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Abstract. SplitPath is a new application for the easy, well-known and provably
secure one-time pad encryption scheme. Two problems hinder the one-time pad
scheme from being applied in the area of secure data communication: the random
generation and the distribution of this random data. SplitPath exploits the flexi-
bility of code mobility in active networks to address these problems. Especially
the random generation is studied in more detail.

1 Introduction

A wide variety of encryption algorithms is in daily use to protect data communications.
However, none of these algorithms is proven to be secure. A well-known algorithm
exists which is very simple and perfectly secure: the one-time pad [Sch96]. It works as
follows: Assume you want to encrypt a bit stringP of n bits (P; pi 2 f0; 1g; i 2 1::n).
For that purpose you take a string of equally distributed and independent random bits
R; ri 2 f0; 1g; i 2 1::n and xor (addition modulo 2) it bit-wise withP , resulting in the
ciphertextC; ci = ri � pi. To decryptC, R is xor-ed toC again. This works because
ri� (ri�pi) = pi.R must be destroyed after the decryption. It is assumed that onceR

is generated, it is used for encryption and decryptiononly once. That’s why the scheme
is called one-time pad. Under these assumptions the algorithm is provably secure. It
is impossible to gain any knowledge ofP without knowingR, becauseevery possible
plaintextcould have lead to a given ciphertext. Furthermore, in contrary to commercial
encryption algorithms, the one-time pad needs only one very light-weight operation
(xor) for encryption and decryption. However, the one-time pad is not practical for
secure data communication for the following reasons:

– Lack of random bits. The one-time pad needs a irreproducible random bit-stream
(R) of the same length as the message.

– Ensuring single usage.The receiver and the sender must both exclusively possess
the same pad (R). How can the pad securely be established by the communication
partners?

This paper presents an approach using active networking [CBZS98,TSS+97] to ad-
dress both problems. An active network consists of active (programmable) network
nodes. The data packets that are transmitted through an active network can contain code
that the active nodes execute. Active networking is an instance of the mobile agents



paradigm tailored to networking needs. Active network packets (also called capsules)
access the networking functionalities of the nodes (e.g. forwarding and routing) and
change these functionalities for packets or classes of packets.

This paper presents how (for a given application scenario) active networking en-
ables us to use the one-time pad with its provable security and lightness for secure data
communication.

In section 2 we present the basic idea how to address the distribution of the random
(problem 2). Section 3 describes how to generate the necessary random (problem 1)
and what the pitfalls are. An existing implementation using the well-known active net-
working tool ANTS [WGT98] is presented in section 4. Section 5 presents performance
measurements and section 6 concludes the paper.

2 Distribution of Keys and Data

We said that with enough good random bits available, we can create an uncrackable
bit stream using the one-time pad. However, the receiver must also possess the random
bits. A straight-forward solution is to first deliver the random bits in a secure manner and
later transmit the data. The sender could, for example, hand a magnetic storage tape to
the receiver, containing the random bits. This is a secure but not very flexible application
of the one-time pad. The use of a secure communication medium1 allows the commu-
nicating parties to communicate later using an insecure communication medium. But
even if the medium for sending the random is not secure, the scheme still works as long
as no attacker has access toboth random and message bits. This principle is e.g. used
when encryption keys for data communication are exchanged using the postal service
or the telephone system. The SplitPath idea goes one step further. The random bits (in-
terpreted as the key) and the cipher text bits (plaintext xor-ed with the random bits) are
sent along at the same time on the same media buton different paths. In general this
scenario is not secure any more, since an attacker can eavesdrop both the random string
and the encrypted message and thus easily decrypt the original message. In a network
with centralised management at least the network provider will always be able to do
this. However, if the network is partitioned in autonomous sub-networks (domains), as
for example the Internet is, and if the two paths are entirely in different domains, an
attacker will have significantly more trouble. Thus, the application of SplitPath requires
the following preconditions:

– SplitPath traffic enters the untrusted networks only in split form (either random bits
or xor-bits).

– The paths of corresponding random bits and xor-bits never share the same distrusted
network.

– The distrusted networks do not trust each other.

These preconditions limit the application scenario of SplitPath, but there are cases
where the prerequisites are met.

1 Assuming that the physical delivery of the magnetic tape is secure.



– Multi-homing. Today’s Internet service providers (ISP) compete with each other.
Most of the larger ones own their own physical network infrastructure. It is not
uncommon that customer networks are connected to more than one ISP.

– Heterogeneous and redundant network technology.A modern global data net-
work like the Internet consists of all kinds of different network technologies (e.g.
optical networks and satellite links) running different link layer protocols (ATM,
Frame Relay etc.). These link layer networks are usually inter-connected on many
redundant links.

– International tension. Unfortunately, many neighbouring countries tend to be sus-
picious about each other. The geographical location of-, and the relation between
some nations can provide an ideal application scenario for the SplitPath scheme.

The generic situation is depicted in figure 1. At the split point the data packet is split
into a random packet (the pad) and the xor result of data and pad. The resulting packets
are sent along disjunct network paths. When they arrive in the trusted receiver network
(at the merge point) then they are merged back into the original data packet.
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Fig. 1. The application scenario for SplitPath.

We distinguish between the sender, the receiver, a split point and a merge-point.
Obviously, the split- and merge point needs to be located on a trustworthy site. Depend-
ing on the sender, receiver and the network topology the ideal location of these points
varies, thus their implementation cannot be preconfigured in few network nodes. Active
networking brings the flexibility we need here. With active networking the data packets
can dynamically setup their private split (merge) functionality in the nodes which are
appropriate for them. No router configurations are necessary. SplitPath capsules con-
tain code that dynamically implements the split and merge capabilities and controls the
routing of the packets. These mechanisms are described in section 4.

The next section shows how active networking can also help us getting the ‘good’
random bits which are needed in the split point.



3 Generating Random

For SplitPath, like for most crypto-systems, the availability of high quality random ma-
terial is crucial. The random bits must be independent and equally distributed in order
to be unpredictable. However, it is not easy to acquire such random in a computing
environment. Irreproducible random values can solely be created by real world interac-
tion. Examples are: mechanical random devices (e.g. lottery machines, dices), physical
random (e.g. radioactive decay) and human behaviour (e.g. keyboard interrupt times).
Multiprocessing and networking devices can also be a source of random bits [Wob98].

In SplitPath, we propose to use unpredictable traffic characteristics as seen in net-
working devices and generate random bits with them. Active networking allows the
capsule to use itsownvarying queueing times within the network. The capsule, being
autonomous, can keep information about its creation time and ask the nodes on its way
about the local time. Note, that clock skew is actually good for the random generation
because it introduces another factor of incertitude.

The idea is that by travelling through the net each capsule generates random bits
for its own use. However, e.g. an IP packet can contain 64 KBytes of data. It needs the
same amount of random bits for applying the one-time pad.

3.1 Quantity and Quality of SplitPath Random

The quantity of random bits gained by network performance measurement is limited.
This is a problem but we have many options to cope with the situation:

1) Limit the payload of the capsule. Programmable capsules can fragment themselves
to smaller payload sizes. This produces more packets and thus more random data per
payload byte. It also adds bandwidth overhead. Note however, that congestion eases the
production of random bits, since it involves a lot of non-predictable behaviour (see also
section 5).

2) Generate more random bits by sending empty packets. When capsules can store data
in nodes (see section 4) then we can use the idle time to send empty capsules that store
their performance statistics in the split-node. Later, when payload is transported, the
capsule can use the stored information to generate random.

3) Multi-hop random generation. If the capsule executes at several nodes before the split
node, it can calculate its performance statistics there, too. The capsule takes the gained
random bits with it and uses them at the split node. Care must be taken when distilling
random bits from several nodes, because they are probably not completely independent.

These options do not affect the strength of the one-time pad, but they limit the effective
throughput of data. Another approach is to use a pseudo-random function [Sch96]. This
function uses the collected random data as a seed and generates a bit sequence of arbi-
trary length that can be used to xor the data. However, the next paragraph explains why
such ’stretching’ of the random bits affects the perfect security of the one-time pad.

When an attacker tries to decrypt an unknown ciphertext the most straight-forward
thing to do is to decrypt the message with every key and see if the result looks like
a meaningful message. This is also called abrute-force attack. The one-time pad is



immune against such attacks, because in his search through the key space the attacker
will find everymeaningful message that can be encoded in that length. However, once
we start expanding the random key string by using it as a seed to a pseudo-random
function, we will loose this nice property of the one-time pad. Based on Shannon’s
communication theory of secrecy systems, Hellman [Hel77] showed that the expected
numberP of different keys that will decipher a ciphertext message to some intelligible
plaintext of lengthn (in the same language as the original plaintext) is given by the
following formula:P = 2H(K)�nD

� 1. P indicates the success probability of the
brute-force attack. IfP is small then the brute-force attack will deliver only few possible
plaintexts, ideally only one, which then can be assumed to be the original message.
H(K) is the entropy of the crypto-system used andD is the entropy of the encoded
language. Using this formula we can show [GBB00] that for ASCII encoded English
text each payload byte should be protected by at least 7 random bits. This is a very small
stretching factor of8=7.

Random expansion in practice.When we want to ’stretch’ the random data by larger
factors we can not rely any more on the perfect secrecy of the one-time pad. Instead,
we have to carefully design the pseudo-random generator. First of all, the seed length
must be large. We propose 128 bits. While the previous paragraph showed that a brute
attack in principle will lead to the decryption of the packets (in the worst case there is
only one random bit per packet), in practice the attack will not be successful, because
there are too many bit combinations to try (an average of2127). If a million computers
would each apply a billion decryption tries per second the average search would still
last about 5*1015 years.

Second, the pseudo random generator should resist cryptanalysis. Many such gen-
erators exist and are used for so-called stream ciphers [Sch96]. Using SplitPath with
expanded random is very similar to using a stream cipher in that both xor the plaintext
with a secure pseudo random bit stream. However, SplitPath differs from stream ci-
phers in that it uses the pseudo random generator only at the sender side. Furthermore,
the flexibility of an active network platform allows SplitPath to dynamically change the
generator used, even during an ongoing communication. Finally, the seed of the gener-
ator is updated frequently (as soon as enough random bits have been collected by the
capsules), and the seed is random. This is different from e.g. the stream cipher A5 (used
for mobile telephony) which uses a preconfigured seed.

4 Implementing SplitPath in an Active Network

4.1 Implementing SplitPath with the Active Node Transfer System ANTS

We implemented the SplitPath application using the active node transfer system ANTS
[WGT98]. ANTS is a Java based toolkit for setting up active networking testbeds.
ANTS defines active nodes, which are Java programs possibly running on different
machines. The nodes execute ANTS capsules and forward them over TCP/IP. ANTS
defines a Java classCapsule . The class contains the methodevaluate which is
called each time the capsule arrives at a node. New capsule classes can implement new



behaviour by overriding theevaluate method. The node offers services to the cap-
sule such as the local time, forwarding of the capsule and a private soft-state object store
(callednode cache). Collaborating capsules can be grouped to protocols. Capsules of
the same protocol can leave messages for each other using the node cache. We defined
such a protocol to implement the SplitPath concept as presented in section 2 by intro-
ducing three new capsule subclasses.

1) ThePathfinder capsule marks nodes as splitting or merging points and sets up
the split paths using the node caches. Note that several split and merge points can be set
up per communication. Currently,Pathfinder s are parametrised and sent by appli-
cations. We foresee to implement them with autonomous intelligence.

2) TheNormal capsule is the plaintext message carrier. It checks if it is on a split-
ting point. If not, it normally forwards itself towards the destination. If it is on a split-
ting point, it applies the one-time pad computation to its payload. This results in two
Splitted capsules, one carrying the random bits, the other the xor-ed data in the pay-
load. TheNormal capsule tells the node to forward the two newly producedSplit-
ted capsules instead of itself, thereby using the information that was setup by the
Pathfinder .

3) TheSplitted capsule carries the encrypted- or the random data along a separate
path. It forwards itself using the information that was setup by thePathfinder . It
checks if it has arrived on a merge point. If so, it checks if its split twin has already
arrived. In that case it xor-s their contents (decryption) and creates aNormal capsule
out of the result. If the twin is not there, it stores itself on the node cache to wait for it.

Applications and Interfaces. We wrote two applications that send and interact with
the implemented capsules. The first application provides a graphical interface which
allows the user to dynamically set up split and merge points using thePathfinder .
Furthermore, the user can enter and send text data using theNormal capsule. We also
extended the nodes with a sniffing functionality. Such ‘spy nodes’ log capsule data to
validate and visualise the SplitPath encryption. We implemented a second application
which transfers a file (optionally several times) in order to test the performance by
generating load.

4.2 Random Generation and the Application of the One-time pad

In order to be able to send large packets, we decided to use pseudo random generators
to extend the collected random bits (see section 3). EachNormal capsule contains its
creation time. When arriving at a split node, it uses this time and the node’s current
time to calculate the delay it has so far. It stores the last few bits as random seed. The
number of bits is configurable and depends on the clock resolution. Unfortunately, the
Java system clock resolution used by ANTS is bound to one millisecond and the delay
is in the order of few milliseconds. Therefore, we used only the least significant bit.
Thus, every packet stores one random bit in the split node (using the node cache). This
bit can be considered as random, since it is influenced by the speed and current usage
of computing and networking resources. As said before, the chosen seed length is 128



bits. So for every 128th capsule a complete seed is available. This capsule uses the seed
to store a new random generator in the node cache. The next capsules use the generator
for their encryption, until enough fresh random has been collected to install a generator
with the new seed (key refreshing). For the bootstrapping we foresee two schemes.
Either 128 empty packets are sent, or a (less secure) seed is used that can be generated
by the first packet.

We have implemented two random generators. The first one is based on the secure
one-way hash function MD52. The seed is stored in a byte array of 16 bytes. Further-
more, there is an output buffer of 16 bytes containing the MD5 hash value of the seed
buffer. The generator delivers 8 bytes of the output buffer as pseudo-random values.
Then, the seed is transformed and the output buffer is updated (MD5 hash). The ’one-
way’ property of MD5 assures that an attacker cannot reconstruct the seed. Thanks
to the avalanche property of MD5 the transformed seed produces an entirely differ-
ent hash. Our seed transformation is equivalent to the increment of a long integer (8
bytes) by one. Thus, the seed only repeats after264 transformations. Long before that,
SplitPath will replace the seed with freshly gathered random values. We think that for
the presented reasons this pseudo random generator is reasonably secure. Nevertheless,
we implemented also the pseudo random generator of RC4 as an alternative. RC4 is a
stream cipher developed by RSADSI. It is used in applications of e.g. Lotus, Oracle and
Netscape (for details see [Wob98]).

5 Evaluation of SplitPath

In order to evaluate SplitPath we ran the implementation on our institute network. Six
ANTS nodes were set up on six different machines (sender, receiver, a split and a merge
node and two sniffers; see figure 2). The split node ran on a SPARCstation 5/170. The
encrypted capsules ran over two different subnets and were merged in a machine of
a third subnet. The subnets are 100 Mbps Ethernets. We used the aforementioned file
transfer application to generate load. Our interest was focussed on the quality of the
encryption. We measured this by collecting all generated seeds and apply statistical
tests. Furthermore, we applied statistical tests to the MD5 pseudo random generator
presented in the previous section.

In order to test the quality of the MD5 random generator, we initialised it with
all seed bytes set to zero. Then we fed its output into a framework for statistical tests.
Testing with samples of 40 MByte size, the produced data succeeded the byte frequency
test, the run test [Knu81] and the Anderson-Darling test [IETF RFC 2330]. This is no
prove that the generated pseudo-random bits are of high quality, but it shows that they
are not flawed.

Seed generation.We evaluated the generated seed bytes using statistical tests. For
example we analysed 3K seed bytes (192 complete seeds, protecting 24576 packets).
The seeds pass the byte frequency test (�2 test on the distribution of the measured byte
values [Knu81]). Unfortunately, in few cases we also experienced seed generation that

2 ANTS includes the Message Digest 5 (MD5) [IETF RFC 1321] functionality.
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Fig. 2. The network topology for the evaluation.

was not uniformly distributed. There we see some concentrations of byte values espe-
cially around the value 0. Our investigation revealed three reasons that come together
to form this effect. (1) The coarse resolution of Java’s clock. (2) ANTS does not send
one capsule per packet, and the packet code is not send within the capsule, but dynami-
cally loaded and cached. Thus, consecutive capsules are handled immediately after each
other without delaying I/O operations. (3) The local network used has very low delay
and jitter. These problems are not discouraging because normally they do not all come
together and there are also countermeasures. By introducing congestion we can show
that given realistic wide area delays as studied e.g. for the Internet [EM99], the seeds
are equally distributed. Figures 5 and 5 show the seeds of two samples. Each sample
shows the single byte values (2-complement) in the same order as they were created.
Figure 5 represents a sample suffering of the previously mentioned problems, figure 5
represents a corrected sample.

There are many more options to improve the seed quality. Additional use of other
random sources for example. We foresee the exploitation of additional sources offered
by active networking e.g. execution times of capsules or properties of the node cache.
Finally, we can once again exploit the fact that the capsules are programmable. The pro-
cedure for collecting seed values can easily be extended to contain statistical methods
to test the seed before it is used. So if for some unforeseen reason the seed is not good
enough, the capsule uses the old random generator a little longer until more random bits
are collected. Also, methods described in [Sch96] can be used by the capsule to distill
random from biased random bits.

6 Conclusion

We presented SplitPath, a new application for the well-known and provably secure one-
time pad encryption scheme. SplitPath uses the ability of active networks and the trust
relations in heterogeneous networks to solve the two problems which otherwise render
the one-time pad scheme useless: the random generation and the distribution of this
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random data. SplitPath can dynamically set up and use disjunct paths through network
domains that do not collaborate, such as competitive network providers or countries.
One-time pad encrypted data and random data is forwarded separately on these paths.
Active networking allows SplitPath to encrypt and decrypt at any trusted node. Active
networking not only allows SplitPath to dynamically set up the one-time pad splitting
inside of the network, it also helps to collect good random. This can be very useful
for other crypto-systems, too. SplitPath implements data capsules that use the network
delays that they experience as initialisation for the random generation. With SplitPath
we present an application in a (albeit specific) environment which cannot be imple-
mented using conventional ‘passive’ networking, thus we promote the future study and
(hopefully) deployment of active networking.
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