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Abstract

Information-centric networking (ICN) is a new network paradigm for the future internet aiming
at increasing the efficiency of content delivery while ensuring security of the exchanged data.
In recent years, many research efforts in ICN have focused on caching strategies to reduce
network traffic and increase overall performance by decreasing download times. Caches need
to operate fast and are, therefore, ususally placed in the RAM. Since RAM storage is limited
in size, content can only be stored for a short time and will be overwritten once the cache is
full. However, there are scenarios where content needs to be available for a longer time, e.g.,
for delay-tolerant networking or to provide high content availability similar to content delivery
networks (CDNs). In these cases persistent caching is required.

This work is based on the Content-Centric Networking (CCN), which is a popular ICN
architecture. The goal of this thesis is to extend the repository implementation in CCNx (vers.
0.8.2) to support persistent caching.The current repository implementation stores content in a
repofile and keeps references (offsets) to individual content in a B-tree. For persistent caching,
content deletions need to be supported. Therefore, we implemented a new data structure called
delete queue, which keeps references to content in the repofile. Most popular content is always
kept at the tail of the queue, while unpopular and seldomly requested content is kept at the head
of the queue. Then, if a deletion operation is required, content can be removed from the head.
A deletion consists of three major steps. First the content references taken from the delete-queue
are sorted by a mergesort algorithm. Then we create a second repofile by copying only the data
we want to keep. At last we have to perform a cleanup operation of all data structures. This
includes the removal of all internal references to the deleted content and updating the offsets to
the remaining content-objects. Finally, we can delete the old repofile to complete the deletion
operation.

Extensive evaluations using a YouTube and a webserver scenario have been performed on
Ubelix, i.e., the Linux cluster of the University of Bern. In the youtube scenario we have big
filesizes and there are a few popular files that get requested significantly more than unpopular
content. These files stay available throughout the whole experiment, due to our list-based
queueing-strategy. In the webserver scenario we have a larger amount of significatly smaller
files and unpopular files are more often requested than in the youtube scenario. Evaluations
have shown that in the webserver scenario it is a better strategy to perform regular deletion
operations but delete only a fewer amount of files at a time. In the youtube scenario, it is
beneficial to delete more content at a time such that fewer deletions are required.

As future work, it may be worth investigating alternative repository implementations, e.g.,
using several smaller files or a database. Furthermore, persistent caching could be evaluated in
larger topologies using NS3-DCE.
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Abstract—Information-centric networking (ICN) is a new com-
munication paradigm that aims at increasing security and effi-
ciency of content delivery in communication networks. In recent
years, many research efforts in ICN have focused on caching
strategies to reduce traffic and increase overall performance by
decreasing download times. Since caches need to operate at line
speed, they have only a limited size and content can only be stored
for a short time. However, if content needs to be available for a
longer time, e.g., for delay-tolerant networking or to provide high
content availability similar to content delivery networks (CDNs),
persistent caching is required. We base our work on the Content-
Centric Networking (CCN) architecture and investigate persistent
caching by extending the current repository implementation in
CCNx. We show by extensive evaluations in a YouTube and
webserver traffic scenario that repositories can be efficiently used
to increase content availability by significantly increasing cache
hit rates.
Index Terms—Information-centric networks, persistent

caching, CCN, repository

I. INTRODUCTION
Information-Centric Networking (ICN) has been proposed

to address shortcomings of the Internet Protocol, such as
scalability for increasing mobile data traffic [1] and security
[2]. ICN messages are routed based on names instead of
endpoint identifiers. Content is identified by unique names,
which enable concurrent streams to be aggregated and content
to be cached in any node. Because content is signed, integrity
and authenticity of retrieved content is ensured and it is not
important which node provided the content copy.
In recent years, extensive research efforts, e.g., [3], [4], [5],

[6], [7], [8], [9], have been performed to address caching in
wired information-centric communication for the Future Inter-
net. The basic idea of caching in ICN is to keep received data
in buffers to satisfy similar requests. The cache is considered
as short-term storage to avoid retransmissions over the entire
path to a content source in case of collisions or synchronize
multiple concurrent requesters of the same content. In the
latter case, caches can consolidate even slightly time shifted
requests, depending on how long content is cached, to reduce
network traffic.
With the vast profileration of mobile devices in recent years,

mobile data traffic has increased drastically and is expected
to increase even more in the following years. According to
Cisco’s Global Mobile Data Traffic Forecast report [10], 4G
will be more than half of the total mobile traffic by 2017

and the average traffic amount per smartphone will increase
fivefold by 2019. To reduce traffic and increase performance,
ICN caching can be integrated into LTE mobile networks [11].
However, caches need to operate at line speed, thus, current
memory technologies impose limitations. Fast memory is
expensive, power hungry and only available in small capacities
[12]. Furthermore, caches are implemented in volatile storage,
which is cleared, i.e., data loss, in case of power outages.
Therefore, in some scenarios, short-term caching may not

be enough and content needs to be persistently stored (at the
expense of slightly slower access times). This is required,
e.g., for delay-tolerant networking [13], [14], custodian-based
information sharing [15] or to enable high availability and
performance similar to content distribution networks (CDNs)
by dynamically storing content in regions of high demand.
In this work, we investigate persistent caching for content

distribution. Our work is orthogonal to existing ICN research
on caching, because it can be combined with fast (short-term)
caching. While received and forwarded content will automati-
cally be stored in the cache for a short time, persistent storage
can be used to store only a subset of it for a longer time.
For example, real-time audio streams from phone conferences
may be stored in the cache, but it may not be required to keep
them for a long time. In contrast, large static files, such as
multimedia files or pictures may be valid for a longer time
and can be cached at persistent storage closer to requesters.
We envision to extend hierarchical networks such as LTE

mobile networks by adding persistent caches as shown in
Figure 1. Traffic from users is forwarded in a hierarchical
way from evolved Node Bs (eNBs) to Serving Gateways (S-
GWs) and from there to a PDN gateway (P-GW). The P-GW
provides connectivity to external networks such as the Internet.
Persistent storage may be deployed alongside content routers
attached to eNBs, S-GWs and P-GWs, and stores a subset of
content forwarded through these routers. This enables storing
very popular content of the day, e.g., electronic newspapers
or popular videos, at the edge of the network to improve
network performance. It also means that many requests of
popular content may be satisfied already at edge routers, while
requests for less popular content may be forwarded further to
the next content router, which may hold a cached copy of the
content. Therefore, only unpopular content, for which caching
would not yield any benefits, would need to be retrieved all



Fig. 1: Hierarchical Caching in LTE Network.

the way from the content source. Such an approach brings
multiple advantages from the perspective of both end users
and Mobile Network Operators (MNOs). For the former,
perceived performance significantly increases due to lower
content access latency, either delivered directly by caching
or by one of its side effects, i.e. backhaul traffic experiences
a major reduction, allowing faster content downloads from
more distant sources. For the latter, Operational Expenditures
(OPEX) can be reduced up to 36% [16] due to the lower load
of the network infrastructure.
We base our investigations on Content-Centric Networking

(CCN) [17], which is a popular ICN architecture. Persistent
storage in CCN is provided by repositories. For this work, we
extended the repository implementation in CCNx, the open
source reference implementation of CCN, to support persistent
caching and have evaluated its feasibility by extensive tests
using various request models.
The remainder of this paper is organized as follows. In

Section II, we give an overview on CCN and relevant work
on caching. Our design for persistent caching is described in
Section III. Evaluation results are presented in Section IV and
discussed in Section V. Finally, in Section VI, we conclude
our work and give an outline for future work.

II. CONTENT-CENTRIC NETWORKING
A. CCN Concepts and Implementation
Content-Centric Networking (CCN) is based on two mes-

sages: Interests to request content and Data to deliver content.
Files are composed of multiple segments, which are included
in a Data message, and users need to express Interests in every
segment to retrieve a complete file. CCNx [18] provides an
open source reference implementation of CCN. The core ele-
ment of CCNx is the CCN daemon (CCND), which performs
message processing and forwarding decisions. Links from the
CCND to applications or other hosts are called faces.
The CCND has three main memory components: the Con-

tent Store (CS), the Pending Interest Table (PIT) and the
Forwarding Information Base (FIB). When an Interest is

processed, the CS, which is used as a cache, is checked to
verify whether the content is available locally. If not, the PIT,
which stores forwarded Interests in a soft state so that Data
messages can travel the same path back, is checked to verify
if the content was already requested. If it was not, the FIB is
used to forward the Interest as it contains forwarding entries to
direct it towards potential content sources. Additionally, every
received and forwarded Data message is temporarily stored in
the CS and Least Recently Used (LRU) replacement strategies
are applied for cache replacement.
Content sources can publish and persistently store content

in repositories. The content is stored in the wire-format, i.e.,
including headers and signatures, in a file, the repofile. For
fast access to content in the repofile, the repository keeps
references to content in a B-tree.
Currently, it is possible to publish new content in a reposi-

tory with the ccnputfile application, retrieve content and store
it in the repository with a start-write Interest or synchronize
collections among repositories with the Sync Protocol. How-
ever, there is no way of deleting content from a repository
besides resetting it, which results in the deletion of all stored
content.

B. Caching

Caching in information-centric networking has been subject
to extensive research in recent years. In CCN, content is
cached everywhere along the downloading path resulting in
high cache redundancy. It has been shown that popular content
tends to be cached at the leafs of the network [3] and,
therefore, allocating more storage resources to edge routers
than core routers is beneficial in terms of performance [4] and
energy consumption [19]. To avoid redundant caching, several
strategies have been proposed such as limiting the number
of cached copies along the path to one [5], probabilistic
caching based on distance from the content source [4], or
apply network coding to ensure content diversity caches [8],
[9]. Other approaches are based on coordination for content
deletion, e.g., pushing deleted content one-level upstream the
caching hierarchy [6] or adapting the number of cached chunks
based on the file’s popularity [7].
However, storage in the CS is limited and cached content is

only available for a limited amount of time to support faster
retransmissions in case of collisions and to synchronize mul-
tiple concurrent (or slightly time shifted) requests. If content
should be available for a longer time, e.g., for delay-tolerant
networking or to ensure high availability and performance
similar to content distribution networks (CDNs), it should
be persistently stored. In this work, we investigate persistent
caching based on the current CCNx repository implementation.
While every content in CCN needs to go through the CS,
repositories can monitor the network traffic and store only a
subset of content, e.g., non real-time data or large static files
such as pictures or videos.



III. DESIGN AND IMPLEMENTATION OF PERSISTENT
CACHING

In CCN, persistent storage is provided by repositories. The
current repository implementation in CCNx stores all content
in the repofile and maintains references to the content in a
B-tree.
Content sources publish content in repositories to make

them available to other nodes. To use repositories for caching,
content deletion needs to be introduced in an automatic
way, e.g., based on popularity. However, we do not maintain
popularity counters for two reasons. First, popularity coun-
ters would need aging mechanisms, introducing significant
additional complexity. For example, content that has been
requested extensively one year ago may be less popular in the
near future than content that has been frequently requested in
the last hours, although the absolute number of requests would
be lower. We prefer simplicity over complex solutions to
minimize the processing overhead in content routers. Second,
since content is also cached in non-persistent memory, request
statistics at repositories would still not reflect the effective
number of requests by end-users. In addition, deletion opera-
tions should only be performed if free space is required and
not based on aging-based timers because it may still be useful.
Therefore, in this work, we maintain access information and
delete content that has not been requested recently. There are
two main differences to LRU strategies. First, deletion opera-
tions are performed based on content and not individual chunk
popularities. Second, multiple content objects may be deleted
at the same time to free space if a certain storage utilization
threshold is reached because deletions in the filesystem take
more time than in main memory.

A. Data Structures
Figure 2 illustrates data structures required to enable content

deletion for persistent storage. The delete queue maintains an
element for every content object in the repofile. The basic idea
is to move requested content to the tail (bottom) of the queue
such that unpopular content can be found at the head (top) of
the queue. Therefore, if content needs to be deleted, it can be
removed from the head.

Fig. 2: Additional data structures for persistent storage

Figure 2 shows that the delete queue is implemented as
doubly linked list, on which every element has a pointer to the

previous and next elements. In addition, every queue element
has a pointer to another linked list of queue segments, i.e., the
individual segments of the content. Besides a pointer to the
next element, we also maintain a pointer to the last segment in
the list to avoid long list traversals when including segments
of large content. The queue segment contains the flat name of
a segment to find the content (and its reference to the repofile)
in the B-tree. When we need to find a queue element quickly,
we use a hash table to get its reference in the delete queue
based on a lookup of the base name, i.e., content name without
segment numbers.
In contrast to related work on CCN caching, we keep

content based on object granularity and do not make individual
caching decisions for every segment/chunk. Because content
in CCN is requested sequentially based on the pipeline size,
high variability in chunk downloads would degrade overall
download performance. More information on chunk-based vs.
object-based caching can be found in Section V.

B. Processing

In this section, we describe processing procedures in the
delete queue.

(a) Insertion and Update

(b) Deletion

Fig. 3: Delete Queue Processing.

1) Inclusion: Content information is stored based on object
granularity. When a segment is received, the content name, i.e.,
base name without segment number, can be extracted. Based
on a hash table lookup, delete queue entries of existing content
can be found quickly. In this case, only a new queue segment
needs to be added to the delete queue entry. If it is new
content, the content is included in the delete queue. As Figure
3a shows, we include new entries in the middle of the lower
half, i.e., at 75% of the queue. If content would be included
in the upper 50% of the delete queue, new popular content
could be deleted almost instantly, e.g., if the inclusion is just
before a content deletion, since up to 50% of the repofile is
deleted during a deletion operation (see subsection III-B3). In



addition, it is not appended to the tail such that unpopular
content can quickly reach the head of the delete queue, while
popular content can go to the tail.
2) Queue Update: Figure 3a illustrates also update oper-

ations on the delete queue. Every time content is requested,
the corresponding element in the delete queue is pushed to
the tail of the queue. This push operation can be performed
for every requested segment, every n-th segment or only the
first segment. If every n-th segment is processed, there would
be a tendency of larger files at the tail of the queue, since
they have more segments and, thus, more pushing operations.
Therefore, despite some disadvantages (see Section V), we
decided to consider only the first segment of a content object
as trigger for pushing operations.
3) Deletion: A deletion operation is initiated, if the repofile

has reached a certain size, i.e., the repofile threshold. Then,
a deletion operation is performed by deleting a configurable
percentage of the repofile, i.e., the deletion ratio. A deletion
operation is initiated after a file inclusion, if the repofile
threshold has been exceeded. Please note that in CCNx, file
sizes are only known when the last segment has been received
with the final bit set. Therefore, the repofile threshold is a soft
threshold and the repofile size can become slightly larger than
the threshold depending on the size of included files, i.e., we
do not perform deletion operations during file inclusions but
rather afterwards.
Figure 3b shows modifications on the delete queue due to

deletion operations. A deletion operation is performed by the
following steps.
1) Prevent the repository daemon from accepting new con-
tent while the deletion operation is being performed.
If new content arrives during local deletion operations,
it will only be stored temporarily in the content store.
However, other repositories on the path to the requester
will store it persistently.

2) Start at the head of the delete queue and iterate through
the elements until the deletion ratio is reached. All
content entries up to this point will be deleted (red
part in Figure 3b) and the lower part becomes the new
delete queue.

3) Every delete queue element contains multiple
queue segments. The queue segments of all deleted
content objects need to be sorted based on their position
in the repofile such that every B-tree entry and the
repofile need only to be processed once (see next step).
In our current implementation, we use the O(n logn)
merge-sort algorithm for sorting.

4) All content from the repofile (except deleted segments)
are copied to a new repofile. This is required because file
systems do not support selective deletions inside files.
Due to deletions, content is copied to other positions
in the new repofile, thus, reference values in the B-tree
need to be updated.

5) All B-tree entries of deleted content are removed.
6) Instruct the repository daemon to start accepting new
content again.

To limit service interruptions from deletions, a (read-only)
repository can be started to provide content from the old re-
pofile. Otherwise, Interests may just be forwarded and satisfied
by persistent caching at the next router level. Thus, only in
the worst case Interests would be forwarded all the way to the
content source.

IV. EVALUATION
Persistent caching has been implemented by extending the

repository implementation in CCNx 0.8.2, and extensive eval-
uations have been performed in different scenarios on physical
servers of a Linux cluster [20].

A. Scenarios
Figure 4 shows our evaluation topology. We evaluate the

performance of an edge router, e.g., at an eNB, that con-
tinously receives requests from the network according to
YouTube and webserver traffic models. The edge router is
connected to a local repository, which is responsible for
persistent caching. Independent of the network topology, an
edge router has a downstream face from which file requests are
received and content is returned and an upstream face where
received Interests are forwarded and new content is received,
i.e., file inclusions at the persistent cache of the edge router.
The evaluation parameters are listed in Table I.

Fig. 4: Network Scenario.

Parameter YouTube Webserver
Requests every 5s

Request Popularity Zipf distribution with
α = 2 α = 1

File distribution Zipf distribution, α = 1
per popularity class mapped to inverse classes
New Files every 10s

File sizes
Gamma distribution, Gamma distribution,

per popularity class
α = 1.8, β = 5500 α = 1.8, β = 1200

min. 500KB min. 50KB
max. 100MB max. 50MB

Repofile thresholds 2GB, 4GB, 8GB 8GB, 12GB, 16GB
Deletion ratios 50%, 25%
Effective duration 86400s (1 day)

TABLE I: Evaluation parameters.

Similar to existing ICN literature [21], we assume that
content popularity follows a Zipf distribution. We use 20
popularity classes and perform evaluations with parameters α
set to 1 and 2. A parameter of α = 1 is considered realistic
for webserver traffic and α = 2 is used for YouTube traffic
[21]. Several studies have shown [22], [23] that most files are
unpopular and only a few files are very popular. Therefore,



we map the number of files in all popularity classes to a Zipf
distribution α = 1 with inverted classes, i.e., most files are
included in class 19 and fewest files in class 0.
The file sizes in each popularity class vary as well. Based on

existing YouTube models [24], we set the file size distribution
for our YouTube scenario to a gamma distribution with α =
1.8 and β = 5500. Our YouTube files are between 500KB and
100MB, while most files are between 2 and 10MB (9.9MB
mean). The file sizes for web server traffic are considerably
smaller [25]. File sizes have increased in the last years and
we believe that file sizes will increase even more in future
information-centric networks. Transmitted ICN packets need
to have a certain minimum size to be efficient, e.g., segment
size of 4096 bytes or more, to avoid too large overhead for
content headers including names and signatures. Therefore,
we believe that for future ICN traffic, many small files may
be aggregated to larger data packets or ICN would only be
applied to large static files, e.g., pictures or embedded videos,
and not small text files that may change frequently. Therefore,
we use a gamma distribution with α = 1.8 and β = 1200
for the webserver scenario. Our webserver files are between
50KB and 50MB, however, most files are between 750KB and
1250KB (2MB mean).
In our scenarios, requests are performed periodically, i.e.,

1 new content request every 5 seconds. The requested con-
tent from the popularity class (Zipf distribution) is selected
randomly among all created content objects in that popularity
class. To simulate a dynamically growing file catalog and to
evaluate the performance of persistent caching with regular
deletion operations, we create and request new files every 10s.
These files are included into the repository, i.e., file inclusions,
as mentioned above.
For every scenario, we evaluate various repofile tresholds

and deletion ratios of 50% (DR50) and 25% (DR25) of the
repofile. We measure the performance of persistent caching
during operation, i.e., the repository is filled initially with
content and we collect statistics after a first deletion operation
has been performed. The effective evaluation starts after the
first deletion and lasts 86400 seconds (1 day). Thus, in one
day we create approximately 85.54 GB of data in the YouTube
scenario and 18.67GB of data in the webserver scenario. Every
configuration has been evaluated and repeated 100 times on
physical servers that run a CCN router with persistent caching.

B. Hit and Miss Rates
In this subsection, we evaluate the cache hit rates of our

repository implementation in the YouTube and webserver
scenario. Figure 5 shows the cache hit and miss rates for all
popularity classes in different configurations. The y-axis shows
the hit/miss rates and the x-axis indicates the popularity class.
The figures on the left side are obtained for our webserver
scenario, i.e., requests with Zipf distribution alpha = 1, and
the figures on the right side show the YouTube scenario with
Zipf distribution alpha = 2.
Figure 5a shows the hit and miss rates in the webserver

scenario with a repofile threshold of 2GB. The dark green

boxplots show the hit rates for a deletion ratio of 50% (DR50)
and the light green boxplots for a deletion ratio of 25%
(DR25). The overall hit rate of DR25 is slightly higher, i.e.,
81%, compared to 77.5% with DR50. For high popularity
classes, such as classes 0 and 1, the difference between DR50
and DR25 is smaller because files from these classes are barely
deleted in both cases. However, for classes 3-17, the difference
between DR25 and DR50 is larger by up to 6.3% because
these files are kept more likely with DR25, while they are
deleted with DR50. The red boxplots show the miss rates
for DR50 and the orange boxplots for DR25. For DR50, hit
rates are higher than miss rates up to files from popularity
class 11, while for DR25, hit rates are better for more files,
i.e., up to class 13. Even for the most unpopular content in
class 19, DR50 results in a slightly higher miss rate of 61.5%
compared to 58.1% with DR25. Therefore, freeing space too
aggressively, i.e., DR50, has a noticeable impact on cache hit
rates in the webserver scenario.
Figure 5b shows the hit and miss rates for our YouTube

scenario with a repofile threshold of 8GB. Because file sizes
are larger compared to the webserver scenario, we use larger
repofile thresholds for YouTube scenarios than for webserver
scenarios. With DR50, the overall hit rate is 95.3% and with
DR25 it is 96.9%. The relative differences between DR50 and
DR25 are smaller compared to the webserver scenario. This is
due to the fact that the probability for requests in most popular
files in classes 0 and 1 are larger for a Zipf distribution with
α = 2 (YouTube) than α = 1 (webserver), i.e., 62.7% and
15.7% instead of 27.8% and 13.9%. Therefore, more than 78%
of all requests in the YouTube scenarios request content from
popularity classes 0 and 1. Since our implementation keeps
the most popular files, there is no difference for DR50 and
DR25 for most of the requests. However, for class numbers
larger than 2, DR25 results in 4.9% to 12% higher hit rates
than DR50. We notice a large variability in performance for
popularity class numbers larger than 3 in Figure 5b. The
variability is much larger than for the webserver scenario in
Figure 5a. This can be explained by two reasons. First, the
request frequency of class numbers larger than 3 is higher
with Zipf distribution α = 1 compared to α = 2 due to larger
request probabilities. Second, the file ranges that we selected
in the YouTube scenario are larger than for the webserver
scenario resulting in higher variability. When considering the
average values, DR25 results in higher hit rates than miss
rates up to popularity class 17, while for DR50 the miss rates
become higher already at popularity class 11.
Figures 5c and 5d show the hit and miss rates for the

webserver scenario with a repofile threshold of 4GB and the
YouTube scenario with a repofile threshold of 12GB. Similarly
as above, DR25 results in superior performance compared to
DR50. In the webserver scenario, DR25 results in an overall
hit ratio of 93%, while for DR50 it is 90.7%. In the YouTube
scenario, DR25 results in an overall hit rate of 99% and with
DR50 it still reaches 98.1%. Although these values are much
higher than in the webserver scenario, miss rates for popularity
classes numbers larger than 12 may become larger than the
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(b) YouTube, repofile threshold 8GB
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(f) YouTube, repofile threshold 16GB

Fig. 5: Hit and Miss rates for webserver and YouTube scenarios.

hit rates in the YouTube scenario (worst case) due to a large
variability.
Figures 5e and 5f show that if we further increase the

repofile threshold to 8GB in the webserver scenario and 16GB
in the YouTube scenario, the average hit rates do not go below
80%. Even in the worst case in the YouTube scenario, the hit
rates are always higher than miss rates.

C. Deletion Times
In this section, we evaluate the time durations to perform

deletion operations in the webserver and YouTube scenario.
Figure 6 illustrates the overall times for deletions and the

number of deletions in each evaluated scenario. The deletion
time is split into subparts for sorting segments of deleted
content, copying files from the repofile and cleanup of the
B-tree. The number on top of each bar denotes the average
number of deletions in the corresponding configuration.
Figure 6a illustrates the deletion times as well as the number

of deletions in webserver scenarios with repofile thresholds
of 2GB, 4GB and 8GB. For every repofile threshold, the
percentage on the x-axis denotes deletion ratio of 50% (DR50)
and 25% (DR25). For small repofile thresholds of 2GB,
deletions with DR25 take only 16.2% less time than for DR50.
This is because most of the time is required for updating
file references and deleting entries in the B-tree (cleanup).
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Fig. 6: Deletion times and number of deletions

For DR50, B-tree cleanup requires 86% of the total deletion
time and for DR25, it requires even 92%. With increasing
repofile threshold, the time for sorting increases. For a repofile
threshold of 8GB and DR50, sorting is responsible for 41.5%



of the deletion time and for DR25 it is a smaller fraction of
18.6%. DR50 requires more than 300% additional time for
sorting and 24.8% more time for cleanup compared to DR25,
while their difference for copying is insignificant. For one
deletion operation with repofile threshold 8GB, DR25 requires
45% less time for the deletion than DR50. Considering that
DR25 requires nearly twice as many deletions over one day,
DR25 results only in 6% longer deletion times than DR50.
However, due to the increased hit rate for DR25 (see Section
IV-B), it may be worth investing 6% more time for deletion.
Figure 6b shows the deletion times for the YouTube sce-

nario. A deletion operation with a repofile threshold of 8GB
takes considerably less time than for the webserver scenario:
for DR50, it is 36.4% less time and for DR25 16.9% less
time. Because files are larger in the YouTube scenario, i.e.,
have more segments, fewer files are stored in the repository
for the same repofile threshold. Due to the sequential request
strategy in CCN, segments of the same file are already (more
or less) ordered. However, because popular files are continu-
ously pushed down in the delete queue, the sorting overhead
increases with the number of deleted files, i.e., no First-In-
First-Out (FIFO) deletion strategy. Fewer files that contain
more ordered segments (YouTube scenario) result in a less
fragmented repository file than many files with fewer ordered
segments (webserver scenario) and can, therefore, be sorted
faster. As a result, sorting requires only 18.1% for DR50 and
only 7.5% for DR25. However, the larger the repository file be-
comes, the higher is the overhead for sorting and cleanup. For
a repofile threshold of 16GB, sorting is responsible for 30.6%
of the deletion time for DR50 and 12.5% for DR25. Although
sorting takes 3.5 times more time with DR50 compared to
DR25, a deletion operation with DR25 only requires 31.6%
less time compared to DR50. This is because the overhead
from copying is not negligible anymore, i.e., 41.6% more time
for DR25, and cleanup becomes more expensive for DR25,
i.e., only 16.9% less time compared to DR50. When taking
into account the number of deletions, DR25 results in 15.6%
longer deletion times. Considering that the overall hit rate for
DR50 and DR25 is almost the same (less than 1% difference),
it may be a better strategy to use DR50 instead of DR25 in
the YouTube scenario.

V. DISCUSSION
A. Chunk-based vs. Object-based Persistent Caching
We process content based on object granularity, which may

have disadvantages in some cases. For example, if only the
first few seconds of a 2 hours movie would be retrieved,
the content would be considered as popular as if the entire
2 hours would be requested. However, because content is
requested sequentially, i.e., up to n segments at the same time
depending on the pipeline size, high delay variability between
segments would drastically degrade download performance.
As a consequence, storing chunks individually may harm
download performance.
However, please note that our approach is an extension for

persistent storage of static files, but it can be combined with

regular caching in the content store, e.g., real-time data, which
can be chunk-based. It may also be possible to increase the
granularity in the delete queue by splitting each content into
ranges of multiple consecutive segments, e.g., segments 0 -
100, 101 - 200, ... and so on, but it would result in a higher
processing complexity (tradeoff).
Another challenge of object-based granularity is the update

process, i.e., when content needs to be pushed back to the
end of the delete queue. In our approach, we assume that the
first segment is requested in every download and, therefore,
pushes content entries back based on requests in the first
segment. We decided to go with this strategy to avoid too
many push operations, e.g., for concurrent requests, and to not
discriminate small files with only a few segments compared to
large files, which would have much more update operations.
However, if the first segment is not requested, the content
entry is not pushed back. This issue may be alleviated when
using higher content object granularity, e.g., ranges of multiple
consecutive segments as described above.

B. Deletion Overhead
Our evaluations have shown that deletion operations result

in a large processing overhead to update the B-tree, sort
the deleted segments and delete content from the repofile.
For some applications, the processing overhead may not be
critical, e.g., delay-tolerant networking [13], [14] or custodian-
based information sharing [15], and it can be performed as
maintenance operation during off-peak hours.
However, if persistent caching is used alongside content

routers, service interruptions (see Subsection III-B3) have a
larger impact on caching performance because no new content
can be included during deletion operations. In this case, a
(read-only) repository could be used during the deletion to
continuously serve existing content. In addition, a router may
use multiple repositories at the same time (load balancing).
Then, if one repository performs a deletion, the other repos-
itory may still accept content. In the worst case, i.e., if only
one repository is used and Interests cannot be satisfied due to a
local deletion, Interests may be forwarded to the next content
router on the path to the content source.

VI. CONCLUSIONS
Persistent caching is required to support delay-tolerant net-

working or provide high content availability similar to content
delivery networks (CDNs). In this work, we have extended
the current repository implementation in CCNx to support
persistent caching in repositories. A fundamental requirement
for persistent caching is content deletion during operation, i.e.,
without deleting or resetting the entire repository, which is
not supported by CCNx. Our approach for content deletion is
based on a delete queue, which keeps the most popular files
at the tail of the queue. If disk space needs to be released,
content can be removed from the head of the queue.
We have performed extensive experimental evaluations for

different configurations in a webserver and YouTube scenario.
In every scenario, new content has been generated periodically



such that deletion operations in the repository were necessary
due to limited space. Evaluations have shown that our design
can maintain high cache hit rates in both scenarios, but
performance depends on the reserved repofile size for caching.
Although repositories are slightly larger in the YouTube sce-
nario due to larger file sizes, the repositories need to store
a smaller percentage of all content to achieve high cache hit
rates. For example, in webserver scenarios a repofile size of
4GB, which corresponds to 21% of all included content during
a day, results in cache hit rates larger than 90%. In YouTube
scenarios, a repofile size of 12GB, which corresponds to
14% of all included content in a day, results in cache hit
rates larger than 98%. High cache hit rates at the edge are
beneficial for both users and network operators. While network
operators can reduce network traffic at the core network to
improve network availability and reduce operational costs,
users may benefit from faster content downloads (shorter
delays, less RTT variability) as well as partial service and
content availability if the core network is overloaded.
In the webserver scenario, it is a better strategy to have more

frequent deletions of fewer content to obtain higher cache hit
rates. More frequent deletions of fewer files do not require
much more time for deletions, i.e., longer service interrup-
tions, than fewer deletions of many files. In the YouTube
scenario, fewer but larger deletions are better. Compared to
the webserver scenario, the sorting overhead is significantly
smaller because fewer files can be stored at the same space
(files are larger) and segments of the same file are already
ordered. In addition, because most requests are addressed to
the most popular classes, the additional gain of keeping less
popular content in the repository is only minimal and may not
justify more frequent deletion operations.
We have implemented persistent caching based on the

current repository implementation in CCNx, which uses a B-
tree to keep references to stored content in the filesystem.
For caching in delay-tolerant networking, the overhead for
deletions may be negligible but to increase efficiency in
content routers, other repository implementations may be eval-
uated, e.g., storing files or even chunks in separate repofiles
to reduce cleanup and sorting overhead, or even develop a
repository implementation with a database. However, all of
these solutions would come with their own disadvantages that
would need to be evaluated.
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