class loader [Mac96] enables the programmer to load
new classes at runtime and instantiate objects of these new classes. All the class
loader needs to know is an abstract super class or a Java interface of the new ob-
ject’s class. java.io.Classloader implements the instantiation functionali-
ties. However, it is an abstract class; the programmer must add a method to fetch
the byte code. The method could e.g. load the byte code from disk or download
it from a URL. Java capable web browsers for example extend the class loader
to fetch applets. All their class loader knows in advance is the abstract class
java.applet.Applet. When an applet is started, the class loader fetches
the applet’s byte code from the URL provided in the html tag <applet>. CSM
implements a class loader that gets the byte code of CSM agents from message
objects sent across a socket. Java’s class loader concepts allows the CSM nodes to
dynamically load the agents code thus it provides code mobility. The class loader
concept is well integrated into other Java concepts (e.g. security), it is well tested
and ubiquitously used in modern web browsers.

5.1.3 Layering of the CSM Protocol

The developers of a CSM application can structure their internal data representation
the way they think will fit best. The CSM protocol describes how information
is exchanged between a CSM client and a CSM server including involved data
structures. The implementation bundles the CSM protocol in a Java package called
clientserver (see section 5.8). The package contains classes to transmit CSM
information across the Internet. The classes provide a layered protocol stack which
is described in table 5.1. Transmission of CSM information is processed top-down
and receiving is processed bottom-up.

5.1.4 The Protocol Object

The class clientserver.ProtocolObject encapsulates all messages that
can be exchanged in the CSM protocol. This simplifies the protocol since only one
class of objects is transmitted. The object’s class is declared to be serializable so
that it can be sent across the network.

5.1. THE CSM PROTOCOL 101

Table 5.1: CSM communication layers.

Layer Functionality Data representation

Semantics Processes, stores, and gener-
ates data in application spe-
cific ways.

Application specific objects.

CSM Protocol Generates and parses the
CSM message sequences.

clientserver.Message ob-
jects

CSM Connection Opens and closes connec-
tions. Encodes (encrypts)
message objects and packs
them into ProtocolObjects.

clientserver.Protocol-

Object objects

Network Byte transmission over TCP. Serialized
clientserver.Protocol-

Object objects

public class ProtocolObject implements Serializable {
public String senderID;
public byte encoding;
public byte messageType;
public ForwardingDescriptor forwarding;
public ByteArray message;

...
}

The senderID field holds an identifier of the sender. This instance variable
is also used by the node to associate an agent with a customer. The message itself
is serialized into the byte array which is hold by the instance variable message.
The byte array may hold a message that is signed or encrypted in different ways.
The instance variable encoding tells what kind of encoding/encryption scheme
is used. The CSM protocol implementation supports PGP encryption, PGP signa-
tures [Zim01] and plain byte code. Note, that PGP also compresses the messages.
The instance variable messageType encodes the communication purpose of this
object. It signals the type of the object stored in the message instance variable
(see also section 5.1.5). The forwarding descriptor is a class of its own, that en-
codes if this message is handled only by the receiver or if it has to be forwarded
and if so, in what way (see section 4.4). The implementation supports two spe-
cial forwarding modes: broadcasting and hop-by-hop routing. Both forwarding
modes are limited by the time-to-live field in the forwarding descriptor, which is
decremented for every execution of the agent. As mentioned before, the message
instance variable holds the encoded protocol message. To put a message (object

102 CHAPTER 5. IMPLEMENTATION

of a subclass of clientserver.Message - see next section) into a ByteArray,
the message is first serialized. Then, the resulting byte stream may be addition-
ally encoded/encrypted. This is a transformation from a byte stream into another
byte stream. The resulting bytes are finally stored in the instance variable of the
ProtocolObject. Figure 5.2 shows how messages are encapsulated in the protocol
object, which is then transmitted over the network. The CSM protocol can be eas-
ily extended by subclassing the message class and adding the newly desired data
and features to it. Also, new encoding/encryption schemes can be added.

ProtocolObject

ByteArray

Query

QueryResult

ExecutionRequest

Acknowledgement

Result

CallBackRoutingUpdate

Message

Abstract class

Class

is encoded/encrypted

serializes into

extends

has a

message

byte array

Figure 5.2: The protocol object and the message objects.

5.1.5 Message Objects

Table 5.2 briefly describes the seven message objects (see also figure 5.2) defined
for CSM communication purposes and their message type code.

Supported Queries. The CSM query is an instrument for the customer to get
information about the available CSM support offered by the providers. Basically,
the customer sends a query message to a node. The query contains a type code and
optional arguments. Like all CSM messages the query is sent within a ProtocolOb-
ject. The node can therefore associate the query with a customer and authenticate
the query if necessary. The QueryResult contains a character string that holds a
human readable query result. This is sufficient because queries are intended for
the human operators of the customer home application. The character string of an
answer can simply be written into a Graphical User Interface (GUI) window. Nev-

5.1. THE CSM PROTOCOL 103

Table 5.2: CSM message objects.

Type code Message class Purpose

1 Query The customer sends this message to a CSM node to
query it about the state of the node or local agents.

2 QueryResult The node uses this object to answer to a query.
3 ExecutionRequest The customer sends this message to the node to re-

quest the execution of an agent. The message con-
tains the byte code of the agent and a filter describing
the IP traffic that the agent wishes to monitor.

4 Acknowledgement The node sends this object to acknowledge that an
agent has been started. It also uses this object to
deny access to the node. It then includes a short
message as to why the execution was denied.

5 Result This message is sent from the node to the home ap-
plication of the customer. It contains results that the
agent has calculated at that node.

7 CallBack The node sends this message to a customer’s home
application to inform it that an agent likes to send
results.

8 Routing Update A node sends this message to another node to inform
it about neighbour nodes.

104 CHAPTER 5. IMPLEMENTATION

ertheless, the query classes can be extended to provide machine parsable answers
if there is a need for doing so. Here are the currently supported query types:

� Agent places.Let the customer query how many agents can run in a node
and how many of these agent places are currently free.

� Agent state.This query lets the customer know which of his/her agents are
currently running on a node and some performance statistics of the agents
such as how many packet it has consumed and how long it has been running
so far.

� Node policy. The node answers with a report of the policy that is applied to
the contacting customer’s agents. This includes e.g. what filters will apply
(see section 4.3.3) the maximum total CPU time an agent can use and the
transmission rate that the node provides to an agent.

� Node services.Provides a list of the services that an agent can request from
a node together with a short description of each service (see section 5.3.4).

� Neighbors. This query delivers contact information such as IP addresses
and port numbers of neighbor nodes of the queried node.

� Routing. The customer can ask the node to what node it would route an
agent that is heading for a specific IP address. This query was used for the
debugging of the agent forwarding.

5.1.6 CSM Message Exchange Sequences

All CSM communication is implemented using TCP connections. This is useful
since the CSM protocol is not time-critical but should be reliable. The CSM client
connects to the server on a well-known port. A TCP connection is only used for
one transaction (complete and valid sequence of messages exchanged), thus the
message objects do not have to contain a sequence number. The CSM communi-
cation transactions are grouped according to their three purposes: information of
customers (queries), transfer of agents and agent results, and node topology ad-
ministration.

Queries follow a simple pattern. The client (the home application) opens a
connection to the CSM server port of a node. It sends a query object and receives
a query result. Afterwards both communication parties close the connection (see
figure 5.3).

For agent execution the client wraps an agent into an ExecutionRequest mes-
sage. It sends this message and receives an Acknowledge message (see figure 5.3).
The message contains a bit that signals whether the execution is accepted by the
node or not (Nack). If the node executes the agent it hands the open connection
to the node service handler. By requesting the result transmission node service
the agent can now use the open connection to send an arbitrary amount of Result

5.1. THE CSM PROTOCOL 105

messages. The result message can indicate if the agent wishes to close the connec-
tion. Note, that the node can close the connection at any time if it detects a policy
violation.

END

Result

Server

Connection handover

Query

QueryResult

ExecutionRequest

Nack

ExecutionRequest

Ack

CSM nodeHome application
Client

Agent refused

Agent accepted

Result
.....

(via node service)
Agent

Figure 5.3: The query and the agent execution protocol.

If the agent is forwarded (a node is acting as a client - see section 4.4) the results
of an agent cannot be sent along the connection. Else, a forwarding node would
have to keep many connections open and route results of forwarded agents. Instead,
agents close the connection with a dummy result and request a new connection
from the local node. The node then sends a CallBack message object to the address
and port provided by the agent. Again, the agent then sends its results along the
open connection using the Result message objects in the same way as described
earlier. Note that customers can easily introduce new result formats by subclassing
clientserver.Result.

The RoutingUpdate message is no fundamental part of CSM communication.
If a node learns about new neighbor nodes, it sends this message to all of its neigh-

106 CHAPTER 5. IMPLEMENTATION

bors and then immediately closes the connection again. The CSM nodes use this
one-way message to implement a node routing table (overlay topology), so that
nodes can learn how to forward agents along a route towards a given IP address
(see section 5.7).

5.2 The T-Component and the Raw Packet Protocol

The T-component is a packet copy mechanism integrated directly in the peer-
ing router or attached to the peering connection. The T-component provides the
genericity to customer-based service monitoring. It does so by giving the cus-
tomer access to any IP packet of an IP service associated with that customer plus
the packet’s position in time and space. The CSM architecture separates the T-
component from the CSM node for several reasons: The T-component must be
very fast and should not interfere with the normal packet forwarding of a router.
Therefore, T-components depend on the specific architecture of the peering points.
T-components will meet these requirements best if they are directly integrated by
the network equipment manufacturer or if they are implemented in network spe-
cific measurement hardware such as protocol analyzers [CC98]. A T-component
can also be used for other applications than just customer-based service monitor-
ing (e.g. provider specific management software). So, because of the its equipment
dependence and its usefulness in other contexts it makes sense to factor out the T-
component into a separate entity.

This section describes what kind of T-components have been implemented,
how these T-components interact with the CSM node, and what other options exist
to implement a T-component.

5.2.1 T-components Implementations

The CSM implementation can use three kinds of T-components: an offline version
that uses traffic traces stored in files, an online version that copies IP traffic from
Ethernet cards in promiscuous mode and a version for virtual routers which is
called t-bone.

The former two component versions are related to each other. Both are Unix
shell scripts that start a C++ client to send the packet copies and use the Unix pipe
and filters mechanism to feed the C++ client. Both T-components use the tcpdump
program [JLM89]. Tcpdump is a network management tool that is normally used
to print out the headers of packets on a network interface that match boolean ex-
pressions. It supports also binary traffic dumps of complete layer two packets. One
T-component uses this mode and the boolean expression to copy IP traffic. The
offline component version of the T-components uses tcpdump output that has been
previously stored in a file while the online version starts tcpdump directly with the
appropriate boolean expression.

The t-bone is a T-component for so-called virtual routers [BB00]. Virtual

5.2. THE T-COMPONENT AND THE RAW PACKET PROTOCOL 107

routers are emulations of IP routers that can run on one or more PCs. The routers
can forward IP traffic generated from real world applications. The t-bone is written
in C and also includes the client functionality to connect to the node.

5.2.2 The Interaction between the Node and the T-component

Since the T-component is device dependent and may be realized in software or
hardware standardizing a communication protocol may not be useful. However,
to reduce the implementation work the communication between node and the T-
component is kept simple and uniform. All three T-component versions use the
same protocol to send packet copies. The protocol is called the Raw Packet Pro-
tocol. However, the T-components differ in the way the node requests the copies.
For script based T-components the node starts a new T-component for each request.
It passes a T-component-specific filter description, an IP address and a TCP port
number as arguments to the script. Once a script-based T-component runs it uses
the port and address to open a TCP connection to the node. Then it starts sending
the copied packets. The T-component for the virtual router is more convenient.
The node simply connects to the T-component and requests the packets. The T-
component then sends the packets over the already open connection.

Request for IP packet copies. The node contains an object of the class node.-
T Configurator which is able to order packet copies from T-components or
to start T-components if needed. As mentioned before two of the available T-
components are scripts. The configurator starts the offline T-component with a file
name as argument along with port and address for the callback. The online version
also gets the boolean filter expression for the tcpdump program. The configurator
calculates this expression from the filter that the node generated for the agent (see
section 4.3.3). Therefore, only packets are sent that the agent has requested and that
are allowed to be seen by the agent. In case the node is not located on the machine
to be monitored, the script is started remotely using UNIX’s rsh command. Note,
that each agent gets its packet copies on a separate connection. This improves
the CSM performance since the demultiplexing of packet copies would impose
additional workload on the node which could then become a bottleneck. Also,
when using scripted T-components, each agent leads to the start of a T-component.
This is not the case for the t-bone, the T-component of the virtual routers. Instead,
the t-bone is started as an attached program to a virtual router. The t-bone includes
a TCP server that accepts requests for IP packet copies. A request consists of a
human readable ASCII string terminated by the end-of-line character. The syntax
and semantics is not described in detail here, because it is device specific. See
this illustrating example instead which orders the next 100 packets of TCP traffic
coming from the subnet 10 and going to the subnet 11.12.13:

gimme -number 100 -src 10.10.10.10/8 -dst 11.12.13.14/24 -proto 6

108 CHAPTER 5. IMPLEMENTATION

Note, that the t-bone’s server is reentrant. It can handle several node requests
at the same time.

Delivery of the IP packet copies: the raw packet protocol. All T-components
send the packets on an open TCP connection according to the raw packet format.
The format has a fixed header of 10 bytes followed by a variable payload part that
contains a copy of one IP packet. As long as the T-component copies packets it
keeps sending a header followed by a variable part. The protocol finishes when
either the node or the T-component closes the TCP connection. The header uses
little-endian numbers. The first two bytes encode the length of the payload in
bytes. This reflects the possible length of the encapsulated IP packet. Note, that
we cannot use the length field of the IP packet since the T-component may already
have truncated the payload according to the filter it has got from the node. The
other eight bytes of the header encode a time stamp. The timestamp stores the time
that has passed between the 1.1.1970 and the arrival of the packet. The first four
bytes encode the seconds the second 4 bytes encode the micro seconds.

5.2.3 Other Options for T-components

The T-component is device specific and this influences also the way the node has to
request packet copies. In this section we discuss alternatives how the T-component
can be implemented focusing on how the packet copies can be acquired in a non-
intrusive way. We differ between an approach using additional hardware, one us-
ing additional functionality provided in network hardware and a software based
approach.

Protocol analyzer hardware. As said before, the T-component may acquire the
packet copies from a protocol analyzer [CC98]. Protocol analyzers are instruments
dedicated to analyze a communication protocol. Protocol analyzers are used to
troubleshoot network problems and to monitor network performance. The analyzer
has built-in knowledge of the protocol to ease the analysis (e.g. for Ethernet or
for ATM). Nevertheless, a protocol analyzer has the capability of passive traffic
recording therefore it can be used as a T-component. Often traffic analyzers are
portable devices with dedicated hardware and high performance. However, they
are usually expensive. Also they provide far more functionality than needed for a T-
component. Finally, there is no standardized interface to control protocol analyzers
remotely.

Enhanced network devices. The Simple Network Management Protocol (SNMP)
[CFSD90, Sta99] is an Internet standard protocol to manage and monitor nodes on
a network. Network state information is structured in Management Information
Bases (MIB). If the peering device fully supports the Remote Network Monitor-
ing MIB (RMON) [Wal95, Wal97] it can act as a T-component. RMON defines

5.3. THE CSM NODE 109

objects of of a so called filter group that allows the CSM filtering and objects in a
so called packet capture group which can be used as the CSM packet copy mech-
anism. Unfortunately most router manufacturers do not fully support the packet
capture mechanism. Cisco for example only supports the capture of packet headers
[Cis00a]. For testing purposes however, we used the port-redirection mechanism
[Cab98] (which is a subset of the packet capture group) of Cabletron’s SmartSwich
to feed a T-component.

Packet capture software. Modern operating systems allow personal computers
to act as routers. They also provide libraries to capture and copy routed network
traffic. For example libcap is a packet capture library for Unix systems [MJ93].
On Win32 platforms the NDIS packet capture library is included. Developers can
use these libraries to implement network measurement applications (e.g. [DS00])
and of course to implement a T-component. However, the performance of a soft-
ware solution depends on the implementation of the library, the speed of the host
machine and on the operating system.

5.3 The CSM Node

This section describes the CSM node implementation which is a central part of
the CSM implementation. The node is divided into four functional parts: CSM
communication, agent management, node topology and configuration. This chap-
ter will not list all involved classes because a lot of that material is not relevant for
CSM. Instead it will focus on the important features such as agent execution, node
services and overall design.

5.3.1 Node Overview

Figure 5.4 shows a simplified object hierarchy of a running node. A node is started
by creating a node object. The node object has a number of helper objects from dif-
ferent packages to setup and provide the node functionality. This subsection briefly
explain the most important ones. The node uses helper objects from the config
package to learn about its basic configuration such as its unique name, node re-
source limits (e.g. number of agent places), the location and type of T-component
to be used and other configuration sources e.g. additional file paths and names. The
config package was factored out because it can not only be used by the node but
also by e.g. the home application. This is also true for the topology packet. This
packet includes classes that can provide a name service, a neighboring service and
a routing service to the node. The name service is used to map a node name to an
IP address and port number. The neighboring service consults a configuration file
to provide names of neighbor nodes. The routing service includes a client-server
functionality (using the CSM protocol) to dynamically establish a routing table for
forwarding agents from node to node. The node has a server that receives queries

110 CHAPTER 5. IMPLEMENTATION

or agent execution requests via the CSM protocol (see section 5.1). Arriving CSM
requests are delegated to appropriate handlers. Another important node object is
the Registry. It registers agents and manages the available resources. The registry
does the admission control. It associates agents with users and attaches individual
policies to the agents. The registry deduces the policies from user profiles stored in
a file. The registry also has a ResourceController object which dynamically checks
the resource consumption of the agents. The registry stores handles to the running
agents and to their execution environments.

Manuel H. Guenter

Manuel H. Guenter

Manuel H. Guenter

Manuel H. Guenter

Registry

Files:

config
package

topology
package

Server

Server

RoutingHandler

Object

Package Loop thread

Runtime database

Node

ServiceDatabase

package
node.services

Files:
Neighbors
Names

ExecutionRequestHandler

ExecutionEnvironment

Node config
User profiles

RoutingTable

RessourceController

Templates

Node resources

Running agents
QueryHandler

Figure 5.4: Node implementation overview.

5.3.2 Welcome Procedure for an Agent

A customer request for the execution of an agent first arrives at the server which
starts a new thread to handle the request. The request then goes through the CSM
protocol stack (see section 5.1.3). The stack delivers an ExecutionRequest to the
ExecutionRequestHandler along with information if the agent was encrypted and
successfully authenticated. The handler will now register the agent and prepare the
execution environment for the agent before it finally starts the agent. Here is the
procedure in more detail. Note, that each step can fail. In that case the sender of the
agent gets a negative Acknowledgement message containing an error description
(see section 5.1.5). The handler also resets allocations for the agent made in earlier
steps.

1. The handler contacts the registry to get a policy for the agent. The registry
uses the sender and the authentication information to determine the appro-
priate policy. It can also entirely reject the agent.

2. The handler instantiates the agent object using the AgentClassLoader. This
classloader can create an Agent object from an ExecutionRequest message

5.3. THE CSM NODE 111

(containing Java byte code).

3. The handler creates the filter to be applied to the agent by cutting the re-
quested filter (in the ExecutionRequest object) with the filter of the policy
(see section 4.3.3).

4. The handler starts preparing the execution environment for the agent. If the
T-component uses a callback mechanism (see section 5.2.2), the handler al-
locates a port for that purpose. It also instantiates the execution environment
components and queues (see section 5.3.3).

5. The handler instantiates a ExecutionEnvironment which is a container for all
objects that are part of the execution environment.

6. The handler instantiates a RessourceUsage object that holds references to the
ExecutionEnvironment and that is used to account the resource usage by the
agent.

7. The handler registers the agent at the Registry. This may fail if e.g. a run-
time resource over-usage has occurred (see section 5.5).

8. The agent is initialized to prepare it for the reception of monitored traffic.

9. The handler now starts the execution environment. First it installs the node
services. Then the node service handler, the agent wrapper (that feeds the
agent) and the receiver of the raw packet protocol (see section 5.2.2) is
started (in this order). Each is running in a separate thread.

10. The T configurator is started to start/connect to the T-component.

11. The forwarding of the agent is triggered.

12. The agent is acknowledged via the CSM protocol.

5.3.3 The Execution Environment

The execution environment encapsulates an agent. It protects the node from the
agent, forwards the monitored traffic to the agent and serves the agent’s service
requests. It also accounts every operation of the agent. A specialty of the pro-
posed CSM node architecture is that the agent does not get its own thread. Instead
the agent is invoked by the environment whenever there is something to do. This
approach increases security and makes resource accounting easier. Although the
approach introduces a performance overhead due to thread context switches, the
overhead is not a bottleneck of the CSM implementation (see chapter 7).

The execution environment mainly consists of subclasses of the abstract class
node.EnvironmentComponents. Figure 5.5 shows the inheritance graph for
the execution environment components.

112 CHAPTER 5. IMPLEMENTATION

AgentAccounter

ServiceDelievery

NodeServiceDeliveryAgentWrapper ServiceChannel

Receiver

EnvironmentComponent

Classname

Classname

an abstract class.

a concrete class.

Figure 5.5: Execution environment inheritance graph.

All EnvironmentComponents encapsulate and run in their own thread. The
thread management functionality is implemented in this abstract super class. The
AgentAccounter contains functionality to record the running time of a single method
of an agent. The ServiceChannel handles service requests of the agent (see section
5.3.4). The abstract ServiceDelivery class implements functionality to call methods
of the agent, thus to start agent behavior. The objects of (sub)class ServiceDelivery
are the only objects of the node that call methods of the CSM agent. Two classes
use that functionality. The AgentWrapper delivers the monitored IP packets to the
agent by calling a method of the agent and passing an object of class IPPacket
to the method. The NodeServiceDelivery also uses a method call to the agent to
deliver a result of a service that the agent has requested.

Figure 5.6 shows the internals of an execution environment. The Receiver gets
the monitored IP packets from the T-component via the raw packet protocol. It
creates an IPPacket object of each received packet an puts it in an ObjectQueue.
The AgentWrapper (running in a separate thread) eventually grabs the packet and
hands it to the agent via a method call. For accounting purposes the wrapper mea-
sures the execution time of the method call. Note, that each agent’s reaction to
the monitoring of an IP packet is running in the thread of the AgentWrapper. The
agent can calculate its measurements on the packet, store temporary results, and
request node services by putting a Service object in the ObjectQueue of the Ser-
viceChannel. One important service of the node is to send back an agent result
to the home application. Some services put a reply to the service invocation into
the queue of the ServiceDelivery. The delivery of this reply proceeds similar to
the delivery of monitored packets. Note, that the execution environment architec-
ture completely separates the agent from the rest of the node. The only object
reference to node objects that the agent has is to the ServiceChannel. There the
only method the agent can call is the put(Service service) to request a

5.3. THE CSM NODE 113

node service. Furthermore, the agent can only run when it is called. Note, that the
AgentWrapper and the NodeServiceDelivery are quite similar. In fact, another de-
sign alternative would only foresee a ServiceDelivery. An additional node service
would then be that the agent can request monitored packets. This would simplify
the design. However, the agent would have to demultiplex service replies that are
monitored IP packets and other service replies. Since usually the node services are
used only sparingly but monitored IP packets may come in fast, bursty, and must
be handled as fast as possible I decided to provide a separate lane for the moni-
tored packets. Also, the mentioned duplication of functionality did not result in
duplicated code since the implementation factors out the common functionalities
of the AgentWrapper and the NodeServiceDelivery into the common superclasses
(see figure 5.5).

Receiver

AgentWrapper

accounting

Agent

Thread

ServiceHandler

ObjectQueue

ExecutionRequestHandler

put

E
xe

cu
tio

nE
nv

ir
on

m
en

t

starts

tcp

T_Component

accounting

get

get

IPPacket

Service

put get

ServiceChannel

ObjectQueue

stops

Registry

NodeServiceDelivery

ServiceList

Service

Figure 5.6: Execution environment.

5.3.4 Node Services

Running agents have only one object reference to the execution environment and
this is a reference to the ServiceChannel where they can put request for node ser-

114 CHAPTER 5. IMPLEMENTATION

vices. The classes that support node services are bundled in the a sub-package
of the node named node.services. To request a service the Agent creates a
Service object and puts it into the queue (see figure 5.6). Some services generate
one or more replies that are delivered back to the agent by the NodeServiceDeliv-
ery object of the execution environment. Note, that the delivery is asynchronous, it
takes place via a queue. The class Service is defined as follows:

public class Service {
protected static long current=0;

protected long number;
protected int type;
protected java.util.Vector args;

...
}

Each service request is numbered (instance variable number). The (static)
class variable current helps to guarantee the uniqueness of the number. The
type field identifies the desired service. Different services may need different
kinds and numbers of arguments. The built-in Java class java.util.Vector
is a container of an arbitrary number of arbitrary java objects. A vector is thus the
ideal type for the args instance variable which has to store the arguments for all
kinds of service requests. Replies to the service are also delivered in objects of
class Service. The type and number field of these objects allow the agent to map a
service reply to the request that triggered the reply. In the reply the arguments hold
results or status messages of the reply.

The ServiceChannel removes service requests from the queue. It has a Ser-
viceList that stores references to a handler for each service type. The ServiceChan-
nel calls the appropriate handler and passes the service request to it. The Service-
Handler then executes the service operations. It also puts results (if there are some)
in the reply queue. The service channel and all service handlers can terminate the
agent if the agent requests services without permission or if a serious exception
occurs during delivery of the service. The ServiceDatabase stores templates of
service handlers. When the execution environment of an agent is constructed (see
section 5.3.2) the service list for the agent is constructed from the templates in the
database according to the policy that is valid for the agent in question.

Supported node services. Here is a list of the node services that the CSM node
implementation supports, along with a short description of the service, its argu-
ments and its reply behavior:

� Self-termination. As mentioned before, the agent has no own thread. In-
stead it is invoked by the execution environment every time there is some-
thing to do. If the agent wishes to stop these invocations it calls this service.

5.3. THE CSM NODE 115

The node will then deallocate the execution environment and de-register
(thus kill) the agent. The self-termination service request has no argument
and will trigger no reply to the agent.

� Result transmission. The agent can request to send a result object along
its open connection. This is the most important node service since it is the
only way how the agent can deliver monitoring results to the customer. The
open connection that is used for the transmission is usually the one that the
agent was delivered on. The service object must contain an object of class
clientserver.Result as argument (see CSM communication in sec-
tion 5.1). CSM communication is reliable therefore the agent does not get a
reply.

� Host information. This service provides the agent with general information
about the host that executes it. Thus, forwarded agents can check themselves
if they monitor traffic at interesting locations. This service request has no
arguments. The reply contains three arguments. The reply includes the name
(identifier) of the node, the name of the organization owning the node, and
the DNS address of the node. These names are encodes as Java character
strings.

� Timer. Since agents are only invoked when something (e.g. a monitored
packet) is delivered an agent cannot perform tasks based on regular time
intervals or time-outs. Consider an agent that measures the load of a service
that is not used. If no packet is monitored the agent stays passive and cannot
report that the service is not used. To alleviate this shortcoming the CSM
nodes offer a timer service. The service delivers a reply to the agent every x
jiffies1 for n times. The agent uses two integers numbers as arguments in the
request, namely x and n. Each of the n replies will ’wake up’ the agent and
allow it to e.g. send a report message. The replies contain an integer number
that simply contains the reply number.

� Change the connection.This service closes the currently open connection
and tries to open a new one. This service is important for forwarded agents
since these do not have an open connection to their home application. The
agent must provide several arguments in the request: a character string for
the DNS name of the receiver, an integer number for the port, two boolean
values that indicate if the node should encrypt respectively authenticate the
connection and, if so, a character string with the identity of the receiving
party (used for PGP cryptography). The service handler then disconnects
the current connection and tries to establish the new connection. The service
reply contains a boolean indicating if the connection was established. To
send on the new connection the agent simply uses the ’sending’ service.

1Here, a jiffy is equivalent to 100 milliseconds.

116 CHAPTER 5. IMPLEMENTATION

� Stop all agents. This service stops all running agents and deallocates their
execution environment. It thus resets the node. This is a privileged service
that only authenticated and authorized agents can execute. It takes no argu-
ment and does not invoke a reply.

� Stop the node. This service leads to the graceful termination of the com-
plete CSM node. This is a privileged service that only authenticated and
authorized agents can execute. It takes no argument and does not invoke a
reply.

Note, that the first five services are considered standard and are provided to
all agents. The last two service need explicit permission by the policy (see sec-
tion 5.3.5). They are useful for managing the CSM nodes. Some interesting but
unimplemented node services are described in section 6.5.2.

Security of node services. The node services allow the agent to perform actions
that otherwise are forbidden and prevented. The agent cannot, for example, open
a socket. The security manager would terminate the agent for trying this operation
(see section 5.5). Node services provide access to dangerous functionality in a con-
trolled way. Each agent is associated with a policy that exclusively describes what
services are delivered to that agent (see next section). If the agent requests other
services or does not provide proper arguments it is killed immediately. The node
policy can also mark some services as privileged services. The node stopping ser-
vice can for example only be triggered by an agent that was authenticated as being
send by a root user of the node. The ServiceHandler accounts the service execu-
tion time. This helps to prevent node service based denial-of-service attacks by the
agents. Furthermore, each service handler can restrict the number of consecutive
service requests. The timer service can e.g. only be called once. All node services
are designed to execute quickly and to use little node resources. The timer service
e.g. uses a large minimum time between tow wake-ups. The change-channel and
sending service enforce that only one connection can be open at any time.

Additional node services. Of course, one may imagine many more useful node
services. One service for example could be the migration of an agent. An agent
could request that it will be send to another node. It could also request that its
state be preserved (strong migration [SBB+00, BLP00]). Yet, non of the CSM
applications described in chapter 6 need strong mobility. So this is not a supported
feature of the CSM node implementation. Instead, agent forwarding is used (see
section 4.4). However, if a new node service such as strong migration will become
needed, adding a new service is no problem. The CSM node developer simply has
to provide a new template for the service handler (a subclass of ServiceHandler)
which implements the service and add it to the service database.

5.3. THE CSM NODE 117

5.3.5 User Profiles and Policies

Each agent has an individual policy attached to its execution environment. The
policy is individually calculated by the Registry during the welcome procedure
of the agent (see section 5.3.2). While the execution environment is set up the
environment components access the policy information that is relevant to them.
Then the components can enforce the policy directly. Other objects such as the
resource controller (see section 5.5) also access the policy throughout the lifetime
of an agent.

The Policy. Policy objects represent agent resource limits and authorization dur-
ing the lifetime of an agent. Here is the interface (the public methods) of the Policy
class:

public interface Policy {
public Filter
getFirstMatchingFilter(filter.Filter requested);

public boolean mustAuthenticate();
public boolean isSuperUser();
public long maxExecTime();
public long maxMem();
public int time2live();
public short priority();
public Vector services();

}

The getFirstMatchingFilter() method takes the filter requested by the
agent and returns the filter that will finally apply to the agent. This method imple-
ments the filter policy. The registry uses this method to learn the filter to be used
when installing the filtering of monitored IP packets. The mustAuthenticate()
method implements if the agent associated with that policy must authenticate itself
with cryptographic means. The isSuperUser()method tells if the agent asso-
ciated with that policy is sent by a super user. The maxExecTime(),maxMem(),
and time2live() methods provide policy information about limits to the run-
time resource consumption. The priority() returns the priority of the agent.
These methods are used by the resource controller. The services() returns a
list of node service types that the agent is allowed to request.

User profile. In order to associate a policy to an agent the registry consults the
user database (see figure 5.4 in section 5.3.1) to retrieve a user profile. The user
profile stores a user ID (that is necessary for cryptography), network addresses ad-
ministered by that user, what kind of policy is applied to the agents of that user,
and the type numbers of additional node services granted to that user. Table 5.3
shows how a user profile database may look like. The first two profiles are normal

118 CHAPTER 5. IMPLEMENTATION

customers. The third one is a super user. The last one is an anonymous user. The
anonymous user is not associated with any IP subnet. The CSM node implementa-
tion stores the user profile in a file.

Table 5.3: User profiles.

Node ID Networks Policy group Services
admin@iam.unibe.ch 130.92 CustomerPolicyGen
admin@cui.unige.ch 129.194.90 CustomerPolicyGen
root@iam.unibe.ch 130.92 129.194.90 SuperPolicyGen 555 666
anonymous AnonymUserPolicyGen

Policy Generators. The user profile describes what kind of policy is attached to
agents of that user. The description may be complex, so it is not done in a data
structure but instead it is stored in a separate class. Therefore, policies can e.g.
use different procedures to calculate the filters. This would not be possible with
(passive) typed data. However, introducing a policy class per customer would not
be a very scalable solution. Instead, CSM uses policy generators. A policy gen-
erator abstracts a group of similar policies. At run time it generates policy objects
of that group. The example profiles in table 5.3 refer to three kinds of policy gen-
erators. One functionality of the policy is that it limits the filters that an agent can
request. The CustomerPolicyGenerator creates policies that use the cut mechanism
(see section 4.3.3) to permit only the monitoring of traffic that originates from or
goes to IP addresses associated with the customer. The SuperPolicyGen creates
a policy that allows arbitrary monitoring. The AnonymousUserPolicy creates a
policy that allows only monitoring of packet headers or of encrypted traffic. On
the other hand the agents under the AnonymousUserPolicy policies do not have to
be authenticated. Note that the introduction of new policies is simple. You only
have to generate a subclass of Policy that implements e.g. the filter cut mechanism
the way you want. Then, you have to create a subclass of PolicyGenerator
that calculates and creates (possibly using the user profile) a policy object with the
behavior of your choice.

Figure 5.7 shows the an overview of the use of policies, policy generators and
user profiles.

5.4 Agent Interface

This section describes what the CSM node knows about the agent. It does not
present the implemented agents. They will be presented in chapter 6. From what
has been said in section 5.1.2 we know that the classloader needs an interface dec-
laration or an abstract class description of the class that implements the customer
agent. Note, that this is not necessary for the helper classes that the agents’ byte

5.4. AGENT INTERFACE 119

Manuel H. Guenter

Policy generators

User profile database

Filter

uses generates
creates

Policy

Policy

Figure 5.7: Overview of policy, policy generators and user profiles.

code may bring with it. The helper classes are only used by the agent itself, so the
hosting environment (the node) has not to know about them.

CSM defines an interface that must be implemented by all CSM agents in order
to be executed in CSM nodes. Here is the interface declaration of the agent.

(1) package capsule;
(2) public interface Agent extends java.io.Serializable {
(3) public void handlePacket (node.IPPacket p);
(4) public void handleService (node.services.Service s);
(5) public void emergencyHandle(node.IPPacket p);
(6) public boolean init(java.util.Vector initVector);
(7) public void stop();
(8) public void putServiceChannel(node.ServiceChannel s);}

The line (1) says that the agent interface declaration is located in a separate
package called capsule. The separation is used to ease source code manage-
ment at the customer side of the application, where hundreds of agents may be
implemented. The name of the package comes from the active networking back-
ground of the CSM application where a capsule is an executable network packet.
Line (2) starts the interface declaration. Note that for resource management the
agent must be serializable (see sections 5.1.2 and 5.5). The lines (3-8) declare the
public methods that an agent must implement. As mentioned in section 5.3.3 the
AgentWrapper object calls the handlePacket()method of an agent to deliver
a new monitored IP packet. The AgentWrapper gets the packets from a queue. If
the queue is almost full (filled up to e.g. 80 percent) the wrapper does not call
the handlePacket() but the emergencyHandle() method (line 5). The
exact value of the fill level that triggers emergency handling is defined by the lo-
cal node policy. The agent can should thus implement handlePacket() as
a method for fast packet handling in case of congestion. This reduces the risk
for the agent that it is killed by the node because of a full queue (see section
5.5). The handleService method is called by the ServiceDelivery object to
deliver a reply to a node service request. The init method is called after the
agent was instantiated but before monitored packets are delivered. Thus, the agent
gets a chance to prepare itself for the packet handling. The init method uses a

120 CHAPTER 5. IMPLEMENTATION

java.util.Vector object as a generic container for an arbitrary number of
initialization arguments. The method returns whether the initialization was suc-
cessful. If not, the agent is stopped. The stop method is called when the agent is
stopped gracefully. This e.g. happens when the upper limit of packets to be deliv-
ered is reached. In this method the agent can for example implement the sending
of a final report to the home application. The putServiceChannelmethod is
only called once, during the initialization procedure of the agent, in order to con-
nect the agent to the service channel. The service channel is the only way the agent
can communicate with the node and with the rest of the world.

5.5 Security and Resource Control

5.5.1 Communication Protection

The CSM protocol implementation (see section 5.1) provides the capability to
encrypt and authenticate messages using the Pretty Good Privacy program (PGP
2.6.3i). This PGP version encrypts with the International Data Encryption Algo-
rithm (IDEA) [Lai92] using a 128 bit session key. The protection of the key ex-
change and the signature is supported by the RSA algorithm [RSA78] using a 1024
bit key pair. The CSM protocol supports three modes: plain text, encrypted and
signed, and only signed. When the client contacts a server in one mode, the server
always replies in the same mode. Thus, when the customer sends an encrypted
agent also the results to be sent back are encrypted by the node. Agents that use
the call-back can request the mode that the node should use. Therefore, intermedi-
ate providers cannot access encrypted results that an agent sends back to the home
application unless the providers conspire. So, all CSM protocol actions (e.g. agent
sending, result reception, queries etc.) can be protected if desired against man-in-
the-middle attacks. Note, that currently only PGP based protection is implemented.
Yet, the CSM protocol can easily be extended to other cryptography packages.

The regular IP traffic flow must be protected from the monitoring agents. The
node does so by applying a policy that controls the filtering. The policy uses filters
to describe what kind of traffic an agent may monitor and how much of that traffic
the agent can see (see section 4.3.3). If a provider does not install the proper fil-
tering policies the agents may get access to other customer’s traffic. However, this
is also the case today. The next section describes why an agent cannot circumvent
the node policy mechanism such as e.g. the filtering.

5.5.2 Security Layers of the Node

The node encapsulates the running agents in sand-boxes to deprive them from any
possibility of manipulating the node or other agents. The execution environment of
the agent is its sandbox. It exposes only a reference to one single object namely the
ServiceChannel. Java offers protection mechanisms for class methods. A method
can be declared accessible by objects of that class only, by objects of subclasses

5.5. SECURITY AND RESOURCE CONTROL 121

only, by objects of classes in the same package or by any object. The CSM imple-
mentation isolates the agent classes in an own package and uses this mechanism
to protect all methods of the ServiceChannel so that the agent only can access one
method. The methods simply puts a service request into a queue (see section 5.3.4)
so it cannot be misused for an attack. This one method on one object reference is
the agent’s only access point to the node. The agent also has no own thread. It
completely depends on the computation time that of the threads of its execution
environment. Note, that these threads run with a relatively low priority. The CSM
node uses its own Java security manager to prevent illegal resource access by the
node.

The Security Manager. Java uses a security manager to lock loaded code into
a conceptual sandbox. The security manager is an integrated part of Java’s class
loading mechanism. The security manager keeps track of classes which are loaded
from external sources (not by the default class loader). CSM agents are instan-
tiated from external sources, namely by the AgentClassLoader that instantiates
the agent from the CSM message object (see section 5.1.2). The security man-
ager checks each invocation of a security critical method. It analyses the method
call stack to see if loaded code was involved in the method call. If yes, the se-
curity manager interrupts the invocation by throwing a security exception. While
Java’s security managers are a nice concept the definition of a new security man-
ager is relatively tedious. For every security critical method the developer must
write a check routine. The CSM node implementation uses and extension of the
java.rmi.RMISecurityManager class. This class defines a very restrictive
security policy. No loaded code is allowed to access the file system, any thread
control or the network2.

5.5.3 Resource Control

The CSM sandbox prevents that the agent can do an illegal operation. However,
the agent may excessively use legal operations to disrupt the smooth operation of
the node. This is called a denial-of-service attack against the node resources. The
CSM node detects these attacks with a resource controller. The controller runs in
its own thread which is set to the highest priority so that it preempts any agent
activity. The controller checks in regular intervals the resource consumption of all
agents. If an agent launches a denial-of-service attack against a node resource the
controller will detect it an can immediately terminate the agent. The controller uses
the accounting information that the execution environment collects of each agent
(see section 5.3.3).

Here’s how the three node resources CPU time, memory and network capacity
are protected.

2If an agent wants to send something over the network it needs to put a result transmission service
request in the node service queue.

122 CHAPTER 5. IMPLEMENTATION

CPU time. The AgentAccounter components of the execution environment (see
section 5.3.3) provide the resource usage statistics of each agent. The resource
controller uses that data and checks for each agent if:

� The agent’s maximum life time in the node has expired.

� The agent’s CPU time sums up to a value greater than a maximum threshold.

� If there was a agent method invocation that did not return within an upper
limit of time.

The resource controller kills the agent if any of these conditions are true. The
resource controller also checks if the node is congested. It measures this by com-
paring how the work of each agent progresses. If one of these two conditions is
met, the node is congested:

� An in-queue of an agent is full.

� In too many cases3, an agent had to treat a monitoring packet with the emer-
gency method (see section 5.4).

Both conditions show when at least one agent is too slow to perform its work.
Then, the resource controller declares the node to be congested. During conges-
tion, no new agent is granted admission to the node. The controller also starts the
congestion resolution algorithm. The algorithm determines the agent with the low-
est priority and the least effective CPU resource consumption (since the last check)
and terminates it:

1. Consider only agents that have executed in this checking interval. Let their
execution time in the last interval be c.

2. Consider only those agents with the lowest present priority. This avoids that
many fast and low priority agents can kill one high priority agent.

3. Find among those agents the one with the least effective CPU usage. Con-
sider therefore the number of packets n that the T-component has captured
for the agent during the last checking interval. Consider the number of pack-
ets h that the agent has handled in the interval. The kill ranking r of an agent
is then r = cn=h. If n is zero then also h is zero and the ranking is defined to
be c. Note, that this can happen e.g. if the agent does not get packets but gets
a reply from a node service. The agent with the highest ranking is killed.

The motivation of the definition of r is as follows: If the CPU time c is large
or if an agent gets many packets (large n) it uses more resources. If it treats few
packets (if h is small) the agent is working inefficient. In fact, r is the CPU time

3This is a configurable threshold of the node.

5.5. SECURITY AND RESOURCE CONTROL 123

that the agent would have needed to treat all n packets that were delivered to it. So
r reflects how greedy the agent is.

Note, that the thresholds and maximum values used for resource control can be
configured individually by each node.

Memory protection. The agents can create and store as many helper objects
as they want. An agent could use this to launch a denial-of-service attack against
the memory of the host machine. The resource controller regularly checks the size
of an agent. Unfortunately, the Java virtual machine does not provide a sizeof
primitive to do so. Instead, CSM nodes use the fact that agents are serializable (see
sections 5.1.2 and 5.4). The controller serializes the controlled agent into a byte
stream. The size of this stream is measurable and is used as an approximation of
the true memory consumption of the agent. If the size exceeds a limit, the agent
is killed. The serialization is an expensive operation (see section 7.1.1), so the
controller only executes this check with a configurable probability.

Network resource protection. The agents can access the network only via the
node services. Therefore, there is no need to do regular checks by the resource
controller. The node services can control the resource consumption directly. The
service handler for the ’sending’ service can e.g. include a rate control mechanism.
It can impose restrictions on the rate and the size of the messages sent. These
restriction may depend on whether the messages should be authenticated or en-
crypted. However, in the CSM implementation the excessive use of node services
always lead to a poor CPU ranking and thus the CPU control mechanism already
regulated the use of the node services.

5.5.4 Agent Security

In this section we discuss how the agent is protected while it resides in a node. The
agent is delivered in byte code that programs any behavior desired by the user, in
the user’s own programming style. This obfuscates the contents of the agent but it
does not protect it in a cryptographic way. The owner of the node may decompile
and reverse engineer the agent to find out what the agent intends to do. The node
owner can also forge agent results and send them to the home application. Section
6.4 discusses ways to make such an attack hard and to increase the chance that
the attack is detected. Note, however that the node can always launch a denial-
of-service attack against the agent. It can kill the agent at any time. However,
the customer will find out about that. If agents of many customers do not get the
service expected, some of these customers will start to prefer the services of other
providers. Therefore, it is in the best interest of the provider not to attack the agents
on their node platforms.

Another type of attack is when one agent tries to attack another agent. How-
ever, the same mechanisms (sand-box, resource control) that prevent the agents
from attacking the node also prevents them from attacking each other. The only

124 CHAPTER 5. IMPLEMENTATION

exception are agents with high priority. When an agent of high priority congests
a node, the other agents are one by one terminated. But this behavior is intended.
The agents of the regular customers should run with the same priority. Only agents
from the provider itself (or maybe agents from VIP customers) should run with
high priority. They can then accomplish tasks such as mission-critical trouble-
shooting or even node maintenance.

5.6 The Home Application

The customer uses a so called home application to access the customer-based ser-
vice monitoring infrastructure. The application allows the customer to query nodes,
send agents and to receive and visualize the agent results. The home application
is not fully automated like the node. Instead, the user gets a tool for conveniently
accessing the CSM infrastructure. While the implementation of the home applica-
tion needs a less complicated internal logic it faces the problem of formating agent
results for the human eye. Since CSM agents may measure all kinds of service
and network parameters it is not possible to implement a solution that supports
every view on results that a customer can think of. Instead, the CSM implementa-
tions allows developers to easily extend the application to other data representation
models.

5.6.1 Implementation Overview

Like the node implementation the implementation of the CSM home application
uses the clientserver package to communicate over the Internet (see section
5.1). The main parts of the home application deal with the collection of user input
and the representation of agent results in graphical user interfaces. In order to be
extensible the home application implementation is built around a framework of few
classes. Figure 5.8 shows the framework.

CSM Dialog

Protocol

Form

Display

user input

starts

Main GUI
shows

agent inputstartsvisible

Figure 5.8: Framework of the home application.

The classes denoted as ’visual’ are either extended Java abstract windowing
toolkit classes or use them. The home application is started by instantiating an ob-
ject of the main class CSM. The object displays a GUI with buttons that let the user
start different Dialog objects e.g. for sending an agent or for sending a query.
Several dialogs can run concurrently. The dialogs display forms where the user

5.6. THE HOME APPLICATION 125

can e.g. fill in what agent or query (s)he wants to send, to what node the applica-
tion should send and so on. The user can then have the dialog trigger the desired
action thereby ending the dialog. When the user triggers the dialog also opens an
independent Display object and connects it to a ProtocolObject that it has
started in the background. The protocol object performs the CSM protocol trans-
actions. It sends the appropriate CSM protocol request (e.g. an execution request
to a node) and receives the answers. The protocol object forwards the answers
to the displayer that represents them on the screen. The framework consists of
abstract classes that implement basic functionalities and the cooperation between
these classes. For every class there are three different subclasses that implement
the three main types of control tracks: (1) The sending and receiving of a query,
(2) the sending of an agent in end-to-end mode, and (3) the sending of an agent in
a forwarding mode. The later two are related, but the display model is quite differ-
ent. When using end-to-end sending the agent replies are delivered over the initial
connection. When forwarding is used, several instances of the agent try to connect
back to the home application. The display for results of forwarded agent thus is
more complex and needs preliminary preparation (e.g. the starting of a server).

The displays use a handful of helper classes to represent e.g. an IP packet
contents in different ways and to represent the network topology in case of agent
forwarding.

5.6.2 The Transmission of a Request to the Node

Figure 5.9 shows the CSM main GUI and the form for sending an agent. The
user has selected the send button of the main GUI. This has started the sending
dialog that opens a form. The main GUI has a help and a quit button that provide
the obvious functionalities. The query button starts a query dialog window. Note
that for each button click a new dialog is started, so it is possible to compose
and send several queries and agents at the same time. The sending form mainly
consists of two parts: the information about the agent transmission and the filter
information. Here, a customer with the customer identification demouser wants to
send an agent to the node with the identification admin@iam.unibe.ch. The agent is
of class capsule.VPNAgent. The customer can browse the file system to select
available agent classes. Note, that the home application needs to know if this agent
will send back the results with a separate callback. The rest of the form lets the
customer specify the filter that describes the IP traffic that the agent should monitor.
Here, all IPSec traffic (protocols 50 and 51) coming from the subnet 130.92.0.0/16
and going to the subnet 129.0.0.0/8 is monitored. The agent wants to examine 100
packets.

Figure 5.10 shows the form for a query message. Note the similarity to the first
part of the sending form. This is because the forms share common helper classes.

When the user presses the send button on the sending form, the dialog validates
the entries (e.g. it checks if the filter description is correct, and if the agent byte
code is available), starts the appropriate display window (object of class Display)

126 CHAPTER 5. IMPLEMENTATION

CSM Main

Sending Form

Figure 5.9: The CSM GUI and the agent sending form.

5.6. THE HOME APPLICATION 127

Query Form

Figure 5.10: The query sending form.

for this kind of request, and creates a Protocol object. The object uses a sep-
arate thread to steers the CSM protocol interaction, thereby making use of the
clientserver package. In case of network failure it displays warning mes-
sages. The protocol (handler) object shows an alarm if results are not encoded
properly, e.g. if they are not encrypted when they should. It also forwards the node
replies and the agent results to the display. The display window for an agent that
was sent in end-to-end mode is depicted in figure 5.11. It has a status line on the
top. Here, an agent has terminated its work at a node; the connection has been
closed. Below the status line there is a scrollable text window. All result objects
have a method that prints their contents to a character string. The text window uses
this method to display agent results. The text window provides therefore a generic
interface for the customer to inspect agent results. Here, the agent has reported the
average throughput of the measured traffic (9 kilo-bits per second). It has detected
a packet that does not seem to be encrypted. Note, that the result object can carry IP
packets. The agent used this mechanism to send the suspicious packet back to the
customer. The display provides several views to inspect the packet. Here, a header
summary with a hexadecimal representation of the whole packet was chosen.

5.6.3 The Callback Displayer

When an agent is sent in end-to-end mode the home application keeps the connec-
tion open and hands it to a display. So one display shows the results of exactly one
agent. When agents are forwarded to several nodes they have to explicitly contact

128 CHAPTER 5. IMPLEMENTATION

Results of the Agent

Figure 5.11: The agent result display window.

5.6. THE HOME APPLICATION 129

the home application after they start executing in the remote nodes. A special dis-
play (with the help of other objects) displays the results of several agents. Note,
that the home application does not know in advance from where these answer will
come and how many answers there will be. The display starts a CSM protocol
server that only listens for CSM callbacks. The agents use the callback node ser-
vice to contact that server (see section 5.3.4). The node service sends an initial
CSM object (of class CallBack - see section 5.1.5). The message informs the home
application what node is executing the agent. The display uses this information
to draw the topology of the nodes that run the agent. Each agent result contains
a floating point number. That number along with a time stamp is displayed close
to the node where it was measured. A special value displayer performs this task.
This result displayer can be extended to format the results of more specialized re-
sults in a more compact way. However, there is a danger that the callback display
gets crowded very soon. It can only provide a rough overview. Therefore, all re-
sults that arrive at the home application can be stored on disk for off-line analysis
with third-party tools. Figure 5.12 shows the a node topology and measurement
results as presented by the display. Notice, that the display only shows the inter-
provider connectivity. On the screen the internals of a single provider’s network
are abstracted into a filled disk.

CSM Callbacks

Figure 5.12: The callback display window.

130 CHAPTER 5. IMPLEMENTATION

5.6.4 Generic Views of the Agent Results

The implemented CSM home application provides several visualizations of agent
results. The visualization always use the same architectonic principle which is de-
picted in figure 5.13. There is a standardized result class (from the clientserver
package). The home application introduces a number of result displayers that use a
Java canvas to draw their view of the result. The canvas may be a GUI window or a
GUI component provided by Java’s abstract windowing toolkit. The architectonic
principle allows the developer to replace a result displayer with another at run-time,
so the customer can select what view of the results (s)he wants. A developer can
easily introduce new subclasses of results that carry more information. (S)he can
also write new displayers that can show the new aspects of the results. Neverthe-
less, the old displayers will also still work, because of the inheritance mechanism.

Result

ResultDisplayer

Extension

Canvas

Figure 5.13: The visualisation priciple.

The home application introduces several result displayers. One uses the char-
acter string representation that each result object supports. There is also a small
collection of result displayers that display the IP packet that a result object can
contain. It supports a text representation that also shows the packet’s payload in-
terpreted as ASCII characters. This is useful when monitoring an ASCII character
based protocol such as http. Then, there is the traditional hexadecimal represen-
tation already shown in figure 5.11. As a special feature the home application in-
troduces displayers that represent the packet payload as a matrix of colored boxes.
This can be useful to analyze encryption and to detect patterns in the traffic. Fig-
ure 5.14 shows such a graphical representation of two packets. Each colored box
represents a byte value of the payload. The packet to the right is encrypted. The
encryption scrambles the patterns. All colors appear with a similar probability. The
packet to the left is a BSP message (see section 2.3.4). It is not human readable,
but still it exposes some visible patterns. At the bottom of the packet there is a
digital signature which becomes visible when displayed like that.

For agents that are forwarded and thus use the callback mechanism the CSM
implementation introduces a new result class named NumericResults that can
carry an array of floating point numbers along with an averaged number. The aver-
aged number is then used by the value displayer to give an overview of the currently
measured state (see figure 5.12). This simplifies the job for the home application,
which may become a bottleneck if many agents use the callback mechanism at

5.6. THE HOME APPLICATION 131

Encrypted packetEncoded packet

Figure 5.14: Graphical representations of two packets.

132 CHAPTER 5. IMPLEMENTATION

the same time. The agents can preprocess several results and aggregate them in a
NumericResults object thus disburden the home application. The new result class
and the callback result displayer are another example of the presented architectonic
principle and they show how new result types and suitable result displayers can be
added to the home application implementation.

5.7 CSM Internetworking Support

Section 4.5.1 identified the need of an advanced support for large scale deployment
of the CSM infrastructure. The infrastructure should provide a name space, node
contacting information and dynamic node topology information. Section 4.5.1 pro-
poses to extend existing Internet protocols. For the proof-of-concept however a
simpler implementation of the necessary mechanisms suffices. There, each CSM
node has two special configuration files, one for providing name and contacting
information and one for topology information. Note, that nodes that have access to
the same file system can of course share these files. This approach is not scalable to
large numbers of nodes. If there are several thousand nodes then the overlay topol-
ogy may become difficult to maintain. Yet, the CSM implementation is intended
as a proof of concept. The CSM experiments did at no time have access a number
of monitoring points which is even near the critical size.

Nevertheless, the CSM nodes implement a dynamic routing protocol for main-
taining an overlay topology, so that agents can be routed from node to node. Note
also, that the interfaces between the node and the classes that provide the advanced
support functionalities (that access the configuration files) are factored out in sepa-
rate classes. Thus, if a solution based on existing Internet protocols will be imple-
mented it is easy to integrate it in the existing node implementation.

5.7.1 Name and Topology Information

All node identifiers are encoded in an e-mail like naming style such as admin@-
node1.iam.unibe.ch. This is compliant with a possible future integration of
node name resolution with DNS lookups. E-mail addresses also work well with the
PGP encryption and authentication infrastructure. In order to have a compact solu-
tion CSM integrates the contact information of nodes with the contact information
of customers. Table 5.4 shows how records of a name lookup file are structured.
Each identifier is associated with an IP or DNS address where a node runs. The
node listens for the CSM protocol on the given port number. The port number
is not fixed so that several nodes may run on a single machine. For normal de-
ployment of CSM there is no need to run several nodes on one machine. Yet, this
feature was convenient for testing CSM nodes. The contacting information record
also contains a field that names the owner organization of the node (the name of the
provider). The contacting information file mixes nodes with customer identifiers.
Therefore it also needs a flag that distinguishes them.

5.7. CSM INTERNETWORKING SUPPORT 133

Table 5.4: The contacting information file structure

Identifier DNS address IP Port Organization Customer
admin@node1.cui.unige.ch 129.194.71.53 1998 Uni Geneva false
admin@sniff.iam.unibe.ch milou.unibe.ch 1998 Uni Berne false
mguenter@iam.unibe.ch balu.unibe.ch 130.92.64.15 0 RVS true

The topology lookup table allows the nodes to determine their neighbor nodes.
The nodes use this information to set up routing tables that allow them to forward
agents from node to node in a similar way as IP packets are forwarded in the Inter-
net. The customer can use the CSM protocol to query the nodes about neighboring
information in order to learn about new nodes. Agents that use the callback mecha-
nism can automatically transmit neighboring information to the home application.
The home application is then able to reconstruct the part of the node topology that
is interesting for the customer. The node also uses the topology lookup table to
store fixed IP addresses of customers. Then these customers can forward agents
in the hop-by-hop mode (see section 4.4) which allows the customer to monitor a
complete route. Table 5.5 shows a sample of the structure of the topology lookup
file. There, two nodes are neighbors of each other and one of the node sits on an
access router of a customer (mguenter@iam.unibe.ch - compare with table 5.4).

Table 5.5: The topology lookup file structure

Identifier List of neighbors
admin@node1.cui.unige.ch admin@sniff.iam.unibe.ch
admin@sniff.iam.unibe.ch admin@node1.cui.unige.ch:mguenter@iam.unibe.ch

For each node, the topology file contains a list of identifiers that declare who
that node’s neighbors are. Note, that the nodes need the contacting information file
to map node identifiers to network addresses. They also need a routing mechanism
to learn more about the topology than just neighboring information.

5.7.2 Routing

At the startup of the node, the node consults the topology table to learn about its
neighbors. It initializes a routing table and inserts the neighbor contacting infor-
mation gained from the appropriate file. The CSM nodes implement a distance
vector routing algorithm that uses the hop-count as distance metric. The routing
protocol is thus similar to the RIP routing protocol of the early Internet. The rout-
ing records for the neighbor nodes thus include a hop-count value set to one. The
routing mechanism of the node gets routing records from two sources. As already
mentioned, at the startup of the node the topology table provides the names of the

134 CHAPTER 5. IMPLEMENTATION

immediate neighbor nodes and neighbor customers. Other routing record candi-
dates are received from neighbor nodes through the CSM protocol. The routing
mechanism uses these candidates and enters all those records of targets that are not
yet in the routing table or replaces the records of targets that have a higher hop-
count in the routing table. All updated records are bundled into one CSM message,
their hop-count is incremented by one and the bundle is then broadcasted to the
neighbor nodes.

Here is an excerpt from the class definition of routing records:

public class RoutingRecord implements java.io.Serializable {
public int IP; // Target.
public String nextHop; // A node identifier.
public int hopCount=0;

...
}

5.8 Organization of the Source Code

The CSM Java source code is grouped into packages. This provides more modu-
larity, safety and managability to the implementation. The CSM implementation
foresees two installations: one for the customer (the home application and indi-
vidual agents) and the other for the provider (the nodes). Both installations have
packages that are uniquely used by them, some that they both share, and some that
are only stubs. The stub packages are necessary if one installation must know some
basic classes of that package but not all of them. The best example is the capsule
package that bundles the agents. For the node installation it suffices to know the
capsule.Agent class. The individual agent class and its helper classes are dy-
namically downloaded by the CSM protocol when the customer sends the agents.
Here is a complete list of the packages and their purpose:

� application. This package hosts stand alone Java applications that can
be used in conjunction with CSM agents. An example application is a traffic
generator.

� capsule. All CSM agents are implemented in this package.

� clientserver. The CSM protocol classes and helpers are implemented
here.

� config. This package groups the classes that help the node or other ap-
plications read and parse configuration information from files.

� filter. All classes related to filtering are implemented in this package.

� homeApplication. The classes that implement the home application
are bundled into this package.

5.8. ORGANIZATION OF THE SOURCE CODE 135

� netgui. This package hosts the classes that help to display a network
topology and callback agent results.

� node. This package bundles most of the classes relevant for the node im-
plementation.

� topology. Here are the classes that implement the node routing.

� utils. This package contains helper classes that are also useful in other
contexts such as e.g. the PGPEncoder class that provides access to PGP
encryption and authentication.

Table 5.6 shows how the installations use the packages:

Table 5.6: The use of the packages by the two installation variants.

Package Provider installation Customer installation
application not used exclusively used
capsule stub used
clientserver shared shared
config exclusively used not used
filter shared shared
homeApplication not used exclusively used
netgui not used exclusively used
node used stub
topology used stub
utils shared shared

136 CHAPTER 5. IMPLEMENTATION

Chapter 6

Applications of Service
Monitoring Agents

Chapter 4 showed that the successful market introduction of new IP services will be
coupled to the introduction of a customer-based service monitoring infrastructure.
This chapter will give examples of new IP services and of CSM agents that are
capable of monitoring them. Neither the list of services nor the collection of agents
discussed here are complete. But since one key advantage of the proposed CSM
infrastructure is its flexibility. For each new service a new monitoring agent can
be implemented (or an old one adapted). This can be performed by customers,
providers, or a third-party vendor. This chapter focuses on the IP services discussed
in part I of the thesis: a virtual private network service and differentiated services
for the Internet.

6.1 Monitoring a Virtual Private Network Service

Virtual Private Networks (VPN) for the Internet [FH98a, FH98b] provide a trans-
parent and secure mechanism to interconnect remote sites with IP (see figure 1.2).
IP packets are encapsulated in new IP packets when entering the Internet (tunnel-
ing). The payload of the new packet (the original packet) is encrypted. The original
IP addresses may be private (not routed in the public Internet) [RMK+96] so they
do not have to be world-widely unique. Thus, VPNs allow the customer to use
an arbitrary number of unregistered addresses in their Intranet1. Virtual private
networks over the Internet are a cheap and secure alternative to leased line based
private corporate networks. They take advantage of the ubiquitousness of the In-
ternet and the trend towards Intranets. The Internet Engineering Task Force (IETF)
proposed the VPN standard IPSec [KA98c], which is supported by many vendors
nowadays. However, VPNs and especially their cryptographic mechanisms are dif-
ficult to understand and manage [GBK99]. Therefore, service providers begin to

1Intranets: Corporate networks based on IP technology.

137

138 CHAPTER 6. APPLICATIONS OF SERVICE MONITORING AGENTS

offer VPN services where they setup and manage the tunnel end-points for their
customers. However, the security is transparent to the customer. The customer
believes, that all the IP traffic that is leaving the network is encrypted. But encryp-
tion is computational intensive. How can the customer be sure, that the provider is
really performing the IPSec protocol properly and is not just e.g. compressing the
payload? This question is not a purely academic one. In the year 2000 the ques-
tion arose in two different IPSec related e-mail discussion forums [Fre00, Sec00].
There are different reasons why people need the ability to monitor a VPN service.
For example, the customer’s technical personnel may have to give an account of
the expenses for a VPN service to the higher management of a corporation. They
therefore need a way to demonstrate the gained security. The customers also need a
way to examine the VPN service in order to make an informed decision whether the
service is interesting to them. The customer may also have to integrate a VPN ser-
vice into a corporate-wide security policy which may e.g. specify that the private
address structure of the corporate Intranet shall be hidden and that all IP traffic
traveling over public infrastructure is encrypted. Usually such business policies
demand for processes that guarantee or enforce policy-conformance. The discus-
sion on the expert mail lists concluded that there are two powerful ways to check
conformance of IPSec VPNs: The traditional method consists of interoperability
tests: if products of several vendors cooperate in a given mode, then that mode
must have been implemented properly. However, most VPNs use only equipment
of a single supplier in order to ease the management. Further, if a service provider
operates the VPN service the customer will probably neither be able nor allowed
to perform interoperability tests on the providers equipment. The second approach
for monitoring a VPN service is introspection into the service traffic. Mail list
authors suggest tcpdump for this purpose but of course this is not an option for
out-sourced VPNs because of security issues. Here, the proposed customer-based
service monitoring infrastructure comes to play. It provides a safe way to service
inspection.

6.1.1 Functionality of a VPN Control Agent

Given an agent infrastructure as described in section 4 we have many possibilities
to check whether the VPN provider implements the service as promised using spe-
cialized agents. Such a VPN monitoring agent requests (some of) the packets from
the node that are exchanged between the tunnel endpoints and that belong to IPSec
traffic (protocol 51 Authentication Header (AH) or 50 Encapsulating Security Pay-
load (ESP)). The nodes of VPN providers can accept requests for monitoring ESP
traffic, because the ESP payload should be encrypted, so the privacy of the sender
is not compromised. For AH, the provider may enforce that only the header bytes
are delivered. Paranoid providers may also limit such access to agents owned by
customers that subscribe to their VPN service. The agent can thus monitor on the
IPSec traffic. Here are some specific checks that can be carried out by CSM agents:

6.1. MONITORING A VIRTUAL PRIVATE NETWORK SERVICE 139

� The customer can occasionally send out agents to the egress peering points
of the access network (see figure 4.1). These agents will run outside of the
customer’s private network and can monitor all traffic that enters form and
leaves to the public Internet. The agents check for traffic that use in their
header internal network addresses of the customer’s network. The agents
should not find any such packets because these addresses should be private.
If the service is working properly the privately addressed packets are encap-
sulated in the payload of a packet with the public tunnel-endpoint addresses.

� The customer can send out agents that monitor the IPSec protocol activities.
Agents can for example monitor the presence2 of the key exchange protocol
IKE (UDP to port 500).

� The agents can also analyze the packet structure to see if the proper tunneling
modes are used. It can examine the IP protocol field (50 for ESP, 51 for
AH) and eventually the next header field(s).

� The agents can analyze the protocol fields of the IPSec headers. For example
it can use the sequence number to learn about lost packets. It can use the
security parameters index to identify different tunnels.

� A VPN agent can collect statistics about the fragmentation of IPSec packets.
IPSec adds additional header and eventually trailer bytes to the IP packets.
This can cause packets to exceed a local MTU value and thus lead to packet
fragmentation. Problem reports on e.g. the VPN mail list indicate that frag-
mentation is a major cause of IP-VPNs problems ranging from performance
degradation to service breakdown [Bir].

� VPN monitoring agents can collect data at several points in the network.
Thus an agent may monitor the traffic inside of the customer’s private net-
work (plaintext) and correlate that with data collected in the provider net-
work (IPSec). Using this approach the customer can e.g. detect if a provider
uses the same tunnel for several customers.

� The customer can test the authentication mechanism of the provider. The
customer lets an agent fetch an IPSec packet in the provider network. An-
other agent checks for duplicated packet at the far end of the VPN tunnel.
The provider retransmits that copied packet thus launching a replay-attack.
IPSec should detect the attack and discard the packet. The agent can also
carry out other traditional performance monitoring tasks such as recording
throughput and jitter of a VPN tunnel.

� IPSec agents can be used to correlate arrival times of a given packet in order
to learn e.g. the one-way delay of the transmission and the time for encryp-
tion and decryption of a packet.

2The IKE protocol of IPSec is encrypted, therefore not much more than the presence can be
monitored.

140 CHAPTER 6. APPLICATIONS OF SERVICE MONITORING AGENTS

� The customer can use statistical tests to validate the encryption and authen-
tication algorithms used by IPSec.

6.1.2 Statistical Tests on Cryptographic Algorithms

The VPN monitoring agent has (albeit limited) possibilities to validate the quality
of the encryption and also of the authentication algorithms used for the protec-
tion of the VPN. The output of cryptographic algorithms hides the structure of the
input. Value accumulations of and correlations within the input data values are
washed away. The output bits look as if created by a uniformly distributed and in-
dependent source of random zeroes and ones. If a cryptographic algorithm exposes
regularities, these can be used to break it. In the area of random number generators
there are many statistical tests that reveal statistical irregularities. These tests can
therefore be used to detect a weakness in an encryption scheme. Note, that the
reverse implication is not necessary true: even if an encryption scheme is useful
as a random number generator it may still be insecure. The use of statistical tests
to find weaknesses in an encryption scheme is widely accepted. For example the
National Institute for Standardization (NIST) used a suite of statistical tests in the
evaluation process for the Advanced Encryption Standard (AES) [Sot00]. One of
the AES candidate algorithms will replace the ubiquitous but used but timeworn
DES encryption algorithm. Note, that several3 candidate algorithms did not pass
the statistical tests and were consequently rejected.

A statistical test suite. We implemented a statistical test suite with the program-
ming language Java. The framework (see figure 6.1) is modular so that the input
data can come from different sources and that different tests can be used. The raw
data is encapsulated in singletons which format the data into numeric values or raw
bytes (samples). Each singletons object represents a stream of sample values. The
source of the samples may e.g. be files or user input or live encryption algorithms.
The singletons thus hide the details of the source of the data. The accumulator
classifies the samples delivered by the singletons object. For example it may count
byte values (256 classes) or count the number of samples that have a higher value
than a threshold (two classes). The accumulator has also a distribution. The distri-
bution defines the probability for each value class that the accumulator uses. The
test compares the accumulated occurrences in the value classes with the distribu-
tion. It calculates the probability that the sample values really reflect the expected
probability. Of course, the expected probabilities (the distribution) depend on the
classification that the accumulator uses. The test uses as hypothesis that the en-
crypted traffic has the same statistical properties as an uniformly distributed and
independent bit stream. This leads to an expected distribution. Then the test cal-
culates the probability that the hypothesis is true given a concrete distribution of
samples. If the test result is very improbable then the encryption algorithm is prob-

34 out of 15.

6.1. MONITORING A VIRTUAL PRIVATE NETWORK SERVICE 141

ably not safe. Note, that the test output can be used as singletons again. The test
provides a probability of the form: chances that a the hypothesis is true are within
98 percent. We can then test several sets of samples and classify them into two
categories: the ones within the 98 percent and the ones that are not. We know the
expected distribution (0.98 for ’ in’ and 0.02 for ’out’). Thus we can now calculate
the probability of the hypothesis using a whole series of tests. The next paragraph
shows how tests can evaluate the output of an accumulator. Most of that material
originates from [Knu81] and is described in more detail there.

Data
Object

Dataflow

Has-a relation
Optional dataflow

Name

Name

AccumulatorRaw data Singletons Test

Distribution

Test result

Figure 6.1: Statistical test framework.

An example of a statistical test: the byte frequency test. Here is an instance
of the framework that is both illustrating and useful. The byte frequency test tests
if the bytes in a bit stream are equally distributed. It interprets the input as raw
bytes. The accumulator counts the occurrence of each byte value; it thus classifies
the raw data into 256 categories. Note, that such an accumulation is also called
a histogram. When a significant amount of bytes is counted (this depends on the
test) then the test analyses how the bytes are distributed in the value space. En-
crypted data should be uniformly distributed so each byte value should occur about
the same number of times. However, if every byte value would occur exactly the
same number of times this would be suspicious, too. Figure 6.2 shows an example
histogram together with the expected distribution.

The byte frequency test uses the well-known �2 statistics [Knu81] to quantify
the conformity of the classified values with the distribution (to evaluate the test).
Assume we have k categories and Ys samples fall into category s. Let n be the
number of samples and ps the probability that a sample falls into category s. Then
the �2 statistics V is defined as:

V =
X

1�s�k

(Ys � nps)
2

nps
(6.1)

For each category the square of the deviation between the counted samples Ys

142 CHAPTER 6. APPLICATIONS OF SERVICE MONITORING AGENTS

2

4

6

8

10

12

14

16

18

20

22

0 50 100 150 200 250 300

N
o.

 o
f o

cc
ur

en
ce

Byte value

Byte value histogram
Byte frequency

Expected value

Figure 6.2: The histogram of byte values.

and the expected number of samples nps is calculated. This deviation is put in
relation to the number of expected samples and summed up over all categories.
For the byte-frequency test each byte value has the same probability, thus (ps =
1=256)8s. The nice thing about the �2 statistic is that it provides a single value V
that can be directly mapped to a probability. The explicit formula is rather complex.
In order to determine the probability of the calculated V value there are tables that
map V values to probabilities [Knu81]. This mapping depends on the degree of
freedom of the category classification. The degree of freedom is the number of
categories minus one (k � 1). For the byte frequency test the degree of freedom
thus is 255. The table provides information of the form: with a probability of 99
percent V should be less than 331.5. If not, the deviations between the number of
occurrences and the expectations from the distribution is too large. For the byte
frequency test the �2 distribution table also indicates that with a probability of
99 percent V should be larger than 205.5. If not, the number of occurrences in
each category is too close to the expected value. Note that the �2 probability table
can only be applied if a significant number of samples have been collected. The
number of samples should be at least as big that the expected number for each
category (nps) is at least five. So for the byte frequency test (n 1

256
� 5), thus

at least n = 1280 bytes should be considered. The test for the byte distribution
depicted in figure 6.2 delivers V = 274:9 thus the data source passes the test.

The run test. The run test is a powerful statistical test that is sensitive to cor-
relations in consecutive data values. Instead of classifying the encrypted data by

6.1. MONITORING A VIRTUAL PRIVATE NETWORK SERVICE 143

the byte values, the run test works on floating point numbers. For example, four
raw data bytes are interpreted as one floating point number. The numbers are then
divided in sequences of monotonically increasing numbers. E.g. the sequence
(�33:2; 104:4;�45:8; 3:0; 34:7; 7:1;�19:3;�93:2; 1:1) is interpreted as five se-
quences: (�33:2; 104:4; j � 45:8; 3:0; 34:7; j7:1; j � 19:3; j � 93:2; 1:1). Then, the
sequences are categorized according to their length. Usually, there are 6 classes:
sequences of length 1, 2, 3, 4, 5, and 6 or more. The expected distribution of these
sequence lengths is not trivial, because the length of a sequence depends of the
length of the previous one. Therefore, the run test needs a fairly complex calcula-
tion of a statistic V in order to be conform with the �2 distribution table. However,
with a simple trick the calculation gets much easier. You simply omit the sample
right after the end of a sequence. Then, the sequences lengths are independent
and the �2 distribution table can be used directly. When this trick is applied the
probability P (r) for a sequence of length r is:

P (r) =
1

(r � 1)!(r + 1)
(6.2)

Table 6.1 shows the expected distribution of the 6 categories of the run test.

Table 6.1: Run test distribution.

Sequence length Probability
1 1=2
2 1=3
3 1=8
4 1=30
5 1=144

6 and more 1=720

Online calculation of V . Using formula 6.1 the agents have to iterate through
all categories each time they want to evaluate a test. If they perform the test to fre-
quently then their performance may suffer (especially for the byte frequency test
where there are 256 categories). However, if they perform the tests too infrequently
then a statistical irregularity may be washed away by the following data. There-
fore, we transformed the calculation formula, so that for each additional value in
category s V can be calculated directly with constant computational complexity.
Let Vn be the statistic calculated for the n-th sample value. Then:

Vn+1 =
n(Vn + n) + 2Ys+1

ps

n+ 1
� n� 1 (6.3)

With this formula both the byte-frequency and the run-test can be executed
fine-grained with and on-line.

144 CHAPTER 6. APPLICATIONS OF SERVICE MONITORING AGENTS

Evaluation. The byte-frequency test and the run test both use the �2 distribution
table to evaluate the test results. The byte-frequency test checks if the data values
are equally distributed and the run-test checks if there are correlations in the data
values. So both test complement each other but can share code. Therefore, the
implemented VPN monitoring agent uses these two tests as encryption verification
tests. Note, that there are countless other statistical tests [Knu81, Sot00]. CSM
allows the customers to use the tests of their choice. The two proposed statistical
tests can disclose providers that use a weak encryption scheme or that just compress
the payload instead of encrypting it. Note, that IPSec is modular. IPSec can indeed
use arbitrary cryptographic algorithms for the encryption and authentication. It
can even use the so called null transformation that leaves the input unchanged.
In [BGKL00b] we performed the presented tests (plus the Anderson-Darling test
proposed in [PAMM98]) on 2 Megabytes of encrypted IPSec ESP payload and
on a compressed archive of the same size. All tests were able to single out the
compressed file as not encrypted. An advantage of statistical tests is that they are
generic. Compare it to alternatives, e.g. an agent that scans for English words in
the payload. While this may be faster and easier to implement even a simplicistic
and completely insecure algorithm such as ROT13 could be used to circumvent
the agent. In contrast to that, the statistic properties that the presented tests aim at
are an intrinsic property that every well encrypted traffic must posses. Therefore,
the statistical tests can not only be used to reveal that a provider tries to avoid
the encryption work but it can also be used to detect implementation problems
such as the Linux IPSec implementation problem mentioned in [Den00]. Denker
points out that under certain circumstances, traffic from the private network may
leak out unencrypted into the public network when the machine hosting the tunnel
endpoint is restarted. Furthermore, the statistical tests can reveal if a provider
uses an encryption scheme in the weak electronic code book (ECB) mode. The
ECB mode does not include input form the previous block encryption into the
encryption of the current data block. Thus, two equal plaintext blocks result in
two equal ciphertext block. A duplicated packet of 1400 bytes size will cause the
statistical tests to indicate a problem.

Nevertheless, there is also a limit in what the statistical tests can detect. First,
and foremost: even if the traffic passes the encryption test it may still be encrypted
with a weak algorithm. If you use e.g. the Java random number generator as input
for a stream cipher then the resulting traffic will pass the tests [BGKL00b]. How-
ever, this random number generator is based on a linear congruential generator.
These generators are easily broken [Sch96]. Also, the performed tests were not
able to distinguish between encryption algorithms that use different key lengths. A
40-bit DES encryption passed the tests as good as a 112-bit 3DES encryption. In
theory [GBB00], when testing a data amount in the same order of magnitude as the
key space the statistical tests could reveal the difference. To prove that hypothesis
one would have to compare at least two times 240 encrypted blocks (8 byte). These
are 16 Tera bytes of data and thus beyond our hardware capacity. Nevertheless,
somebody may think of more intelligent tests that are e.g. tailored to an algorithm

6.2. SERVICE LEVEL AGREEMENT MONITORING 145

and that try to perform a cryptanalysis against it. With CSM agents the test can
then easily be used by the customers. It is important to note, that traditional sta-
tionary control programs located at customer premises are not able to perform the
VPN checks described in this section. They have no insight in the service as it is
delivered in the provider networks. Also the functionality of the VPN agents is
too complex to be implemented in traditional network monitoring application that
collect information with SNMP [CFSD90] or in web-based network management
entries.

Implementation. We implemented a virtual private network monitoring agent
for the customer-based service monitoring platform described in chapter 5. The
agent can perform either one of the two presented statistical tests to ensure that
VPN traffic is encrypted and authenticated. The agent also verifies that the IPSec
protocols are used in the proper modes by analyzing the packet headers. In the test
layout this was AH in tunnel mode encapsulating ESP in transport mode. Further,
the agent observes the throughput and packet loss of the monitored tunnel. The
agent reports the measured tunnel throughput to its home application on a regular
basis. It also reports special events such as packet loss, a malformed IPSec trans-
formation or a failed encryption/authentication test. In the last case it sends back
the monitored packet that caused the test to fail so that a human operator can verify
the finding. Figure 5.11 showed the reports that were send by a VPN agent. The
VPN agent was able to demonstrate its ability to detect unencrypted traffic on a
real VPN tunnel. For that purpose we used our VPN management tool [KBG00] to
hot-swap a properly encrypted VPN tunnel with one that does authentication only.
The VPN agent immediately detects and reports this. However, performance tests
indicated some limitations, since the statistical tests require computational power
(much less than encryption, though). Running on a Sparc ULTRA 5 with a 269
MHz CPU, the agent could test 1.5 Mbps encrypted data with the run-test and 1
Mbps data with the byte-frequency test (for details see chapter 7). Note, that in
case the agent wants to monitor a line with higher throughput, it can choose not to
analyze every byte in every packet, since sample testing will also suffice to detect
a VPN service misconfiguration.

6.2 Service Level Agreement Monitoring

Traditional service level agreements for Internet services are contracts that describe
the business relationship between a customer and an Internet service provider (ISP).
The SLA describes the nature of the service provided, its price, and clauses for
special cases e.g. what happens when one of the agreement partners violates the
agreement [Ver99]. A traditional IP service provides Internet connectivity. The
service is relatively simple but still the ISPs try to differentiate their offerings e.g.
by bundling the IP service with additional services (help-desk, web hosting, e-mail
hosting etc.). We are not going to discuss the add-on services. Instead, let us fo-

146 CHAPTER 6. APPLICATIONS OF SERVICE MONITORING AGENTS

cus on the pure IP service and its possible differentiations in SLAs. Even for pure
connectivity there are performance metrics that are used in todays SLAs:

� Reliability. The reliability of the IP service is usually measured in the up-
time of the network. The provider may also guarantee upper bounds for
connectivity outage times or outage counts. The provider may also guaran-
tee to solve network problems within a given time (outage resolution time).
The connectivity can also be partially damaged. Reliability metrics may thus
also include limits on packet loss rates and on error rates.

� Responsiveness.A provider may guarantee an upper bound of the IP round-
trip time for certain destinations. Today, such guarantees exist but are limited
to the network of the ISP. Responsiveness guarantees can also include state-
ments about one-way delays and response times of applications (e.g. web
servers).

The SLA normally also describes how the performance is measured, thus it
describes the SLA monitoring. Given today’s infrastructure it is the provider that
measures the SLA conformance. The provider then delivers reports on a regular
basis (typically each month). The customers are left with no choice than to trust
the report of the provider. Further, the long reporting interval averages away the
impact of network problems. For example a 99 percent uptime guarantee may look
good on the SLA paper. A 7 hour connectivity outage can however cost a fortune
to e-commerce company, but it is still SLA conformable if it occurs only once a
month.

The proposed customer-based service monitoring infrastructure allows the cus-
tomers to test conformance to the SLA metrics themselves. In the case of measur-
ing network outages the mobile agents of CSM are particularly useful. Applica-
tions that sit in the customer network are per-definition cut-off during the outage
while roaming agents reside in the Internet and can study the problem further.

With the introduction of quality-of-service (QoS) mechanisms in the Internet
the provider can differentiate their Internet service offerings even more. They can
offer new and more distinct guarantees defined on more fine grained performance
metrics. Note, that all metrics of the pure connectivity service can be applied to
a QoS enhanced Internet service. Thus, simpler variants of the QoS monitoring
agents can also be used for plain IP monitoring. The guarantees that a provider
offers can be quantitative (e.g. in bits per second) or qualitative (e.g. low latency).
They can be absolute or relative to other service classes. Here is a list of traffic
properties that may be involved in the guarantees. Different properties may be
assigned to different classes of traffic, making the space of SLA diversification
even bigger.

� Traffic loss (e.g. in bytes per byte).

� Erroneous packets (e.g. in packets per byte).

6.3. AGENTS FOR MEASURING QOS PARAMETERS 147

� Throughput (e.g. in bytes per second).

� Goodput. The goodput is the throughput of application data and thus appli-
cation specific.

� One-way delay and round-trip delay (e.g. in milliseconds).

� Jitter (e.g. in milliseconds).

This diversity of metrics is a strong argument for my CSM infrastructure. CSM
is generic enough to allow the customer to monitor all presented kinds of service
level specifications. Therefore we are going to study CSM agents for QoS services
in more detail.

6.3 Agents for Measuring QoS Parameters

This section presents quality-of-service measuring strategies using mobile CSM
agents, some agents that implement the strategies, and selected results that these
agents delivered in test scenarios. It follows a classification of the measurement
approaches. The simplest approach is sending a single measurement agent that
carries out a measurement and returns the result(s). Those are passive and stand-
alone measurements. If the customer sends out several agents an compares their
results this is a distributed measurement. If the customer uses additional applica-
tions to generate traffic and the agents use that traffic to derive results, then an ac-
tive measurement is carried out. Some distributed measurement agents may need
synchronized clocks. The agents will hardly be able to synchronize themselves.
However, the nodes of some providers may use synchronized clocks. Their clocks
may be synchronized with the Network Time Protocol (NTP) [Mil92] or with a
satellite based system such as the Global Positioning System (GPS). Then, the
packet time stamps that the agents use (see section 4.3.2) refer to synchronized
clocks so the measurements of these agents are synchronous. If the measurement
agent uses knowledge about higher-level protocols (e.g. if it knows how to collect
TCP sequence numbers or how an IPSec header is structured) then the agent is
referred to as protocol dependent. Note that measurements that rely on synchro-
nized clocks are per definition distributed (else, the synchronization does not make
sense). The following sections describe CSM based measurements on the traffic
properties listed in the previous section.

6.3.1 Throughput Measurements

IP throughput measurements can be performed by simple stand-alone CSM agents.
The customer sends such an agent to the desired location in the provider network.
The agent is equipped with a filter that specifies what traffic flows should be mea-
sured. The customer can select to monitor everything ranging from subnet-to-
subnet traffic to specific micro-flows. We implemented an agent that counts the

148 CHAPTER 6. APPLICATIONS OF SERVICE MONITORING AGENTS

transported bytes during a configurable interval and reports the throughput after
every interval. The agent uses the length field of the IP packet to count bytes so
the agents use filters that request only the IP headers from the node. The agent is
thus very light-weighted and fast. The simple version of the IP throughput mea-
suring agent can be improved by adding protocol knowledge. Then the agent can
analyze the IP packets and extract the payload of higher layer protocols. The agent
can for example subtract the bytes of IPSec headers and trailers in order to calculate
the pure tunnel throughput. Furthermore, the agent can be used for distributed mea-
surements. In general, the customer will have more information about the service
state at his/her disposal when (s)he knows about the state at several locations in the
network. A distributed measurement application of the simple throughput agent
could be to learn about the routing of the providers. The customer sends out the
agents to peering points in order to learn how much and what kind of his/her traffic
passes there. The throughput agent can also for example measure the best-effort-
to priority traffic ratio (e.g. for DiffServ).

Bottleneck Bandwidth Measurement. Bottleneck bandwidth is a fundamental
property of a network connection [Pax97]. The bottleneck bandwidth is the upper
limit of how quickly the network can deliver a sender’s data to a receiver. Usually
the bottleneck bandwidth is the bandwidth of the slowest link on the path. Bottle-
neck bandwidth is relatively easy to measure. You need a sender that sends two
packet immediately after each other (also called the packet pair estimation). The
second packet must queue behind the first until the first is completely transmitted.
The delay between the two packets therefore indicates the transmission time of
the first packet. Ideally, the packets travel through an uncongested network. The
packets then only get further separated if the next link is slower than the slowest
previous one. So the delay between the two packets indicates the bandwidth of
the slowest link on the path (the bottleneck). The bottleneck bandwidth Æ is thus
Æ = bA=(tB�tA) where bA is the size of the first packet (A) in bytes and tA and tB
are the arrival times of the packet. One very convenient property of the bottleneck
bandwidth test is that it does not require synchronized clocks. The receiver has
only to compare the arrival times of two (or more) packets.

Usually the bottleneck bandwidth is determined through active measurements.
A sending application sends a number of packets in a short sequence and a re-
ceiving application determines Æ value before it considers this value is a maximum
candidate. We implemented a passive bottleneck measurement agent. It calculates
Æ for each packet pair and selects the maximum. However, due to queuing effects
caused by other traffic some Æ values may be too small. The passive bottleneck
agent levels this out in that a configurable number of consecutive packets must de-
liver the same Æ. This will also prevent the problem of multi-link connections such
as ISDN that cause wrong results with the packet pair method [Pax97]. Note that
in the Internet the bottleneck bandwidth is not always constant. For example route
changes may influence it. The implemented agent is able to cope with this by using

6.3. AGENTS FOR MEASURING QOS PARAMETERS 149

a soft-state mechanism for the current Æ. Thus, after a configurable time, the Æ is
reset to an initial state and the measurement restarts. Figure 6.3 shows the results
delivered by a passive bottleneck bandwidth measurement agent (in microseconds
- �s4.) . The agent monitors traffic on a PC that is connected to a 10 Mbit Ethernet.
It filters for traffic coming from a neighbor 100 Mbit Ethernet. After about 12 sec-
onds the agent found a bottleneck bandwidth of 1.22 MBytes which is very close
to the theoretical maximum of 10 Mbits. Figure 6.3 also depicts how from time to
time the agent confirms the bottleneck bandwidth. Note, that the monitoring node
was not in a productive network. Therefore, the test setting included artificially
generated UDP background traffic. The passive bottleneck bandwidth agent will
detect the bottleneck bandwidth only if an application rapidly sends packets at least
a short period of time. An FTP session transferring a file of about 100 KByte will
do.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07

B
yt

es
 p

er
 s

ec
on

d

Time in microseconds

Bottleneck Bandwidth

Bandwidth

Figure 6.3: Real network bottleneck bandwidth measurement.

With the CSM infrastructure the traditional sender-receiver based bottleneck
bandwidth measurement can be extended. Several intermediate agents can all mea-
sure the Æ value and thus play the role of the receiver. The customer can compare
the results of these agents and learn about the location of the bottleneck link and
about local congestion. For that purpose the agents measure the delay between two
(or more) selected packets and send the results to the customer application for com-
parison. Figure 6.4 shows a distributed measurement scenario with three provider
networks (A-C) and three CSM nodes (M1-M3) on which bottleneck bandwidth

4
1s = 10

6
�s

150 CHAPTER 6. APPLICATIONS OF SERVICE MONITORING AGENTS

agents execute. Here, the sender sends a packet pair and the agents measure the
delay between the packets. First let us study the ideal case where the networks are
idle. The agent at M1 can measure the delay and directly calculate the available
bandwidth of provider A. The agent at M2 measures the same delay. This means
that the bandwidth provided by B is at least as large as the bandwidth provided by
A. If the bandwidth was smaller the delay would have been larger. The bandwidth
of B could still be larger than the bottleneck but since B received the packet pair
already with the given delay, the delay does not get smaller. The agent at M3 mea-
sures a larger delay. It can now calculate the bandwidth provided by C. It is the
bottleneck bandwidth for the whole connection. Note, that with bidirectional traf-
fic measurements and traffic sources using other paths the customer can eventually
learn more about the unknown bottleneck bandwidth at B.

BA C

M2Sender

Bottleneck

+ +=

M1 M3

0

Figure 6.4: Distributed bottleneck bandwidth measurement.

Unfortunately, the networks will seldom be idle. If the packet pair waits in
queues of some routers for other packets to be forwarded then this may influence
the outcome of the measurement. There are two cases where queuing has an in-
fluence on the measurements. (1) If a packet of a different source interleaves be-
tween the packet pair then the delay between the packet increases and indicates a
wrong bottleneck bandwidth. To avoid this we can exploit the fact that the bot-
tleneck bandwidth measurement provides an upper bound that it is relatively con-
stant. Therefore, the customer can carry out several measurements and compare
the results. If there is an accumulation of a concrete bandwidth value then this
value is probably the true bottleneck bandwidth. The other queuing influence (2) is
when foreign traffic causes the packet pair to queue before a fast link. Then, once
the packets are forwarded the delay between them actually decreases. While this
is bad for the simple end-to-end bottleneck bandwidth measurement it is actually
good for CSM based distributed measurements. CSM can use the fact that this is
the only case where the delay can actually decrease. Thus, if the delay between
two packets has decreased from M1 to M2 then M1 can be regarded as the sending
application that sends the two packets with no delay. The measured delay then
allows the customer to deduce the bandwidth provided by B.

The tests showed that by comparing the delay between consecutive packets at
different daytimes the customer can use CSM agents to collect an accurate picture
of where congested links and bottleneck links are located. It is, however, important
that the customer compares at different measuring points the inter-packet delays

6.3. AGENTS FOR MEASURING QOS PARAMETERS 151

that belong to the same packets. Therefore, the distributed agents must possess a
mechanism to identify packets.

6.3.2 Coordination of Distributed Measurements

For security reasons the agent cannot read from network connections unless there is
a node service for that purpose. Therefore, the home application cannot send con-
trol messages to the agent, and so the home application cannot directly synchronize
the agent activities. If the node provides a synchronized clock service then the cus-
tomer can program the agents to synchronize their activities with this clock. There
is another option to synchronize distributed measurement agents: the monitored
traffic. The agents can inspect the monitored packet and see if they are relevant to
them. If all agents of a distributed measurement setting use the same criterion then
their measurement is synchronized5. If the agents have protocol knowledge about
protocols that synchronize their sender and receiver then the agents can exploit this
(implicit synchronization). Protocols that built-up connections (e.g. TCP) and that
use sequence numbers e.g. (ICMP) both provide information that the agents can
use to synchronize their measurements. Another possibility is that they synchro-
nize on monitored packets that match a given hash value (explicit synchronization).

The Hash Agents. We introduced a hash agent that hashes IP packets and com-
pares them to a set of hash results. If there is a match the hash agent can react in
different ways. Thus, the customer can send IP packets that trigger agent activity
once the agent sees such a packet. The customer can use this mechanism to coor-
dinate distributed measurements. If the customer wants to compare test results of
agents that perform sample test it may be important that they all use the same sam-
ple. The hash function can guarantee that (with an arbitrary high probability) the
same packet is studied. The previously discussed bottleneck bandwidth agent is a
good example. The sender of the packet pair uses packets with a random payload.
It also calculates the hash of the packet’s payload. The measurement agents know
the hash result that they have to look for. Thus, they can easily identify the packets
to be measured. The hash agent hashes from a configurable starting point in the IP
packet up to an ending point. So, for example the first 40 bytes of the UDP payload
can be hashed. The customer can also configure the agent to match how many bits
of the hash code must match. If for example the agent must only match 6 bits then
about every 64th packet matches.

The hash function call of the hash agent is generic it can be replaced by an ar-
bitrary hash function. Used hash functions are the IP checksum function [BBP88]
and the Message Digest 5 (MD5) algorithm [Riv92]. While the former is fast the
latter is secure. Using a secure hash function is interesting for agent security (see
section 6.4), because even when an attacker knows what hash value the agent is

5This does not mean that their clocks are synchronized, but that they perform the metrics on the
same samples.

152 CHAPTER 6. APPLICATIONS OF SERVICE MONITORING AGENTS

waiting for, it is practically impossible to generate a packet with that hash and thus
to e.g. remotely manipulate the agent.

The Trigger Agent. The trigger agent is a subtype of the hash agent and demon-
strates one way to use the hash agents. Such an application generates a packet and
its hash value in advance. The agent is fed with the hash value before it is sent out.
Later, the application can send the generated packet to trigger the activity of the
agent. The trigger agent encapsulates an arbitrary agent of the customer. It mon-
itors the traffic only looking for a packet that matches a hash. From the moment
this packet is received the trigger agent delegates each packet or service result to
the encapsulated agent. The trigger agent thus allows the customer to send an arbi-
trary agent and start it later by sending a special (eventually secret) start code. The
trigger agent offers a generic way to add this functionality to e.g. to third-party
agents.

The Trigger Application. The customer also needs a way to send packets that
trigger activities of hash agents. We implemented a so called trigger application for
demonstration purposes (see figure 6.5). The application can send a configurable
number of UDP packets. The user has to specify the destination and the port num-
ber of the packets, as well as the packet size and the number of times the packet
should be sent. There are two buttons to press. The create button has the appli-
cation create a packet with a random payload. It also creates a MD5 hash of the
created packet and displays it on the GUI. The hash is formated like a static Java
array declaration so the user can cut-and-paste the hash into his/her measurement
agent code. The user must then send out the agents. Finally, the user presses the
send button for the packets to be sent. The trigger application as traffic generator
for the distributed bottleneck bandwidth measurements described earlier.

6.3.3 One-Way Delay Measurements

One-way delay measurements require a synchronized clock. As mentioned be-
fore this can for example be provided by the node as a service to the agent. We
implemented a one-way delay measuring agent that is suitable for distributed mea-
surements. The agent is a sub-type of the hash agent. It records the arrival time
for packets that match a hash. The hashing can be configured so that the agent
performs sample tests on the background traffic, or it can be used to match only
a particular packet generated by a customer application. The agent assumes the
presence of synchronized clocks. Since implementing a precise clock synchro-
nization service was out of the scope of this work we used virtual routers [BB00]
to emulate a network. Note, that another possibility would have been to use clock
synchronization and clock skew elimination as described in [SBBS01]. The de-
ployed scenario is depicted in figure 6.6. The routers all run on one PC thus they
have access to the same clock. So, the time-stamps on the packets monitored by

6.3. AGENTS FOR MEASURING QOS PARAMETERS 153

Trigger Application

Figure 6.5: The trigger application.

154 CHAPTER 6. APPLICATIONS OF SERVICE MONITORING AGENTS

the agents all refer to a single clock. The scenario includes two virtual routers in-
terconnecting three private networks. The PC is connected to the virtual networks
with two softlink devices that have the same look & feel as real network devices.
Networking applications running on the PC can send real traffic through the virtual
network. For each virtual router there is a CSM node that provides monitoring
access to CSM agents.

VR 1 VR 2
Linux
routing

Application

eth0

sol0

sol2

10.1.2.2 10.1.3.110.1.1.1

10.1.2.1

Virtual network

Figure 6.6: A measurement scenario with two virtual routers.

Figure 6.7 shows the one-way delay (in microseconds) measured between the
two virtual routers. The traffic source was a telnet session that was routed over sol0,
through the virtual network and back to the host machine over sol2 (see figure 6.6).
The agents use a hash that matches an average of 1 in 16 packets. I can measure
that the virtual routers forward the packets fast. Every delay was clearly smaller
than 0.6 milliseconds. The delay variation is quite high though. This is due to the
fact that the virtual routers run in user space. Other processes may preempt the
router and interrupt the forwarding. Note, that the one-way delay measurements
can be easily used to calculate the delay variance (jitter) between virtual routers.

6.3.4 The Ping Measurements

As mentioned before, the agents may posses knowledge of higher layer protocols
and exploit this for their measurements. The Ping Listener agent uses knowledge
about the Internet Control Message Protocol (ICMP) echo messages [Pos81]. The
agent listens for ICMP echo (request) and echo replies. One ICMP message is
encapsulated in one IP packet. The structure of the ICMP echo and echo reply
message is depicted in figure 6.8. The ping listener agent records the arrival times
of the requests and of the corresponding replies. The agent can perform a correct
mapping by using the ICMP identifier field to distinguish between different ses-
sions and the sequence number field to map a request to a reply. Note that the
agent can be used passively. It will then provide results each time somebody starts
a ICMP echo session e.g. by running the ubiquitously used software tool Ping.

The ping listener agent groups the measured ICMP messages into series of con-
figurable length (typically 10 requests and corresponding replies). For each series
it reports a result statistic back to the home application. The agent can be con-
figured to collect an arbitrary number of series. The following paragraphs outline

6.3. AGENTS FOR MEASURING QOS PARAMETERS 155

250

300

350

400

450

500

550

600

0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07

D
el

ay
 in

 m
ic

ro
se

co
nd

s

Time in microseconds

One-way Delay

One-Way Delay

Figure 6.7: One-way delay between two virtual routers.

how the agent collects the contents of these reports: reliability measurements, jit-
ter, and delay information. Note, that several ping listener agents can be located
on a test path. Thus, more information is gained compared to a classical active
measurement between a sender and a receiver. For example, if some agents see an
echo message but the echo does not arrive at the sender, then the lossy part of the
path can be identified. In a traditional ping based active measurement scenario (see
section 8.3.3) we cannot distinguish between such an echo loss on the path and the
failure of the receiving host.

Checksum

Sequence number

Data

Identifier

Type Code

8 16 32

Figure 6.8: The ICMP echo request/reply packet.

Reliability measurements. The ping listener agent can perform a number of re-
liability measurements:

� The agent calculates the checksum (if it is used) to find out about transmis-
sion errors.

156 CHAPTER 6. APPLICATIONS OF SERVICE MONITORING AGENTS

� The agent can record lost request packets by examining the sequence num-
ber.

� The agent can record how many replies were lost.

� The agent detects packet duplications.

� The agent can record requests or replies that are sent in a wrong order (packet
re-ordering in the network).

Jitter. The ping listener agent is able to calculate network traffic delay jitter. It
can for example compare the delays between a request and a corresponding reply
and calculate the standard deviation. This jitter sums up the delay variation intro-
duced by the downstream portion of the round-trip path plus the execution time of
the ICMP stack. If we assume that the ICMP echo application sends the requests
in regular intervals (like e.g. PING can be told to do) then the jitter introduced
between sender and the measurement point can be measured separately. For this
purpose the agent compares the time between the arrival of the consecutive pack-
ets and calculates the standard deviation to report it to the home application (see
section 5.6). Figure 6.9 shows the delay variations measured by the ping listener
agent. The agent resides on the virtual router V1 of figure 6.6. The tests used the
ping application to generate an endless sequence of ICMP echo requests targeted
to the virtual router V2. The application generates one request per second in regu-
lar intervals. The agent used a series length of 10 (10 consecutive messages were
treated as a group), thus per group there are 9 delays. Each delay is compared with
the previous in order to measure the jitter depicted in figure 6.9. In general the jit-
ter was very low (about 0.03 milliseconds). However, at some times there are large
deviations (here about 4 milliseconds). This is the same phenomenon as already
measured by the one-way delay agent (see section 6.3.3) and is due to the fact that
the virtual routers run in user space.

Round-Trip Delay. If there is no synchronized clock available the ping listener
agent cannot measure how much delay a single packet has gained since the last
measurement. Still, the agents can provide a more fine-grained picture of where
packets are delayed in the network. The agents do not need a synchronized clock
to compare the time between a request and a reply. The agents on the path can thus
measure partial round-trip times (see also figure 6.10). The difference between
the partial round-trip times measured at two adjacent nodes is equal to the echo
traveling time (of both the request and the reply message) in the intermediate net-
work. While the agent cannot determine if it was the request or the reply packet
that caused more delay it can figure out which provider network causes the largest
part of the round-trip delay.

Figure 6.11 shows the partial round-trip times measured in the setting depicted
in figure 6.10. We see that the second router causes relatively few delay with few

6.3. AGENTS FOR MEASURING QOS PARAMETERS 157

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07 4e+07

D
el

ay
 v

ar
ia

tio
n

in
 m

ic
ro

se
co

nd
s

Time in microseconds

Jitter

Jitter

Figure 6.9: Jitter measurement in a virtual router.

ICMP stack

VR 1 VR 2
Linux
routing

Virtual network
Ping

request

reply

Figure 6.10: Measuring partial round-trip times.

158 CHAPTER 6. APPLICATIONS OF SERVICE MONITORING AGENTS

jitter. Its ICMP stack is obviously fast. The round-trip time measured by the second
router is significantly larger and the traffic suffers more delay jitter.

0

200

400

600

800

1000

1200

1400

1600

1800

0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07

R
T

T
 in

 m
ic

ro
se

co
nd

s

Time in microseconds

RTT Delay

VR-1
VR-2

Figure 6.11: Partial round-trip times of two virtual routers.

Impact of cross traffic. The tests described here use the same scenario (figure
6.10). The tests shall prove the ability of the ping listener agent to detect the
influence of cross traffic and congestion on the round-trip time and on traffic loss.
This time the pings are directed to the outbound interface of V1. In order to produce
congested links we used the UDP sender application presented in [SBBS01]. The
link capacity of the virtual network is shaped by a token bucket filter to conform
to an average of 1 Mbit per second. Figure 6.12 shows 5 series of ten round-trip
times for an uncongested network. Figure 6.13 shows the round-trip times when
the virtual routers have to forward a background traffic of 1 Mbit per second. Still,
there is no packet loss but the delays increase heavily. Figure 6.14 shows the delays
for background traffic of 3 Mbit per second. Some ICMP messages still get through
but there is a heavy loss also. Note, that the loss is not explicitly depicted in the
graphs but it can be seen as missing RTT bars. The heavily congested network in
figure 6.14 shows only 29 out of 50 RTTs, so 21 ICMP messages were lost.

6.4 Agent Security

The CSM infrastructure protects the CSM node, the monitored device, and traffic
from illegal access by the agent. Also, agents are protected from each other. This

6.4. AGENT SECURITY 159

410

420

430

440

450

460

470

480

0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07

R
T

T
 in

 m
ic

ro
se

co
nd

s

Time in microseconds

RTT and Loss

RTT

Figure 6.12: Round-trip times in uncongested network.

0

100000

200000

300000

400000

500000

600000

0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07

R
T

T
 in

 m
ic

ro
se

co
nd

s

Time in microseconds

RTT and Loss

RTT

Figure 6.13: Round-trip times in mildly congested network.

160 CHAPTER 6. APPLICATIONS OF SERVICE MONITORING AGENTS

498000

500000

502000

504000

506000

508000

510000

512000

514000

516000

518000

0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07

R
T

T
 in

 m
ic

ro
se

co
nd

s

Time in microseconds

RTT and Loss

RTT

Figure 6.14: Round-trip times in heavily congested network.

section discusses attacks that are launched by the provider against an agent in one
of the provider’s CSM nodes.

6.4.1 Classification of Attacks

The agent is protected against exterior attacks by foreign providers or customers.
Yet, the agent fully depends on the benevolence of its execution environment. The
usual approach to protect the agents from the execution environment is to let the
agents run in a secured box of a trusted third-party. This approach is not appropri-
ate for CSM because the providers will probably not allow a third party to install
a network measurement tool at the provider’s premises without giving the provider
full access. So, we have to live with the assumption that the provider has full ac-
cess to the CSM node. This section is not going to discuss denial-of-service attacks
launched by the execution environment. The node can for example refuse to deliver
packets to the agent, refuse to execute the agent, kill the agent before its normal
termination, and refuse to send results of the agent. It is the right of the execution
environment to deny services. This is necessary for example in order to enforce
resource control or to provide better services for agents of more important cus-
tomers. Denial-of-service ‘attacks’ do not deceive the customers, because they are
visible to them. If the customer is not satisfied with the service that his/her agents
get then the customer can reconsider the business relation to the provider. This
section focuses on goal driven attacks that try to manipulate the monitoring results

6.4. AGENT SECURITY 161

in order to hide network problems or worse, put the blame on peering network
providers. Such attacks make the customer believe that the service or the network
is in a state other than the true one. A malicious provider can attack the integrity
of the monitoring data at three levels: at the sending of the result (output), at the
information processing of the agent, and at the input delivery to the agent (see fig-
ure 6.15). The attack may need agent specific knowledge so that the customer gets
convincing results and cannot immediately see that an attack has happened. Such
knowledge about the semantics of the agent can be gained through offline analysis
of the agent or through online analysis of the agent and its behavior (e.g. internal
dataflows). Further, the attack may be launched by a human expert or the attack
may be launched automatically.

Input attack

Output attack

Agent processing
attack

Execution Environment

Agent

Sandbox

Delivery
Input

Output
Delivery

Agent
Installation

Figure 6.15: The three attacking targets.

Here are examples of these attack types:

� Attacking the output of the agent. The attacker may for example see that
the agent sends status reports containing fields labeled with ’bytes per sec-
ond’ and change the value of this fields to his/her likings. In general, the
attacker must know (1) what the agent measures and (2) how the results are
formated and when they are due.

� Attacking the agent processing. The attacker may for example remove
commands that trigger alarms which would inform the customer that his/her
service is broken. The attacker may start a harmless version of the agent
instead of the agent sent by the customer. For such an attack the attacker
must have detailed knowledge about the semantics of the agent.

� Attacking the input of the agent. The node may for example simply not
deliver those packet copies that reveal a problem. Another possibility is to
manipulate the timestamp of the packet copies. The attacker may deliver
packet copies that originate from other locations than the monitored network

162 CHAPTER 6. APPLICATIONS OF SERVICE MONITORING AGENTS

device. This attack may also work without knowledge of the agent seman-
tics.

Unfortunately, manipulation of the agent or its result cannot be stopped. For
security reasons, agents need to be under full control of the executing node. The
node environment must be able to interpret the agent’s byte-code so that the agent
functionality is performed correctly. Note, that some agent platforms rewrite the
byte code of every agent in order to enforce resource control [BHV01, VB99]. So
it is always relatively easy for the node to manipulate the agents, but we will show
that the ability to program agents in a general purpose programming language is a
powerful tool to sooner or later detect unannounced tampering of the agent. Our
goal is to prove that the customer can write agents that are so hard to manipulate,
that it is actually much easier and cost effective for the provider to (re)engineer the
network to accommodate the promised service than to try to cheat.

6.4.2 The Semantics of the Agent

If the attacker wants to fake a meaningful agent result then the attacker must know
the intention of the agent. For normal CSM agents this may work as follows: the
attacker decompiles the agent and reverse engineers it. By analyzing the agent
source code the attacker can deduce what the agent is supposed to measure. The
attacker includes a cheat mode into the nodes that automatically performs a manip-
ulation each time this agent is sent again. For example, the sending service may
rewrite results or instead of the original agent a fake version is started. This is
an human driven attack. Because humans are involved, the initial attack has to be
off-line. It is obvious that no human can reverse engineer any agent faster than the
agent is supposed to start sending results (within seconds). On one hand it is hard
to protect the agents against off-line human driven attacks but on the other hand it
is not necessary to provider a bullet-proof protection against such an attack since
the attack effort is too high. Note, the attack-taskforce of the malicious provider
would have to be ready all the time to analyze and classify every agent that every
customer, peer provider or third-party vendor may send. Yet, if the attack could
be automated, so that the agent is attacked on the fly then a malicious provider
may profit from the deployment of such an automated attack system. Nevertheless,
computing theory gives us a convincing argument that an automated attack work-
ing for all kind of agents is not feasible. As mentioned before, the attacker must
know about the semantics of the agent. Yet, the agent is a complete program. It
can be proven that there exists no program that is able to determine in finite time
if a program stops within finite time (the infamous halting-problem [Tur36]). So
from that we can extrapolate that there is no program that can extract the semantics
of all other programs.

Of course, in practise things look different because the attack program does not
have to work for all agents. It is enough if it works for most agents. Yet, reverse
engineering is a hard problem and current tools struggle to analyze the structure

6.4. AGENT SECURITY 163

of a program and do not even try to extract semantics. Thus, automatic (on-line)
attacks on the CSM agents are not feasible given the state-of-the-art of artificial
intelligence.

CSM agent programmers can also make the off-line analysis by humans hard.
Here are some measures that can be taken that discourage the reverse-engineering:

� Obfuscated code.Obfuscated agents include unnecessary entities in their
byte-code such as additional variables, calculations, branches, functions and
classes. The agent developers should make sure that all of them are used in
some cases an influence (unnecessary) parts of the result so that smart com-
pilers cannot remove the obscure parts. The format of the result should also
be obscure. For example the result may be split in parts. Numbers may be
transformed with bijective functions. For example for floating point results
the multiplicative inverse may be sent. The designer of obfuscated agents
can exploit the expressive power of a full-fledge programming language to
create endless variations of an agent.

� Non-trivial filters. Obfuscated agents should use filters that match more
packets than actually needed and re-filter the packets internally. Otherwise,
the attacker may guess the intent of the agent based on the requested moni-
toring traffic.

� Obfuscated boolean expressions.Internal filters can be protected, too, by
using obfuscated boolean expressions. Here’s a generic way to do so: (1)
Use a tautology generator to create an arbitrary number of tautologies Ti out
of many variables of the agent. A tautology T is a boolean expression that
always evaluates to true no matter what the values of the involved attributes
are. Tautologies can be created in linear time. (2) Use a generator that anal-
ogously creates boolean expressions that are always false Fi. (3) Obfuscate
the filter expression B by generating an equivalent expression through ran-
dom iterations of the following rules: replace B with Ti ^ B or B ^ Ti or
Fi _ B or B _ Fi. The resulting expression is equivalent and much more
complex than the starting expression.

� Send meaningless agents.Instead of including meaningless functionality
the customer can sent entire agents that do not calculate anything useful. If
such an agent starts sending useful results then this is a good sign that some
tampering has happened.

� Using the input. The agents may use the packet copies to dynamically
change their behavior. A simple instance of this approach is the trigger agent
(see section 6.3.2). The agent may apply an arbitrary (possibly secure) hash
function to each packet and treat only those packets that match a certain hash
value. The customer may extrapolate the service state from the state of that
particular subset of the traffic. For itself, the trigger agents are relatively

164 CHAPTER 6. APPLICATIONS OF SERVICE MONITORING AGENTS

easy to reverse-engineer. Yet, the hash mechanism may be used to construct
a meaner obfuscated agent: Such agents interpret the payload of packets that
match the hash functions. The data in these packets may describe a permu-
tation of input variables. Before the permutation is known, the attacker can-
not analyze the calculations that base on these input variables. Even better,
the agents can interpret parts of the payload of these packets as commands.
Imagine an agent that implements a stack machine. It puts its input variables
on a stack according to an order described in a matching packet’s payload.
It interprets further parts of the payload as operations such as addition, mul-
tiplication, division etc. The attacker would need to break the hash function
in order to see what kind of packets match and thus trigger the calculation.
Instead of a stack machine, the agent may itself be a virtual machine. This
idea is used in [Tsc99] to securely end distributed services in an active net-
work. The agent validates the packet with the secure hash function. It then
executes the contents of the packet as commands.

� Mobile Cryptography. Mobile cryptography is defined as the study of
mathematical techniques related to aspects of information security of mo-
bile executable code in a network [ST98]. The basic idea is to encrypt ex-
ecutable code in a way that the code can still be executed. More specific
the agents use encrypted functions. Be f a function with f(x) = y then we
denote Ef (x) as the encrypted function of f . Ef shall have the following
properties: (1) it is computationally hard to find the function f given Ef .
(2) Ef (x) = E(y) thus the encrypted function delivers the encrypted result
of the function f . Say that the customer wants to execute the function f(x)
remotely and obtain the result y. The remote execution environment shall
neither be able to understand the function f nor to see the result y. Given en-
crypted functions, the customer calculates Ef and generates an agent A(Ef)
that implements the encrypted function. The customer sends the agent which
is then executed in the node. The node executes A(Ef)(x) and delivers the
result E(y). The customer then decryptes E(y) and thus gets the desired
result y. The node only sees the encrypted function and the encrypted result.
Therefore, mobile cryptography could completely conceal the semantics of
the agent. Unfortunately, until today no algorithm to generate generic en-
crypted functions exists, and it is not proven that a secure algorithm exists at
all. [ST98] proposes an encryption method E and an algorithm that can com-
pute E(x + y) from E(x) and E(y) without revealing x or y. Further, they
propose an algorithm to calculate E(xy) from E(x) and y without revealing
x. The algorithm allows the agent designer to create encrypted functions
for polynomial functions. Yet, the proposed encryption scheme E has been
successfully attacked.

6.4. AGENT SECURITY 165

6.4.3 Attacks on the Input of the Agent

If the malicious provider knows about a network problem then the provider may
use attacks on the input of the agent to hide the problem. The nice thing about this
attack is that it does not necessarily require knowledge about the semantics of the
agent.

In the situation depicted in figure 6.16 the provider B has a provisioning prob-
lem and loses reserved traffic within B’s network. The agent measurement results
(the height of the bars show the throughput) clearly indicate the location of the
problem. If B is malicious, aware of the problem, and has a clever intervention
infrastructure on his/her CSM T-components then B could launch the following
attacks on the agent input: either it sends packet copies seen at B1 to B2 or it vice
versa. The two variants and the subsequent measurements are depicted in figure
6.17. The black bars indicate the measurements based on the manipulated input.
Variant 1 makes the customer believe that the traffic was lost on the link between
A and B. Variant 2 makes the customer believe that the traffic was lost on the link
between B and C.

Domain A Domain B Domain C

NodeTraffic

Measured
throughput

Loss

B1 B2

Figure 6.16: A loss situation measured at honest provider sites.

Domain A Domain B Domain C

NodeTraffic

Measured

Loss

Cheat 1

Cheat 2

throughput

B2B1

Figure 6.17: Two agent input attack variants performed by provider B.

The mobility and the programmability of the CSM agents provide means to
unveil the malicious scheme. The main problem for the provider is to keep the input
to the agent consistent. The timestamps on the packet copy are already problematic.
If the provider delivers the packets seen at B2 to B1 then the timestamp must be set

166 CHAPTER 6. APPLICATIONS OF SERVICE MONITORING AGENTS

back to an earlier time. But then, the agent may see that it took the T-component
much longer than usual to deliver the packets. The analogous problem may reveal
the cheat when the provider delivers the packets from B1 to B2.

If the provider manages to calculate credible timestamps then the customer
has further means to unveil the cheat. Assume the cheat 1 variant of figure 6.17.
For the customer it may be undecidable whether A has applied the cheat variant
2 or B has applied the cheat variant 1. The customer could then assign ’penalty
points’ to both providers. If later a similar situation occurs between provider B
and C, then B would already have two penalty points which would indicate that
B is probably cheating and neither A nor C. The customer can also send further
agents that surround the cheat candidates. Measuring traffic delays and also delays
within the CSM nodes (in similar ways as for the performance tests in chapter 7)
generate further clues who is cheating. Finally, the customer can perform active
tests. The customer may for example generate and measure bidirectional traffic, or
traffic from sources, so that the traffic crosses only one of the cheating candidates.
In case nearby CSM nodes provide a sending service without destination restriction
then the customer can send agents to exploit this service to test particular distrusted
nodes.

6.4.4 Evaluation of the Threat Situation

From the discussion in this section it should be clear that today there is no bullet-
proof solution that protects mobile agents from a malicious execution environment.
Yet, it should also have become clear that the more effort the CSM agent developer
puts into obfuscating of their agents, the more resources the attacker needs to find
out about the intend of the agent. Compared to stationary approaches such as
SNMP this is a major improvement. There, the provider formats the results ac-
cording to globally known semantics (MIBs). If the customer requests information
from the provider (for example an SNMP get message) then it is immediately clear
what the customer is looking for. Further, in static systems the customer can in-
vestigate the problem literally only from one side. With programmable and mobile
agents malicious providers get involved in a ‘ race of arms’ against the collective
body of the customers. The malicious provider must always be aware of new agents
that may reveal the cheat.

The following reasons underline the claim that in the long term no provider
will profit from attacks against CSM agents:

� The agent developers can make it arbitrarily hard for the attacker to reveal
the intend of the agent.

� The provider must allocate considerable resources and manpower for attacks
against agents. The provider will profit more if this manpower is invested in
the service provisioning.

6.5. EXTENDED APPLICATION SCENARIOS 167

� The more different agents perform tests the more difficult it gets to manipu-
late these agents without running into consistency problems.

� The attacker must possess accurate knowledge about the state of the provider
network in order to hide problems.

� A malicious provider is outnumbered by the customers. The provider faces
the collective creativity of the customers, of peering providers and of third-
party agent developers.

� There is always a chance that the cheat is revealed. If so the provider will
probably face the full range of retaliation. Because of the aforementioned
difficulties of launching an attack it is then obvious that the provider did it
with malicious intend and not because of errors.

6.5 Extended Application Scenarios

The CSM infrastructure provides a generic interface for service monitoring. The
metrics used by the agent depend on the service, on the customers’ interests and on
the service level agreement between customer and provider. This section presents
some more ideas for useful CSM agents and for new node services that enable the
agents to examine the new IP services more thoroughly.

6.5.1 Further Applications Independent of New Node Services

Customizable event notifications. One important aspect of network monitoring
is the notification of an authority (e.g. the system administrator) when exceptional
networking conditions are measured. Today, event notification is often done man-
ually (sometimes also referred to as trouble-ticketing). There, a formal way exists
for the network users to report observed network problems. Automatic systems
often use a threshold mechanism (e.g. SNMP traps) for event notification. If a
network parameter is above or below a threshold, then a notification is sent. This
model is useful but simplistic. If for example the network parameter stays very
close to the threshold for a longer time or if it rapidly approaches the threshold
then issuing a notification or a warning may also make sense. However, traditional
stationary network monitoring infrastructures use a hard-coded notification mech-
anism (typically threshold based). The CSM agents can decide themselves when
to notify and to whom to report. The agents can for example implement a heuristic
model that notifies with a probability proportional to the proximity of the value to
a threshold. They may thus implement a ‘ random-early notification’ scheme. The
agents can also use estimation functions that try to estimate the future (expected)
measurement value based on the extrapolation of actual measurements [GB01].
Such a function may allow the agent to warn the customer early about problems
that are brewing. CSM enables the customers to use the estimation function they
think will serve their purpose best.

168 CHAPTER 6. APPLICATIONS OF SERVICE MONITORING AGENTS

Trace-back of denial-of-service attacks. Distributed Denial-of-Service (DoS)
attacks [CER99, Fer00] are able to knock-out the network connectivity of even
large e-commerce corporations. For launching a distributed service attack the hack-
ers infiltrate a large number of systems that are weakly protected (e.g. because they
belong to an open academic environment or because there is nothing interesting to
be found on them). The hackers install software that allows them to direct traffic
at the victim host. Because of the large number of traffic sources, the host un-
der attack will be cut off from the regular traffic and may even crash. If the host
provides critical network services such as domain-name lookup or proxy services
then an entire customer-premises network may be affected by the attack. The DoS
software sends IP packets with a forged IP source addresses. The victim is thus not
able to trace the source of the attack and the hacker can use the installed DoS soft-
ware as often as desired. A measure to prevent these kind of attacks is described
in [FS00]. At the network ingress points all traffic should be filtered. By consult-
ing the routing tables the devices are able to detect packets with spoofed IP source
addresses that are about to enter the Internet. Unfortunately, the deployment of
such filtering rules may take a long time and there will probably always be sites
that do not follow the rules. CSM agents are not intrusive so they cannot prevent
distributed DoS attacks. However, they may detect the sources of the attack. Iden-
tifying the sources is very important since then the DoS software can be removed
from infected systems and there is a chance that the hackers that installed the soft-
ware can be located. The customer runs DoS detection agents which are sparsely
distributed in the Internet. The agent performs sample testing of traffic destined
for the customer network. If the agent has access to the node’s routing (a node
service) then it can detect spoofed IP addresses. If not, it can keep logs. Since not
all DoS traffic is routed the same way the agent is not affected by an attack. It can
keep a log of unusual high incoming traffic. After an attack, the logs can be used
to identify the path of the attack. The agent can also check back with the home
application if there really is an ongoing attack. If so, the agent migrates to the next
hop node over the interface from where the DoS traffic is coming. It then starts
monitoring there, looking for traffic directed at the attacked host. Eventually the
node will migrate to the node nearest to the DoS attack source. Thus, even when
the IP source address in the DoS traffic is spoofed the agents can track down the
source of the attack.

6.5.2 Future CSM Extensions

The expressive power of the proposed CSM architecture combined with the imple-
mented node services is sufficient to perform the service monitoring tasks which
are necessary for the proof of concept and for the ANAISOFT project goals (see
beginning of chapter 4.1). This section presents some extensions that open even
more possibilities.

6.5. EXTENDED APPLICATION SCENARIOS 169

Extended Node Services

Communication services. The communication support available for a running
agent is relatively restricted. Here are some additional communication services
that the node may provide:

� Injection of test traffic. The agent may want to generate test traffic for
active measurements. Some of the presented tests used specialized appli-
cations on the customer’s premises for example to generate traffic. If the
agents can play this role, then the measurements are not restricted to end-
to-end active measurements thus they allow the customer to derive a more
fine-grained picture of the service. In some situation it may even be use-
ful that the agents insert traffic with spoofed IP addresses that appear to be
coming from the customer’s network so that downstream providers cannot
distinguish between active measurements and ‘productive’ network traffic.

� Reception of control traffic. The control of agents may be simplified if they
can use a node service to wait for commands from the home application. We
can substitute this service by techniques like the ones described in section
6.3.2.

� Agent-to-agent communication.For the presented CSM applications there
is no necessity that the agents can communicate with each other. However,
when agents are deployed in large scales, then an agent hierarchy may be-
come a necessity. Thus, some manager agents have a way to control their
subordinate agents (see also chapter 8.6).

When these communication services are implemented as node services then the
node should apply security measures. The traffic can for example be filtered in
similar ways as the monitored traffic. The node can also enforce the traffic rates by
applying e.g. a token bucket filter.

Log file access. Most providers keep log files about events that are relevant to the
services provided. These log files represent aggregated information about the state
of the service. For example, a VPN tunnel endpoint host may log the failed authen-
tications or replay attacks. Introspection into these log files may save the customer
a lot of monitoring work. The precondition is that the customer trusts these logs.
The CSM agent infrastructure may be used to perform sample tests to verify the
log files. If the CSM nodes provide a log files access service then the agents can do
this locally. Here is an example: the VPN implementation of Windows 2000 did
under certain circumstances use the relatively weak DES encryption even though
it was configured to solely use the stronger Triple-DES encryption. This flawed
behavior was visible in the log files [Vaa00, W2K00]. However, securing the log-
file access may be more difficult than securing the traffic monitoring. The node
needs policies that include knowledge about the semantics of the log files in order
to decide whether an agent is allowed to browse certain log entries.

170 CHAPTER 6. APPLICATIONS OF SERVICE MONITORING AGENTS

A session key service. Section 6.1.2 showed that the quality of the provider’s
cryptographic algorithm may be examined by the VPN agents, but that there are
limitations. By only examining encrypted traffic the agents cannot deduce which
algorithm was used and with what key length unless it launches a brute-force at-
tack. The nodes of VPN providers may thus offer a session key service. Only CSM
agents that have proven through strong authentication that they were sent by a VPN
customer may request the service. The node then delivers the currently used ses-
sion key along with information about the applied encryption algorithm. The agent
can now decrypt samples of the VPN traffic to check whether the decryption deliv-
ers a plausible result. For that purpose the agent may use knowledge about the sent
plaintext or it may for example recalculate checksums of higher layer protocols that
were encapsulated. With such a session key service the agent can therefore prove
that the cryptographic algorithm in use is indeed the one specified and which key
length was used. Note however that the node must be able to extract the session
key from the current IPSec security association. This may introduce a security hole
into the IPSec implementation.

Management information base access. Many network devices support simple
network management information bases. Similar to the log file access the Simple
Network Management Protocol (SNMP) allows the agent to collect information
that is already condensed and thus more compact. For example for measuring the
network load the agent does not have to request copies of all packets. It might
simply request the appropriate SNMP variable from time to time. Thus, it may
be useful to introduce an SNMP management information base access service that
offers support for (restricted) SNMP access to the monitored router. Handling
(repetitive) monitoring tasks with local SNMP requests saves bandwidth and re-
duces latency. This has also been recognized by the IETF therefore they developed
an experimental standard for local management scripts [SQ99].

Model Extension

The customer-based service monitoring model described in chapter 4 is non-intrusive.
In order to widen the application area it can be useful to invalidate this property.
Instead of requesting packet copies from the node, the agent may order the packets
themselves. The agent could then play a role in the forwarding process. The node
would also offer a forwarding service and access to the routing table. Agents on
such a node platform can obviously do more than just monitoring. It can shape
traffic, implement a firewall mechanism and influence the route that packets take.
They can also ’consume’ certain packets, interpret the packet contents as com-
mands, and eventually replace them with others. The CSM architecture would
then become an full-fledged active networking platform (see section 4.2). The
CSM protocol (see section 5.1) would then be the management plane of this ac-
tive networking platform. This extension opens up new application areas that go
beyond the customer-based service monitoring. However, the extended version of

6.5. EXTENDED APPLICATION SCENARIOS 171

the CSM infrastructure is much harder to deploy because it is intrusive. This intro-
duces new security problems and (probably even worse) it introduces performance
problems. Note, that the node environment cannot be physically separated from the
router like proposed for CSM (see section 4.3.2). But even if the node environment
is integrated in the routers, the Java agents are not able to perform forwarding at
backbone link speeds.

172 CHAPTER 6. APPLICATIONS OF SERVICE MONITORING AGENTS

Chapter 7

Performance Evaluation

This chapter provides an overview of the performance of the implemented customer-
based service monitoring components. The focus is on the performance of the node
environment but also the performance of relevant agents, the end-to-end perfor-
mance and the T-component are discussed.

Methodology. The node environment runs (if not mentioned otherwise) on a
Sparc ULTRA 5 with a 269 MHz CPU connected to a 100 Mbit Fast Ethernet.
If the T-component is the subject of the test then it runs on an IBM Thinkpad
380 ED with a Pentium(r) processor and performs live packet capturing. The
Thinkpad is connected to a 10 Mbit Ethernet. If the T-component performance
is not the subject of the test I used a T-component dummy that artificially gen-
erates monitored traffic and sends it to the node. Time is measured using Java’s
System.currentTimeMillis() system calls at appropriate locations in the
code. If not mentioned otherwise the time is taken at a single machine. Therefore,
no clock synchronization is necessary. The time is represented in milliseconds.
Bandwidth consumption and throughput is usually represented in bytes, kilo-bytes
(KB), and mega-bytes (MB) per second. Note, that we interpret kilo as 1000 and
mega as a million (not 210 and 220). In order to have a benchmark time, I imple-
mented the FastestAgent which is an agent with empty method bodies. Thus, the
agent does not perform any work. It is therefore the fastest possible agent.

7.1 Performance of the Node Environment

Each agent is isolated in a separate execution environment which ’ feeds’ the agent
with monitored packets (see section 5.3.3, especially figure 5.6). A receiver puts
the packets coming from the T-component into a queue. The agent wrapper takes
the packet out of the queue and hands it over to the agent. The wrapper runs in
a special execution thread. This separation brings security but it may also impose
performance penalties because of the context switch between threads. Therefore,
we wanted to measure the speed of the packet hand-over. We replaced the receiver

173

174 CHAPTER 7. PERFORMANCE EVALUATION

with a packet generator with parameterizable speed. The generator runs in its own
thread and fills the queue with packets. After a fixed number of packets n, the
thread yields its execution so that the agent can process the packets. In the follow-
ing results this is referred to as the number of consumers to producers (1=n). The
test agents include the aforementioned FastestAgent and a throughput measuring
agent. The later uses the IP packet length field to measure the throughput over
one-second intervals. For each interval the agent sends a result message back to
the home application. Here are the results of some relevant test runs.

7.1.1 Throughput of the Execution Environment

The packet generator generates packets of selectable size at a selectable speed. The
throughput of the execution environment is measured in bytes per time unit and in
packets per time unit.

The throughput measurements are influenced by the rate at which the receiver
generates packets. In this setting the packets are generated as fast as possible. Yet,
always after a certain number of packets the generator yields the CPU Thread.-
yield(). In order to determine the weight of this influence we conducted the
following measurements: We vary the aforementioned rate at which the agent
(FastestAgent) is given the CPU to process the packets from 1 (once for each gen-
erated packet) to 1/40 (once for forty generated packets). Note, that the a smaller
rate than this does not make sense, because the queue can only hold 40 packets.
Thus, after the receiver has generated 40 packets it blocks anyways. The packet
size here is 1500 bytes. The test result is shown in the graph of figure 7.1. Rate
1 is not optimal. The high number of context switches between the threads slows
down the execution environment. The rest of the rates (between 0.5 and 0.025) do
not cause significantly different performances. In the tests of the rest of this section
the rate is set to 0.1 where not mentioned otherwise.

The speed of packet processing of the execution environment is also influenced
by the packet size. Figure 7.2 shows the throughput in packets per milliseconds (for
both presented agents) in relation to the packet size. The upper performance limit is
13 packets per millisecond (for 40 byte packets). The aforementioned throughput
measuring agent (an agent performing real work) comes close to 12 packets per
millisecond. Naturally, the packet throughput decreases for bigger packets. For
maximum sized packets (65535 bytes - not depicted in the graph) the maximum
throughput is 2.55 packets per milliseconds.

Figure 7.3 visualizes the same measurement data, but now we compare how
many bytes per second are delivered. From this point of view, the execution en-
vironment performs better for large packets. For the maximum sized packets the
throughput reaches more than 167 MB per second. For small packets (40 bytes)
the throughput measured is 516 KB per second. Note, that these numbers represent
absolute upper limits.

7.1. PERFORMANCE OF THE NODE ENVIRONMENT 175

12

12.5

13

13.5

14

14.5

15

15.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
B

yt
es

 p
er

 s
ec

on
d

Producer to consumer rate

Node Environment Performance

Fastest agent

Figure 7.1: Influence of the packet generation rate.

0

2

4

6

8

10

12

0 1000 2000 3000 4000 5000 6000 7000 8000

P
ac

ke
ts

 p
er

 m
ill

is
ec

on
d

IP packet size (bytes)

Node Environment Performance

Fastest agent
Throughput agent

Figure 7.2: Packet throughput of the execution environment.

176 CHAPTER 7. PERFORMANCE EVALUATION

0

10000

20000

30000

40000

50000

60000

70000

0 1000 2000 3000 4000 5000 6000 7000 8000

K
B

yt
es

 p
er

 s
ec

on
d

IP packet size (bytes)

Node Environment Performance

Fastest agent
Throughput agent

Figure 7.3: Packet throughput of the execution environment.

Influence of the resource control. During their execution all agents are subject
to resource usage control (see section 5.5.3). Once a second a resource controller
checks the CPU and memory usage of the agents. This work may slow down
the node. By comparing the performance of the FastestAgent with and without
resource control one can measure the impact of the resource control. The test run
measured the time the execution environment needs to treat 100’000 packets with
a size of 1500 bytes. The result is depicted in the graph of figure 7.4. Since the
benchmark agent does not add overhead for agent specific computing, the impact
of the resource control must stand out in this setting. Yet, as the figure suggests the
impact of the resource control is only minor (about 5%).

For regular agents that perform some work the relative impact is even much
smaller. One exception is the memory usage control. The used mechanism (object
serialization - see section 5.5.3) is relatively slow. Its effort grows with the size of
the agent to be tested. We implemented a test agent that slowly grows in size. The
CPU time used to determine its size during a resource check is shown in figure 7.5.
The memory check duration is more or less linear to the size of the agent. Check
times of larger agents tend to fluctuate more. Note, that the graph ends at agent
sizes of 40 KB because the node policy declares this to be the maximum tolerable
size. The 300 milliseconds checktime for agents of about 40 KB size is large (about
30 percent of the interval time). Therefore, memory checks are not carried out at
every check interval but only after a random number of intervals (again see section
5.5.3). This is justifiable because experiments showed that rapidly growing agents

7.1. PERFORMANCE OF THE NODE ENVIRONMENT 177

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

M
ill

is
ec

s.
 fo

r
10

00
0

pa
ck

et
s

Consumer to producer rate

Impact of Resource Controlling

With resource control
Without resource control

Figure 7.4: Influence of the resource control.

are usually eliminated by the CPU control mechanism.

7.1.2 Node Throughput Including the TCP Receiver

In the previous experiments the receiver component of the execution environment
generated artificial packets and injected them directly into the execution envi-
ronment’s in-queue. Here, a separate thread is used to emulate an external T-
component. Thus, the monitored IP packets are still artificial, but they enter the
receiver through a TCP connection. Again, the FastestAgent is a benchmark. In
this measurement we vary the packet size to measure the impact on the packet
throughput. Figure 7.6 shows the results. Again, the throughput is higher when the
packets are bigger. The achieved throughput is now considerably smaller (about
5 times) than when the receiver generates the packets directly. This implies that
the Java TCP/IP sockets are a potential bottleneck of the execution environment.
For larger packets the packet per millisecond rate decreases yet only slowly. How-
ever, for packets smaller than 200 bytes there is an anomaly where small packets
experience a smaller packet rate. This can have several reasons for example that
the Java socket implementation for either sending or receiving is less effective for
small packet. Yet, we could not clearly locate the cause.

178 CHAPTER 7. PERFORMANCE EVALUATION

0

50

100

150

200

250

300

350

0 5000 10000 15000 20000 25000 30000 35000 40000

C
he

ck
 d

ur
at

io
n

(m
ill

is
ec

on
ds

)

Agent size (bytes)

Memory Size Check Effort

Check duration

Figure 7.5: Size dependency of the memory control duration.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 500 1000 1500 2000 2500 3000

M
B

yt
es

 p
er

 s
ec

on
d,

 P
ac

ke
ts

 p
er

 m
ill

is
ec

on
d

Packet size (bytes)

Fastest Agent with real Receiver

Packets per millisecond
Throughput (MBytes per second)

Figure 7.6: Throughput of the execution environment including the TCP receiver.

7.2. AGENT PERFORMANCE 179

7.2 Agent Performance

The previous sections already presented the performance of the fastest agent pos-
sible and the performance of a throughput agent. The later did perform close to
the benchmark. It represents those agents that do only little work per monitored
packet, such as for example agents for delay, jitter and loss measurements. This
section discusses the performance of the VPN agent presented in section 6.1. The
agent calculates a statistic of the complete payload of the monitored packets. The
VPN agent is therefore a performance ’heavy-weight’ . The VPN agent can per-
form two kinds of statistical tests: the byte-frequency test and the run-length test.
The byte-frequency test involves more computation because it works on 256 value
classes whereas in the run-test only uses six classes (see section 6.1.2).

Each agent has an emergency method to treat packets if the in-queue is running
full (see section 5.4). Usually, this method just discards the packet1. This is also the
case for the VPN agent and thus such packets are referred to as ‘ lost’ packets. The
mechanism allows agents to treat packet bursts and continue their work even if the
load of incoming packets is higher than the agents’ packet handling capacity. This
emergency mechanism is nevertheless limited. If the agent handles too many pack-
ets as emergency then the node interprets this as a sign of a congestion and starts
killing low priority agents (see section 5.5.3). Figure 7.7 shows the performance
of the VPN agent. Here, the receiver acts as a packet generator with a varying rate
(see section 7.1.1). A smaller rate means that more packets are produced before
the agent is given a chance to consume them. The results show that the throughput
stays relatively constant when less than 20 packets are produced before the agent
gets a chance to consume them. After that point the agent starts to drop packets.
It can thus handle more packets and the throughput increases. The node limits the
loss rate to 40 percent (0.4 in the graph). The VPN agent using the byte-frequency
test is unable to support a consumer-producer rate of 0.025. Such a rate leads to a
loss rate which is too high and the agent is killed. The VPN agent using the run-
test has a significantly higher throughput and can also support the generated traffic
up to the maximum rate of 0.025. With a packet size of 1500 bytes, it can handle
monitored traffic of up to 0.36 MByte (approximately 3 Mbit per second) without
loosing packets. This is also the maximum speed at which software devices can
perform encryption. With a reasonable loss (less than 40 percent) the agent can
support speeds of over 0.6 MBps (approximately 5 Mbit per second).

7.3 Communication Performance of the CSM System

From the perspective of the user the response time to an agent execution request is
relevant. This is the time that elapses between the moment that the user sends the
agent and the moment when the user receives the acknowledgment that the agent is
running. Note, that the CSM protocol acknowledges the agent only after the exe-

1The agent may also count these lost packets or perform a simplified test on them.

180 CHAPTER 7. PERFORMANCE EVALUATION

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.020.030.040.050.060.070.080.090.1

M
B

yt
es

 p
er

 s
ec

on
d,

 P
ac

ke
t l

os
s

Consumer to producer rate

VPN Agent Performance

Throughput (byte-freq. test)
Loss (byte-freq. test)
Throughput (run test)

Loss (run test)

Figure 7.7: Performance of the VPN agent.

cution environment is set up and the agent is started successfully. In the following
test setting the CSM customer application runs on the same machine as the node
environment. The requests are sent through the local TCP/IP stack. The response
time is influenced by a number of factors: the size of the agent, the encoding of the
message and security overhead. We conducted a series of tests with ten samples
each. The results for the benchmark agent (FastestAgent) are depicted in table 7.1.
The first (minimal) option uses a receiver that generates packets and a node with-
out resource control. The next option adds the resource control. The next series
adds a real receiver with a TCP connection to a T-component dummy. This may
impose some overhead because a server socket must be started for the communica-
tion with the T-component. The next step is to use PGP authentication for the CSM
execution request messages. Finally, the response time for PGP authenticated and
encrypted the messages is measured.

From table 7.2 we can see that the resource control does not have a negative
impact on the response time. The start of a server socket for the T-component
communication however has a small negative impact. Encryption and authentica-
tion add a large delay. Note, that the node always answers in the same encoding
as the request. So, not only the request is encrypted and decrypted (authenticated)
but also the acknowledgment. Using the external PGP implementation has the ad-
vantage that the implementation is tested by many security experts and thus has
become trustworthy and stable. Further, the computationally expensive crypto-
graphic operations can be performed in native code instead of Java byte-code. Yet,

7.3. COMMUNICATION PERFORMANCE OF THE CSM SYSTEM 181

Table 7.1: Response times of the FastestAgent

Option Average (ms) Standard deviation (ms)
Minimal 129.0 9.2
Plus resource control 126.2 7.8
Plus receiver 156.8 45.7
Plus authentication 1990.3 171.2
Plus encryption 3357.0 276.6

as table 7.1 showed, the speed of the script-based PGP access (see section 5.5) is
limited. Instead of a script-based approach, the Java Native Interface (JNI) can
be used to access external PGP functionality [Jam01]. This improves the crypto-
graphic performance. Yet, the speedup is not breath-taking. For small agents (1
KB) the speedup factor is 1.71, for medium sized agents it is 1.24 and for large
agents (500 KB) there is no improvement.

The size of the agent has also an impact on the response time. The bench-
mark agent size is 692 bytes. The message of the execution request (which carries
the agent and other information e.g. the requested filter) is 2154 bytes. The ac-
knowledgment message size is 190 bytes. The VPN Agent execution request size
is 29’238 Bytes. Table 7.2 shows the response time for a VPN agent execution
request. The normal setting is with a real receiver and with resource control.

Table 7.2: Response times of the VPN agent

Option Average (ms) Standard deviation (ms)
Normal 179.9 64.5
Plus authentication 2864.8 267.7
Plus encryption 4505.4 193.4

Latency until the reception of the first result. The previously presented re-
sponse times represent the time between the customer initiates the transmission of
an agent and the time the acknowledgment of the agent execution returns (see also
section 5.1.6). It is also interesting to see how long it takes for an agent to send its
first result. The sending of results is a node service so it may be subject to addi-
tional latency (see section 5.3.4). To test this we implemented an agent that carries
a payload of variable size. As soon as it starts executing it sends this payload back
to the home application. The agent performance can be compared to agents of other
mobile agent platforms. We have chosen the NOMADS platform for comparison
[SBB+00]. Table 7.3 shows that the CSM platform outperforms NOMADS. This
is mainly due to the fact that NOMADS uses a more fine-grained resource control

182 CHAPTER 7. PERFORMANCE EVALUATION

mechanism and supports strong mobility. On the other hand NOMADS does not
face the overhead of the T-component communication. Note, that the execution
platforms and test layout were not exactly the same so the results are only approx-
imative. Yet, the tests showed that the performance of the CSM implementation
does not significantly fall behind state-of-the art agent systems.

Table 7.3: Response times

Payload NOMADS response (ms) CSM response (ms)
0 KB 333.5 198.2

16 KB 337.4 273.4
64 KB 341.6 280.7

Latency within the CSM platform. The time between the generation of a packet
at the T-component dummy and the notification of that packet at the home applica-
tion is of interest because this is the minimum time that it takes an alarm to reach
the customer. Figure 7.8 shows the latency measured. The scenario consists of one
node which uses a dummy T-component that generates and sends artificial pack-
ets. The home application is running on the same machine. The time between
the interception of the packet and the delivery of the packet to the agent is very
short (usually smaller than 1 millisecond). The sending and reception of the CSM
message (including object de-/serialization) takes about 55 milliseconds). This in-
cludes also the time that the agent’s request for sending waits in the service channel
(see section 5.3.3).

Forwarding Latency. The customer can request that the CSM agent be for-
warded from one node to another (see section 4.4). For security reasons a node for-
wards only authenticated agents and only after the node could successfully start the
agent. Therefore, the propagation of the agent will be relatively slow. A throughput
measuring agent was used in the forwarding latency measurement setting. Figure
7.9 shows the test setting. There are four CSM nodes running in three machines on
two different subnets. The CSM home application is also running on the machine
named balu. The figure shows how the nodes are interconnected.

The first test run sent the agent to the node named IAM. The agent requested to
be broadcast. Table 7.4 shows the resulting latency times. The numbers represent
the time that has passed between the initial transmission of the initial until the call-
back of the agent instance at that location. First the agent starts at the IAM node.
After the execution this node sequentially forwards the agent to the RVS node then
the CUI node then the TIK node.

The second test sent the agent to the RVS node. The agent requested the node
to broadcast it from there. The result is shown in table 7.5. Apparently, if a node

7.3. COMMUNICATION PERFORMANCE OF THE CSM SYSTEM 183

0

10

20

30

40

50

60

70

0 5000 10000 15000 20000 25000 30000

La
te

nc
y

(m
s)

Time (ms)

Latency between T-Component and Home Application

Latency at the agent
Latency at the home application (ms)

Figure 7.8: Latency between the generation of a packet, its delivery to the agent,
and customer notification.

RVS

IAM

BaluAsterix

Milou

130.92.65.x

CUI

TIK

130.92.64.x

Figure 7.9: The forwarding latency test setting.

184 CHAPTER 7. PERFORMANCE EVALUATION

Table 7.4: Forwarding latency over IAM

Node Latency (ms)
IAM 1520
RVS 2170
CUI 3827
TIK 5298

has to forward the agent to several neighbors this slows down the forwarding. This
is because the forwarding happens sequential. So, the node forwards the agent and
waits for the acknowledgment before it forwards the agent to the next neighbor
node. Furthermore, the node has to perform excessive cryptographic work when it
has to authenticate the forwarding acknowledgments. An easy and effective op-
timization would be that the node forwards the agents in concurrent execution
threads.

Table 7.5: Forwarding latency over RVS

Node Latency (ms)
RVS 1515
IAM 2159
CUI 2778
TIK 4129

7.4 The T-Component

The previous performance measurements often used a T-component dummy to ar-
tificially create measured packets. This is to isolate the measured subjects (agents,
the node and the communication) from the influence of the T-component imple-
mentation. Now the focus is on the performance of the T-component that is capable
of monitoring a real network device. The T-component implements the fast packet
copy mechanism that delivers the input on which the CSM agents carry out their
measurement. Thus, the T-component has to work at (a potentially very high) line
speed. The task of the T-component is relatively simple. Therefore, the best solu-
tion would be to implement the T-component in hardware. Scripting was used to
start the Tcpdump tool and a C++ program to send the output to the CSM node (see
section 5.2). The T-component ran in a laptop with a 10 Mbit Ethernet interface.
Using a laptop has the advantage that the network can easily be tapped at different
locations but the disadvantage is that the laptop is relatively slow. The first version

7.4. THE T-COMPONENT 185

of the T-component was only able to forward traffic at a speed of about 0.75 Mbps.
The main problems were that the C++ program parsed human readable Tcpdump
output and that it sent the result in small chunks. The second version of the T-
component uses the (undocumented) raw-format of Tcpdump and sends the copied
packets in large chunks (ideally one packet per packet). In order to analyze the
capacity of the new T-components we used a UDP sender and receiver tool. The
receiver is located in the same machine as the T-component. The receiver mea-
sures how much traffic arrives at the laptop. The t-component copies the packets
and sends them to the CSM node. The test scenario is shown in figure 7.10.

Manuel H. Guenter

Raw Packet Protocol

UDP senderUDP receiver

T-component

UDP traffic

Figure 7.10: T-component performance test scenario.

For the test packets of 1KB size were used. We compared the measurements of
a throughput measuring agent with the results of the UDP receiver. Furthermore,
we analyzed the CPU consumption of the T-component (the sender of the packet
copies) and of the underlying Tcpdump program. Table 7.6 summarizes the re-
sults. For speeds up to 4 Mbps the T-component did deliver all packets and the
agent computed the correct throughput. Note that for 4 Mbps the CPU consump-
tion of the T-component is already very high. At higher sending rates, Tcpdump
consumes considerably more CPU time than before. The main problem is however
the transmission of the T-component. The 10 Mbit Ethernet connection starts get-
ting congested. The T-component sends back packet copies. It sends them wrapped
in TCP packets which are wrapped in IP packets. So in theory the T-component
more than doubles the traffic load on the Ethernet. As a consequence the TCP
connection between the T-component and the CSM node (the raw packet proto-
col) suffers. The agent does not get all packets and measures a wrong throughput.
Because the raw packet protocol backs-off the T-component blocks and yields the
CPU so the T-component uses less CPU in the congestion case. Tcpdump is able
to cope with the traffic upcome, but it has to consume more CPU.

Nevertheless, the agent can request that the T-component only sends a part of
the packet. When the agent requests only the first 40 bytes of each packet, then the
T-component can support up to 6 Mbps without getting congested. For 7 Mbps the
T-component is congested again. About 13 percent of the packets do not reach the
agent. If packets are smaller than 1 KB then the upper limit of supported traffic
load is lower.

It is a UNIX pipe that delivers the dumped packets to the T-component. Thus,

186 CHAPTER 7. PERFORMANCE EVALUATION

Table 7.6: T-component load

Sent Received Measured T-component CPU Tcpdump CPU
2 Mbps 1.95 Mbps 1.95 Mbps <40% < 5%
3 Mbps 2.92 Mbps 2.92 Mbps <50% < 6%
4 Mbps 3.85 Mbps 3.85 Mbps <55% < 20%
5 Mbps 4.70 Mbps 3.20 Mbps <40% < 25%
6 Mbps 5.60 Mbps 2.00 Mbps <20% < 30%

the packets travel a relatively long way until they are finally delivered to the agent.
Figure 7.11 shows this delivery time for the same scenario. The packet size is 1
KB and the T-component delivers a full packet copy. The UDP traffic load is 0.5
Mbps. The results show that there is a significant latency of about 300 milliseconds.
Note, that this latency does not influence the agents ability to measure correctly.
The agent measure based on the timestamp provided by the T-component and not
on the time when the agents first see the packet.

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300

La
te

nc
y

(m
s)

Time (ms)

Latency between T-Component and Agent

Latency at the agent

Figure 7.11: Latency of the Tcpdump based T-component.

7.5. DISCUSSION AND IMPROVEMENTS 187

7.5 Discussion and Improvements

The intent of the customer-based service monitoring architecture is to provide a
facility for customers to measure the service level they get. All implemented com-
ponents (node environment, agents, and T-component) support a data rate of at least
1.5 Mbps. Thus, the presented implementation can support customers with Frame
Relay and T1 Internet connectivity. Yet, there are some shortcomings where the
CSM implementation should be improved in order to accommodate higher speeds.
Here is a summary of those and suggestions for improvements.

� Instead of piping the Tcpdump output into another program the implemen-
tation of the T-components should directly access the packet capturing li-
braries. This will reduce the latency between the T-component and the agent.
Backbone T-components should be implemented in hardware or at least di-
rectly in the monitored device to support higher network loads.

� The TCP/IP communication between the the T-component and the node is a
bottleneck. A UDP based protocol with a checksum may be helpful.

� Small packets introduce significant overhead in both the T-component and
the node environment. The problem occurs if the small packets are sent at a
high rate. In that case, the raw packet protocol and also the agent execution
environment should bundle several small packets into one packet/object.

� The cryptographic mechanisms are very time consuming. Built-in crypto-
graphic libraries may alleviate the problem.

� The object serialization mechanism is relatively slow. The byte stream it pro-
duces contains much redundancy. CSM uses the mechanism for the message
protocol and for the memory consumption control.

Nevertheless, the performance measurements have shown that a CSM imple-
mentation is feasible in pure software and with off-the shelf and portable technol-
ogy. The implementation cannot support backbone speed service monitoring. Yet,
even with security features included (authentication, encryption, resource control)
the software implementation is capable of monitoring at WAN access speed.

188 CHAPTER 7. PERFORMANCE EVALUATION

Chapter 8

Comparison with Related Work

8.1 The Internet2 Initiative and the QBone

In 1996 several American universities started the Internet2 initiative [Rab98, Uni].
The Internet2 should recreate the partnership among academia, industry and gov-
ernment that fostered today’s Internet in its infancy. The partnership aims to initi-
ate the next evolutionary step of the Internet. Today, the Internet2 is a non-profit
consortium, led by over 180 US universities and over 60 companies, developing
and deploying advanced network applications and technology, thus accelerating
the creation of tomorrow’s Internet. The primary goals of Internet2 are to:

� Create a leading edge network capability for the American research commu-
nity.

� Enable revolutionary Internet applications.

� Ensure the rapid transfer of new network services and applications to the
broader Internet community.

The Internet2 is not a separate stand-alone network but it takes advantage of
new high performance IP networks such as the vBNS and Abilene. Abilene [ABI]
is a US high speed network spanning the USA with Sonet optical carriers OC-
48 links (2404Mbps). The Abilene is interconnected with CA*net 3 of Canarie
[CAN], the Canadian counterpart of the Internet2, with the European research net-
work TEN-155 [DAN] and other research networks around the globe. Abilene also
peers with the very high performance backbone network service (vBNS) [vBN]
of MCI. MCI runs the vBNS for the US National Science Foundation (NSF) until
2004.

The Internet2 members collaborate in working groups on advanced applica-
tions, middleware, advanced network infrastructure and new networking capabili-
ties. The last issue concerns the developing and testing of new IP network services
and is therefore relevant to this thesis. In particular the QBone working group

189

190 CHAPTER 8. COMPARISON WITH RELATED WORK

[Int99, THD+99] addresses problems related to this thesis. QBone is an inter-
domain testbed for differentiated services. QBone seeks to provide the Internet2
with end-to-end services in support of emerging/advanced networked applications.
QoS support is implemented with DiffServ. The following subsections discuss the
QBone work on goals that interleave with the goals of this thesis: (1) inter-domain
DiffServ services, (2) DiffServ signaling and (3) network measurements.

8.1.1 QBone Architecture

Consistent with the Differentiated Services architecture, each network participat-
ing in the QBone [Tei99] will be considered a DS domain and the union of these
networks - the QBone itself - a DS region. QBone participants must cooperate to
provide one or more inter-domain services besides the default, traditional best ef-
fort IP service model. The first such service to be implemented is a leased line like
service called the QBone Premium Service (QPS). Every QBone DS domain must
support the Expedited Forwarding (EF) Per-Hop Behavior (PHB) and configure its
traffic classifiers and conditioners (meters, markers, shapers, and droppers) to pro-
vide a QPS service to EF aggregates. Between each QBone DS domain there are
Service Level Specifications (SLS) that characterize aggregate traffic profiles and
per-hop behaviors to be applied to each aggregate. The SLS is bilateral. Currently
the QBone focuses on SLS for the QBone premium service and refers to it as a
globally well-known service. This simplifies the concatenation of bilateral SLS
into an inter-domain end-to-end service because the SLS can be designed so that
they ‘fi t’ the QPS.

The end users request the QPS service by sending a reservation of the form:
source, dest, route, startTime, endTime, peakRate, MTU, jitter. So, the user re-
quests the QPS service starting at startTime and ending at endTime across the chain
of DS-domains route between source source and destination dest (may both be IP
hosts or network addresses) for EF traffic ingressing at source and conforming to
a traffic profile parameterized by a token bucket profiler with token rate equal to
peakRate bytes per second and bucket depth equal to MTU bytes. Out-of-profile
packets are dropped. The QPS service shall offer the following guarantees: low
loss, low latency and low jitter (an upper delay variation bound). There shall be
virtually no loss, delay or jitter due to queuing effects.

The user sends service requests to the first hop bandwidth broker. The broker
maps the request to local resources and to SLS with neighbor DS domains to check
if it can be accommodated. In the first deployment phase of the QBone project
the broker only performs local admission control. In the next phase the brokers
will signal these requests to ensure end-to-end quality. Finally, in the third phase
the broker is able to change SLS dynamically in order to accommodate the user
requests (see next section).

Figure 8.1 shows the functional decomposition of the Bandwidth Broker (BB)
as proposed by the QBone. The BB communicates with three key protocols: The
user/application protocol is an interface provided for resource allocation requests

8.1. THE INTERNET2 INITIATIVE AND THE QBONE 191

from customers. The intra-domain protocol has the purpose to communicate BB
decisions to routers within the bandwidth broker’s domain. The inter-domain pro-
tocol provides a mechanism for peering BBs to ask for and answer with admission
control decisions for aggregates and exchange traffic. The proposed bandwidth
broker also has an interface to a policy management system (PM iface) and an
interface to the network management system (NMS iface).

Figure 8.1: QBone bandwidth broker model.

The bandwidth brokers need access to interior and exterior routing informa-
tion. Furthermore, the different components of the broker share a common data
repository which stores the following information:

� Service mappings/DSCP mappings.

� Policy information.

� SLS information for all ingress/egress routers.

� Current reservations/resource allocations.

� Configurations of routers.

� Network management information.

� Authorization and authentication databases (for users and peers).

� Monitoring information from routers.

192 CHAPTER 8. COMPARISON WITH RELATED WORK

8.1.2 Architectural Comparison of the QBone

The service broker architecture that proposed in chapter 2 and the QBone architec-
ture were both developed independently at about the same time. They are both in-
spired by the DiffServ architecture and by the bandwidth broker idea from [NJZ99].
Both architectures are very similar. Yet, the service broker architecture is not Diff-
Serv specific, because it is designed to also cover VPN management. The QBone
architecture on the other hand makes a more sharp distinction between the techni-
cal description of the service (SLS) and the business contract (SLA). The QBone
brokers only deal with SLSs not with SLAs. QBone omits the business aspects and
factors them out into SLAs which are not further studied. This makes sense for
the QBone since it is an academic initiative and the QBone DiffServ region is open
to all partners. The SLAs as used in the first part of this thesis include a business
part and a technical descriptive part (SLS). The way this thesis uses the term SLA
best corresponds to the SLS definition of the phase three of the QBone plus some
charging and billing aspects.

When our internal and external service broker (see figures 2.4 and 2.5) are com-
bined to one entity then this is basically the same as the QBone BB node depicted
in figure 8.1. Our ’master interface’ corresponds to the network management inter-
face. Our peer ESB interface corresponds to the inter-domain interface. Our slave
interface corresponds to the intra-domain interface. Our service broker architec-
ture’s customer server corresponds to the user/application interface. Note, that the
QBone architecture does not cope with service bundling since if focuses on on spe-
cific DiffServ service. The coordinator component together with the autonomous
behavior corresponds to the central ’policy services’ component of the QBone ar-
chitecture. The SLA- and service configurations repositories of the service broker
architecture correspond to the data store. Both architectures provide an interface to
an external policy management mechanism. The external policy query interface of
our architecture is amongst other things intended to collect routing information.

The basic difference between the two architectures is that the service broker
architecture tries to decompose the central broker entity according to the two-tiers
Internet model. Thus, there is an internal broker that hides the particularities of
the local DiffServ domain. The external broker can be fully standardized. Also,
this thesis models the configuration of heterogeneous devices as element manag-
ing agents. The idea is that device specific configurations can be optimized by
specialized intelligent agents (the EMs). So, the service broker architecture has a
higher degree of functional decomposition. It proposes a set of service agents with
specific functionalities instead of one central BB that is supposed to be a generic
problem solver.

8.1.3 QBone Signaling

The QBone has formed a signaling design team in 1999 which develops the Simple
Inter-domain Bandwidth Broker Signaling protocol (SIBBS). The work is still in

8.1. THE INTERNET2 INITIATIVE AND THE QBONE 193

progress, a draft document can be found at [QAr]. The design team points out that
the DiffServ signaling should not destroy the key advantages of DiffServ which
are based on 1) aggregation of traffic into a small number of behavior aggregates,
2) requiring only bilateral service level agreements and 3) allowing for maximal
flexibility in local resource management decisions. The design group is looking
for a simple and robust protocol. However, it should also be extendible and leave
room for future growth.

The current work of the QBone working group assumes that SLS are already
in place. An SLS represents a potential for reservation. The provider of the SLS
guarantees to accept reservations up to a limit described in the SLS. The QBone
signaling describes the communication to reserve and release these resources. As
said before, in phase 2 of the QBone deployment the reservations may also lead to
dynamic SLS updates. But the QBone working group does not specify that process
up to now. In [THD+99] Teitelbaum et al. describe the following signaling options:

1. No signaling.There are three options to mark the packets: the layer 2 mark-
ings are used, the host marks the packets, or the network edge marks the
packets. From then on all packets in a DS class are treated the same. Inter-
domain resources are statically allocated and there is no signaling between
the domains.

2. Local signaling. A host application dynamically signals for resources. Yet,
only the local DiffServ domain knows about the dynamic resource requests.
A bandwidth broker keeps track of intra-domain commitments. Links across
DiffServ domain boundaries are statically provisioned. This approach re-
quires careful monitoring of the links towards destination domains.

3. Signaling with Inter-broker communication. Inter-domain communica-
tion allows for dynamic adjustment of the commitments made across the
domain boundaries. The communication protocol must at least include infor-
mation about resource allocation changes on the peering link. If destination-
network information is also included then this can be used to propagate the
resource request further. However, Teitelbaum et al. note that this increases
the signaling complexity and may thus have a negative effect on the scalabil-
ity of the approach. The flow of end-to-end signaling is shown in figure 8.2.
An alternative is the immediate response signaling depicted in figure 8.3.
There, each bandwidth broker immediately answers to the request. Then,
the source can start sending while the request is propagated through the
domains. Yet, this approach only allows for better than best effort service
because end-to-end resources are not reserved immediately. Immediate re-
sponse signaling is considered as not well-suited for premium-style services
like the QPS.

The QBone signaling design team is about to specify the Simple Inter-domain
Bandwidth Broker Signaling (SIBBS) protocol [sdt01]. The protocol shall be used

194 CHAPTER 8. COMPARISON WITH RELATED WORK

Bandwidth broker Bandwidth broker Bandwidth broker

DS user

5 4 3

21

0

Figure 8.2: End-to-end broker signaling.

Bandwidth broker Bandwidth broker Bandwidth broker

DS user

4

3

2a2b

1

0

Figure 8.3: Immediate response broker signaling.

in phase 1 of the QBone deployment in order to signal reservation related infor-
mation between bandwidth brokers. Signaling follows an end-to-end model as
depicted in figure 8.2. A special case are the so called core tunnels1. This is a
reservation between two end domains instead of a reservation between two hosts.
The bandwidth broker of the source domain can aggregate local requests and map
them to the ’ tunnel’ . Therefore, individual reservation requests do not have to be
processed in intermediary domains. SIBBS foresees that the source domain bro-
ker must signal a new reservation request only to the destination domain broker,
so that both brokers can participate in the admission control decision. The SIBBS
specification includes message format descriptions for the following messages:

� Resource Allocation Request (RAR).

� Resource Allocation Answer (RAA).

� Cancel.For tearing down a reservation before it expires.

� Cancel acknowledgment.

The messages contain a number of fields such as a protocol version number,
a unique message ID, the sender ID, and the signature of the sender. The RAR
and the RAA message also contain a Service Parameterization Object (SPO). This
object describes the service specific parameters that the DS user requests. For the
QBone premium service this consists of the route, the peak rate the MTU and the

1Despite the name, there is no tunneling mechanism used here.

8.1. THE INTERNET2 INITIATIVE AND THE QBONE 195

jitter bound. The RAA includes a reason code that contains information allowing
the receiver to diagnose the rejection. For each new service these objects must be
redefined. Then, there is a core tunnel voucher which is used in the core tunnel
case. When a source domain bandwidth broker maps a local request to a core
tunnel, it asks permission of the destination broker thereby referring to the core
tunnel voucher which it has received when the tunnel was set up.

Comparison to this Thesis

The QBone is about to be deployed in a research network. The design thus started
bottom-up in three deployment phases. The design includes the end-user proce-
dures and the provisioning of the ’ last mile’ . The approach of this thesis started
top down from the interactions between the bandwidth brokers and directly tried to
evaluate dynamic SLAs. SLAs are established between service brokers. This thesis
considers the end-user procedures only as a special case of an SLA establishment.
A customer either runs a local service broker or has a tool to send BSP messages to
a service broker (like the GUI described in section 2.4.1). Another option, which is
described in [BBG00], is that service brokers of the access networks are able to to
map resource allocation signals of the applications (e.g. RSVP) to broker signaling
requests.

The QBone documents and this thesis identified similar design goals (scalabil-
ity and flexibility), trade-offs (end-to-end guarantees versus scalability and utiliza-
tion versus signaling complexity) and problems (missing destination information).
The SIBBS protocol specification could be implemented with the flexible protocol
that is proposed in section 2.3.4. The end-to-end signaling described in section
3.5 corresponds closely to the SIBBS signaling, but it also includes the notion of
SLA updates. Thus, chapter 3 discusses the design trade-offs of the QBone phase
2 which is yet to come. Since QBone is intended as a testbed for DS signaling, the
QBone may at some time in the future use and verify the results of chapter 3.

8.1.4 QBone Measurements

QBone participants must collect and disseminate a basic set of QoS measurements.
Since the QBone is a test environment it is important to posses complete measure-
ment information in order to debug, audit and study QBone services. The QBone
measurement infrastructure is thus necessary to study and validate the operation of
new DiffServ services and the application of these services. An important aspect
of the measurements is to verify that DiffServ traffic is indeed protected from other
traffic according to the SLSs, in an end-to-end fashion.

The QBone participants must instrument each edge router of a QBone domain
to serve as a QBone measurement node (probe). Measurements are collected in
three ways: active, passive, and polling of static data.

� For active measurements the probe generates as small amount of test traffic

196 CHAPTER 8. COMPARISON WITH RELATED WORK

and sends it to other nodes. Measured metrics are: one-way packet loss and
delay variation. Also, complete traceroutes are collected to test path stability.

� Passive measurements are used to derive the following metrics: traffic load
in packets per second and bits per second.

� Polling of static data provides the following information which is used to in-
terpret the other measurement data: link bandwidth, EF commitment (SLS2)
and EF reservation load.

All metrics should be measured for all existing behavior aggregates. The metrics
must be applied simultaneously to the aggregates so that the results can be com-
pared and correlated. This is important in the QBone context because one goal
is to verify that the QPS traffic is successfully isolated from best-effort traffic.
Therefore, a situation must be examined where the best-effort traffic suffers due to
queuing-effects (e.g. loss or delay) but the QPS traffic is unaffected at the same
time.

A large part of the QBone architecture describes the metrics and how the mea-
surement data must be formated (e.g. in HTML) so that all QBone participants
have access to a uniform database.

Comparison to this Thesis

The uniform measurement interfaces provided by the QBone could be used to im-
plement the adaptive reservation scenario that section 3.3 describes. However, trust
issues are not addressed at all. It is unrealistic that a commercial domain will make
its complete measurement data available. On the other hand, reservations will cost
and thus the available measurements must somehow also become trusted. Fur-
thermore, the QBone working group spent a lot of time and effort to specify the
uniform measurement interface and measurement metrics. Still, they say that new
measurement metrics will be added with experience. Standardizing and deploying
new metrics into all QBone measurement nodes is not a simple task. If the QBone
would deploy a customer-based service monitoring system as described in part II
of this thesis then these problems can be addressed. A new measurement metric
does not require a standardization process of the working group and a subsequent
deployment of an updated QBone measurement node. The implementation and
broadcast of a new measurement agent is all that would have to be done. In the
initial QBone phases CSM measurement nodes could be open to anyone. Later,
the security mechanisms of the CSM node (see section 5.5) can be used to restrict
access to trusted parties. Finally, the mobile agent approach helps the domains to
build trust into the measurements.

2In the current planning of the QBone SLS are static.

8.2. FURTHER IP SERVICE RELATED INITIATIVES 197

8.2 Further IP Service Related Initiatives

8.2.1 The IEEE P1520 Project for Programmable Networks

Several companies are collaborating on the IEEE standards development project
IEEE P1520 [BLH+98, P15]. This project envisions tomorrow’s telecommunica-
tions network as a giant computer - a fully programmable machine - that delivers
advanced voice, data, and video services globally. In today’s intelligent network
paradigm, the key intelligence of the network, which lies in the signaling network,
is built with a few fixed algorithms or programs known as standard signaling pro-
tocols and control programs. Development of richer signaling protocols and con-
trol programs has been a slow and arduous process. This is because the signaling
standards for the modern telecommunications industry have become very complex
and require consensus from all manufacturers and operators of switching equip-
ment. In contrast to that the world wide web allowed third party application service
providers to rapidly deploy a vast array of new application services. The goal of the
IEEE P1520 is to standardize programmable interfaces to the networks (both cir-
cuit switched networks like ATM or packet networks like IP) so that new services
can emerge at the same pace as they do in the Web.

The IEEE P1520 project introduces the reference model shown in figure 8.4
(July 1998). There are four levels in the model:

� The value-added service level.This level is end-to-end oriented. Entities
located here combine services of the underlying levels and of third-parties.
The composite service server of our broker architecture maps to this level.

� The generic service level.The entities at this level deal primarily with the
functioning of the network. Routing engines and also for example Differ-
entiated Services scheduling are located here. The service brokers of our
architecture map to this level.

� The virtual network device level. The entities of this level represent logical
network devices and their abstract state. The element managing agent of our
architecture maps to this level.

� The physical element level.Routers, switches and so on.

The IEEE P1520 project focuses on providing standardized and orthogonal
programming interfaces between these levels.

� The V-interface. A variety of user level programming interfaces provide
access to the value-added services. These are collectively called V-interface.
The V-interface shall enable developers to write highly personalized end user
software.

� The U-interface. Programming interfaces between the value-added services
level and network generic services level are collectively called the upper

198 CHAPTER 8. COMPARISON WITH RELATED WORK

The P1520 Reference Model

Algorithms for value-added communication
services created by network operators, users,
and third parties

 Algorithms for routing and connection
management, directory services etc.

Value Added
Services Level

Virtual Network Device (software representation)

Physical Elements (hardware, namespace)

L interface

Network Generic
Services Level

Virtual Network
Devices Level

End User Applications
V interface

U interface

CCM interface

PE Level

Figure 8.4: IEEE P1520 reference model.

8.2. FURTHER IP SERVICE RELATED INITIATIVES 199

interface (U-interface). The interface allows its user to make requests for
service enhanced connections (e.g. for a VPN tunnel).

� The L-interface. The programming interfaces between the network generic
services level and the virtual network devices level are collectively called
the lower interface (L-interface). The L-interface enables the upper levels to
directly access and manipulate local network resource states.

� The CCM-interface. These are open protocols to access the state of phys-
ical devices. The Connection Control and Management (CCM) interface is
not a programming interface like the others but a collection of protocols (for
example SNMP or telnet) to access network devices.

Originally, the IEEE P1520 project focused on ATM networks. Yet, recently
more attention is payed on the programming interfaces for IP routers and switches
(CCM- and L-interface) and on programming interfaces for IP networks (L- and
U-interface). Draft documents are publicly available but they are in an early stage
(architectural assumptions, digest of state-of-the-art).

8.2.2 EURESCOM Project P1008-PF: Inter-operator Interfaces for
Ensuring End-to-End IP QoS

The European Institute for Research and Strategic Studies in Telecommunications
(EURESCOM) [EUR] is the (self-declared) leading institute for collaborative re-
search and development in telecommunications. EURESCOM is a virtual com-
pany. All major European telecommunication providers participate. The EU-
RESCOM P1008 project [Brü] intends to support European operator’s interests in
managed interconnection in IP based networks and services, especially with respect
to QoS issues. The work takes into account initiatives of other forums including
the IETF QoS architectures (DiffServ, IntServ) and traffic engineering architec-
tures, like MPLS. Another input source is the Telecommunications Management
Forum (TMF), which is considering what needs to be done to offer a commercial,
telco-quality IP service.

The P1008-PF project explicitly addresses inter-provider issues. Customer per-
ceived QoS is an end-to-end concept. If the service is offered across several do-
mains then the operators of those domains will need to cooperate to ensure cus-
tomer requirements are met. Inter-domain management processes, interfaces and
models are needed to support that cooperation.

The main objectives of the P1008 are to:

1. Understand the new inter-domain management requirements presented by
end-to-end IP services and to relate those new requirements to existing stan-
dards and work.

200 CHAPTER 8. COMPARISON WITH RELATED WORK

2. Produce implementation independent specifications of the extra management
processes, models and interfaces required to support end-to-end IP QoS ser-
vice assurance.

3. Capture requirements for network performance monitoring and service pa-
rameter measurements needed to support those processes, interfaces and
models. Here the CSM architecture of part II of this thesis can support this
task.

4. Disseminate these specifications to EURESCOM shareholder organizations
(the participating telecoms) and relevant standardization and industry bodies.

5. Coordinate this work with other related activities in EURESCOM, and exter-
nal activities (e.g. IETF, TMF, TINA, QoS-Forum, EU projects) and public
information provided by IP technology vendors.

The details of how IP QoS will be provided and assured, together with the
choices of the underlying network technology to support the IP layer remain open
to further development. The inter-domain management implications of different
options need to be understood and solutions proposed. The project is currently
about to complete the number one of the presented goals: The first deliverable
(found at [Brü]) contains a comprehensive survey of relevant technology and speci-
fications for IP QoS. Currently, no further and concrete research results are publicly
available.

8.3 Network Measurements and Monitoring

In this section we focus on related work in the are of network measurements and
network monitoring. In contrast to network monitoring there is also application
monitoring. There, applications incorporate measurement code to monitor appli-
cation specific behavior like for example hit counts of documents on a web server.
Another example is the response time of a distributed system. The Application
Response Management (ARM) API [ARM96] is an open standard for application
monitoring. Yet, this section is going to focus on network management and on
network related metrics because this is related more closely to the customer-based
service monitoring infrastructure presented in part II of this thesis.

8.3.1 IP Measurement Methodology

Network measurement is by its nature a distributed task. Even the old but nev-
ertheless useful ping tool needs a source and a destination (to reflect the ICMP
message).

Here are distinctions of measurement approaches:

8.3. NETWORK MEASUREMENTS AND MONITORING 201

� Active vs. passive measurements. For active measurements additional traf-
fic with known characteristics is injected into the network. Passive measure-
ments work non-intrusive on the existing traffic.

� End-to-end measurements vs. network element based measurements.
End-to-end measurements are carried out by the communication end points
(sending and receiving hosts). Network element based measurements are
also carried out within the network.

IP Performance Metrics

A network performance metric is a carefully specified quantity that is relevant
to the performance and reliability of the network. The IP Performance Metrics
(IPPM) Working Group has developed a set of standard metrics that can be applied
to the quality, performance, and reliability of Internet services by networks opera-
tors, service providers, and other independent testing groups. [PAMM98] classifies
metrics, specifies methodologies to collect statistics of the metrics and describes
problems of measurement approaches (e.g. clock skew and unintentionally syn-
chronized measurements). The performance metrics defined by this IPPM working
group include: one-way packet loss across Internet paths (RFC 2680), one-way de-
lay (RFC 2679), connectivity measures between two nodes (RFC 2678), and other
second-order measures of packet loss and delay (RFC 2681).

Traffic Flow Measurement Architecture

The Real-time Traffic Flow Measurement (RTFM) Working Group has produced
a measurement architecture to provide a well-defined method for gathering traffic
flow information from networks and internetworks [BMR99]. This architecture
can be applied to any protocol/application at any network layer. The proposed
model is based on the concepts of meters and traffic flow. Meters observe packets
as they pass by a measurement point on their way through the network and clas-
sify them into certain groups. For each such group a meter will accumulate certain
attributes (such as number of packets and bytes). These metered traffic groups
may correspond to a user, a host system, a network, a particular transport address
(e.g., an IP port). Meters are placed at measurement points and selectively record
network activity as directed by its configuration settings. Meters can also aggre-
gate, transform and further process the recorded activity before the data is stored.
A traffic flow is a logical entity equivalent to a call or connection. A flow is a
portion of traffic, delimited by a start and a stop time, that belongs to one of the
metered traffic groups mentioned above. Attribute values (source/destination ad-
dresses, packet counts.) associated with a flow are aggregate quantities reflecting
events which take place between the start and the stop times. Flows are stored in
the meter’s flow table. Since for connectionless network protocols such as IP, there
is no way to tell whether a packet with a particular source/destination is part of a
stream packets or not, each packet is completely independent.

202 CHAPTER 8. COMPARISON WITH RELATED WORK

A traffic meter has a set of rules which specify the flows of interest. Classifying
packets into ’fl ows’ provides a practical way to measure network traffic. Appendix
C in [BMR99] provides a list of the flow attributes. Yet, there is no QoS related
attribute specified.

Besides of flows and meters, the traffic model measurement includes managers
(to configure and control meters), meter readers (to transport recorded data from
meter to analysis applications), and analysis applications (to process the data from
meters readings so as to produce whatever reports are required). Since there has
been considerable interest from users in allowing a meter to report on an increased
number of flow-related measurements, the RTFM WG has produced a new doc-
ument [HSBR99] specifying such measurements (the ’new’ attributes). Some of
the proposed extensions include QoS attributes such as the DSCP to support Diff-
Serv. Possible uses of DSCP attribute include meters that aggregate flows using
the same code points, and that separate flows having the same end-point addresses
but using different code points. The new document also includes QoS parameters
for Integrated Services based QoS support.

8.3.2 The Simple Network Management Architecture

To support and automate IP network management the IETF standardized the Sim-
ple Network Management architecture (SNMP) [CFSD90, Sta99]. SNMP allows
the monitoring of network elements and the pushing of configuration information
into all kinds of IP based networking devices. SNMP versions 1 to 3 exist. The
older versions were mainly used for monitoring and less for configurations. The
SNMP model foresees an SNMP manager which is a management application that
is running on a dedicated management station and operated by the human network
administrator. The manager communicates with SNMP agents. Each SNMP agent
represents a local and permanent management process in a managed device. Thus,
usually the network device implements the SNMP agent. The relevant device state
is represented as SNMP objects (also referred to as variables). These objects are
stored in a Management Information Base (MIB). MIBs have to be standardized
in order to manage devices of different vendors. The language used to describe a
MIB is called Structure of Management Information (SMI). It is a modified ver-
sion of the Abstract Syntax Notation 1 (ASN.1) of the ISO OSI standard. The time
between the specification of a MIB, its standardization, and finally the implemen-
tation of the MIB support in the devices is long (several years). MIB specifications
for DiffServ and IPSec are underway. Yet, today only a (limited) and proprietary
implementation for a DiffServ capable MIB exists.

The SNMP manager communicates with the SNMP agent through the SNMP
protocol. The protocol supports three messages: (1) get with which the manager
gets the scalar value of an object, (2) put with which the manager sets such a
value, and (3) trap. The trap is not solicited by the agent and is triggered in case a
previously declared network event has happened at the device of the agent.

8.3. NETWORK MEASUREMENTS AND MONITORING 203

The Remote Monitoring (RMON) MIB

While the standard MIBs include objects to reflect the performance of network-
ing interfaces (such as a byte counter, a lost packet counter etc.) the RMON MIB
[Wal95] defines management objects so that an agent can monitor the networking
activity of a complete IP subnet. The RMON objects are arranged into the follow-
ing groups:

The Ethernet Statistics Group. The Ethernet statistics group contains statistics
measured by the probe for each monitored Ethernet interface on this device.
In the future other groups will be defined for other media types including
Token Ring and FDDI. These groups should follow the same model as the
Ethernet statistics group.

The History Control Group. The history control group controls the periodic sta-
tistical sampling of data from various types of networks.

The Ethernet History Group. The Ethernet history group records periodic statis-
tical samples from an Ethernet network and stores them for later retrieval.
In the future, other groups will be defined for other media types including
Token Ring and FDDI.

The Alarm Group. The alarm group periodically takes statistical samples from
variables in the probe and compares them to previously configured thresh-
olds. If the monitored variable crosses a threshold, an event is generated. A
hysteresis mechanism is implemented to limit the generation of alarms. This
group requires the implementation of the event group.

The Host Group. The host group contains statistics associated with each host
discovered on the network. This group discovers hosts on the network by
keeping a list of source and destination MAC Addresses seen in good packets
promiscuously received from the network.

The HostTopN Group. The hostTopN group is used to prepare reports that de-
scribe the hosts that top a list ordered by one of their statistics. The available
statistics are samples of one of their base statistics over an interval specified
by the SNMP management station. Thus, these statistics are rate based. The
management station also selects how many such hosts are reported. This
group requires the implementation of the host group.

The Matrix Group. The matrix group stores statistics for conversations between
sets of two addresses. As the device detects a new conversation, it creates a
new entry in its tables.

The Filter Group The filter group allows packets to be matched by a filter equa-
tion. These matched packets form a data stream that may be captured or may
generate events.

204 CHAPTER 8. COMPARISON WITH RELATED WORK

The Packet Capture Group. The Packet Capture group allows packets to be cap-
tured after they flow through a channel. This group requires the implemen-
tation of the filter group.

The Event Group. The event group controls the generation and notification of
events from this device.

The first version of RMON has some shortcomings. For example the filtering
can not describe filters based on higher level protocols. So, it was for example
not possible to distinguish between different TCP flows in order to derive statistics
on the usage of web related protocols. Therefore, two years after RMON, RMON
version 2 was standardized [Wal97] which can distinguish also between the ap-
plication layer headers. Nevertheless, most devices do not even support the full
RMON version 1 MIB. This is a good example of the lack of flexibility of SNMP
compared to CSM.

Comparison to this Thesis

Concerning the first part of this thesis, the SNMP protocol is one possible choice to
implement the communication between the element managing agent of the service
broker architecture and the networking devices. If all networking devices support
MIBs to configure the desired network service then the the SNMP agent can play
the role of the element managing agent proposed by the architecture. The internal
service broker then plays the role of the SNMP manager.

SNMP is also related to the CSM system since it provides network monitoring
functionality. The RMON filtering and packet capture group could be used to
implement a CSM T-component, since it provides the needed filtering and packet
copy mechanism. Yet, most networking devices do not implement the RMON
packet capture group. Traditional SNMP is not preferable as a customer-based
service monitoring infrastructure. The mobile agent based CSM infrastructure has
the following advantages over traditional SNMP:

1. SNMP is not flexible enough for customer-based service monitoring. Such
monitoring must be tailored to each new IP service that a provider offers. Not
all customers will be interested in the same measurement metrics. Therefore,
huge MIB definitions would have to be specified. By the time the devices
implement these MIBs and the provider has deployed these devices the ser-
vice may be out of date and the customer may have switched to another
provider. With the CSM system either the provider, the customer or a third
party supplier can rapidly develop a new measurement agent and distribute
it.

2. The SNMP manager gets the network monitoring information through polling
of all the SNMP agents. Since SNMP agents cannot preprocess the data,

8.3. NETWORK MEASUREMENTS AND MONITORING 205

the monitoring data will use up significant bandwidth resources when trans-
mitted to the manager. Furthermore, the manager that finally analyses the
measurement data may become a bottleneck. CSM agents can preprocess
the monitoring data thus putting it in a more compact form which only con-
tains the information that is of interest. The CSM agent only informs the
home application in case there is something relevant. SNMP can also em-
ulate this behavior by using traps. However, traps are based on a simple
threshold mechanism. Advanced schemes such as random early notification
(see section 6.5.1) cannot be implemented in SNMP.

3. The intent of SNMP is to provide a tool to the network operator of a domain.
Therefore, fine-grained and user-based access control schemes are hard to
implement in SNMP. Either the customer has no access to the desired SNMP
objects or the customer has access to SNMP objects that (s)he should better
not have. The CSM infrastructure has a customer oriented security scheme.

4. SNMP does not provide topology support to the customer. While CSM
agents can use routing and forwarding services of the CSM nodes no such
thing exists for SNMP. Therefore, each customer needs to find out on his/her
own where the relevant SNMP agents are located.

8.3.3 Measurement Testbeds

Today, most large-scale network providers perform network measurements and
monitoring, usually as part of a proprietary network management system (e.g.
Cisco’s Netflow [Cis00b]). Often, providers hesitate to make any results of these
measurements publicly available, because they fear to offer attacking points to their
competitors. This section presents two public and large-scale Internet measure-
ments initiatives.

The NLANR Network Analysis Infrastructure

The National Laboratory for Applied Network Research (NLANR) is developing
a Network Analysis Infrastructure (NAI) to support research on high performance
Internet networks [MBB00]. The main focus is on passive collection of header
traces, active measurements (based on ICMP), SNMP derived data, and Border
Gateway Protocol (BGP) derived data. NLANR collects raw measurement data
from the high-performance connection community in the United States. Various
partners develop off-line analysis tools for the data. Tools for the presentation and
visualization of the data are also of interest.

OCXmon is the passive measurement sub-project of NLANR. Currently, 11
OC3/ATM monitors are deployed. An OCXmon monitor is a rack-mountable PC
running the FreeBSD or Linux operating system. An optical splitter is used to
connect the monitor cards of the PC to an OC3 or OC12 link. This is exactly the
setting that the CSM T-component would need in order to accommodate backbone

206 CHAPTER 8. COMPARISON WITH RELATED WORK

network speed. OCXmon thus shows that CSM T-components are even feasible
without extension of router hardware. Further information on the OCXmon equip-
ment is available at [NLA]. NLANR measurement data is available on the world
wide web at [DAT].

The PingER Project

The PingER project [MC00] performs active Internet performance monitoring for
the HENP community. HENP (high energy nuclear and particle) physics experi-
ments generate huge amounts3 of data. The Internet is used to disseminate this data
to universities all over the world. In order to assess the feasibility of the HENP net-
working goals, a large end-to-end performance monitoring infrastructure is being
set in place. The infrastructure consists of an network probing system along with a
set of tools for analyzing the data. The architecture has become known as PingER,
for Ping (see section 6.3.4) end-to-end reporting. In regular intervals each site uses
the Ping utility to send ICMP echo requests (pings) to a configured set of destina-
tions. First, it sends 11 pings (of which the first is ignored) with a 100 byte payload,
at 1 second intervals, followed by 10 pings with a 1000 byte payload also at 1 sec-
ond intervals. In September 1999 511 nodes in 54 countries participated in the
measurements. The PingER analysis defines five metrics: packet loss, round-trip
time, unreachability, quiescence, and unpredictability. The packet loss and round-
trip time metrics are self-explanatory. The other three metrics need some further
discussion. If no reply is received from all 10 ping packet then the remote host is
considered unreachable. For PingER it is extremely difficult to program analysis
code to tell the difference between network related unreachability an a crashed end
host. If the CSM infrastructure was used then intermediary agents could help to
locate the problem (see section 6.3.4).

If all 10 ping echoes return then the network is considered quiescent or non-
busy. The frequency of this zero packet loss event may give clues of network usage
patterns.

The unpredictability metric is derived from a calculation based on the vari-
ability of packet loss and round-trip time. If a path loses much more packets at
one time than at other times or if the round-trip time fluctuates heavily between
two measurements then the calculation yields a high unpredictability value for this
path. The unpredictability metric is a useful innovation of the PingER project.

The PingER methodology has some shortcomings. The measurements happen
at regular intervals instead of Poisson distributed intervals. The PingER results
may therefore be biased due to synchronization effects (see [PAMM98]). Further-
more, some routers treat ICMP packets different than regular traffic. This may
also bias the measurements since this means that the pingER measurements are
not representative for regular traffic. Nevertheless, the collected data is useful for
recognizing short and long term networking trends and identify network problems.

3During the whole lifetime of the project the expected data volume is somewhere between 1015

and 1018 bytes.

8.4. MOBILE AGENTS FOR MANAGEMENT AND MONITORING 207

For, example the deployment of the the TEN network (see section 8.1) had a mea-
surable positive impact on the packet loss rate measured by European HEMP part-
ners. Also, university holidays have a measurable impact. Note, that given the
CSM infrastructure the ping listener agent (see section 6.3.4) can easily be adapted
to provide a superset of the PingER measurements.

Comparison to this Thesis

In academically influenced networks of the presented projects, network measure-
ment data is often available for via the Web or FTP. However, such data is too ag-
gregated for customer-based service monitoring. It may only be useful as a CSM
node service that provides access to aggregated measurement data. Then, an agent
can for example compare the throughput of the customer’s traffic compared to the
aggregated throughput of the whole network traffic. Architectures for fine-grained
(per-packet) traffic data repositories have been proposed [KMKA99]. However,
they do not collect the data on a per-service and per-customer basis. All collected
data enters the same database. Therefore, they need to scramble the origin of the
data for privacy reasons. This will also render the data useless for some customer-
based service monitoring applications.

8.4 Mobile Agents for Network Management and Moni-
toring

This section discusses work that is closely related to the customer-based service
monitoring infrastructure. In that work mobile code (mobile agents or active net-
working) is used for network management management in general or for network
monitoring (a subtask of network management).

8.4.1 Network Management with Mobile Agents

The work in [BPW98] proposes mobile agents for various network management
tasks and contains a detailed description of the advantages that the mobile agent
paradigm offers:

� Efficiency savings. CPU consumption is limited, because a mobile agent
execute only on one node at a time. Other nodes do not run an agent until
needed.

� Space savings. Resource consumption is limited, because a mobile agent
resides only on one node at a time and carries the required functionality with
it. In contrast, static multiple servers require duplication of functionality at
every location.

� Reduction in network traffic. Code is very often smaller than the data that
it processes, so the transfer of mobile agents to the sources of data creates

208 CHAPTER 8. COMPARISON WITH RELATED WORK

less traffic than transferring the data. This is particularly true for CSM. All
presented agents are relatively small compared the monitored data stream.
The largest and slowest agent is the VPN agent. It can monitor 3 Mbit per
second and is about 30 KByte large (see section 7.2). Thus, the migration of
the agent pays of after 0.08 seconds of monitoring at top speed. For smaller
and faster agents the time to pay-off is even shorter.

� Asynchronous autonomous interaction. Mobile agents can be delegated
to perform certain tasks even if the delegating entity does not remain ac-
tive. For CSM this is interesting because a monitoring agent can still collect
measurements when the home network is unreachable due to some network
problems.

� Interaction with real-time systems. Installing a mobile agent close to a
real-time system may prevent delays caused by network congestion.

� Robustness and fault tolerance. If a distributed system starts to malfunc-
tion, then mobile agents can be used to increase availability of certain ser-
vices in the concerned areas. For example, the density of fault detecting or
repairing agents can be increased. In the case of CSM this could be applied
when the customer suspects that an agent or its results have been manipu-
lated by a provider.

� Support for heterogeneous environments. Mobile agents are separated
from the hosts by the mobility framework. If the framework is in place,
agents can target any system. The costs of running for example a Java Virtual
Machine (JVM) on a device are decreasing.

� Online extensibility of services. Mobile agents can be used to extend ca-
pabilities of applications, for example, providing services. This allows for
building systems that are extremely flexible.

� Convenient development. Creating distributed systems based on mobile
agents is paradigm relatively easy. The difficult part is the mobility frame-
work, but when it is in place, then creating applications is facilitated.

� Easy software upgrades. A mobile agent can be exchanged virtually at will.
In contrast, swapping functionality of servers is complicated. For CSM this
is the often cited flexibility that the user has in deploying service tests.

8.4.2 The Script MIB

The IETF Distributed Management (DISMAN) working group recently standard-
ized definitions of managed objects for the delegation of management scripts (the
Script MIB) [LS99]. The script MIB shall solve two pending problems of SNMP:
(1) The processing and communication load on the central management station and

8.4. MOBILE AGENTS FOR MANAGEMENT AND MONITORING 209

(2) the overhead due to polling over distance. The script MIB allows the SNMP
manager to send management scripts to devices that support the script MIB. The
script MIB is programming language independent; any kind of executable code can
be considered a script. The script MIB defines variables that encode the language
support of the managed device. The Script MIB Extensibility protocol (SMX)
[SQ99] can be used to separate language specific runtime systems (which execute
the scripts) from the runtime system independent Script MIB implementations. A
Java runtime system [SQK00] and a Perl runtime system [BG00] for the Script
MIB exist. Both were used to address selected network management problems.

The Script MIB defines objects that allow the manager to carry out the follow-
ing tasks using the SNMP protocol:

� Transfer of management scripts.

� Initializing, suspending, resuming and termination management scripts.

� Transfer of arguments for management scripts.

� Monitoring and control of running management scripts.

� Transfer of results produced by management scripts.

Typically, a manager uses an SNMP put message to push a the script to a device
that implements the script MIB. An alternative is to put a URL into a dedicated
variable which causes the SNMP agent to fetch the script itself. The manager
uses the put message to set the command line arguments of the script. Later, the
manager may use the put message to trigger the execution of the script as many
times as desired. The script writes its results or termination code into appropriate
SNMP variables. The SNMP agent can notify the manager that the script has
produced a result by using SNMP traps. The manager can then use the SNMP get
message to query the state and the result of the script.

In [QK99] the authors discuss applications of the Script MIB. They identify
amongst other things that customers of QoS enhanced network services may want
to measure and supervise the service level themselves. This is an important argu-
ment for CSM. The authors of the article used a Java script runtime system and
their scripts were Java byte-code. They identified two shortcomings of the Script
MIB: (1) The Java management ’scripts’ are supposed to perform the SNMP in-
teractions with the local devices. Therefore, the Java byte-code needs to carry an
implementation of the SNMP protocol routines. This made the management scripts
too large (about 500 KB). (2) The communication facilities of the Script MIB are
very limited. Basically, the script can write one result into the appropriate SNMP
variable4.

4The script can actually write several results but each new result overwrites the old one.

210 CHAPTER 8. COMPARISON WITH RELATED WORK

Comparison to this Thesis

The proposed customer-based service monitoring infrastructure can be built almost
completely based on SNMP mechanisms. As mentioned in section 8.3.2, a device
supporting the RMON MIB can play the role of the T-component. The node en-
vironment can be implemented as a Java runtime system attached to a Script MIB
enabled device. An SNMP manager application can play the role of the CSM home
application. Yet, such a solution has some shortcomings compared to a pure Java-
based approach: (1) the aforementioned insufficient communication infrastructure
offered to the management scripts. The CSM agents can communicate with the
home application at will. The data format of CSM messages is not limited. (2)
The transmission between the monitored device and the management script is a
bottleneck. In an SNMP-based solution the management scripts must send SNMP
get messages to fetch packets (polling). This is a critical overhead compared to
the raw packet protocol (see section 5.2.2) which sends packets as soon as they are
copied by the T-component. (3) SNMP does not provide topology support to the
customer. The agents cannot be forwarded from one Script MIB to another.

8.4.3 Network Management with Active Networks

Active networks are a set of interconnected network nodes that not only forward
data packets, but also interpret a subset of these packets as executable code and
subsequently execute them.

In [RS00] the authors propose a non-intrusive active networking approach for
efficient distributed network management. Active packets (capsules) are send over
ANEP compliant UDP packets. ANEP [ANE] specifies a mechanism for encapsu-
lating active network capsules for transmission over different media (here IP). In
the proposed active networking based network management approach the routers
run a diverter which extracts ANEP packets and forwards them to the dedicated
machine that provides an active engine (execution environment) to the capsules.
The architecture is similar to the CSM infrastructure because it is non-intrusive
and uses a dedicated machine to host the mobile code (capsules). Several capsules
may belong to one distributed task (called a session). The capsules can either be
sent directly to the router or they can be send in a ’blind’ way towards a destination
address. Then, the first diverter on the way will reflect the capsule to its active
engine. This is similar to the hop-by-hop forwarding in the CSM infrastructure
(see section 4.4). The executing capsules contact the SNMP agent of the router to
gather monitoring information or to reconfigure the router. The executable capsule
contents consist of Java byte code. Security is achieved through the separation of
the active engine from the router, through the Java security manager and through
network utilization restrictions imposed on the sessions. Capsule authentication is
also foreseen but not implemented.

The proposed active networking infrastructure can be used to implement a
customer-based service monitoring system if the managed router implements an

8.5. PITFALLS OF AGENT BASED SOFTWARE ENGINEERING 211

SNMP based T-component (e.g. the full RMON MIB - see section 8.3.2).
Yet, the same drawbacks as described for the Script-MIB apply then: (1) De-

pendency of the available SNMP MIBs and (2) Inefficient packet copy forwarding
(see 8.4.2). Furthermore, the topology support is limited. There is no such concept
as the node services here. So the capsule can not, for example, acquire topology in-
formation about the overlay network (where other active engines are located and to
whom they belong). Another problem of the presented active networking approach
is that large management programs may have to be split into several capsules. The
rearrangement of these capsules has to be done by the active engine and is limited
to 256 packets per session. Such a problem does not occur with CSM since the
agents are transported on a TCP connection.

Nevertheless, the discussed work shows that a CSM infrastructure could also
be deployed on a non-intrusive ANEP-based active network.

8.5 Pitfalls of Agent Based Software Engineering

Software agents as a self-contained problem-solving systems capable of autonomous,
reactive, proactive, and social behavior, represent yet another tool for software en-
gineering to develop increasingly complex and distributed systems (see section
1.3). However, there are a number of pitfalls that the developer of an agent based
solution faces. The article [WJ99] presents a comprehensive list of these problems.
This section is going to address this list in order to show that service brokers (as
software agents) and customer-based service monitoring agents avoid these pitfalls.
The following list is labeled with the same terms as it was labeled in the original
work5.

8.5.1 Political Pitfalls

� You oversell agents. There are many tasks that go beyond the scope of au-
tomation and need traditional techniques. Further, software agents are not
generic problem solvers. Their intelligence is restricted to the state of the
art of artificial intelligence research. The service brokers only automate the
repetitious tasks of the service operation (see section 1.4). They are driven
by human provided policies that provide the rules for the automation. Typi-
cal CSM agents possess only little intelligence which concerns one specific
monitoring goal and on how to squeeze the desired information out of the
measurement data. So both approaches do not oversell agents.

� You get dogmatic about agents. Agents are not a universal solution. Con-
ventional software development paradigms are often more appropriate. An-
other form of dogma that causes trouble is that agent developers have their

5The management pitfalls are omitted because these apply to commercial software development
projects and not to research in the context of a PhD thesis.

212 CHAPTER 8. COMPARISON WITH RELATED WORK

own opinion on exactly what constitutes an agent. The service broker archi-
tecture is compliant and interoperates with state-of-the art network technol-
ogy. Referring to the service brokers as intelligent agents conforms to the
widely used definition of software agents (see section 1.3). The only agents
of the CSM infrastructure are the measurement agents. These agents are mo-
bile. This thesis proposes a mobile agent based approach not because of a
dogma but because of reasonable arguments (see section 4.2.2 and 8.4.1).

8.5.2 Conceptual Pitfalls

� You believe in silver bullets. A ’silver bullet’ is a technique that will pro-
vide an order-of-magnitude improvement in software development. Neither
the broker architecture nor the CSM infrastructure are agent based because of
software development reasons but because of existing constraints in IP net-
works and because of upcoming needs of IP service customers and providers.

� You forget agents are software. Traditional software engineering processes
such as requirements analysis, specifications, design, verification and testing
should not be neglected when developing agent based solutions. For our
implementations in the area of the service brokers and for the CSM imple-
mentation we used object-oriented engineering processes ([Bud91, BL94]).

� You forget agents are multi-threaded software. The problems inherent in
developing multi-threaded systems (synchronization, mutual exclusion for
shared resources, deadlock, and livelock) cannot be considered solved. Both
the service broker architecture and the CSM infrastructure use the well-
understood client-server communication model. This simple but effective
communication pattern helps avoid coordination problems. The service bro-
ker prototype and the CSM node implementation are servers that extensively
use multi-threading. Considerable care has been taken to use the specialized
Java synchronization mechanisms (see also section 5.1.2) in order to avoid
multi-threading related problems.

8.5.3 Analysis and Design Pitfalls

� You ignore related technology. This thesis studies related technologies (as
discussed in this chapter). The service broker architecture is derived from the
existing bandwidth broker concept. For agent implementation we used the
Java programming language which has become dominant for agent systems
and applications (compare for example the approaches listed in [Hoh]). Dis-
tributed computing platforms (middleware - e.g. Corba [OMG]) can provide
many of the necessary agent functionalities. Yet, middleware is traditionally
used exclusively to coordinate applications of one administrative domain and
is therefore no alternative for solving inter-domain collaboration problems.

8.5. PITFALLS OF AGENT BASED SOFTWARE ENGINEERING 213

� Your design does not exploit concurrency. The service brokers work con-
currently to solve local reservation tasks. They map the natural concurrency
seen between the management operations of autonomous network domains
and seen between single networking devices. The CSM agents enable the
customer to concurrently collect measurements at many locations in the net-
work.

� You ignore legacy. Legacy software is existing software that is functionally
essential, technologically obsolete, and hard to rebuild. The service bro-
ker architecture maps to existing legacy network management systems. It
separates the application domain of that system (internal network manage-
ment) from the new functionality (external service brokering). The CSM
infrastructure is non-intrusive and can be set up in parallel to existing legacy
systems. For our project no legacy system existed. Yet, the CSM imple-
mentation uses existing tools for packet capturing and for cryptography. The
CSM implementation includes scripts to glue these legacy components to the
CSM applications.

8.5.4 Agent-Level Pitfalls

� You want your own agent architecture. A software project may lose valu-
able time and resources in designing a new agent architecture thereby re-
inventing old designs.

The service broker architecture and also the CSM architecture are not de-
veloped from scratch but inspired by existing agent designs. For the CSM
node implementation existing mobile agent platforms could have been used.
Yet, the thesis project was not a commercial one. The implementation of the
node environment helped us to deepen the insight into mobile agent technol-
ogy. There are also further arguments for the development of a new agent
platform. (1) The CSM node need a particular service that delivers packet
copies to the agents as fast as possible. This is not supported by off-the-shelf
agent platforms. (2) The CSM node does not need the usual heavy-weight
inter-agent communication facilities. (3) CSM introduces a simplified agent
model that focuses on packet processing. Therefore, a novel an light-weight
resource control mechanism could be deployed (see section 5.5. (4) Imple-
menting a new platform allowed us to introduce a minimal agent interface
specialized to the task of service monitoring.

� Your agents use too much/too little artificial intelligence. Too much focus
on artificial intelligence can result in an agent framework overburdened with
experimental techniques. On the other extreme, developers build so-called
agents that do nothing to justify the use of the term.

The service brokers act autonomous in behalf of the operator of their network
domain. They incorporate intelligence that is tailored to- and specialized for

214 CHAPTER 8. COMPARISON WITH RELATED WORK

a limited application area. The mobile CSM agents possess only little in-
telligence but they have mobility autonomy. Both of these agent-based ap-
proaches only use the kind of intelligence which is available and appropriate
for their respective task.

8.5.5 Society-Level Pitfalls

� You see agents everywhere. After first learning about multi-agent systems,
there is a tendency to view everything as an agents. This is not the case for
neither the service broker nor the CSM agents. Both architectures consist of
many components that are not agents. The agents that this thesis introduces
are relatively few in numbers compared to other relevant entities such as
networking devices, customer applications, traffic flows etc.

� You have too few agents. In some approaches only a small number of agents
do all the work. Such approaches fail to exploit the power of the multi-agent
paradigm. On one hand, the original bandwidth broker may be an example
of such an approach. The bandwidth broker allocates the resources for its
network, it reserves them, it signals to neighbor brokers and it reconfigures
the network. The agents of the service broker architecture, on the other
hand, bundle a coherent set of functionalities. Domain internal functionality
is separated from external functionality and factored out into stand-alone
agents. The device configuration is also factored out. Thus, the number of
agents naturally fits the number of separate tasks. The CSM agents bundle
the service test procedure of one customer. It is up to the developers of
CSM agents into how many agents they want to separate the functionality.
They can, for example use one single agent to perform a bunch of unrelated
monitoring tasks or they can split these tasks into separate orthogonal agents.
Both approaches have some advantages and disadvantages.

� You obsess on infrastructure. Since there are no widely used software plat-
forms for developing multi-agent systems the developers of such systems de-
vote significant resources for implementing a new platform from scratch. We
only implemented platform functionalities for CSM and only those that were
necessary. Much of the needed infrastructure support was offered by the de-
velopment systems of the Java language. Unnecessary but popular features
such as strong migration and inter-agent communication were neglected.

� Your agents interact too freely and the system lacks structure. The
interaction in the broker architecture is clearly structured through a layered
hierarchy and through a request-response based inter-broker protocol. The
interactions within the CSM infrastructure are also very simple and clearly
structured by a set of protocols.

8.6. OPEN ISSUES 215

8.6 Open Issues

In both the service broker architecture and the CSM infrastructure there are open
issues which this thesis does not address. The next sections describe these issues
and give some examples of related work that can help to fill the gaps.

8.6.1 Multicast Support

Supporting multicast with DiffServ is an open research issue. The work in [MXZP00]
proposes an enhancement of the experimental multicasting boarder gateway proto-
col. The extension can be used to perform an admission control between DiffServ
domains. The border routers of the domains calculate a measure of the current
DiffServ load based on exponential averaging. Based on that calculation they deny
multicast join requests or relay them to an alternative, less loaded border router.

The providers will probably not offer Differentiated Services based resource
reservations for free. In the area of multicasting this leads to the problem of cost
sharing for DiffServ based multicasting. In [EHSB99] the authors propose a cost
sharing scheme which is based on link weights that are calculated based on how
many users share a link.

The StreamCom project [STR] proposes DiffServ to reserve resources for mul-
ticasted streaming data (video). The receivers of the data subscribe to the stream
on the application level (to a ticket server) and do not directly contact DiffServ
brokers, thus the project studies ways to mediate the payment from the user to the
application server and finally to the DiffServ broker.

8.6.2 Collaboration of Monitoring Agents

In the CSM infrastructure the home application receives all the results of CSM
agents that it has sent. This thesis does not specify how the home application anal-
yses and interprets the results of the agents because this depends on the service
being monitored. Yet, there are generic high-level techniques to identify different
failure situations in communication networks based on the input of several mea-
surement stations. In [LCL00] the authors describe methods to derive codebooks.
A codebook is an optimal subset of events that must be monitored to distinguish
the problems of interest from one another while ensuring the desired level of noise6

tolerance. These methods are useful to develop and deploy a specific monitoring
agent.

In the CSM infrastructure each agent performs monitoring for exactly one cus-
tomer. One possible extension is that monitoring agents of the same or even of dif-
ferent customers may coordinate their actions and for example exchange results.
The programmable coordination architecture for mobile agents MARS [CLZ00]
proposes a shared and programmable tuple-space for inter-agent communication

6Erroneous event notifications: missing events or confusion between events.

216 CHAPTER 8. COMPARISON WITH RELATED WORK

within a node. In CSM this could be implemented as a set of additional node ser-
vices. Yet, the strong isolation of the CSM agents may break. Therefore, the CSM
security model should then be extended for example with MARS’ access control
lists.

8.6.3 Service Advertisement and Discovery

The service providers need a way to advertise their services and the customers
need a way to find services that match their needs. The flexible syntax of the broker
signaling protocol (see section 2.3.4) allows the customer to use the query message
to find out about the services that a broker offers. Yet, it is not well understood how
the customer locates a service broker, how the service brokers can autonomously
issue queries between themselves, and how a broker can autonomously announce
a service. Work on these issues may profit from related work [Ric00] that has been
performed in the area of mobility support for local computing environments.

Further, a requested end-to-end service may be composed of a set of domain
services that differ in the way they are described. The QBone project avoided this
issue by defining only a single service (the QPS) and declaring it globally well-
known (see section 8.1.1). Yet, the commercial Internet will probably come up
with a wide variety of different IP services, so the automatic service mapping is an
open research issue.

8.6.4 Routing

The service brokers need access to the internal and the external routing. This is
inevitable since the service broker must determine how collaborating providers
are affected by a given service request. For QoS brokers, the path of the QoS
enhanced traffic within the domain of a broker must be known in order to reserve
local resources.

The CSM nodes also need access to the routing. With this information they can
build up an overlay network and provide topology and forwarding services to the
CSM agents (see section 4.4 and 5.7). The customer can use CSM query messages
to find the ideal node for a given measurement or (s)he can forward the agent along
a whole path.

Both the service broker architecture and the CSM nodes thus need a way to
fetch routing information. The internal service brokers may also need a way to set
new routes. Such a mechanism may rely on the existing routing protocols such as
BGP [RL95].

The CSM nodes and possibly also the service brokers need a routing mech-
anism that allows them to dynamically set up and manage a an overlay network.
CSM nodes need it to forward agents, the service brokers may need it to establish
SLAs between brokers that are not direct neighbors.

8.6. OPEN ISSUES 217

8.6.5 Artificial Intelligence

Distributed software agents are suitable for implementing computational models
of artificial intelligence. Intelligence helps the agents to cope with unforeseen sit-
uations and lets them act more autonomous. Service brokers may use their intelli-
gence for example to map various kinds of service requests to distributed resources.
In [CF00] a distributed constraint resolution technique is proposed to allocate re-
sources for QoS VPNs.

The service broker architecture does not specify how artificial intelligence is
implemented. Yet, we propose a flexible broker signaling protocol (see section
2.3.4) which allows the agents to negotiate between each other in a dynamic way.
Such a communication protocol is a crucial factor for implementing distributed
intelligence.

The presented CSM agents implement little intelligence. Instead, they are spe-
cialized for a well defined monitoring job. Yet, CSM agent developers may develop
agents which represent expert systems on a specific monitoring task. A CSM agent
for network intrusion detection [BK98, JMKM99] is just one example.

218 CHAPTER 8. COMPARISON WITH RELATED WORK

Chapter 9

Summary and Conclusion

The Internet Engineering Task Force (IETF) has proposed extensions to the Internet
protocol that address pending problems of today’s Internet technology: quality-of-
service support and security. The Differentiated Services (DiffServ) architecture
(see section 1.2.3) allows network providers to offer quality-of-service guarantees
to specially marked traffic classes. The security architecture for the Internet proto-
col (IPSec - see section 1.2.2) standardizes the use of tunneling and cryptographic
mechanism for transparent per-packet privacy and authenticity of Internet commu-
nication. Both the DiffServ and the IPSec technology allows the Internet service
providers to offer enhanced IP services and thus to generate additional revenues.
Yet, the enhanced services introduce additional network management complexity
especially if several providers have to collaborate. Provider collaboration is neces-
sary for example for end-to-end quality-of-service support because Internet traffic
often travels through several provider networks.

This thesis thus addresses the following questions:

1. How can the management of enhanced IP services be automated so that a
customer can order and receive a multi-provider service on-line?

2. How can the smooth service operation and multi-provider collaboration be
monitored and verified by either the customers or the providers in a flexible
way?

The thesis claims that agent technology (see section 1.3) offers answers to the
aforementioned questions. Part I of the thesis presents an intelligent agent based
approach to solve problem 1. Part II of the thesis presents a mobile agent based
solution to address problem number 2.

The results of part I and II are summarized in section 9.1 respectively section
9.2.

219

220 CHAPTER 9. SUMMARY AND CONCLUSION

9.1 Management of IP Services with Intelligent Agents

Inspired by the management architecture for Differentiated Services this thesis pro-
poses a service management architecture based on intelligent software agents (see
chapter 2). These so called service brokers act on behalf of their provider organiza-
tion. An External Service Broker (ESB) interacts with ESBs of peering providers
in order to automatically set up an end-to-end enhanced IP service on customer
demand. ESBs negotiate service level agreements that specify the terms and con-
ditions of the service to be delivered. The external service brokers use Internal
Service Brokers (ISB) that have detailed knowledge of the administered network
topology and capacity. The individual networking devices are managed by element
managing agents that hide the heterogeneity of the devices.

The main innovation of the broker architecture is that it refines the established
but not clearly defined concept of bandwidth brokers and that it generalizes the
concept towards the management of other enhanced IP services such as VPNs.
The architecture exploits the the key advantages of software agent technology:
goal-driven autonomy (for IP service provisioning), heterogeneity support (differ-
ent provider network technologies), and collaboration/communication (for multi-
provider services).

The main benefit of the service broker architecture is that it provided the de-
sign and a reference framework for two particular service broker implementations
within the CATI project ([SBGP98], see section 2.1). The first implementation is
an internal service broker for QoS VPNs [KBG00]. The second implementation is
an external service broker for DiffServ services, including the inter-broker signal-
ing protocol BSP described in section 2.3.4. BSP allows the communication parties
to encode information in object hierarchies of arbitrary depth and with flexible field
lengths. BSP’s encoding of object states support the step-wise negotiation of ser-
vice parameters. Due to its flexibility and extensibility, the protocol is currently
being reused in further projects.

One particularly interesting problem in the area of IP service related inter-
provider collaboration is the reservation of network resources in order to support
DiffServ QoS guarantees. The DiffServ architecture was designed as a scalable
technology, but inter-domain resource reservation is not described in detail. Up to
now there is no consensus how DiffServ reservations should be signaled. Signaling
of each customer resource request to all involved providers may cause huge scala-
bility problems. Chapter 3 of this thesis discusses different signaling options and
evaluate the involved trade-off: signaling overhead versus end-to-end quality guar-
antees and network utilization. An adaptive reservation scheme using no signaling
and based on measurements, a limited signaling scheme that uses a heuristic to
determine whether to signal or not, and a mapping of end-to-end signaled requests
into resource aggregates were discussed. A newly developed network simulator
generates the following results:

� The adaptive reservation introduces no signaling overhead. Yet it provides

9.1. MANAGEMENT OF IP SERVICES WITH INTELLIGENT AGENTS 221

only soft guarantees (there is loss of reserved traffic) and it needs over-
reservation. The adaptive reservation scheme is sensitive to the size of the
inter-network and the traffic characteristics. In a typical network scenario
7% of moderately fluctuating traffic is lost, but 20% of heavily fluctuating
traffic is lost. In a network scenario with 5 provider networks 2% of traffic
is lost, but the same network type with 40 provider networks loses 7%.

� The limited signaling reservation scheme signals reservations only as far
through the networks as necessary (according to a heuristic). Limited sig-
naling also produces loss of reserved traffic, but it is more robust than the
adaptive reservation. In a typical network scenario 5% of moderately fluc-
tuating traffic is lost, and 11% of heavily fluctuating traffic. In a network
scenario with 5 providers, 0% is lost and an average of 1.9 signals per flow
are exchanged between providers. In the same network type with 40 provider
networks less than 1% traffic is lost and an average of 2.5 signals per flow
are exchanged between providers. The number of signals grows less than
linear compared to the network growth. When end-to-end signaling is ap-
plied 0% traffic is lost in all cases. Yet, the number of signals exchanged
is proportional to the number of provider networks. For the 5 provider sce-
nario an average of 2.5 signals are exchanged between the providers, for the
40 provider scenario an average of 16 signals are exchanged.

� End-to-end signaling introduces a large signaling overhead but completely
prevents loss of reserved traffic. SLA updates generate even more overhead
than reservation signaling. Yet, the simulation shows that if SLAs reserve
relatively little more than needed (20% over-provisioning) then then number
of SLA updates are already an order of magnitude (10 times) smaller than
the number of reservation signals. Thus over-provisioned SLAs massively
help to reduce the number of (expensive) SLA updates.

Outlook. The work in the first part of the thesis is mostly conceptual and fol-
lowed a top-down approach. There was more interest in the service enabling pro-
cesses that take place between the providers and less in the processes within a
provider domain. The approach described in part I of the thesis follows the Inter-
net philosophy which lets the network providers chose their own internal manage-
ment processes. Nevertheless, if new IP services and particularly the Differentiated
Services shall become available Internet-wide then the inter-provider management
must be specified and implemented. Large initiatives that deploy such services
(most prominently the Internet2 - see section 8.1) developed their work in par-
allel with this thesis. However, they have chosen a bottom-up approach. First,
they work out the basic mechanisms within a domain. Thus, up to now they were
able to avoid the inter-provider problems discussed in this thesis. Yet, they have
also identified these challenges such as for example the automatic establishment of
multi-provider services but defer it to later project phases. The Internet2 QBone

222 CHAPTER 9. SUMMARY AND CONCLUSION

researchers are currently designing an broker communication protocol and have
identified the problem of signaling scalability. The presented evaluation of the
DiffServ signaling options can help them in this process. The results derived from
this thesis are published in reviewed conference proceedings [GBK99, GB99] and
can are thus available to initiatives such as the Internet2 and Eurescom P1008-PF
(see chapter 8).

9.2 Customer-Based Service Monitoring with Mobile Agents

When Internet users request enhanced Internet services such as DiffServ or VPNs
they should have a mean to verify that the Internet service really is enhanced. This
is difficult because of several reasons: (1) Such services consist of per-packet ac-
tions and transformations that the provider performs within the provider network.
(2) Traditional network monitoring foresees only a small range of fixed metrics
(e.g. throughput in bytes per second). The new IP services can only be verified by
applying new metrics to the traffic. (3) The customer should not be able to abuse
the service monitoring facilities.

In case several providers collaborate, a reliable and tamper-proof service moni-
toring facility becomes even more important. A malicious provider may participate
in such a service offering to get additional revenues but may not allocate the proper
resources, since this generates cost. Both the customers of the service and the
partner providers have an interest to identify such malicious providers.

Part II of this thesis proposes a customer-based service monitoring (CSM)
infrastructure based on mobile agents. Using mobile agents for remote service
monitoring is a novel approach. At their border routers the providers deploy non-
intrusive execution environments (nodes) for the mobile agents. The agents are
fully programmable and perform their measurements based on IP packet copies
which are delivered to them by the node. The node implements security mech-
anisms that protect the node resources, protect the agents from each other, and
ensure that the agents can only monitor traffic for which they have explicit permis-
sion.

Using mobile agents for CSM has several key advantages over stationary ap-
proaches:

� The customer’s monitoring activity can take place within the provider net-
works.

� Mobile agents are programmable and easy to deploy and distribute. Thus, a
new measurement metric for a new IP service is rapidly deployed.

� Mobile agents can perform their monitoring even when the customer is dis-
connected from the Internet and can thus for example further analyze poten-
tial connectivity problems.

9.2. SERVICE MONITORING WITH MOBILE AGENTS 223

� Mobile agents enable the customer to perform distributed tests in a flexible
way. Measurements that originate from different locations can be correlated
to identify a corrupted CSM node. CSM agents can dynamically roam to
problem areas of the network where the number of measurement agents and
increases thus delivering a better picture of the service state.

� Mobile agent technology provides state-of-the-art security models and mech-
anisms.

In order to validate these advantages we implemented a CSM system. The
CSM implementation (see chapter 5) introduces a number of new concepts:

� T-components and filters. The CSM agents calculate their results based
on time-stamped IP packet copies. This guarantees the non-intrusiveness of
the approach. The packet copies are generated by a specialized T-component
which the agent cannot directly access. The agents have to request the copies
from the CSM node. For that purpose they hand a filter object to the node
that describes the desired IP packets. The node applies a second filter which
describes the packets that the user associated with the agent has access to.
This guarantees that the agent cannot monitor other customers’ traffic.

� Isolated execution environment. The CSM node isolates each agent into a
separate execution environment. Agent wrappers feed the agent with mon-
itored packets that are stored in a queue. The agent holds only one object
reference that only allows the agent to deposit node service request objects.
The agent wrapper manages the execution thread of the agent. The agent is
thus effectively isolated from the rest of the node. On a Sparc ULTRA 5 a
fast agent in an execution environment can handle up to 13’000 IP packets
per second.

� Light-weight resource control. The architecture of the execution environ-
ment allows the CSM node to perform a light-weight resource control of
CPU time, memory, and network traffic consumption. The control does not
require byte-code rewriting or an enhanced virtual machine. For the CPU
control, the agent wrappers account the execution time of the agent’s packet
handling method. A resource controller periodically checks if some agents’
in-queues are filling up and if so, which agent did make the least effective
use of its CPU time. This agent is then terminated. The resource controller
has only a minor impact on the performance. If the node is busy the con-
troller uses 5% of the node CPU time. For the memory control the Java
object serialization mechanism is exploited.

� Agent overload control. Each agent has to implement a regular packet han-
dling method and an emergency packet handling method. The latter is called
when the agent’s in queue is filling up. Thus, the agent is given a chance

224 CHAPTER 9. SUMMARY AND CONCLUSION

to get rid of the queued packets quickly and thus avoid node congestion and
subsequent termination of agents.

� Flexible result delivery and display. The CSM protocol provides a frame-
work for agent developers that allows the agents to transmit monitoring re-
sults in arbitrary formats. The customer uses the home application to trans-
mit agents and to display their results. The home application provides a
display framework that allows the customer to display results in different
ways (for example graphical or numerical).

Other features of the CSM implementation mainly exploit state-of-the-art tech-
nology (for example Java’s class loader and the security manager) and well known
tools (UNIX scripting, PGP, and Tcpdump). Using a fast T-component (t-bone)
the CSM implementation is able to monitor traffic at approximately 9 Mbps, the
latency between the T-component and the agent is as low as 1 millisecond, the la-
tency between the T-component and the customer-driven home application is 55
milliseconds (for details see chapter 7).

The implemented CSM system allows the customers to develop new tests to
verify the proper operation of the enhanced IP services. This thesis presents several
examples of such tests which cannot be performed with traditional systems (see
also section 6).

� Encryption verification. One important innovation that this thesis presents
is the on-line cryptographic tests of the VPN traffic. These tests can reveal
if due to error, misconfiguration, or malevolence the VPN traffic is not or
insufficiently encrypted. An inherent property of cryptographic mechanisms
is that their output material has the same statistical properties as random
data. The VPN control agent exploits this property. It uses the �2 statistics
to define two randomness tests: the byte-frequency test that tests for uniform
distribution and the run-length test that tests for independence within the
data. Both tests can for example reveal if the VPN traffic is compressed
instead of encrypted. Agent developers can easily create further (statistical)
tests. None of todays static network monitoring tools can support such tests.
If the tested data must first be delivered to a statistical test software that runs
at the customer site, then this introduces huge networking overhead. If a
VPN tunnel is monitored for two hours at a line speed of 1.544 Mbps (T1)
then the customer must download 1.3 GByte of data to analyze it. With CSM,
only a 30 KByte VPN agent must be uploaded. Note, that the implemented
agent can monitor the VPN traffic up to a speed of 3 Mbps (with limited loss
up to 5 Mbps).

� Customer-defined aggregation and separation of monitored traffic. Tra-
ditional network monitoring tools have a fixed filter mechanism with which
they aggregate or separate data (for example into counters). Thus, for ex-
ample the QBone project had problems measuring whether DiffServ traffic

9.2. SERVICE MONITORING WITH MOBILE AGENTS 225

was protected from regular traffic because not all monitoring devices could
filter according to the DSCP byte. Further, the SNMP RMON MIB had to be
extended because it could not filter according to protocols of higher layers
(e.g. HTTP). The CSM agents can program their own internal filters and for
example implement meters that aggregate flows using the same DSCP value,
or separate flows having the same end-point addresses but using different
DSCP values. Also, CSM agents can easily be programmed to analyze the
higher protocol layers. Our ping measurement agent for example analyzes
the ICMP protocol to derive several measurements of performance metrics.

� Localization of service problems. Traditional end-to-end network manage-
ment can identify problems but not localize them. The presented bottleneck
bandwidth agent not only measures the bottleneck bandwidth between two
communication end-points. If the agent is deployed at several points in the
network then it can also locate the bottleneck link. Similarly, the one-way
delay measurement agent and the round-trip delay measurement agent pro-
vide delay measurements of every intermediate part of the traffic path.

� Protection from malevolent providers. Traditionally, the provider regu-
larly (e.g. monthly) delivers a service performance report to the customer.
Yet, it is easy for a malicious provider to forge such a report. It is much
more difficult to forge measurement results when they are collected by the
customers’ mobile agents, because the provider does not know in advance
the metric to be tested and the time and location of the measurements. The
customer can distribute agents with obfuscated code or nonsense agents to
confuse the provider. In the future, mobile cryptography may become ma-
ture to protect the agent code. Also, the customer can perform consistency
checks by collecting different measurements at different locations, for exam-
ple at the peering routers next to the provider to be tested.

We also implemented agents that calculate traditional measurement metrics
such as: traffic loss, packet anomalies (broken packets or packets in wrong orders),
throughput, one-way and round-trip delay, and jitter.

Outlook. A key strength of the CSM infrastructure is that customers, providers,
and third-party vendors can all develop monitoring agents. The CSM agents pre-
sented in chapter 6 represent only a small subset of interesting monitoring applica-
tions. Further applications that can be deployed are:

� Customizable event notification, that uses for example random-early detec-
tion or other heuristics instead of fixed thresholds.

� Trace-back of distributed denial-of-service attacks.

� Network intrusion detection.

226 CHAPTER 9. SUMMARY AND CONCLUSION

Note, that with each new IP service that is being introduced the number of
interesting applications and thus the value of the CSM infrastructure increases.

A whole range of new CSM applications become available when the the CSM
nodes offer further services to the agents:

� The injection of test traffic may become a node service. Then, the CSM
agents can themselves perform active measurements from within the provider
networks.

� An agent-to-agent communication service allows the CSM agents to ex-
change results within a CSM node. Result sharing means more effective use
of the node resources and allows the customers to build agent hierarchies.

� A log file and management information base access node service can provide
additional and pre-processed information to the CSM agents.

Finally, the CSM model could be extended from a non-intrusive monitoring
model towards a full-fledge active networking model. Instead of working on IP
packet copies, the CSM agents would have access to the original packet. They can
thus control the packet forwarding and themselves perform packet transformations.
Due to security, trust, and performance problems such an extension will probably
not be deployed anytime soon. Section 6.5 describes the CSM node service and
model extensions.

The presented CSM node implementation can handle a traffic rate of approx-
imately 9 Mbps. It was tested on a real wide-area VPN tunnel and on a network
of virtual routers. The throughput of the Tcpdump based T-component is limited
to 4 Mbps which is mainly due to the fact that in our setting the limited network
capacity between the T-component and the CSM node was shared with the test
traffic. The performance limitation of the node is not so severe because the node
usually only receives a subset (described by filters) of the complete network traf-
fic. Nevertheless, the performance of the T-component needs to be improved when
CSM nodes are to be deployed in the network backbone. Such high-performance
T-components probably need specialized hardware.

When CSM is to be deployed Internet-wide, the implemented overlay routing
mechanism (distance vector routing) may not scale. Then, integration of CSM
node routing into the scalable two-tier Internet routing may be necessary. Further,
a node advertisement and discovery mechanism would ease the customers’ task to
find the ideal node for an IP service test (see section 8.6 for more details).

Epilogue. Emerging IP services such as DiffServ and VPNs will enable the Inter-
net community to deploy a new generation of valuable Internet applications. This
thesis shows that agent technology provides solutions for the Internet-wide deploy-
ment of such new IP services. I hope that my work removes some of the obstacles
in the way towards the often conjured golden age of the open information society.

List of Figures

1.1 Overall scenario. 3
1.2 Virtual private network types. 5
1.3 The encapsulation security payload. 7
1.4 The authentication header. 8
1.5 Telecommunication management network model. 13
1.6 Life cycle of management processes. 13

2.1 Bandwidth brokers. 21
2.2 Service broker hierarchy. 25
2.3 Service broker hierarchy in the TMN model. 26
2.4 The external service broker. 27
2.5 The internal service broker. 27
2.6 The element managing agent. 28
2.7 A successful request for a service establishment. 33
2.8 The BSP object types. 35
2.9 Example of the BSP message syntax. 36
2.10 The broker hierarchy for establishing QoS VPNs. 38
2.11 A multi-provider QoS enabled VPN. 39
2.12 Components and communication in the broker hierarchy. 43
2.13 The BSP message composition window. 47
2.14 VPN Web interface . 48
2.15 The structure of the implemented service broker. 49

3.1 The ideal DiffServ scenario. 52
3.2 The data flow of the simulation. 56
3.3 The implementation of an ISP-ISP relation. 57
3.4 The Dumbbell network. 59
3.5 The Slalom network. 59
3.6 The hiearchical network model. 60
3.7 Screenshot of a generated inter-network scenario. 61
3.8 Adaptive reservation with weak fluctuations. 63
3.9 Adaptive reservation with strong fluctuations. 63
3.10 Performance of the exponential average estimation. 65

227

228 LIST OF FIGURES

3.11 Longer initial loss phase with exponential average estimation (bot-
tom) than with the proposed estimation (top). 66

3.12 Limited notification. 67
3.13 The dumbbell problem. 67
3.14 Performance of proposed solution. 70
3.15 Proposed solution using destination information. 71
3.16 Limited Signaling in a growing inter-network. 72
3.17 The hierarchical inter-network for E2E simulations. 74
3.18 Overprovisioning given different decrease thresholds. 74
3.19 The number of SLA updates given different decrease thresholds. . 75
3.20 Influence of traffic destination patterns. 76
3.21 Unrestricted update rate. 77
3.22 SLA update rate limited to w=2. 78

4.1 Measuring at peering points. 89
4.2 The node environment. 90

5.1 Implementation overview. 98
5.2 The protocol object and the message objects. 102
5.3 The query and the agent execution protocol. 105
5.4 Node implementation overview. 110
5.5 Execution environment inheritance graph. 112
5.6 Execution environment. 113
5.7 Overview of policy, policy generators and user profiles. 119
5.8 Framework of the home application. 124
5.9 The CSM GUI and the agent sending form. 126
5.10 The query sending form. 127
5.11 The agent result display window. 128
5.12 The callback display window. 129
5.13 The visualisation priciple. 130
5.14 Graphical representations of two packets. 131

6.1 Statistical test framework. 141
6.2 The histogram of byte values. 142
6.3 Real network bottleneck bandwidth measurement. 149
6.4 Distributed bottleneck bandwidth measurement. 150
6.5 The trigger application. 153
6.6 A measurement scenario with two virtual routers. 154
6.7 One-way delay between two virtual routers. 155
6.8 The ICMP echo request/reply packet. 155
6.9 Jitter measurement in a virtual router. 157
6.10 Measuring partial round-trip times. 157
6.11 Partial round-trip times of two virtual routers. 158
6.12 Round-trip times in uncongested network. 159

LIST OF FIGURES 229

6.13 Round-trip times in mildly congested network. 159
6.14 Round-trip times in heavily congested network. 160
6.15 The three attacking targets. 161
6.16 A loss situation measured at honest provider sites. 165
6.17 Two agent input attack variants performed by provider B. 165

7.1 Influence of the packet generation rate. 175
7.2 Packet throughput of the execution environment. 175
7.3 Packet throughput of the execution environment. 176
7.4 Influence of the resource control. 177
7.5 Size dependency of the memory control duration. 178
7.6 Throughput of the execution environment including the TCP receiver.178
7.7 Performance of the VPN agent. 180
7.8 Latency between the generation of a packet, its delivery to the

agent, and customer notification. 183
7.9 The forwarding latency test setting. 183
7.10 T-component performance test scenario. 185
7.11 Latency of the Tcpdump based T-component. 186

8.1 QBone bandwidth broker model. 191
8.2 End-to-end broker signaling. 194
8.3 Immediate response broker signaling. 194
8.4 IEEE P1520 reference model. 198

230 LIST OF FIGURES

List of Tables

2.1 BSP special characters . 34

3.1 Denied admissions due to overprovisioning. 75

5.1 CSM communication layers. 101
5.2 CSM message objects. 103
5.3 User profiles. 118
5.4 The contacting information file structure 133
5.5 The topology lookup file structure 133
5.6 The use of the packages by the two installation variants. 135

6.1 Run test distribution. 143

7.1 Response times of the FastestAgent 181
7.2 Response times of the VPN agent 181
7.3 Response times . 182
7.4 Forwarding latency over IAM 184
7.5 Forwarding latency over RVS 184
7.6 T-component load . 186

231

232 LIST OF TABLES

233

234 LIST OF ABBREVIATIONS

List of Abbreviations

ACL Agent Communication Language
AES Advanced Encryption Standard
AF Assured Forwarding
AH Authentication Header
ANAISOFT Advanced Network and Agent Infrastructure for the Support

of Federations Of Workflow Trading Systems
ANEP Active Network Encapsulation Protocol
API Application Program Interface
ASCII American Standard Code for Information Interchange
ARM Application Response Management
ASN.1 Abstract Syntax Notation 1
ATM Asynchronous Transfer Mode
BB Bandwidth Brokers
BGP Border Gateway Protocol
BSP Broker Signaling Protocol
CA Certificate Authority
CATI Charging and Accounting Technogoy for the Internet
CCM Connection Control and Management
CNEC Competence Network for Electronic Commerce
CoSS Composite Service Server
CPU Central Processing Unit
CSM Customer-based Service Monitoring
CSS Customer - Customer Server
DES Data Encryption Standard
DiffServ Differentiated Services
DNS Domain Name Lookup System
DoS Denial-of-Service
DS Differentiated Services
DSCP Differentiated Services Code Point
EASE Embedded Advanced Sampling Environment
ECB Electronic Code Book
EF Expedited Forwarding
EM Element Manager
ESB External Service Broker
ESP Encapsulating Security Payload

235

FDDI Fiber Distributed Data Interface
FIPA Federation for Intelligent Physical Agents
FTP File Transfer Protocol
FWTS Federations of Workflow Trading Systems
GB Giga-Bytes
GPS Global Positioning System
GUI Graphical User Interface
HENP High Energy Nuclear and Particle
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IANA Internet Assigned Numbers Authority
ICMP Internet Control Message Protocol
IDEA International Data Encryption Algorithm
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IKE Internet Key Exchange
IntServ Integrated Services
IP Internet Protocol (Version 4 or 6: IPv4, IPv6)
ISAKMP Internet Security Association and Key Management Protocol
ISB Internal Service Broker
ISDN Integrated Services Digital Network
ISO International Organization for Standardization
ISP Internet Service Provider
ITU International Telephone Union
JNI Java Native Interface
JVM Java Virtual Machine
KB Kilo-Bytes
MAC Message Authentication Code
MB Mega-Bytes
MD5 Message Digest 5
MIB Management Information Base
MPLS Multiprotocol Label Switching
MTU Maximum Transmission Unit
NAI Network Analysis Infrastructure
NLANR National Laboratory for Applied Network Research
NSF National Science Foundation
NTP Network Time Protocol
OC Optical Carrier
OSI Open System Interconnection
PC Personal Computer
PGP Pretty Good Privacy
PHB Per-Hop Behavior
PKI Public Key Infrastructure
POP Point-of-Presence

236 LIST OF ABBREVIATIONS

QoS Quality-of-Service
QPS QBone Premium Service
RAA Resource Allocation Answer
RAR Resource Allocation Request
RFC Request for Comments
RIP Routing Information Protocol
RSA Rivest, Shamir, and Adelman Algorithm
RTFM Real-time Traffic Flow Measurement
RTT Round-Trip Time
SA Security Association
SB Service Broker
SIBBS Simple Inter-domain Bandwidth Broker Signaling
SLA Service Level Agreement
SLS Service Level Specifications
SMI Structure of Management Information
SNF Swiss National Science Foundation
SNMP Simple Network Management Protocol
SPI Security Parameter Index
SPO Service Parameterization Object
SSH Secure Shell
SWITCH Swiss Academic & Research Network
TCP Transmission Control Protocol
TMF Telecommunications Management Forum
UDP User Datagram Protocol
URL Uniform Resource Locator
TMN Telecommunications Management Network
VPN Virtual Private Network
WAN Wide Area Network
WWW World Wide Web

Bibliography

[ABI] Abilene. http://www.internet2.edu/abilene/home.html. Home page.

[ANA] Advanced network and agent infrastructure for the support
of federations of workflow trading systems (ANAISOFT).
http://anaisoft.unige.ch/. Project homepage.

[ANE] Anep: Active network encapsulation protocol.
http://www.cis.upenn.edu/�switchware/ANEP/. Homepage.

[ARM96] Systems management: Application response measurement.
http://www.opengroup.org/pubs/catalog/c807.htm, July 1996.
Open Group Technical Standard C807.

[BB00] Florian Baumgartner and Torsten Braun. Virtual routers: A novel ap-
proach for QoS performance evaluation. In QofIS’2000, September
2000.

[BBC+98] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss.
An architecture for differentiated services, 1998. RFC 2475.

[BBG00] R. Balmer, F. Baumgartner, and M. Günter. A concept for RSVP
over DiffServ. In Proceedings of the Ninth International Conference
on Computer Communications and Networks (ICCCN’00), October
2000.

[BBP88] R. Braden, D. Borman, and C. Partridge. Computing the Internet
checksum, September 1988. RFC 1071.

[BG99] T. Braun and M. Günter. Broker signaling protocol. Technical Re-
port CATI-IAM-DN-P-001-0.2, Institute for Computer Science and
Applied Mathematics, March 1999.

[BG00] Luis F. Balbinot and Luciano P. Gaspary. Towards configuration man-
agement of coralreef-based traffic measurement stations through the
IETF script MIB. In IEEE Workshop on IP-oriented Operations &
Management (IPOM), September 2000.

237

238 BIBLIOGRAPHY

[BGK01] T. Braun, M. Günter, and I. Khalil. Management of quality-of-service
enabled vpns. IEEE Communications, 39(5), May 2001.

[BGKL00a] T. Braun, M. Günter, I. Khalil, and L. Liu. Implementation notes
on bandwidth broker for linux diffserv routers. Technical Report
CATI-IAM-DE-I-007-1.0, Institute for Computer Science and Ap-
plied Mathematics, March 2000.

[BGKL00b] T. Braun, M. Günter, I. Khalil, and L. Liu. Performance evaluation
of a virtual private network. Technical Report CATI-IAM-DE-P-005-
1.0, Institute for Computer Science and Applied Mathematics, March
2000.

[BGP97] Mario Baldi, Silvano Gai, and Gian Pietro Picco. Exploiting code
mobility in decentralized and flexible network management. In Pro-
ceedings of the 1st International Workshop on Mobile Agents, Berlin,
Germany, April 1997.

[BHV01] W. Binder, J. Hulaas, and A. Villazon. Resource control in J-SEAL2.
Technical Report No. 124, University of Geneva, January 2001.

[Bir] Tina Bird. VPN information on the world wide web.
http://kubarb.phsx.ukans.edu/�tbird/vpn/.

[BK98] D.S. Bauer and M.E. Koblentz. NIDX: An expert system for real-
time network intrusion detection. In Proceedings of the Computer
Networking Symposium, pages 90–106, April 1998.

[BL94] Michel Beaudouin-Lafon. Object-oriented Languages: Basic princi-
ples and programming techniques. Chapman & Hall, 1994.

[BLH+98] Jit Biswas, Aurel A. Lazar, Jean-Franois Huard, Koonseng Lim,
Semir Mahjoub, Louis-Francois Pau, and Masaaki Suzuki. The
IEEE P1520 standards initiative for programmable network inter-
faces. IEEE Communications Magazine, October 1998.

[BLP00] C. Bohoris, A. Liotta, and G. Pavlou. Software agent constrained
mobility for network performance monitoring. In Harmen R. van
As, editor, Telecommunication Network Intelligence, pages 367–387.
IFIP, Kluwer Academic Publishers, September 2000.

[BMR99] N. Brownlee, C. Mills, and G. Ruth. Traffic flow measurement: Ar-
chitecture, October 1999. RFC 2722.

[BPW98] Andrzej Bieszczad, Bernard Pagurek, and Tony White. Mobile
agents for network management. IEEE Communications Survey,
1(1), 1998. Fourth Quarter.

BIBLIOGRAPHY 239

[Bra97] Jeffrey M. Bradshaw, editor. Software Agents. AAAI Press/The MIT
Press, 1997.

[Bro00] Marc Brogle. Active networking mit ANTS.
http://www.brogle.com/marc/uni/ants/ants.php, March 2000.
Student project, University of Berne.

[Brü] Heinz Brüggenmann. P1008-PF - inter-
operator interfaces for ensuring end to end IP
QoS. http://www.eurescom.de/public/projects/p1000-
series/P1008/P1008.htm. Project homepage.

[Bud91] Timothy A. Budd. An Introduction to Object-Oriented Programming.
Addison-Wesley, 1991.

[Cab98] Cabletron Systems, Inc. 6H202-24 and 6H252-17 SmartSwitch 6000
Interface Modules User’s Guide, 1998.

[CAN] CANARIE. Canarie. http://www.canarie.ca/. Home page.

[CAT] Charging and accounting technologies for the Internet (CATI).
http://www.tik.ee.ethz.ch/�cati/. Project homepage.

[CBZS98] K. Calvert, S. Bhattacharjee, E. Zegura, and J. Sterbenz. Directions
in active networks. IEEE Communications, 36(10), October 1998.

[CC98] Clyde F. Coombs and Catherine Ann Coombs, editors. Communica-
tions Network Test & Measurement Handbook. MacGraw-Hill, 1998.

[CER99] Denial-of-service tools. http://www.cert.org/advisories/CA-1999-
17.html, December 1999. Advisory CA-1999-17.

[CF00] Monique Calisti and Boi Faltings. Agent-based negotiations for
multi-provider interactions. In D. Kotz and F. Mattern, editors,
Agent Systems, Mobile Agents, and Applications (ASAMA’00), num-
ber 1882 in Lecture Notes in Computer Science, pages 235–248.
Springer, September 2000.

[CFSD90] J. Case, M. Fedor, M. Schoffstall, and J. Davin. A simple network
management protocol (SNMP), May 1990. RFC 1157.

[CHK97] David Chess, Colin Harrison, and Aaron Kershenbaum. Mobile
agents: Are they a good idea? In Jan Vitek and Christian Tschudin,
editors, Mobile Object Systems: Towards the Programmable Internet,
number 1222 in LNCS, pages 25–45. April 1997.

[Cis00a] Cisco. Monitoring the Router and Network, 2000.
http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/-
12cgcr/fun c/fcprt3/fcmonitr.htm.

240 BIBLIOGRAPHY

[Cis00b] Cisco. Network management. http://www.cisco.com/univercd/-
cc/td/doc/product/rtrmgmt/, 2000.

[CLZ00] G. Cabri, L. Leonardi, and F. Zambonelli. MARS: a programmable
coordination architecture for mobile agents. IEEE Internet Comput-
ing, 4(4), July/August 2000.

[DAN] DANTE. DANTE. http://www.dante.org.uk/. Home page.

[DAT] NLANR data cube. http://moat.nlanr.net/Datacube/. Home page.

[Den00] John S. Denker. Routing for linux-IPsec, 2000.
http://www.quintillion.com/fdis/moat/ipsec+routing/.

[DGBS00] Gabriel Dermler, Manuel Günter, Torsten Braun, and Burkhard
Stiller. Towards a scalable system for per-flow charging in the In-
ternet. In Bohdan Bodnar and Ariel Sharon, editors, Proc. of the Ap-
plied Telecommunication Symposium (ATS 2000), volume 32 of Sim-
ulation Series. The Society for Computer Simulation International,
April 2000.

[DGG+99] N. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. Ramakrishnan,
and J. van der Merwe. A flexible model for resource management in
virtual private networks. In SIGCOMM. ACM, 1999.

[DH98] S. Deering and R. Hinden. Internet protocol, version 6 (IPv6) speci-
fication, December 1998. RFC 2460.

[DR00] B. Davie and Y. Rekhter. MPLS: Technology and Applications. The
Morgan Kaufmann Series in Networking. Morgan Kaufmann Pub-
lishers, May 2000.

[DS00] Luca Deri and Stefano Suin. Effective traffic measurement using
ntop. IEEE Communications Magazine, 38(5):138–143, May 2000.

[EHSB99] Hans Joachim Einsiedler, Paul Hurley, Burkhard Stiller, and Torsten
Braun. Charging multicast communications based on a tree metric.
In Proceedings of 1. Multicast Workshop in Braunschweig/Germany,
May 1999.

[EUR] EURESCOM. EURESCOM. http://www.eurescom.de/. Home page.

[EV99] R. Edell and P. Varaiya. Providing Internet access: What we learn
from INDEX. IEEE Network, 13(5):18–25, September/October
1999.

[Fer00] P. Ferguson. Denial of service (DoS) attack resources.
http://www.denialinfo.com/, 2000.

BIBLIOGRAPHY 241

[FH98a] P. Ferguson and G. Huston. What is a VPN - part I. The Internet
Protocol Journal, 1(1), 1998.

[FH98b] P. Ferguson and G. Huston. What is a VPN - part II. The Internet
Protocol Journal, 1(2), 1998.

[Fla96] D. Flanagan. Java in a Nutshell. O’ Reilly & Associates, Inc, 1996.

[Fre00] Linux free s/wan project: Home page. Maillists & Archives, 2000.
http://www.freeswan.org/.

[FS00] P. Ferguson and D. Senie. Defeating denial of service attacks which
employ IP source address spoofing, May 2000. RFC 2827.

[Fün98] S. Fünfrocken. Transparent migration of Java-based mobile agents:
Capturing and reestablishing the state of Java programs. In K. Rother-
mel and H. Fritz, editors, Proc. Mobile Agents MA ’98, September
1998.

[GB99] M. Günter and T. Braun. Evaluation of bandwidth broker signaling.
In Proceedings of the International Conference on Network Protocols
ICNP’99, pages 145–152. IEEE Computer Society, November 1999.

[GB01] M. Günter and T. Braun. A fast and trend-sensitive function for the
estimation of near-future data network traffic characteristics. In Bo-
hdan Bodnar and Ariel Sharon, editors, Proc. of the Applied Telecom-
munication Symposium (ATS 2001), Simulation Series. The Society
for Computer Simulation International, April 2001.

[GBB00] M. Günter, M. Brogle, and T. Braun. Secure communication
with active networks. Technical Report IAM-00-007, IAM, 2000.
www.iam.unibe.ch/�rvs/publications/.

[GBB01] M. Günter, M. Brogle, and T. Braun. Secure communication: a new
application for active networks. In International Conference on Net-
working (ICN’01), July 2001.

[GBK99] M. Günter, T. Braun, and I. Khalil. An architecture for managing
QoS-enabled VPNs over the Internet. In Proceedings of the 24th
Conference on Local Computer Networks LCN’99, pages 122–131.
IEEE Computer Society, October 1999.

[GHAM00] B. Gleeson, J. Heinanen, G. Armitage, and A. Malis. A framework
for IP based virtual private networks, February 2000. RFC 2764.

[Gra98] R. S. Gray. Agent Tcl: A flexible and secure mobile-agent system.
Technical report, Darhmouth College, 1998. PCS-TR98-327.

242 BIBLIOGRAPHY

[Gra00] E. A. Granges. Bandwidth broker for differentiated services. Mas-
ter’s thesis, University of Berne, 2000.

[Har97] Elliotte R. Harold. Java Network Programming. O’ Reilly, February
1997.

[HBWW99] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured for-
warding PHB group, June 1999. RFC 2597.

[HC98] D. Harkins and D. Carrel. The Internet key exchange (IKE), Novem-
ber 1998. RFC 2409.

[HGF+99] J. Hulaas, L. Gannoune, J. Francioli, S. Chachkov, F. Schtz, and
J. Harms. Electronic commerce of Internet domain names using mo-
bile agents. In Proceedings of the Second International Conference
on Telecommunications and Electronic Commerce (ICTEC’99), Oc-
tober 1999.

[Hoh] Fritz Hohl. The mobile agent list. http://www.informatik.uni-
stuttgart.de/ipvr/vs/projekte/mole/mal/mal.html.

[HSBR99] S. Handelman, S. Stibler, N. Brownlee, and G. Ruth. RTFM: New
attributes for traffic flow measurement, October 1999. RFC 2724.

[Int99] Internet2 QoS Working Group. Qbone.
http://www.internet2.edu/qos/qbone/, 1999.

[Ise97] David Isenberg. Rise of the stupid network, 1997.
http://www92.pair.com/camworld/stupid.html.

[IT] ” ITU-T” . TMN management functions. ITU-T Recommendation
M-3400.

[Jac88] V. Jacobsen. Congestion avoidance and control. In Proc. SIGCOMM
’88, pages 314–329. ACM, 1988.

[Jam01] Thomas Jampen. Java API für PGP. http://www.cryptography.ch,
April 2001. Student project, University of Berne.

[JLM89] V. Jacobson, C. Leres, and S. McCanne. Tcpdump. available via ftp
to: ftp.ee.lbl.gov, June 1989.

[JMKM99] W. Jansen, P. Mell, T. Karygiannis, and D. Marks. Applying mobile
agents to intrusion detection and response. Technical report, National
Institute of Standards and Technology, October 1999.

[JNP99] V. Jacobson, K. Nichols, and K. Poduri. An expedited forwarding
PHB, June 1999. RFC 2598.

BIBLIOGRAPHY 243

[KA98a] S. Kent and R. Atkinson. IP authentication header, November 1998.
RFC 2402.

[KA98b] S. Kent and R. Atkinson. IP encapsulating security payload (ESP),
November 1998. RFC 2406.

[KA98c] St. Kent and R. Atkinson. Security architecture for the Internet pro-
tocol, November 1998. RFC 2401.

[KBG00] Ibrahim Khalil, Torsten Braun, and M. Günter. Implementation of
a service broker for management of QoS enabled VPNs. In IEEE
Workshop on IP-oriented Operations & Management (IPOM’2000),
September 2000.

[KMKA99] Akira Kato, Jun Murai, Satoshi Katsuno, and Tohru
Asami. An Internet traffic data repository: The architec-
ture and the design policy. In Proc. INET ’99, June 1999.
http://www.isoc.org/inet99/proceedings/4h/4h 1.htm.

[Kna96] Frederick Knabe. An overview of mobile agent programming. In
Analysis and Verification of Multiple-Agent Languages, volume 1192
of Lecture Notes in Computer Science. Springer, June 1996. 5th
LOMAPS Workshop.

[Knu81] D. E. Knuth. The art of computer programming, volume 2 Seminu-
merical Algorithms. Addison-Wesley, 2 edition, 1981.

[Kra96] H. Krawczyk. SKEME: a versatile secure key exchange. In IEEE
Proceedings of the Symposium on Network and Distributed Systems
Security, 1996.

[Lai92] X. Lai. On the Design and Security of Block Ciphers, volume 1 of
ETH Series in Information Processing. Hartung-Gorre Verlag, 1992.

[LCL00] Chi-Chun Lo, Shing-Hong Chen, and Bon-Yeh Lin. Coding-based
schemes for fault identification in communication networks. Inter-
national Journal of Network Management, (10):157–164, 2000.

[Lea97] Doug Lea. Concurrent Programming in Java. Addison-Wesley, Jan-
uary 1997.

[LO98] Danny Lange and Mitsuru Oshima. Programming and Deploying
Java Mobile Agents with Aglets. Addison-Wesley, 1998.

[LS99] D. Levi and J. Schönwälder. Definitions of managed objects for the
delegation of management scripts, May 1999. RFC 2592.

244 BIBLIOGRAPHY

[Mac96] Chuck MacManis. The basics of java class loader. JavaWorld, Octo-
ber 1996. http://www.javaworld.com/javaworld/jw-10-1996/jw-10-
indepth.html.

[MBB00] Tony McGregor, Hans-Werner Braun, and Jeff Brown. The NLANR
network analysis infrastructure. IEEE Communications Magazine,
38(5):122–128, May 2000.

[MC00] Warren Matthews and Les Cottrell. The PingER project: Active Inter-
net performance monitoring for the HENP community. IEEE Com-
munications Magazine, 38(5):130–136, May 2000.

[Mil92] David L. Mills. Network time protocol (version 3) specification, im-
plementation and analysis, March 1992. RFC 1305.

[Mil00] D. Milojicic. Applications of agent technology.
http://www.iam.unibe.ch/�scg/AgentTechnology/, March 2000.
Spring School, Lenk.

[MJ93] S. McCanne and V. Jacobson. The BSD packet filter: A new archi-
tecture for user-level packet capture. In Proc. 1993 Winter USENIX
conference, 1993.

[MJ99] Richard Murch and Tony Johnson. Intelligent Software Agents. Pren-
tice Hall, 1999.

[Moc87a] P. Mockapetris. Domain names - concepts and facilities, November
1987. RFC 1034.

[Moc87b] P. Mockapetris. Domain names - implementation and specification,
November 1987. RFC 1035.

[MSST98] D. Maughhan, M. Schertler, M. Schneider, and J. Turner. Internet
security association and key management protocl, November 1998.
RFC 2408.

[MXZP00] W. M. Moh, L. Xiang, X. Zhao, and E. Park. Differentiated-service-
based inter-domain multicast routing: Enhancement of MBGP. In
Proceedings of the Ninth International Conference on Computer
Communications and Networks (ICCCN’00), October 2000.

[NBBB98] K. Nichols, S. Blake., F. Baker, and D. Black. Definition of the dif-
ferentiated services field (DS field) in the IPv4 and IPv6 headers,
December 1998. RFC 2474.

[NJZ99] K. Nichols, V. Jacobson, and L. Zhang. A two-bit differentiated ser-
vices architecture for the Internet, July 1999. RFC 2638.

BIBLIOGRAPHY 245

[NLA] NLANR measurement & operations analysis team.
http://moat.nlanr.net/. Home page.

[OMG] The common object request broker architecture (CORBA).
http://www.omg.org/. The Object Management Group.

[Orm98] H. Orman. The oakley key determination protocl, November 1998.
RFC 2412.

[P15] P1520. IEEE P1520 proposed IEEE standard for application pro-
gramming interfaces for networks. http://www.ieee-pin/. Home page.

[PAMM98] V. Paxson, G. Almes, J. Mahdavi, and M. Mathis. Framework for IP
performance metrics, May 1998. RFC 2330.

[Pax97] Vern Paxson. End-to-end Internet packet dynamics. In Proc. SIG-
COMM ’97, 1997.

[PF97] V. Paxson and S. Floyd. Why we don’ t know how to simulate the
Internet. In Proceedings of the 1997 Winter Simulation Conference,
1997.

[Pos81] J. Postel. Internet control message protocol, September 1981. RFC
792.

[QAr] Qbone bandwidth broker architecture.
http://qbone.internet2.edu/bb/bboutline2.html. Work in Progress.

[QK99] Jürgen Quittek and Cornelia Kappler. Practical experiences with
script MIB applications. The Simple Times: The Quarterly Newslet-
ter of SNMP Technology, Comment, and Event, 7(2), November
1999. http://www.simple-times.org.

[Rab98] Eddie Rabinovitch. Internet2 - your Internet connection. IEEE Com-
munications Magazine, 36(3):17–18, March 1998.

[Ric00] Golden G. Richard. Service advertisement and discovery: En-
abling universal device cooperation. IEEE Internet Computing, 4(5),
September-October 2000.

[Riv92] R. Rivest. The MD5 message-digest algorithm, April 1992. RFC
1321.

[RL95] Y. Rekhter and T. Li. A border gateway protocol 4 (BGP-4), March
1995. RFC 1771.

[RMK+96] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear.
Address allocation for private Internets, February 1996. RFC 1918.

246 BIBLIOGRAPHY

[RS00] Danny Raz and Yuval Shavitt. Active networks for efficient dis-
tributed network management. IEEE Communications Magazine,
pages 138–143, March 2000.

[RSA78] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of
the ACM, 21(2):120–126, February 1978.

[RSS81] D. P. Reed, L. Svobodova, and L. Swallow. A distributed data stor-
age system for a local network. In Proceedings of the IFIP Working
Group 6.4 International Workshop on Local Networks, 1981.

[SBB+00] N. Suri, J. M. Bradshaw, M. R. Breedy, P. T. Groth, G. A. Hill,
and R. Jeffers. Strong mobility and fine-grained resource control in
NOMADS. In D. Kotz and F. Mattern, editors, Agent Systems, Mo-
bile Agents, and Applications (ASAMA’00), number 1882 in Lecture
Notes in Computer Science, pages 2–15. Springer, September 2000.

[SBBS01] G. Stattenberger, T. Braun, M. Brunner, and H. Stüttgen.
Performance evaluation of a diffserv linux implementation.
http://www.iam.unibe.ch/�rvs/publications/, 2001. submitted for
publication.

[SBGP98] B. Stiller, T. Braun, M. Günter, and B. Plattner. Charging and ac-
counting technology for the Internet. In 4th European Conference
on Multimedia Applications, Services, and Techniques ECMAST’99,
LNCS 1629, pages 281–296. Springer-Verlag, May 1998.

[Sch96] B. Schneier. Applied Cryptography. John Wiley and Son, 1996.

[sdt01] QBone signaling design team. QBone bandwidth broker architec-
ture. http://qbone.internet2.edu/bb/bboutline2.html, 2001. Work in
progress.

[Sec00] Securityfocus.com. VPN Maillist Archive, February 2000.
http://www.securityfocus.com/.

[SG98] A. Silberschatz and P. Galvin. Operating System Concepts. Addison-
Wesley, 5 edition, 1998.

[Sot00] Juan Soto. Randomness testing of the AES candidate algorithms.
http://csrc.nist.gov/encryption/aes/round1/r1-rand.pdf, 2000.

[SQ99] J. Schönwälder and J. Quittek. Script MIB extensibility protocol ver-
sion 1.0, May 1999. RFC 2593.

[SQK00] Jürgen Schönwälder, Jürgen Quittek, and Cornelia Kappler. Building
distributed management applications with the IETF script MIB. IEEE
Journal on Selected Areas in Communications, 18(5), May 2000.

BIBLIOGRAPHY 247

[SRC84] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in
system design. ACM Transactions on Computer Systems, 2(4):277–
288, November 1984.

[ST98] T. Sander and C. Tschudin. Towards mobile cryptography. In Pro-
ceedings of the IEEE Symposium on Security and Privacy, Oakland,
CA, 1998. IEEE Computer Society Press.

[Sta99] W. Stallings. SNMP. Addison-Wesley, third edition, 1999.

[STR] Streamcom - commercialization of streamed information.
http://cui.unige.ch/OSG/projects/streamCom/. Project homepage.

[Suna] Sun Microsystems. Object serialization.
http://java.sun.com/products/jdk/1.2/docs/guide/serialization/.

[Sunb] Sun Microsystems. The source for java technology.
http://java.sun.com/.

[Tan96] Andrew S. Tanenbaum. Computer Networks - Third Edition.
Prentice-Hall International, Inc., 1996.

[Tei99] Ben Teitelbaum. QBone architecture (v1.0).
http://sss.advanced.org/arch/, August 1999.

[TGG98] W. Tittel, G.Ribordy, and N. Gisin. Quantum cryptography. Phys.
World, 11(3):41–45, 1998.

[THD+99] B. Teitelbaum, S. Hares, L. Dunn, R. Neilson, V. Narayan, and F. Re-
ichmeyer. Internet2 QBone: Building a testbed for differentiated ser-
vices. IEEE Network, 13(5):8–16, September/October 1999.

[Tsc99] C. Tschudin. Apoptosis - the programmed death of distributed ser-
vices. In J. Vitek and C. Jensen, editors, Secure Internet Program-
ming - Security Issues for Mobile and Distributed Objects, number
1603 in LNCS, pages 253–260. Springer, July 1999.

[Tsc00] Christian Tschudin. Header hopping and packet mixers. In Proceed-
ings of the Ninth International Conference on Computer Communi-
cations and Networks (ICCCN’00), October 2000.

[TSS+97] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall,
and G. J. Minden. A survey of active network research. IEEE Com-
munications Magazine, 35(1):80–86, January 1997.

[Tur36] A. Turing. On computable numbers, with an application to the
entscheidungsproblem. In Proceedings London Mathematical Soci-
ety, volume 42 of 2, pages 230–265, 1936.

248 BIBLIOGRAPHY

[TWOZ99] A. Terzis, L. Wang, J. Ogawa, and L. Zhang. A two-tier resource
management model for the Internet. In IEEE Global Internet’99,
December 1999.

[Uni] University Corporation for Advanced Internet Development
(UCAID). Internet2. http://www.internet2.edu/.

[Vaa00] Sami Vaarala. Win2000 ike and 3des. IPSec Maillist Archive, May
2000. http://www.vpnc.org/ietf-ipsec/mail-archive/msg00808.html.

[VB99] Jan Vitek and Ciaran Bryce. The JavaSeal mobile agent kernel. In
Proc. Symposium on Agent systems (ASA ’99) and Applications and
Symposium on Mobile Agents (MA ’99), October 1999.

[vBN] vBNS. Very high performance backbone network service + (vBNS+).
http://www.vbns.net/. Home page.

[Ver99] Dinesh Verma. Supporting Service Level Agreements on IP Net-
works. MacMillan Technical Publishing, 1999.

[W2K00] Export version of windows 2000 IPsec silently uses
weaker encryption. SecuriTeam.com, May 2000.
http://www.securiteam.com/windowsntfocus/Export version of -
Windows 2000 IPsec silently uses weaker encryption.html.

[Wal95] S. Waldbusser. Remote network monitoring management informa-
tion base (RMON), February 1995. RFC 1757.

[Wal97] S. Waldbusser. Remote network monitoring management informa-
tion base version 2 using SMIv2, January 1997. RFC 2021.

[WGT98] D. Wetherall, J. Guttag, and D. L. Tennenhouse. ANTS: A toolkit
for building and dynamically deploying network protocols. In IEEE
OPENARCH ’98, April 1998. San Francisco.

[Whi94] James White. Telescript technology: The foundation for the elec-
tronic marketplace. General Magic White Paper, 1994.

[WJ99] Michael J. Wooldridge and Nicholas R. Jennings. Software engi-
neering with agents: Pitfalls and pratfalls. IEEE Internet Computing,
pages 20–27, May/June 1999.

[ZCD97] E. Zegura, K. Calvert, and M. Donahoo. A quantitative comparison
of graph-based models for Internet topology. IEEE/ACM Transac-
tions on Networking, 5(6), December 1997.

[Zim01] Phil Zimmermann. Pretty good privacy. http://www.pgpi.org/, 2001.

Curriculum Vitae

1971 Born on May 29, in Berne, Switzerland.
1978 - 1979 Elementary School Unterseen.
1979 - 1982 Elementary School Ringgenberg.
1982 - 1987 Secondary School Interlaken.
1987 - 1990 Gymnasium Interlaken.
1991 Military service.
1991 Participation in a student exchange program in the USA.
1991 Study of computer science at the University of Berne.

Subsidiary subjects: mathematics and philosophy.
1998 M.Sc. in computer science.
1998 - 2001 Research and lecture assistant and Ph.D. student at

the University of Berne.

