
Coordination of Active Objects by Means of Explicit Connectors

S. Ducasse and M. G¨unter
University of Bern, IAM-SCG,

Bern, Switzerland,
http://www.iam.unibe.ch/�ducasse,mguenter

Abstract

Although coordination of multiple activities is a fun-
damental goal of object-oriented concurrent programming
languages, there is only limited support for its specifica-
tion and abstraction at the language level. This leads to
a mismatch between conceptional designs, using high-level
abstractions, and the implementation, using the low-level
coordination constructs. Often coordination is hard-wired
into the components they coordinate, which leads to evolu-
tion, maintenance and composibility problems.

We propose a model calledFLO/C that relies on the no-
tion of connectors. A connector is an entity that enforces
the coordination of the entities it coordinates. This model
supports a clear separation between the coordinated ac-
tive objects and their coordination. An active object only
defines specific domain information and a connector only
defines coordination between a group of active objects (its
participants). The coordination is abstractly defined refer-
ing to components in terms of the object interface. Coor-
dination and coordinated entities are independant and can
evolve separately. Coordination can be composed and re-
placed easily.

Keywords: coordination, active objects, groups, syn-
chronizers, components and connectors, laws, separation
of concerns, message passing control.

1. Introduction

Although coordination of multiple activities is a fun-
damental goal of object-oriented concurrent programming
languages (OOCPL), there is only limited support for its
specification and abstraction. There is no support for coor-
dination at a high level of expression. This inability leads
to a mismatch between conceptional designs, using high-
level abstractions, and the implementation, using the low-
level coordination constructs [7]. The situation complicates
the composition of different coordination policies without
changing the implementation of the coordinated entities.
Furthermore, as the policies are coded into the coordinated
entities their modification is difficult. As a possible solu-
tion, this paper will introduce explicit connectors as high-
level coordination supporters.

In the area of software architecture design the distinction
between components and connnectors was introduced to ad-
dress the need of decouplingdomain specific designfrom
collaboration design[16]. Architectural connectors repre-
sent design decisions concerning the collaboration of soft-
ware components. Allen and Garlan [2] present a specifi-
cation language for connectors, which has descriptive and
analytical properties such as component substituability or
deadlock detection.

We introduce the FLO/C model1, which takes up the
component/connector distinction and applies it to the im-
plementation level. Our explicit connectorsimplementthe
collaboration of components, therefore they are the ideal
location for coordination code. Minsky et al. [13] and
many other authors [4] recognized the need for suchex-
plicit entities, that represent and enforce interaction poli-
cies. FLO/C’s connectors areabstractlydefined, and only
rely on the interfaces of the active objects they coordinate.
Thus, they areindependentfrom the implementation of the
coordinated objects. This allows a clearseparation of con-
cerns: An active object only defines specific domain infor-
mation and a connector only defines coordination between
a group of active objects (itsparticipants). A connectorre-
strictsthe freedom of the coordinated objects by controlling
message passing. The control done by a connector depends
on the state and the history of the coordination. A connec-
tor specifies atemporal orderingsuch as precedence and
atomicity of the exchanged messages amongst the objects.

In section 2 we discuss the coordination goals in the con-
text of active objects and we present the lack of support for
coordination in concurrent object-oriented languages and
their consequences. Afterwards, the FLO/C model is pre-
sented using the gas station example [14].

2. Multi-Object Coordination Problems

We discuss why coordination support in traditional ob-
ject oriented languages is insufficient. We briefly present
our choice to represent concurrent objects, and we present
our coordination goals.

1A prototype that fully implements this models in NEOCLASSTALK (a
new SMALLTALK implementation providing explicit metaclasses) is avail-
able at the authors’ web pages.

2.1. Explicit support for coordinating objects

Traditional OOCP languages offer little support for syn-
chronisation of groups of concurrent objects [7]. Even mod-
ern languages like JAVA model coordination at a very low
level of abstraction.Threadsmodel activities, and commu-
nicate through unprotected, shared memory. While the set
of provided constructs in theory is sufficient to solve any
coordination problem, in practise only expert programmers
are able to handle non trivial tasks. JAVA users tend to rely
on design pattern collections [10] to solve common coordi-
nation problems. But even with such approaches, protocols
used for establishing the coordination between a group of
activities are hard coded into parts of the activities resulting
in poor abstraction facilities avoiding composition and evo-
lution of the coordination policies. The main problems can
be summarized as follows:

� No separation of concerns.Expressing coordination
abstraction is difficult because the code that manages
the coordination is intimately tied to the implementa-
tion of the coordinated objects [11].

� Absence of abstraction.The fact that no abstractions
are supported offers a low level of reasoning. There is
no declarative means to specify coordination.

� Lack of composability. Composing different coordi-
nation policies is difficult without changing the code
of the coordinated objects.

� Lack of flexibility. The coordination being not explic-
itly and abstracly expressed, it is difficult to modify
and to customize the coordination policies.

� Do it yourself. This problem refers to the fact that the
programmer must implement all the mechanisms that
will support the coordination. This task is particularly
difficult. Doing so the programmer should first focus
on the tools and mechanisms instead of just expressing
the desired coordination.

2.2. Modelling Activities as Active Objects

“coordination is managingdependenciesbetweenactiv-
ities” [12]. Usually, the activities are modelled as threads
or processes. Since these concepts cross object borders,
different approaches tried to map threads to objects, thus
enforcing object encapsulation: Actors [1], Actalk [5] and
more recently ATOM [15] allow the definition of activity
enhanced objects, so calledactive objects, that possess their
own thread(s) and communicate asynchronously. Because
ACTALK has been designated to be a minimal open testbed
for active objects [5], we have chosen a variant of its active
object notion for our model.

2.3. Coordination with Multi-Object Joint Actions

We can build a complete programming model out of two
pieces - the computational model and the coordination

model [6]. FLO/C uses active objects (respectively their
methods) to express computation and connectors to imple-
ment coordination. Carriero and Gelernter state that a co-
ordination language must provide theglue to bind separate
active pieces into software systems. Such glue must allow
these independent pieces tocommunicateandsynchronize
with each other. In the context of the multi-object coordina-
tion:

Communication. Connectors must provide ways for active
objects to communicate with each other or eventually
with groupsof other active objects (e.g. multi-casting).

Synchronization. Here, one task is themutual exclusionof
object groups, the other theconditional synchroniza-
tion. The problem is that the conditions might depend
on the state of more than one active object.

We propose a coordination abstraction that extends the
state machine model of a single object. A single active ob-
ject can accept requests for computation, check if it is in
the right state and then compute, thereby changing its state.
Furthermore, upon failure of the state checks, a request can
be denied(balking guard), orblockedin order to be tried
again later.

StateB2StateB1 StateA2 StateB1 StateA2StateA1

[Constraints][Constraints]
Inconsistent group state

ComputationA

ComputationB

Consistent group state 2
Synchronized multi-object joint actions

[Multi-object constraints]

Consistent group state 1

Figure 1. Group state change.
For groups of objects, the group state is defined by the states
of its objects. An object group can accept requests accord-
ing to its global state. State changes include computation on
different group members. We call this abstractionsynchro-
nized multi-object joint actions, or simply joint actions.
Joint actions preserve the group’s consistency because the
constraint checking and the computations execute atomi-
cally; the group state is protected from third-party access
(see figure 1).

The following constructs are needed to compose joint ac-
tions: Declaration of both styles ofguardson several ob-
jects. Declaration for a sequence of single computations
that lead to a consistent group state. The sequence can be
composed usingpull-based flowor push-based flow[10].

FLO/C provides constructs to easily compose such
multi-object joint actions that are used to realizemutual ex-
clusionandconditional synchronization. Conditional syn-
chronization is already reflected by the guards for the state
transition. Mutual exclusion of a resource is modeled as
object groups, each containing the resource, and each ac-
cessing the resource by multi-object joint actions. Note
furthermore that multi-object joint actions can be used to

modelpessimistic transactions: Guards check if all partic-
ipants are in a proper state or ask them directly if they can
commit to a certain transaction. Then protected computa-
tion on different objects do the commitment. However, in
FLO/C joint-actions do not address optimistic transactions,
real-time support, and real distribution.

As we show in the next sections, FLO/C provides ways
to specify such joint-actions plus a low level asynchronous
communication based on rules like in CLF [9]. The fol-
lowing table summarizes the coordination abstractions ad-
dressed in FLO/C and presents the rule operators that sup-
port them.

Multi-object joint action Communication

purpose styles operator styles operator
guard balking permittedIf push impliesLater

blocking waitUntil
computation push implies
ordering pull impliesBefore

third-party access protected asynchronous

3. A Model for Coordinating Active Objects

Conceptionally, the FLO/C model distinguishes between
two entities modeled as active objects:componentsand
connectors. Components model domain specific properties,
while connectors model interaction between components.

[8] presents in detail FLO/C’s specific features. Due to
space limitations we present FLO/C’s concept of compo-
nents and connectors via the example of a gas station sim-
ulation [14] because it is non-trivial and shows most of the
FLO/C features.

3.1. The Gas Station Example

A gas station has several pumps where car drivers can
pump fuel. A car driver decides to pay an amount of money
to the cashier. Only then, the car driver can pump fuel. Car
drivers and cashier are autonomous entities that act concur-
rently on the pumps which are also autonomous. There-
fore we model all of them as active objects. Car drivers
interact with the cashier to pay for fuel, and they interact
with pumps to get fuel, while the cashier interacts with the
pumps to prepare them for pumping.
The example illustrates several coordination problems:

1. Client-server interaction: The customer accesses the
cashier to get authorization to access a pump. Money
and fuel representations flow between the participants.

2. Shared resources: The pumps are shared by cus-
tomers.

3. Race: As discussed in [14], when two customers pay
to get fuel from the same pump, the one who is faster
can eventually get the fuel for both.

While the car drivers are responsible for their proper be-
havior (when to pump, how much to pay), the connectors
enforce the interaction policies (correct amount of fuel and
race regulation).

Cashier
cash: Money
receiveCash(a: Money)

tank: Fuel
cash: Money

Pump
tank: Fuel
free: Boolean
load(l: Litre)
releaseLoad(): Fuel
free(): Boolean
free(b: Boolean)

CarDriver

useFuel()

pump()
pay(): Money

[no cash available]

useFuel()[tank empty]

pay()[cash available]pump()

useFuel()[tank not empty]

Figure 2. Component classes of the gas sta-
tion and UML state diagram of the car driver.

3.2. Components

A component is an active object [5] or a group of com-
ponents that are composed by connectors. Note that such a
composite group must provide an interface like the objects
of the base object model2.

As shown by Figure 2, the cashier can receive and store
money. The pump is a fuel server that can be loaded for an
amount of fuel. Its methodreleaseLoad returns the loaded
fuel. The car driver object stores money and fuel. Its au-
tonomous behavior is represented by its methods invoking
each other as illustrated in figure 2. It can “drive around”,
using up its fuel. If it has no fuel but still money, it can use
this money to pay for new fuel. Then it pumps as much as
possible and drives on.

Note that the car driver does not have to know, how
to pay a cashier, or how to pump on a certain pump. It
only knows, that it wants to pay and pump. Therefore, the
CarDriver implementation can run on its own. However, if
it is not connected, it gets no new fuel, thus stopping soon. It
is the connector’s responsibility to implement the concrete
interactions, namely the correct transfer of money and fuel.

3.3. Connectors

Connectors are specialized active objects that are respon-
sible for theinteractionbetween the other components. A
connector is independent of its participants, and the partic-
ipants remain unaware of the connector. But a connector
controls its participants by followinginteraction rulesover
the message passing (see section 3.4).

Roles. A connector refers to the components of the in-
teraction, called itsparticipants, by means of therolesthey
play. A group of components can play one role, while one
component can play different roles in the same connector.

2In our implementation, the interface is only a set of selectors.

Furthermore, a component can participate in different con-
nectors.

The following definition of the connectorGasStation-
Connector contains three participant roles:cashier, cus-
tomer andpump (line 2). E.g. the car drivers play the role
customer in the gas station interactions. The rest of the
definition is explained in the next section.

Connector subclass: #GasStationConnector;
withRoles: ’customer cashier pump’;
withBehavior: ’

1 [customer pay
implies cashier receiveCash: result.

connector calcFuelFor: result]
2 [connector calcFuelFor: a

implies pump select Next as myPump load: result]
3 [customer pump

impliesBefore myPump releaseLoad]
4 [pump releaseLoad

implies customer select REC tank: result]’

Connector lifetime. Connectors are instantiated and de-
stroyed dynamically. Once instantiated, a connector can
only be activated if it has at least one participant per role.
When activated it controls active objects to enforce its inter-
action rules (see 3.4). During its active phase, a connector
can add or remove new participants. A new car driver can
be added to the participants of the connector via itscus-
tomer role. A connectorterminatesexplicitly or when not
enough participants play its roles.

The next lines shows how a connector is instantiated.
| gasStation customers pumps cashier|
gasStation := GasStationConnector new.
customers := Vector with: aCarDriver1 with: aCarDriver2.
pumps :=
gasStation objects: customers playRole: ’customer’.
gasStation objects: pumps playRole: ’pumps’.
gasStation objects: cashier playRole: ’cashier’.
...
gasStation activate.
customers do: [:c | c useFuel].
...

Connector Behavior. To implement an interaction pat-
tern (including coordination), a connector intercepts the
participant messages, and it processes its own. It decides
if participant methods (and which ones) should be invoked.
The basis for decisions is a connector specificset of rules
and the history of the interactions.

3.4. Interaction Rules

Like many other coordination approaches based on rules
[9], [13], FLO/C usesinteraction rules. Rules on message
sending and dispatching yield the expressive power needed
for coordination tasks. The advantage of rules are their high
level of abstraction, their incrementality through composi-
tion and the ability to reason on them.

The connectorGasStationConnector implements the
interactions between the different components of the gas

station. It enforces four rules that are designed to manage
role groups(several customers and pumps at once). The
four rules compose two sets of multi-object joint actions.
The following enumeration explains the rules of the pre-
sentedGasStationConnector declaration rule by rule.

Rule 1: The customer invokes its methodpay which re-
turns the amount of money the customer wants to pays.
This starts a set of joint actions. The first rule ensures
that the cashier gets the money3. As a second sequen-
tial consequence, the connector4 calculates the amount
of fuel the customer payed for. Conceptionally this
could have been done by the cashier as well, but in
other cases it is not obvious where to put such conver-
sion code. So the example shows how connectors can
host the conversion in such cases.

Rule 2: When the calculation of the fuel amount is done,
this rule loads the pump for the resulting amount.
The rule must select a particular pump since there
can be several components playing thepump role.
The select Next appendix to the role let the pumps
take turn when being loaded. Note that, when there
are less customers than pumps, this guarantees that
two customers cannot select the same pump. Since
the selection of a particular pump is needed later the
as myPump appendix to the role stores each selec-

tion in the relative rolemyPump.

Rule 3: This rule starts a second set of joint actions. Before
the customer executes itspump method, the pump,
that was selected for it in rule 2, releases its load. This
releasing action triggers the next rule.

Rule 4: The tank of the pumping customer is filled with the
amount of fuel released by the pump, again using the
result keyword. Note that only now, thepump method
of the customer is executed.

Managing Races. The rules 1,2 and rules 3,4 form two
sets of joint actions. The first one handles the payment and
preparation of the pump, the second one the pumping of
fuel. The global process is divided, because it is the cus-
tomers free choice, when it wants to pay, and when it wants
to pump. As we said in 2.3 the joint actions are atomic but
because of the gap between them a race can occur when
there are more customers than pumps. Then it is possible
that two customers pay to pump from the same pump and
the customer that pumps first will receive the fuel for both.

To prevent this kind of problem, the following connector
ensures that a pump is not loaded twice. It uses the pump’s
free message as a lock. When a pump aready is loaded,
further loading requests must wait.

3The strong sequential ordering properties of theimplies operator of-
fers the keywordresult for right hand sided arguments.

4A connector can trigger messages to itself using the default rolecon-
nector.

Connector subclass: #PumpLockConnector;
withRoles: ’pump’;
withBehavior: ’

1 [pump load: a
implies pump select REC free: false]

2 [pump load: a
waitUntil pump select REC free]

3 [pump releaseLoad
implies pump select REC free: true]’

ThePumpLockConnector only defines the rolepump.
Rule 1: When a pump is loaded, it is not free any more.
Rule 2: The loading of a pump must wait until it is free.
Rule 3: When the pump has released the load, it is free
again.

The connector bridges the gap between the two joint ac-
tions of theGasStationConnector. It comes in, when the
payment interaction ends, and ends, where the pump inter-
action finishes. By adding thePumpLockConnector to the
example we can demonstrate how joint actions can be ex-
tended. The new guard in rule 2 locally protects the loading
of the pump. But it also extends the payment joint actions of
theGasStationConnector since the loading of the pump is
a part of it. Therefore rule 2 adds a new constraint to these
joint actions and rule 1 adds a new action to it. Rule 3 on
the other hand extends the pumping joint actions.

The extended payment joint actions will therefore ex-
plicitly wait for the selected pump to be free, and explicitly
reserve it when the payment succeeds. The extended pump
joint actions will explicitly release the pumps after success-
ful pumping of fuel. Therefore each pump only loads fuel
for one customer at once andno race condition can occur.
3.5. Example evaluation

The FLO/C solution works for an arbitrary number of
customers and pumps, thus it demonstrates FLO/C’s flex-
ibility . Furthermore it demonstrates how FLO/C’s group
managing specificators yield expressive power.

Problem Solution
Concurrent Implies-operators carry data in the
client-sever arguments or even propagate the return
interactions. value of the precondition. Conversion can

be done inconnector methods.
Managing of Specificators map resources to
shared participants, joint-actions protect resources
resources. from inconsistent access.
Avoiding Joint-actions work together
races. with user-defined locks.

We dynamically added a connector, to enforce a new
interaction policy, which guarantees race-freeness. This
demonstrates theincrementabilityof FLO/C. Moreover it
illustratesseparation of concerns, which is also demon-
strated by the fact, that e.g. the car driver objects are au-
tonomous. Furthermore, the example showed the FLO/C

solution techniques to different non-trivialcoordination
problems. Note that we have implemented traditional and
recent coordination examples [8].

3.6. Details of Interaction Rules

Operators Semantics.FLO/C uses five operators to spec-
ify interaction rules. ThepermittedIf and thewaitUn-
til operator express guards; thepermittedIf operator sup-
ports balking style, thewaitUntil operator supports block-
ing style. Theimplies and impliesBefore operators en-
force computational ordering; Theimplies operator sup-
ports push style, theimpliesBefore operator supports pull
style. All four operators protect the objects involved in
the rule: left and right hand side of the rule are executed
atomically. The low-level communication tasks are met by
the impliesLater operator that featuresasynchronous con-
sequence sending. A formal description is available in [8].
Collaboration of Connectors. FLO/C composes simulta-
neous triggering rules at run-time, and fuses them to multi-
object joint actions in a uniform way.

The sending of a rule triggering message (request) to
a connected active object leads to the interception of the
message. Then the FLO/C model’s global reaction cov-
ers three phases; (1) theconsequence collectingphase (all
the connectors attached to the active object start to collect
consequences and return a list consisting of three different
kind of messages: the sequential ones (including the inter-
cepted message), their guards, and their asynchronous con-
sequences) Note that FLO/C detects and breaks cycles. (2)
theprotected executionphase (It executes multi-object joint
actions starting with theinternal reservationof all the par-
ticipants, then the guards are executed. If all the guards suc-
ceed, the sequential consequences are executed) and (3) the
unprotected sendingphase (the asynchronous consequences
of all the methods that were previously executed are sent
asynchronously).
Group Management. In the right part of a rule, a role
refers to a group of objects and per default sending a mes-
sage to a role broadcasts it to all the group objects. The
appendix select to a role (calledspecificator) selects
particular objects like the receiver of the controlled mes-
sage (REC), all the objects except the receiver (Others)
or the next object in the group (Next) (see rules 2 and 4
of GasStationConnector). Note that FLO/C also allows
user-defined selection policies.
Relative Roles. For coordination of shared resources it is
often convenient to refer to a selected object in another rule.
FLO/C supports the definition of relative role names us-
ing the role appendixas relativeRoleName. Without go-
ing into detail, this associates the selected object with the
receiver of the request that triggers a set of joint actions.

In theGasStationConnector connector, rule 2 defines
a relative role namedmyPump that refers to the next avail-
able pump. Note that the receiver of the request that triggers
the payment joint actions is acustomeran not the connec-
tor (compare rules 1 and 2). Thus rule 2 stores the selected
pump for a particular customer inmyPump and the particu-

lar selection is used when the customer will pump fuel later
like in rule 3.

4. Conclusion

With FLO/C we introduced an object oriented model for
coordinating active objects. Where in modern program-
ming languages (like JAVA), coordination is implemented
in low-level constructs, FLO/C offers explicit, rule based
connectors for coordination. In order to treat coordination
at a higher level FLO/C introduces five operators, featuring
two conditional synchronization policies and three commu-
nication policies. The paper demonstrates the sufficiency of
the expressive power of this minimal set. FLO/C divides
programming in computation (done in active objects) and
coordination (done in connectors). Thus it directly maps ar-
chitectural design, and enforces the separation of concerns.
Composite active objects allow the mapping of hierarchical
design and improve the scalability of the model. Connec-
tors as explicit rule-based coordinators profit of the incre-
mentability of rules. They collaborate through a uniform
rule fusion protocol.

Our model addresses the same problem space as the syn-
chronizers of Agha and Frølund [7]. Both introduce inde-
pendent support constructs for multi-object coordination of
active objects. However, we extend synchronizers in the
following dimensions:

1. The coordination is no longer limited to the state of
the connector itself. A connector can take into account
the state of its participantsand thehistory of the co-
ordination. Moreover a connector is not limited to the
synchronization of objects. A connectorenforcesco-
ordination of objects by invoking participant services.

2. A connector is a completedynamic entitythat can be
dynamically created and destroyed. FLO/C is com-
pletely dynamic, it can establish and cancel connec-
tions at run-time, and it allows new conectors to be
created on the fly.

3. A connector managesgroupsof coordinated objects
and supports dynamic addition or removal of partici-
pants.

4. The proposed model isuniformand open: a connector
is an active object and not a specific construct, and the
model allows one to extend its rule semantics.

FLO/C has been fully implemented in NEOCLASSTALK a
new SMALLTALK implementation providing explicit meta-
classes. All the material presented in this paper is freely
available at the authors’ web pages.

4.1. Future work

We implemented the FLO/C model on a single proces-
sor machine, using this fact to simplify the implementation.

Future work will address real distribution. We claim that the
FLO/C model and distributed systems infrastructure such as
CORBA can form a basis for a real distributed FLO/C im-
plementation. FLO/C’s separation of concerns will pay off
even more when used in a distributed environment. Active
objects reside in different physical locations. Connectors
form bridges over a network. FLO/C model extensions for
distribution include additional declarations oflocationand
mobility of active objects an connectors. We also need to
address the low-level coordination tasks (e.g. conversion,
real-time support) we omitted in this work. The handling
of communication failures and roll-backs of synchronized
joint actions also need considerable further efforts.

In [8] a formal specification of the presented model has
been defined. An interesting future work could be an au-
tomatic translation of architectural design with formal con-
nectors [3] to FLO/C code, as well as query languages, to
prove properties of FLO/C examples (like in [14]).

References

[1] G. Agha. Actors: a Model of Concurrent Computation in
Distributed Systems. MIT Press, 1986.

[2] R. Allen and D. Garlan. Formalizing architectural connec-
tion. In Proc. of ICSE’94, 1994.

[3] C. Arapis. Dynamic Evolution of Object Behaviour and Ob-
ject Cooperation. PhD thesis, University of Geneva, 1992.

[4] F. Arbab. The IWIM model for coordination of concurrent
activities. InCOORDINATION’96, 1996.

[5] J. Briot. Actalk: A testbed for classifying and designing actor
languages in the smalltalk-80 environment. InECOOP’89,
pages 109–129, 1989.

[6] N. Carriero and D. Gelernter.How to Write Parallel Pro-
grams: a First Course. MIT Press, 1990.

[7] S. Frølund and G. Agha. A language framework for multi-
object coordination. InProc. of ECOOP’93, LNCS 707,
1993.

[8] M. Günter. Explicit connectors for coordination of active ob-
jects. Master’s thesis, University of Berne, 1998.

[9] S. F. J.-M. Andreoli and R. Pareschi. The coordination lan-
guage facility: coordination of distributed objects.TAPOS,
2(2):77–94, 1996.

[10] D. Lea.Concurrent Programming in Java. Addison-Wesley,
1997.

[11] C. V. Lopez and G. Kiczales. D: A language framework
for distributed programming. Technical Report TR SPL97-
010P9710047, Xerox Parc, 1997.

[12] T. W. Malone and K. Crowston. The interdisciplinary study
of coordination.ACM Computing Surveys, 26(1), Mar. 1994.

[13] N. H. Minsky and V. Ungureanu. Regulated coordination in
open distributed systems. InProc. of Coordination’97, pages
81–97, 1997.

[14] G. Naumovich, G. S. Avrunin, L. A. Clarke, and L. Oster-
weil. Applying static analysis to sofware architectures. In
Proc. of ESEC/FSE’97, LNCS 1301, pages 77–93, 1997.

[15] M. Papathomas, G. Blair, and G. Coulson. A model for ac-
tive object coordination and its use for distributed multimedia
applications. InLNCS 924, pages 162–175, 1995.

[16] M. Shaw and D. Garlan.Software Architecture: Perspectives
on an Emerging Discipline. Prentice-Hall, 1996.

