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Abstract. Systems for indoor positioning using radio technologies are
largely studied due to their convenience and the market opportunities
they offer. The positioning algorithms typically derive geographic coor-
dinates from observed radio signals and hence good understanding of the
indoor radio channel is required. In this paper we investigate several fac-
tors that affect signal propagation indoors for both Bluetooth and WiFi.
Our goal is to investigate which factors can be disregarded and which
should be considered in the development of a positioning algorithm. Our
results show that technical factors such as device characteristics have
smaller impact on the signal than multipath propagation. Moreover, we
show that propagation conditions differ in each direction. We also noticed
that WiFi and Bluetooth, despite operating in the same radio band, do
not at all times exhibit the same behaviour.

1 Introduction

Positioning of people and resources has always been a necessity for society
throughout human history. Indoor environments, however, still pose a challenge
to the localisation paradigm and foster vigorous research by both academia and
industry. Indoor spaces are typically characterised by restricted dimensions and
multiple structure elements such as walls, doors, furniture. As a result, radio sig-
nals have stronger multipath components compared to outdoor scenarios. Moving
human bodies are an additional complication. The combined effect of these fac-
tors challenges the pervasive application of a single positioning solution. While
some authors, e.g., [8,18], try to find a solution based on a single wireless tech-
nology, others, e.g., [9,19], propose to combine multiple technologies. Still, the
optimal choice of technology and localisation technique depends on the applica-
tion requirements towards accuracy, cost and ease of deployment.

In the scope of the Location Based Analyser (LBA) project1 we are interested
in a positioning solution that is easy to deploy, is low-cost and scales well with
the size of the indoor area. The application targets the support of Location
Based Services (LBS) and statistical profiling for enterprises such as exposition
centres, shopping malls or hospitals. We are interested in providing precision up
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to few meters in order to support variety of applications with different accuracy
requirements. Furthermore, the positioning mechanism should be non-intrusive
because we want to avoid placing dedicated software in the tracked devices and
hence we cannot rely on their cooperation. Given these requirements, we decided
to base the positioning mechanism on a radio technology such as Bluetooth or
IEEE 802.11 (with the trade name WiFi). These technologies benefit from large
support by personal devices and the radio signals being freely available.

As many other studies using similar approaches we stumbled upon the chal-
lenges of indoor signal propagation and its implications for a localisation system.
Despite the large number of studies addressing radio-based indoor positioning,
only few actually investigate the various factors that impact the localisation sys-
tem. There are plenty of studies [2], proposing a novel propagation model but
results are often not convincing or the model performs well only in a particular
setting. Other studies take a more practical approach where propagation condi-
tions are monitored in order to adapt the localisation scheme. For example, in
some fingerprinting solutions one out of several radio maps is selected depending
on periodically updated readings on humidity or temperature. Often, however,
only a couple, if not a single factor is observed. To our knowledge, a detailed
study, covering several factors and reflecting their impact on both Bluetooth and
WiFi signals has not been conducted so far.

With this paper we aim to extend the state-of-the-art by investigating the
impact of (1) device’s technical characteristics, (2) manufacturing discrepancies
and (3) device orientation. Without being exhaustive, we try to gain insights on
the complex effects of each factor and the implications for indoor positioning.
Our purpose is to identify which factors should be considered and which can be
disregarded in the design of a positioning algorithm. The paper is, however, not
concerned with the development or testing of such an algorithm.

The rest of the paper is structured as follows. In Section 2 we briefly sum-
marise advances in indoor localisation and in radio-based solutions in particular.
The following Section 3 introduces our monitoring system and the testing envi-
ronment. Evaluation results are presented in Section 4. Finally, in Section 5 we
draw conclusions and identify open discussion topics.

2 Indoor Localisation

Multiple technologies have been proposed to tackle the problem of indoor local-
isation some examples being infrared [22], ultrasound [16] and Radio Frequency
IDentification [5]. Still, most research is dedicated to the usability of two tech-
nologies. Large number of papers, e.g., [10] and [23], argue that Ultra Wide
Band (UWB) radio offers excellent means to determine one’s location with high
precision. Unfortunately, UWB-based solutions have longer deployment time
and are expensive. Equally many studies campaign for the use of IEEE 802.11,
e.g., [7,12], or Bluetooth, e.g., [14,19] since their ubiquitous support by per-
sonal devices is convenient for the quick, cost-efficient development of practical
solutions.
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2.1 Radio-Based Localisation

A radio-frequency technology can provide feedback on multiple parameters re-
lated to signal reception, which can be used for localisation. Some localisation
mechanisms, see [11,17], use the Received Signal Strength Indicator (RSSI),
which is derived from the received signal strength and should be therefore di-
rectly related to distance. Unfortunately, RSSI measurements are vulnerable to
the strong multipath effects indoors. Other mechanisms, see [7,20], base the loca-
tion estimate on Time of Arrival (TOA) or Time Difference of Arrival (TDOA)
parameters. This approach, although more accurate, comes at a higher cost and
requires intervention at the target devices. In [3] the Response Rate (RR) of a
Bluetooth inquiry is introduced as the percentage of inquiry responses out of
the total inquiries in a given observation window. The authors claim to achieve
good positioning accuracy. We remain sceptical on the use of RR alone due to
its vulnerability to the Bluetooth channel hopping and WiFi contention.

For our purposes we believe that the RSSI parameter is fitting. RSSI measure-
ments are readily available and still can deliver satisfying accuracy, given that
appropriate processing is applied. We should, however, account for the impact
of radio propagation conditions on the RSSI values.

2.2 Radio Signal Propagation

Generally, radio signals are shaped by the transmitter, receiver and propagation
environment. The transmitter and receiver affect the signal by their technical
characteristics while the propagation channel’s effects are related to path loss
due to the propagation medium and any obstacles on the propagation path.
Indoor environments make the reconstruction of signals more difficult due to
their smaller dimensions and the significantly bigger number of obstacles on
the signal path. These obstacles can be part of the indoor construction, e.g.,
walls and doors, as well as individual objects such as furniture and people. As
a result, shadowing and multipath propagation exhibit strongly and multiple
copies of the same signal, travelling over several paths. The signal reconstructed
at the receiver is formed by all individual paths and is more difficult to relate to
the actual distance between the nodes.

Characterising the indoor radio channel has been an active research area dat-
ing back to the early ’90s, e.g., [13]. There are many works, such as [1,2,6,21],
which study the radio channel in general and investigate the path loss distribu-
tion over distance or for different propagation scenarios, including line-of-sight or
non-line-of-sight. Studies focusing on radio-based indoor positioning [4], examine
the specific effects of the above factors - distance and obstacles - on radio signal
parameters used for positioning. Other factors such as technical characteristics
or orientation are also important but rarely studied in detail. To fill in the gap
we investigate how a radio signal is affected:

– at the transmitter side by the technical specifications of different manufac-
turers and even models of the same type of device;
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– at the receiver side by manufacturing discrepancies occurring during the
production process;

– during propagation by the propagation path that a signal takes;
– by type of radio technology - Bluetooth or WiFi.

3 Monitoring Approach

Technology. In order to observe the impact of various factors on the received
signal we deployed sensor nodes, which can scan for transmissions on two inter-
faces - one for Bluetooth and one for IEEE 802.11b/g.

In the context of Bluetooth we rely on the inquiry procedure, introduced in the
Bluetooth’s Core Specification 4 [15]. For an inquiry to be successful a Bluetooth
device should only be discoverable. We prefer to work with the inquiry procedure
due to several advantages. First, the RSSI reported by an inquiry procedure is not
affected by power control and hence can be directly related to distance. Second,
although long lasting - the inquirer needs to check all 32 Bluetooth radio channels
- an inquiry procedure can monitor a large number of target devices. Last, we
can gather measurements without requesting any privacy-sensitive information
from the mobile devices.

In the context of WiFi the sensor nodes overhear WiFi signals from the target
devices. Contrary to Bluetooth, there is no inquiry procedure defined in WiFi.
A mobile device becomes visible only after it sends out a request to associate to
an access point. In the associated state there is a periodic exchange of control
messages. By overhearing these messages, or any potential data messages, a
scanning sensor node can derive information on RSSI levels.

Test-Bed. All experiments were set up in an indoor office with dimensions
6.90x5.50x2.60m. A schematic is shown in Figure 1. The office is equipped with
desks, chairs and desktop machines. The sensor nodes (SNs) and mobile devices
(MDs) hang at 0.50m below the ceiling and are at 1.50m above the tables. Such
test environment allows us to judge the relevance of the tested factors for a
positioning system under realistic propagation conditions.

Metrics. Our first challenge was to select the appropriate metric to compare
performance. We considered four groups of metrics to characterise the RSSI,
namely, instantaneous values, probability density function, mean and standard
deviation, median and percentiles; as well as the response rate of a scan.

4 Evaluation

Below we evaluate the impact of each of the three factors: technical characteris-
tics, manufacturing discrepancies and direction-specific multipath propagation.
During the measurements collection in all experiments no humans were present
in the test-bed area.
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Fig. 1. Experiment A: Set-up Fig. 2. RSSI time variation of three MDs

4.1 Technical Characteristics

The transmit power of a personal device is a result of propagation conditions
and technical specifications but also of manufacturer preferences. Differences
between manufacturers, or even between different models of the same manufac-
turer, could additionally (on top of multipath effects) aggravate the problem of
localisation. In order to investigate how such differences affect the RSSI we per-
formed Experiment A. The test set-up is shown in Figure 1. Three mobile phones
by different manufacturers were placed at one and three meters away from the
same sensor node. At each distance, measurements are gathered for 30 minutes,
which allowed us to collect about 200 samples for WiFi and 400 for Bluetooth.

The choice of evaluation approach should be made carefully. By placing the
mobile phones next to each other we try to minimise the spatial and tempo-
ral difference in their propagation paths. Yet, this rises some concerns on in-
terference between the phones, which could be avoided by doing independent
measurements. The latter approach, however, catches different temporal states
of the propagation channel. Furthermore, we can choose between measuring (i)
the transmitted signal at the antenna, which allows to isolate the impact of the
propagation environment or (ii) the received signal, which is affected by the mul-
tipath propagation but shows how a real system sees different mobile phones.
Since we are interested to develop an operational localisation system we looked
at the second.

Instantaneous RSSI. Figure 2 shows the changes in time of the instantaneous
RSSI of a Bluetooth signal at distance one meter. With instantaneous RSSI we
refer to a single momentary RSSI value. The strong variations of the RSSI show
that this metric is much affected by multipath propagation. Therefore, relying
on instantaneous RSSIs for localisation can be misleading.

A better analysis would be based on metrics that can (partially) eliminate
the impact of multipath propagation. The latter causes temporal, unpredictable
RSSI variations. Evaluating a set of samples rather than a single value can
isolate temporal changes and provide a more distinct main trend. We discuss
the appropriate metrics in the coming three sections.
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Probability Density Function. The probability density function (PDF) of
the RSSI, constructed for each combination of mobile device and distance, is
shown in Figure 3(a) for Bluetooth and in Figure 3(b) for WiFi. On the x-axis
of a graph we plot the RSSI values whereas the y-axis plots the PDF.

Although the PDF shapes are similar for the three mobile devices, the max-
imum RSSI value is not the same, suggesting that the impact of the technical
characteristics of the device should not be underestimated. Further, as it can be
expected, RSSI values are lower at three meters due to larger path loss. Also,
we notice that at distance one meter (upper row) the graphs are more compact
whereas at three meters (lower row) the PDFs are generally wider, i.e., the set
of observed RSSI values is larger. This can be explained by the stronger effect of
multipath propagation as distance increases. Another consequence of multipath
propagation is the slight asymmetry of the PDF with longer tail towards lower
RSSI values.

Differences between Bluetooth and WiFi are minor: WiFi signals have by
default higher transmit power and subsequently stronger multipath components,
which causes higher deviation of the RSSI signals, i.e., broader PDF shape. This
is also the reason for the generally weaker received Bluetooth signals. For MD2
we could not identify the reasons for the little effect of distance on its WiFi
signal.

Median and Percentiles. An alternative to a PDF representation is a boxplot,
which depicts a population’s median, lower and upper quantiles, minimum and
maximum, and outlier samples. Using boxplots makes it easier to identify the
main concentration of the RSSI values and how much the RSSI deviates. Another
advantage of a boxplot is that outliers are visible; they are difficult to spot in a
PDF due to their low probability.

The boxplots corresponding to the PDF curves for both Bluetooth and WiFi
are shown in Figure 4. Along with differences in the behaviour of mobile phones,
we can directly observe a much larger deviation of RSSI values at three meters
than at one meter. We also observe that WiFi signals are less robust to deviation
than Bluetooth signals.

Mean and Standard Deviation. Although PDFs and boxplots are very de-
scriptive, they require the collection of many samples (corresponding to long
observation periods). Their use in a real-time positioning system, where samples
are evaluated every few seconds, is challenging. An easier to derive set of metrics
is the mean and standard deviation. The corresponding metrics for each PDF
graph in Figure 3 are shown in the upper left corner.

We note that the mean is often off-set at 1-2dBm from the median, see
Figure 4. These differences are caused by the asymmetry in the PDF distribu-
tion - the mean and standard deviation take into account all samples, including
outliers, while the median excludes them. All other observations are consistent
with previously made ones.
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(a) Bluetooth

(b) WiFi

Fig. 3. PDF of the RSSI levels for three mobile devices measured at the same sensor
node; distances one and three meters

(a) Bluetooth (b) WiFi

Fig. 4. Boxplots of three MDs, RSSIs measured by the same sensor node; distances
one and three meters



Experimental Comparison of Bluetooth and WiFi Signal Propagation 133

Table 1. Experiment 1: Response Rates

Bluetooth WiFi

MD1 MD2 MD3 MD1 MD2 MD3

1 m 12.9 6.8 11.3 23.3 12.9 14.2
3 m 13.6 6.0 10.8 18.8 5.2 5.1

Table 2. Experiment 2: Response Rates

WiFi Bluetooth

SN1 SN2 SN3 SN1 SN2 SN3

1 m 20.6 16.2 19.7 43.4 30.1 41.0
3 m 15.4 16.8 16.3 37.8 20.3 55.5

Response Rate. While RSSI-related metrics are vulnerable to multipath prop-
agation, the response rate (RR) of a device is not and has potential for locali-
sation. The response rate is defined as the average number of times per minute
that a device (i) responded to an inquiry procedure in Bluetooth or (ii) was
overheard in WiFi. By comparing the RRs of the same device at several anchor
nodes one can derive conclusions on the devices location.

Results for the RR of both Bluetooth and WiFi for all studied scenarios are
shown in Table 1. We see that the RR of Bluetooth varies in an incoherent
way making it difficult to relate it to distance. Frequency hopping in Bluetooth
causes the RR to depend on channel synchronisation and obstructs its use for
positioning. No such discrepancies are observed in the case of WiFi, where the
RR is a function of the distance. Although values among devices differ, the
changes in RR in distance are consistent.

Concluding Remarks. In terms of evaluation metrics we conclude that the
choice of metric depends on the time granularity needed by the localisation
algorithm. Probability density functions and boxplots are more representative
but they also require the collection of many RSSI samples. They are better used
in positioning applications whose main purpose is the collection of long-term
statistics. When a quick evaluation is desired, e.g., as in real-time systems, the
mean of a group of samples is more convenient to handle. In all cases using a
single instantaneous RSSI value is not recommended.

In terms of performance we conclude that mobile devices show significant
difference in performance. This fact should be considered in the development of a
localisation algorithm. One possible approach to compensate for these differences
is to relate a device’s measurements from several scanning nodes.

4.2 Experiment B: Manufacturing Discrepancies

In order to observe the impact of manufacturing discrepancies on signal re-
ception we designed Experiment B. We placed three sensor nodes of the same
manufacturer and model (Gumstix Overo Fire) but different manufacturing runs
according to the experiment set-up in Figure 5. The sensor nodes are at virtually
the same spot (sensor’s dimensions cause some displacement) at distance one and
three meters of a mobile device. At each distance measurements were collected
during 30 minutes. Based on the conclusions of Section 4.1 we selected as eval-
uation metrics the median and percentiles (depicted by a boxplot diagram) and
the response rate.
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Fig. 5. Scenario B: set-up

(a) Bluetooth (b) WiFi

Fig. 6. Boxplots of three SNs measuring the RSSI values of the same mobile device;
distances one and three meters

The boxplots in the case of Bluetooth signals are shown in Figure 6(a). The
median of different sensor nodes changes in the order of 2-3dBm. This is much
less than the 10-15dBm registered by different mobile devices in Figure 4(a); the
RSSI deviation for sensor nodes is also lower. In the case of WiFi, see Figure 6(b),
the differences between the median values of sensors increases to 5-6dBm coming
close to the results for device specifics of Section 4.1. Other observations on the
RSSI deviation and behaviour of Bluetooth and WiFi signals, already made in
Section 4.1, continue to hold.

The response rate RR of both Bluetooth and WiFi signals calculated at each
sensor node is shown in Table 2. Two observations are worth noting. First,
the RR of different sensors is similar, given the same technology and distance.
This leads us to believe that manufacturing tolerances have little impact on the
response rate. Second, the RR is difficult to relate to distance for Bluetooth
signals but can be helpful in WiFi.

Concluding Remarks. Given that measurements were made in a realistic en-
vironment and not a well controlled one, it is difficult to pinpoint the cause of the
RSSI degradation to only manufacturing tolerances or only multipath propaga-
tion. Still, we can observe that for the same propagation environment, although
at different time instants, manufacturing tolerances seem to show smaller im-
pact on the RSSI than device characteristics. Therefore, we claim that in the
development of an indoor localisation system the designer can assume that all
receiving devices have the same behaviour, given they are from the same model.
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Fig. 7. Scenario C: set-up Fig. 8. CDFs in eight communication directions

4.3 Experiment C: Propagation Paths

Depending on the locations of sender and receiver the signal between the two
traverses propagation paths of different length through different obstacles. Many
studies have shown that the orientation of the device indeed has a strong impact
on the propagation and should be taken into account. This is particularly rel-
evant for fingerprinting-based localisation solutions. Majority of these studies,
however, only perform short-term measurements, which makes them vulnerable
to temporal variations in the propagation channel. We are more interested in the
long term behaviour of the propagation channel in different direction such that
to allow drawing conclusions relevant for the creation of radio maps. Therefore,
we performed Experiment C based on the set-up of Figure 7.

Eight sensors in scanning modes (SN1-8) are organised in a grid around a
central sensor (SN0) that periodically sends out WiFi beacons. The scanning
nodes SN1 to SN8 collect RSSI measurements of SN0’s beacons. The experiment
was run for 24 hours in order to collect a reliable number of samples per SN
(ten thousands), which allows us to construct a stochastic profile of the radio
channels in each direction. Grid step size is one meter. Sensor nodes’ antennas
are omnidirectional.

The Cumulative Distribution Functions (CDFs), constructed by the scanning
sensors, are shown in Figure 8. The position of the CDF graph in the figure cor-
responds to the position of the scanning sensor, e.g., the CDF graph at position
left-middle corresponds to SN5.

Our main conclusion is that no two nodes have the same distribution of the
RSSI values, which is expected and explained with the distinct propagation
conditions of each path. Despite the differences there are certain similarities.
CDF curves of nodes on the diagonals to SN0 (SNs 1, 3, 6 and 8) have a 5dBm
lower mean and a larger variance than SNs 2, 4, 5 and 7 as a result of different
path lengths. Interestingly, SN6 is an exception with higher RSSIs, which we
attribute to the node’s location. A SN near a corner receives stronger reflected



136 D.C. Dimitrova, I. Alyafawi, and T. Braun

signals from the near walls than a SN in the centre of the room. Nodes from
opposite directions also show similar behaviour - SN4 and SN5 have RSSI values
mainly spread between -40 and -30dBm, while the CDFs of SN2 and SN7 are in
the range of -45 to -33dBm. Although the specific causes for such behaviour are
hard to determine, we explain it with the asymmetric shape, i.e., rectangular, of
the room and the consequences of that on signal propagation.

Concluding Remarks. The propagation path-specific distribution of the RSSI,
besides reconfirming the observations of others, has given us the idea to base
our positioning algorithm on a ratio-based approach. This approach is similar to
fingerprinting but instead of characterising an indoor location by the absolute
RSSI values heard by anchor nodes we can use proportions of the RSSI readings.

5 Conclusion

This paper presented an investigation on the impact of technical characteristics
of mobile devices (targets for localisation), manufacturing differences of sensor
nodes (used for localisation) and direction-specific multipath propagation. Our
main conclusions are: (i) signal strength varies less between sensors of the same
type than between mobile devices from different manufacturers; (ii) multipath
propagation seems to have strong effect on signal strength; (iii) radio signals
experience distinct propagation conditions in different directions.

In parallel, we analysed the usability of four signal metrics, namely, instanta-
neous values, probability distribution, median and percentiles, mean and stan-
dard deviation, as well as the signal’s detection rate. We show that the choice
of evaluation metric depends on the time-granularity of localisation, i.e., mean
values are convenient for real-time positioning while probability distributions
may be better for off-line processing.

Based on our findings as a next step we envision to develop a localisation
system for indoor applications that can compensate for the specific behaviour of
different personal devices and their orientation in a flexible, on-the-fly manner.
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