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Abstract—Data gathering, either for event recognition or for
monitoring applications is the primary intention for sensor net-
work deployments. In many cases, data is acquired periodically
and autonomously, and simply logged onto secondary storage (e.g.
flash memory) either for delayed offline analysis or for on demand
burst transfer. Moreover, operational data such as connectivity
information, node and network state is typically kept as well.
Naturally, measurement and/or connectivity logging comes at a
cost. Space for doing so is limited.

Finding a good representative model for the data and providing
clever coding of information, thus data compression, may be a
means to use the available space to its best. In this paper, we
explore the design space for data compression for wireless sensor
and mesh networks by profiling common, publicly available
algorithms. Several goals such as a low overhead in terms of
utilized memory and compression time as well as a decent
compression ratio have to be well balanced in order to find a
simple, yet effective compression scheme.

I. INTRODUCTION

The availability of wireless networks in industrialized coun-
tries for accessing personal and business data anytime and
anywhere is nowadays almost taken for granted. Furthermore,
with wireless sensor networks (WSNs) becoming more and
more popular for data acquisition close to a source of interest,
the spread of wireless technology even in areas far away
from typical hotspots has started. From a network operators’
perspective, however, a well-functioning network has to be
monitored and maintained accurately in order to provide the
expected service. A standard technique to verify correct oper-
ation or track exceptional network states is for all participating
nodes to periodically log status information, which may then
be analyzed offline if necessary. As a consequence, storage
for such log data has to be provided in the first place on
each networked node. Dependent on the node class, thus
especially when looking at embedded hardware, storage space
may however be very limited. Even worse, data transfer
from battery-powered devices is expensive in terms of energy
needed for transmission, directly influencing network lifetime,
which restricts the usage of logs to only the bare minimum.

The problem of storage shortage is not new and commonly
addressed by applying a compression algorithm to lower the
amount of data to be stored. Hence, compression can be seen
as a technique to expand on-site storage facilities. There is
though a second advantage data compression provides when
utilized in networked application scenarios: As the size of

data to be transferred is limited, not only the direct energy
expenditure for transmission and reception for each link is
decreased, but this effect nicely accumulates if it is sent
on a multi-hop path. Furthermore, compression decreases the
overall network load which once again impacts the probability
for collisions on the wireless medium and hence quality of
service parameters such as transmission latency.

It has to be evaluated carefully, whether there is an actual
gain from an energy perspective [1]. Our motivation to look
into compression in the first place has been that it is a great
use case for so called self-* frameworks, which autonomously
monitor a system and decide on appropriate reactions in case
of (anticipated) error states. Such a framework has been built
by extending and applying the FACTS middleware [2] for
WSNs. It allows to specify rules given predefined system state,
e.g., it may trigger the application of compression to data logs
in case the system is running short in storage and it may
schedule its execution to not collide with higher priority tasks.
The actual tradeoffs that have to be considered in this decision
process are part of future research.

This study is concerned with evaluating standard com-
pression algorithms that are suitable to run on constraint
networking nodes. Information encoding is supposed to be
available as a concurrent, application-independent feature, not
as a primary goal itself. Therefore, consumed resources such
as CPU cycles, energy, memory in terms of RAM and ROM
should be as low as possible while the actual gain in terms
of compression ratio should be reasonable. Since especially in
WSNs data precision is of utmost importance, only lossless
algorithms have been evaluated.

II. RELATED WORK

In general, compression is concerned with encoding infor-
mation in fewer bits than in the original encoding scheme. This
requires a two phase process, where in a first phase, a good
model for probabilities for certain input has to be found and in
a second, these probabilities have to be encoded. Models may
range from statistical models on progression of input values to
a simple identification of repeated patterns, thus redundancy,
in input values. Input values with high probabilities, thus
low entropy, will then be encoded with a smaller number of
bits than information with high entropy, thus low probability.



Common coder components are most of the times very generic
and based on Huffman or arithmetic codes.

Approaches to decrease the amount of data to be actually
sent from or stored within a wireless device have been exten-
sively studied on different layers of the protocol stack, see [3]
for a good overview. In this area, compression schemes may
not only be distinguished into the well-known categories of
lossless and lossy algorithms, but also whether compression
is implicitly or explicitly addressed, performed on a single
node or in a networked manner.

Implicit compression has been introduced by Deshpande et.
al. [4] with their model-driven approach to data acquisition in
wireless sensor networks. Since sensor readings are subject
to spatio-temporal redundancy, a model of common value
evolution is built in advance and deployed on the sensor nodes
as well as on a sink node. Only in case measured values do
not conform to the model, nodes send their values towards the
sink, otherwise the value is suppressed.

Explicit compression is however the common case and also
the focus of this article. In the wireless networking context,
algorithms taking in advantage of spatio-temporal properties
of input data have in particular been extensively studied in the
past: A multitude of algorithms, e.g. [5], [6], [7] explored the
integration of aggregation techniques within the routing layer,
or described and evaluated concepts to benefit from a small
value dispersion of measurements [8], [9]. Redundancy, as
caused by repetition e.g. found in log files for networking logs,
is naturally another source of overhead that may be eliminated
for improved storage capacity [10], [11] or to minimize energy
spent for data transfer [12]. Here, transformation techniques
for input values by recognition of periodicity of input files have
proven to have a positive effect on the overall compression
ratio.

A different approach has been explored by Marcelloni et
al. [13]: In order to keep the algorithm as simple as possible
and to avoid complex computations on embedded nodes, their
solution relies on a two-phase coding process based on a
lookup table of the size of the analog-digital converter and
compresses the raw bits of a sensor reading. Here, a codeword
is a hybrid of unary and binary codes supplied by an adequate
dictionary similar to the one used for DC coefficient coding in
JPEG compression. Since the size of the dictionary is fixed and
encoding is done via mapping, the algorithm is well suited for
on-the-fly compression. However, the obtainable compression
ratio is highly dependent on a good mapping strategy.

All of the algorithms described above have been specifically
designed for wireless (sensor) networks. While this tailoring
can be a source of great optimization in case exactly the type
of input data is matched, general-purpose implementations of
compression techniques, such as huffman encoding, arithmetic
coding [14], or Lempel-Ziv-Welsh [15] variations allow for a
more flexible usage. However, due to their size, the major-
ity of the compression tools nowadays used on standalone
machines are not simply transferable to possibly embedded
hardware [16]. Algorithm choice, therefore, needs to include
a validation of applicability.

III. PROFILING OF EXISTING ALGORITHMS

Data compression may be perceived as a utility to be used
on demand: As long as performance goals are met and critical
resources are not wasted, the choice of a suitable algorithm is
arbitrary. While algorithms specifically tailored for a certain
data type such as sensor measurements may be advanta-
geous when tight constraints have to be respected, general-
purpose compression schemes enable a quicker adoption due
their holistic implementations. Accordingly, the selection of
a specific algorithm is highly dependent on the target area
and on the degree of freedom in terms of resources such
as time for pre-deployment performance profiling, execution
time at runtime, memory and energy consumption of utilized
compression scheme.

In this section, we will evaluate and compare a number of
publicly available algorithms. All of them, quickly introduced
in the following part, have been applied to different data
sets obtained in real world deployments, namely the CTI-
Mesh [17] wireless mesh network experiments and wireless
sensor network data gathered with the help of the TARWIS
platform [18].

A. Algorithms

In this study, we focus on lossless, stand-alone (thus non-
distributed) compression schemes to lower the amount of
data stored within a network node or transmitted across
the network. The performance of an algorithm is to a non-
negligible part based on the quality of its implementation. Fair
comparison is difficult when relying on freely available source
code. In order to minimize the impact of the implementation
strategy, we opted for source code written in the same language
(C), and, where ever possible, by the same author. Hence,
the standard implementations of huffman, arithmetic and LZW
coding are available from [14]. MiniLZO, an implementation
of the LZO library which at its core is a LZ77 variant is
accessible at [19], while S-LZW, an LZW variant explic-
itly designed for sensor measurements, corresponds to the
remarks in [12] and may be downladed from the author’s
homepage.The benchmark suite that has been evaluated on
the available data sets comprises the following algorithms:

• Huffman coding (huff): Static huffman coding.
• Adaptive huffman coding (ahuff): Huffman coding

using an adaptive symbol table.
• Arithmetic coding (arith-0): Simple arithmetic coding,

no preceding symbols influence probability range of a
symbol.

• Arithmetic coding (arith-1): Arithmetic coding order 1,
thus 1 previous symbol influences encoding of a symbol.

• Arithmetic coding (arith-1e): See above, only escape
characters are also regarded during encoding.

• Arithmetic coding (arith-n): Order n arithmetic coding.
• LZSS (lzss): Modified LZ77 version with 12-bit sliding

window.
• LZW (lzw12): LZW implementation with 12-bit sym-

bols.



• LZW (lzw15v): LZW with variable-sized symbols up to
15-bit.

• MLZO (mlzo): MiniLZO, lightweight implementation of
LZO.

• SLZW (slzw): LZW variant for sensor networks with
specific transformations of the input data and a small
cache.

B. Data

This study is explicitly targeting wireless networks, hence
an evaluation of data from real-world traces is mandatory. In
general, logfiles feature a repetitive structure: Always when
necessary, and this may either be in case of a pre-specified
incident (upon error/anomality detection or threshold-based) or
simply in a periodic manner, data on network characteristics of
interest is stored in a logfile for later on offline analysis. Since
each write operation to a logfile features the same attributes
and the probability for recurrence of values is high for certain
types of attributes, logfiles are good candidates for the usage of
compression algorithms. It is, however, noteworthy that among
different types and application scenarios for the installation
of networking nodes, the actual data that is logged naturally
differs: Mature IP networks will most likely log connectivity
data denoting link quality, information on routing tables and
network properties to derive information on quality of service
parameters (e.g. latencies and bandwidth). Sensor networks in
contrast typically neither have the storage/communication ca-
pacity for extensive QoS considerations nor is it in the focus or
interest of their deployment. The amount of data for mirroring
communication QoS in WSN deployments will, therefore, be
limited to a minimum, e.g., to reconstruct network topologies.
Rather, logging will concentrate on sensor measurements, this
being the primary intention for sensor network deployment in
the first place. Both types of logfiles, thus traces from wireless
IP-based networks and those from a sensor network, have been
available for evaluation.

1) Wireless Mesh Network Data: The first type of files
has been acquired from a feasibility study on a 5GHz out-
door wireless mesh network (WMN) using directional anten-
nas [17]. This network has been set up to prove the suitability
of WMNs to function as access networks for remote locations
such as weather stations to a fiber network. The WMN
consisted of six mesh nodes deployed in the area of Neuchâtel,
Switzerland and operated for several months. Specifically, the
traces feature the following data points (recorded every ten
minutes):

• Fping measurements (fping): All nodes issued fping
commands to all other nodes of the network with latencies
being recorded.

• Host and network association data (hna): HNA data
is specific for the OLSR routing protocol and reflects a
node’s capability to function as a gateway to an external
network with associated netmasks and gateway addresses
denoted in the logfile.

• QoS measurements (qos): In this data set quality of ser-
vice parameters including link quality measurements and

ETX values (expected transmission count) are present.
• Link statistics (stats): Specific properties of links to

other nodes, including channel information on available
data rate and received signal strength (RSSI).

• Multiple interface detection (mid): IP addresses and
aliases for connected nodes are denoted in this data set.

• Routing tables (rt): These logs enable to reconstruction
of routing paths as OLSR routing tables are collected.

• Topology characteristics (topo): This set features the
link qualities and costs for connections to other nodes in
the network.

• Traceroute information (trace): Information gathered
after issuing the traceroute command to learn about
routing paths and latencies.

The evaluation in Section III-C uses the data collected by one
node for one month. The results are based on the average
performance of the algorithms on these logfiles.

2) Wireless Sensor Network Data: Sensor network data has
been drawn from a week-long periodic sampling of all twenty
nodes of the TARWIS platform [18] installed at the University
of Bern. This testbed consists TMote Sky sensor nodes [20],
set up in the different rooms of the institute of computer
science on campus. The data sets are made up of the following
data points and measurements, which have been taken every
five minutes:

• Timestamps: Each entry is tagged with a timestamp in
order to allow for correlation of data of different nodes
if necessary.

• Light measurements: Photosynthetical active radiation
(PAR) and thermophile shadowband radiation (TSR) are
acquired and denoted in Lux.

• Temperature and humidity measurements: All nodes
capture the current temperature in degree Celsius and the
relative humidity of their surroundings.

• RSSI measurements and neighborhood list: Via pe-
riodic broadcasts, neighborhood lists, thus direct links to
other sensor nodes, are populated and data on the received
signal strength is collected.

Once again, the upcoming results represent the average per-
formance of the algorithm for the different key properties. The
data set of all nodes have been used for evaluation to grant a
suitable evaluation base.

C. Evaluation

Profiling different, off-the-shelf, publically available com-
pression algorithms to gain insights in how far they are
suitable for usage on wireless mesh or sensor nodes has been
the goal of this paper. Besides general parameters typical
for comparison in this domain, we have been specifically
interested in memory usage for algorithm execution, as this
is often the limiting factor on embedded hardware. Since
we assume data decompression to be shifted to an entity
outside the deployed network with no constraints on resource
usage, the following results reflect solely characteristics of the
compression step.



Due to need for a tool for memory estimations, which have
been carried out with Valgrind [21], the experiments have
been executed on a 2.4 GHz Intel x86 machine running MAC
OS X. Except for the execution time, results will not differ
when profiling is run on wireless mesh or sensor nodes. The
execution time measurements provided below will nevertheless
offer a clear intuition towards the performance on respective
hardware, yet have to be repeated for a dedicated system on
demand.

1) Compression ratio: The first and foremost parameter
that seeks attention is the compression ratio a certain algorithm
can provide. The compression ratio cr is calculated using the
compressed data size cd and the original, uncompressed size
ud as follows:

cr = 100− (cd ∗ 100)/ud

Due to the presence of redundancy in all data traces,
the compression ratio is in general higher than 50%, see
Figure 2. The best compression ratio with an average of 92%
for the wireless mesh data and 67% for the sensor network
traces can be granted by the order-n arithmetic coding. For
the former set, the algorithm clearly benefits from the great
coding possibilities since the WMN traces feature many IP
addresses with similar network parts. The different LZW
variants (lzss, lzw12, lzw15v and mlzo) target roughly similar
values between 82% and 88% for WMN and 49% and 60%
for WSN data. As expected, the Huffman implementations and
the simple arithmetic coding yield almost the same results,
around 54% compression ratio regardless of the type of input
data. The only surprising result is the bad performance of
SLZW, especially in regard to the sensor network data set.
Although it has been specifically designed for WSNs, the
algorithm provides with 35% the poorest compression ratio
in this evaluation. This may partially be accounted to a lack
of a fixed-size format of logfile entries due to dynamically-
sized neighborhood lists, which prohibits the exploitation of
input transformation, and thus the advantage of using a small
cache.

2) Execution time: Another important metric to evaluate
a compression algorithm is its execution time. Naturally, the
more time is spent for computation, the more energy will be
consumed by the processor. Furthermore, in case compression
is applied in the domain of sensor networks or generally
on embedded devices, operating systems may not support
concurrent operations. Thus, a long-running execution of a
compression algorithm will block the processor for a signif-
icant amount of time, in which, e.g., reactivity to important
operational events is not given, the node is not responsive, and
in the worst case, will fail to handle its tasks correctly. Figure 4
displays the average time in seconds needed to compress 1 MB
of input data gathered from the mesh, and the sensor network,
respectively.

The outstanding algorithm in terms of time for execution is
the MLZO implementation: With an average of 5ms for WMN,
and 10ms for WSN data, it is the fastest algorithm in this

benchmark suite and roughly a factor 10 better than the next
well performing algorithms (lzw12, lzw15v and slzw). The
simplicity of the Huffman implementations and the order-0
arithmetic coding are directly reflected in their runtime results,
which range between 7 to 15ms. Since much more information
is exploited in higher order arithmetic coding, the time for
their execution naturally increases and is with 500ms to even
700ms by a factor hundred slower than the MLZO algorithm.

3) Memory consumption: Each functionality pushed onto
a wireless node will consume text memory thus ROM for its
installation as well as RAM at runtime when being executed. It
has been often times pointed out that especially the latter one
is very limited, especially on embedded nodes, for reasons of
energy expenditure for RAM refreshing. The tight boundaries
given by the node have thus to be respected, keeping addi-
tionally in mind that compression is in most cases supposed
to run as a complementary service and not as the primary
application.

Figure 5 displays the text segment occupation in bytes
(B) by the various implementations. All algorithms have
been compiled with the same compiler settings. Since most
implementations have not been optimized for size and much
memory is occupied by extensive I/O functionality in their
original implementation, all sources files for such file handling
have been removed for a better comparison. ROM utilization
ranges between roughly from 2.5kB to 5kB for the algorithms
with the smallest memory footprint (lzw variants, huffman and
arithmetic coding order 1) up to 15kB for SLZW as supplied
by the authors. The latter is once again surprisingly high, as
especially the authors of a sensor network algorithm should be
aware that this will block almost one third of a typical sensor
nodes storage capacity (48kB for the Tmote sky). However,
all evaluated algorithms would fit into the text segment of a
typically dimensioned wireless mesh or sensor node.

The results presented in Figure 6 have been acquired using
the Valgrind framework for program profiling [21]. Here, the
peak RAM usage in bytes is displayed on a logarithmic scale.
All implementations use approximately the same amount of
stack memory, consuming around 500 bytes. Heap allocation
however differs tremendously, with the top user being MLZO
occupying 3MB. This is absolutely not suitable for embedded
hardware, where available RAM is dimensioned between 5
and 10kB. Also, higher order arithmetic coding or lzw15v are
not portable as they are onto wireless nodes unless memory
optimizations will be undertaken beforehand. Good candidates,
however, are the SLZW and adaptive huffman coding, as well
as the simple lzw12 and lzss algorithms.

IV. CONCLUSIONS

Data compression can be a very comfortable tool on wire-
less nodes to gain storage space and possibly spend less energy
on transmissions. In this study, we evaluated different com-
pression algorithms how they may be simply deployed on such
nodes without any previous changes to their implementations.
The results obtained and summarized in Table IV may hence
be read as an evaluation of the given implementation.
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Fig. 1. Average compression ratio of Huffman and arithmetic coding
algorithms obtained for CTI-Mesh and Tarwis-Measurements.
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Fig. 2. Average compression ratio of LZW variants obtained for CTI-Mesh
and Tarwis-Measurements.
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Fig. 3. Average time for compressing CTI-Mesh and Tarwis-Measurements
with Huffman and arithmetic coding algorithms on a MAC OS X platform.
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Fig. 4. Average time for compressing CTI-Mesh and Tarwis-Measurements
with LZW variants on a MAC OS X platform.
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Fig. 5. ROM memory occupied by the implementation of the different
algorithms with and without I/O operations in bytes.
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algorithm ratio exec time ROM usage RAM usage
huff 0 + 0 0
ahuf 0 + 0 +
arith-0 0 + 0 0
arith-1 + - 0 -
arith-1e + - 0 -
arith-n ++ - 0 -
lzss + - + +
lzw12 + + ++ +
lzw15v + + + -
mlzo + ++ 0 -
slzw - + - +

TABLE I
OVERVIEW OF BENCHMARK SUITE OVERALL PERFORMANCE.

Overall, we can conclude from this study that there is not
the one, outstanding algorithm which suits all requirements.
Rather, the choice has to be made according to the primary
goals of application and restrictions posed by the utilized
wireless node platform. When optimizing for speed, MLZO
should be the choice unless resource restrictions regarding
RAM memory exist. If a good compression ratio is mandatory,
yet execution time and memory restriction may be disregarded,
a higher order arithmetic coding algorithm is an appropriate
candidate. LZW variants score well in most categories; espe-
cially the simple LZW implementation with 12bit symbols
offers a solid performance in all categories. However, the
attained values for SLZW are disappointing. Once again, the
reasons for its failure can most probably be accounted to the
structure of the data, hindering all proposed optimizations to
come to their full potential.
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