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Abstract
Computer networking applications often have to adapt to dif-
ferent conditions of the network to guarantee smooth opera-
tion. Since events such as network congestion happen at re-
mote locations there is a significant delay until applications
notice condition changes. In case the network behaviour is
hard to model mathematically, applications often use simple
estimation methods such as exponential averaging to react to
changing conditions. However, this function is not appropri-
ate for extrapolation because it reacts too slow to trends. We
propose an alternative that is also simple and assumes little
knowledge aboout the event sources, but which extrapolates
better.

1 INTRODUCTION
Many applications use the exponential average function to es-
timate the future values of unknown generator functions. Ex-
amples are the estimation of the round-trip time and its stan-
dard deviation in TCP [6] (which is crucial for the TCP timer
management [11]), estimation of the mean allowed cell rate in
ATM (ATM-Forum) and estimation of CPU burst times [10].
Another application area is the dynamic resource (e.g. band-
width) reservation in the Internet. Recently, the Differentiated
Service (DiffServ) [2] architecture has been standardised to al-
low prioritization of classes of Internet traffic. In order for
this scheme to provide end-to-end quality of service for con-
nections that go along several provider networks, DiffServ re-
quires resource reservations for bulk traffic. For economic rea-
sons network providers should not reserve too much or too lit-
tle resources. So the amount of resources should reflect the
upcoming usage. The upcoming demand can be signalled by
a separate protocol. However, this negatively affects the scal-
ability of the DiffServ approach. Another approach is toes-
timate the upcoming demand based on local usage measure-
ments and to use the estimate for in-advance local reservations.

Exponential average estimation seems suitable here because of
the lack of a mathematical model for DiffServ traffic demand.
Note that the demand depends on the (not-yet existing) users,
the DiffServ pricing models and the applications that will use
DiffServ. For our DiffServ research [5, 3] we compared sig-
nalling based reservation schemes with estimation based ones.
However, the performance of the estimation based approach
heavily depends on the quality of the estimation. With an un-
reliable estimation, too much capacity is reserved, leading to
an under-usage of the network, or even worse, too little re-
sources are reserved, possibly leading to loss of priority traffic.
Our simulation results indicated that the exponential average
estimation based reservation did not perform sufficiently. Es-
pecially for global traffic trends the result was disappointing.
This is not only due to the estimation approach itself but to the
nature of the exponential average estimation. In this paper we
will analyse the problem with exponential average estimation
(section 2), propose an alternative (section 3) and evaluate the
alternative (section 4). Section 5 concludes the paper.

2 ANALYSIS OF THE EXPONENTIAL AV-
ERAGE

The exponential average� of the valuest0; :::; tn is defined as:

�(n+ 1) = �tn + (1� �)�(n) (1)

where� 2 [0::1] and�(0) is an initial value, usually 0. The
usage of the exponential average as an estimation function is
simple. Given measured valuest0; :::; tn, we use�(n + 1) as
an estimate for the next (currently unknown) valuetn+1. Note
that later in this paper we will sometimes attach to� a letter
in raised brackets in order to indicate what value sequence is
averaged (here, this would be�<t>(n+ 1)).

The factor� tailors the exponential average. A large� value
puts emphasis on the most recent measured values while a
small� value increases the influence of older measurements.
In general we can say that the more recent the measurement
value is, the more weight it has for the estimation.



The exponential average function as stated in (1) is obvi-
ously very easy to calculate. Initialise the exponential average
with some value (usually 0) and choose an�. After the first
measurement, you are able to calculate the next prediction us-
ing only the old prediction and the current measurement value.

Thus, the properties of the exponential average are: 1) It
uses only the assumption that the more recently measured
values are more significant than older values. 2) Averaging
smoothes the estimations thus making it more robust (stable)
against ’runaway’ values. 3) It is very fast to calculate and
needs almost no memory.

For notational convenience let� � 1 � �. Here is then the
non-recursive form of (1):

�(n + 1) = �tn + ��tn�1 + :::+ �n�t0 + �n+1�(0)

For �(0) = 0 this boils down to:

�<t>(n+ 1) = �

nX
i=0

�itn�i (2)

Let’s assume that the measurement values are constant (ci =
C). The estimation for then+ 1 th value is thus:

�<c>(n+ 1) = �

nX
i=0

�iC = �C
1� �n+1

1� �
= C(1� �n+1)

The estimation errorjcn � �<c>(n)j = �n is shrinking
rapidly with an increasing number of measurementsn. � is
the weight of the older measurements thus also reflecting the
initial estimation 0 which is causing the estimation error, but
which influence fades away.

This little reflection shows that the exponential average
quickly adapts to a series of constant measurement values.
However, the exponential average function does not behave so
well when we are facing measurements which constantly in-
crease/decrease in value. We demonstrate this for the case of a
monotonically increasing1 set of measurement valuetn. Thus
ti � ti�1(8i : i > 0). We will prove that if the initial estimate
�(0) < t0 and� < 1 then�(i + 1) < ti. This means that
in such a case the estimation is not only always smaller than
the measured value, but it’s even smaller than the lastalready
measuredvalue. Thus, if the measurements are generated by
a monotonically increasing/decreasing function, then the esti-
mation is always at least as far from the new value as the new
value is away from the last value. We can prove this property
using induction:

1. Fori = 0: �(1) = �t0 + ��(0) <|{z}
�(0)<t0

�t0 + �t0 = t0

2. Induction assumption:�(i+ 1) < ti.
1The statement is valid as well (in an analogous way) for monotonically

decreasing values.

3. Induction:
�(i+ 2) = �ti+1 + ��(i+ 1) <|{z}

I-assumption,� < 1

�ti+1 + �ti

�|{z}
Monotony

�ti+1 + �ti+1 = ti+1 q.e.d.

Note, that for� = 1 the estimation error is exactly the dif-
ference between the new measurement value and its predeces-
sor. Therefore, for a monotonically increasing function� = 1
produces the best estimations. Unfortunately estimating the
future value to be exactly the same as the last measured value
is a very unstable method for a general purpose estimation.

An example: a simple linear generator function. Consider
li = m � i;m > 0 which is a monotonically increasing func-
tion. Using formula 2 provides the exponential average esti-
mation:�<l>(n+ 1) =

�
Pn

i=0 �
i(n� i)m = �m(n

Pn
i=0 �

i
�
Pn

i=0 i�
i)

If � = 0 then�m(n+1) = 0 which is constant and thus not
suitable to estimate the linearly increasingtn. Otherwise, we
can use the following equations to get rid of the sums:

nX
i=0

aibn�i =
an+1 � bn+1

a� b
(3)

nX
i=m

pi =
pm � pn+1

1� p
(4)

nX
i=0j1

ipi =
p� pn+1(n(1� p) + 1)

(p� 1)2
(5)

This leads to the following simplified estimation formula:

�<l>(n+ 1) = m(n�
�(1� �n)

�
) (6)

Not surprisingly, sincetn = m �n;m > 0 is monotonically
increasing, we see that the previous findings are true. Accord-
ing to (6) the estimate for valuen+1 is a little bit smaller than
mn. The correct estimate would bem(n+1). The error is thus
m(1 + �(1��n)

�
) and directly proportional tom. This can be

intolerably large. In casen is large, the error is approximately
m(1 + �

�
) = m=�. Figure 1 shows the exponential average

estimation form = 4; � = 0:5.

2.1 Motivation
Measurement values in IP networks are not random but ex-
pose some global trends. We speak of ’global trends’ when
the average over consecutive intervals of measurement values
increases (decrease) steadily for several intervals. The linear
functions discussed in the previous section are a special case
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Figure 1: The exponential average estimation for a linear func-
tion.

of values with an inherent global trend. The exponential aver-
age estimation fails to detect and exploit these trends. Global
trends are often observable in data networks such as the Inter-
net. E.g. if a site becomes popular, the traffic to- and from that
site increases steadily [1]. Another example is the traffic rate at
different daytimes (see figure 2). E.g. on the beginning of the
office hours, the global traffic volume increases steadily and
rapidly. For our research in Differentiated Services we also
assume reservation demand that follows global trends. The
INDEX study on user behaviour (given a service differentia-
tion) is motivating this assumption [4]. One way to calculate
predictions based on given measurements is a thorough sta-
tistical analysis of the available data. Mathematical tools for
such analysis are available [9]. However, the analysis usually
works with an underlying model for the generation of the data.
As discussed in the section 1, on one hand we are not even
near of having a useful mathematical model for DiffServ traf-
fic demands. This favours the use of the exponential average
estimation. On the other hand DiffServ demand will probably
also follow global trends e.g. at different daytimes. In our sim-
ulation a special global trend emerges at the beginning of the
simulation. Then, no reservations are set up and DiffServ traf-
fic starts flowing through the network. Since no reservation is
there, traffic loss occurs. Local measurements are then used to
estimate the demand. Based on these estimates the simulation
sets up local reservations. The more reservations are set up
the deeper the DiffServ traffic penetrates the mesh of provider
networks until sufficient reservations are set up throughout the
networks. Thus, in the first few simulation rounds there is a
global increasing trend of DiffServ demand. The better the es-
timation function adapts to this trend, the shorter this initial
phase of heavy loss is. We have showed in theory why the ex-
ponential average estimation performs insufficient in this situa-

tion and our simulations confirmed the finding (see also figure
4.2). We therefore started to look for an estimation function
which is as stable, fast, easy to implement as the exponential
average estimation, but which can cope with global trends.
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Figure 2: Traffic volume at different daytimes.

3 DELTA ESTIMATION
The problem of estimation can be addressed using extrapola-
tion. A well-known extrapolation method is the polynomial
extrapolation. The polynomial extrapolation uses a polynom
of orderN � 1 to extrapolate fromN measurement values.
TheN measured values uniquely define the polynom. For our
purpose a linear extrapolation will do, so we use the uniquely
defined line trough the last two measurements to extrapolate
the next (expected) measurement. Figure 3 depicts the extrap-
olation. The extrapolationL(i + 1) of the next measurement
(at xi+1) is thus: L(i + 1) = yi +

(xi+1�xi)(yi�yi�1)
(xi�xi�1)

. For
constant measurement intervals:

L(i+ 1) = yi + (yi � yi�1)| {z }
�

= 2yi � yi�1

i-1

x i+1x i-1

y i

x

y

i

i+1

y
i

Figure 3: Linear extrapolation (polynom of order 1).

UsingL(i) as an estimation of the next expected measure-
ment value is not a good idea. Such an estimation only bases



on the last two measured values. We propose toestimate the
differenceusing the exponential average. We denoteti as the
measured values anddi � ti � ti�1. We introduce thedelta
estimationfunction��:

��(n+ 1) =

�
0 n = 0
tn + �<d>(n+ 1) otherwise.

(7)

�<t>� extrapolates the estimate using an estimate of the next
delta. Unlike simple extrapolation, all previously measured
values influence the estimation (as long as1 > � > 0). Note,
that a possible extension to this schema is to estimate higher or-
der differentials for the extrapolation with polynoms of higher
orders. Fast extrapolation algorithms for such extrapolations
exist [8].

3.1 Evaluation of the Delta Estimation
Considering its design it is obvious that the delta estimation
will deliver good predictions for functions which are approxi-
matively linear. Figure 4 shows an example of such a function.
The graph shows the values of 30 measurement samples and
their prediction using the exponential average estimation and
the delta estimation. Since the measurement generating func-
tion consists of three linear functions, the delta estimation is
doing very well. To measure the quality of the estimations we
simply sum up the absolute value of the difference between
each generated value and its prediction. Excluding the first
prediction, the errors of the delta estimation estimator sum up
to 6. The exponential average estimations produce an error
sum of 38.
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Figure 4: Estimation accuracy.

However, there are situations where the delta estimation
works badly. If e.g the measurement values oscillate in the
same period as the measurement intervals, the deltas change

their signum for every measurement. Figure 5 shows the es-
timations (� = 1=8) for measurements oscillating between
the values 0 and 10. Since the exponential average puts more
weight to the most recently measured value, the delta estima-
tion predicts that the next value is larger than the current one
if the previous value is smaller that the current value and vice
versa. For this example the delta estimation prediction is al-
ways wrong the exponential average does better.
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Figure 5: Estimation accuracy.

3.2 Improvement: Dynamic Hybrid Estimation
In general we don’t know the function which generates the
measurement values so it is not possible to predict if the ex-
ponential average or the delta estimation delivers a more ac-
curate estimation. The delta estimation can exploit trends but
the exponential average estimation is more stable in oscillating
situations. However we can measure the accuracy of both esti-
mations during the estimation process. Be�� (i) = jti � �(i)j
and���(i) = jti � ��(i)j the absolute errors of the estimators
for thei-th estimation. We defineai to weight the accuracy of
the delta estimation compared to the accuracy of the exponen-
tial average estimation:

ai =

8><
>:

0:5 i = 0
ai�1 �� (i) = ���(i) = 0

�� (i)
��� (i)+�� (i)

otherwise

Note, thatai is always between 0 and 1. The better the delta
estimator predicts thei-th value (compared to the exponential
average estimator) the closerai will be to 1. Theai value is
symmetric; if we swap the predictors in the previous formula,
ai will become1� ai.

We propose the dynamic hybrid estimation�<t>? (n+ 1):



�<t>? (n) = n�
<t>
� (n) + (1� n)�

<t>(n)
n = �<a>(n)

(8)

�<t>? (n) uses a weighted average of the delta estimation and
the exponential average estimation. The weight is dynam-
ically determined by the previous performance of these two
estimations. The is an exponential average estimation of
the accuracy functionai. Thus, if the measurements follow
a global trend, the delta estimation will get more weight and
so the dynamic hybrid estimation can exploit this trend. If the
measurements fluctuate fast, the exponential average will get
more weight and the dynamic hybrid estimation prediction will
profit from the stability of the exponential average.

4 EVALUATION

4.1 Computational Complexity
The calculation effort of all three presented estimation func-
tions is very small. The exponential average estimation uses
3 arithmetical operations per estimation, the delta estimation 4
and the dynamic hybrid estimation 16. This is a constant effort
per estimation (independent of the number of measurements
already taken).

4.2 Usage for Simulation Purposes
We replaced the exponential average estimation in the previ-
ously mentioned simulator for Differentiated Services with the
delta estimation and the dynamic hybrid estimation respec-
tively. We then compared the estimation performance. The
simulation uses the estimations to predict upcoming traffic
load for short term resource allocations. If the prediction is too
low, there is a chance of traffic loss. If the prediction is too high
there is an over-provisioning situation (not all available capac-
ity is used). Good performance means little loss with little
over-provisioning2. The results showed, that for instable traf-
fic patterns, the delta estimation suffered from the oscillation
problem shown in section 3.1. The dynamic hybrid estimation
was immune to this problem. It performed similar to the expo-
nential average estimation. This is obvious given the design of
the dynamic hybrid estimation and the fact that the delta esti-
mation performs badly. Nevertheless, in the start phase of the
simulation, where the traffic builds up and reservations are set
up based on traffic estimations both delta estimation and dy-
namic hybrid estimation perform better, since they are able to
cope with the global trend (increasing traffic volume; starting
from zero). Figure 4.2 illustrates these findings.

4.3 Usage on Real Measurements
We tested the estimators on real world data in order to com-
pare their usefulness. The data set consists of 600 samples of

2Since loss is worse than over-provisioning, these simulations reserve for
20% more traffic than expected.
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Table 1: Averaged errors on real world data.
� = 0:5 Avrg.

error per
sample

Average
relative
error

exponential average estimation171 KBps 6.2 %
delta estimation 184 KBps 6.7 %
dynamic hybrid estimation 145 KBps 5.2 %
� = 0:125
exponential average estimation396 KBps 14.3 %
delta estimation 153 KBps 5.6 %
dynamic hybrid estimation 158 KBps 5.7 %

5-minute averages of Internet traffic entering the Swiss aca-
demic research network (SWITCH) over its trans-atlantic link
[7]. The samples were already depicted in figure 2. Table 1
shows the errors averaged over the whole data set. The dy-
namic hybrid estimation has the best overall performance in
these two test sets. For� = 0:5 the delta estimation suf-
fers from the oscillation problem shown in section 3.1. For
� = 0:125 the exponential average suffers from the monotony
problem shown in section 2.

5 CONCLUSIONS
The classical exponential average estimation adapts only
slowly to global trends. We therefore introduced the delta es-
timation which uses the exponential average estimation to es-
timate the difference between the current measurement value
and the next value (to be estimated). However, the delta esti-
mation is weak when the measurement traffic fluctuates heav-
ily. The dynamic hybrid estimation uses a weighted average
of both estimators. The weight is dynamically determined by
estimating the accuracy of both internal estimators. While the
dynamic hybrid estimation has the same (low) computational
complexity as the exponential average estimation, it performs
better in our simulations and on real network measurement
data. The dynamic hybrid estimation has three parameters
which could be optimised for data sets of a given type. The
parameters are the� values of the exponential average estima-
tors that are used within dynamic hybrid estimation. The delta
estimation could also work with higher order polynomials (e.g.
quadratics or cubics) to extrapolate the next value.
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