
82 communications of the acm | january 2012 | vol. 55 | no. 1

contributed articles
doi:10.1145/2063176.2063198

Virtual testbeds model them by seamlessly
integrating physical, simulated, and emulated
sensor nodes and radios in real time.

By Geoff Coulson, Barry Porter, Ioannis Chatzigiannakis,
Christos Koninis, Stefan Fischer, Dennis Pfisterer,
Daniel Bimschas, Torsten Braun, Philipp Hurni,
Markus Anwander, Gerald Wagenknecht, Sándor P. Fekete,
Alexander Kröller, and Tobias Baumgartner

Flexible
Experimentation
in Wireless
Sensor Networks

significant drawbacks when used in
isolation (see the sidebar “Physical
Testbeds vs. Simulation vs. Emula-
tion”). Therefore, they seek to com-
bine all three to enable a more com-
plete evaluation of the system being
developed. Unfortunately, each ap-
proach requires different coding styles
and tools, forcing researchers to ex-
pend significant effort reimplement-
ing their systems for different tools/
platforms/approaches. As a remedy,
techniques have been developed to
reduce the transitioning effort among
the three approaches, but further work
is needed to address the emerging
requirement for more flexible experi-
mental facilities.

Our work abstracts the concept of
testbeds to yield virtual testbeds (VTBs)
programmed similarly regardless of
whether their underlying realization is
physical, simulated, or emulated. VTBs
are private, custom-designed, per-ex-
periment, virtualized testbed instanc-
es that enable developers to seamlessly
combine and/or interchange physical
elements, including sensor nodes and
radios, with simulations and emula-
tions of these elements.

We are developing a reference im-
plementation of the VTB abstraction
on top of a large-scale federated physi-
cal testbed infrastructure (see Figure
1), augmenting the inherent flexibility
of the VTB abstraction in terms of scal-

Wireless sensor netwo rks (WSNs) play a key
role in the emerging “real-world Internet,” with
several large-scale WSNs being deployed; see, for
example, Bernat2 and Dudek et al.9 However, WSN
development is inherently complex, involving
hardware design, embedded and distributed
programming, heterogeneity, scale, and unpredictable
environmental changes. Addressing this complexity,
testbed-based experimentation (recommended by
Weiser32) is increasingly the norm for developing
and optimizing WSN systems in a controllable
environment prior to deployment.

The WSN research community has historically
relied on three main approaches to testbed-based
experimentation: physical, simulation, and emulation.
However, researchers appreciate that each involves

 key insights
 � �Physical, emulated, and simulated

elements of wireless sensor networks
can be seamlessly mixed to gain
massive-scale “virtual testbeds” with
desired trade-offs involving fidelity,
repeatability, and network size.

 � �The relative speed difference between
Internet links and low-power wireless
radios allows sensor nodes at physically
distant testbed sites to interconnect
(virtually) over the Internet.

 � �The WISEBED approach of recursively
and hierarchically applying a common
Web Services API to physical, simulated,
and federated or hybrid testbeds
facilitates transparent composition of
virtual testbeds that can be accessed
and controlled by common tools.

january 2012 | vol. 55 | no. 1 | communications of the acm 83

i
l

l
u

s
t

r
a

t
i

o
n

 b
y

 j
a

s
o

n
 c

o
o

k

ability (VTBs combine physical nodes
from different federated sites) and het-
erogeneity (VTBs incorporate a variety
of equipment types).

Research Challenges
In this article, rather than survey the
many purely physical WSN testbeds
(such as Chun et al.4), we focus on
work that seeks to “virtualize” WSN
testbeds to some extent or federate
physical testbeds; as far as we know,
no previous work has sought to do
both. Note that the term “virtualiza-
tion” is commonly used in a variety
of contexts, as in “slicing” in systems
like PlanetLab and the simultaneous
running of multiple operating sys-
tems on a single processor, as in VM-
ware. We reserve the term exclusively

for systems that mix physical WSN
testbeds with elements of simulation
and emulation.

In terms of virtualization, sev-
eral research efforts have sought to
bridge the gap between physical ex-
ecution and simulation. For example,
Li et al.23 and TOSSIM22 used TinyOS
component graphs to generate dis-
crete-event simulations that can be
augmented with a small number of at-
tached physical nodes (such as three
reported in Li et al.23). Node software
in Girod et al.15 and Park et al.27 was ex-
ecuted inside a simulator, but the sim-
ulated nodes communicated through
physical radios. And in Österlind et
al.26 and Wen et al.33 node software
was executed iteratively on physical
devices and in simulation, with vari-

ous arbitration and timing schedules
applied. All these projects involved a
useful mix of physical and simulated
elements, but that mix was fixed; for
example, TOSSIM cannot support
simulated nodes with real radios,
and Wen’s cannot mix physical nodes
with simulated nodes. In contrast, we
strive for generality, so physical, simu-
lated, and emulated elements can all
be combined as desired.

Another feature of these efforts is
that programmers must significantly
adapt their code to work with the giv-
en mix of physical and simulated ele-
ments. In contrast, we strive for trans-
parency so the VTB looks as much as
possible like a purely physical testbed,
with the goal being to minimize the
overhead of transferring an experimen-

84 communications of the acm | january 2012 | vol. 55 | no. 1

contributed articles

tal system to real-world deployment.
Finally, all these projects were small in
scale and therefore of limited applica-
tion in the development of large-scale
WSN deployments.

Turning now to work that applies
the federation concept to physical WSN
testbeds,a Ohio State University17 com-
bined the infrastructure and software
of the Kansei testbed with the GENI
facility to provide a unified solution;
the Senslab project30 aimed to unify
four discrete heterogeneous testbeds
into a single testbed of 1,000 nodes;
and Cooperating Objects Network Of

a	 The concept of a federated testbed is not new;
projects (such as PlanetLab and Panlab) have
long applied similar ideas, though not in a
WSN context.

Excellence (CONET)6 employed a REST
API to provide uniform Web-based ac-
cess to different testbeds. These ef-
forts highlight the promise of testbed
federation in pursuit of scalability, but
none support integration of simulated
and emulated elements or deliver the
transparency of federation offered by
our VTB abstraction.

VTB Abstraction
VTBs provide the abstraction of a
user-designed private WSN testbed
in which some testbed elements are
physical, some are simulated, and oth-
ers are emulated. Users design their
VTB in such a way that its mix of physi-
cality, simulation, and emulation is
appropriate to their goals. They then
instantiate their VTB, deploy their

software onto it, and observe the out-
puts and behavior of their experimen-
tal systems as if they were running on a
dedicated physical testbed.

VTB elements can include:
Sensor modality. Examples are tem-

perature sensors and pollutant sensors;
Sensor data. What the sensors ob-

serve (such as the current temperature
and pollutant levels);

Nodes. CPU+memory+radio devices
to which sensor modalities are at-
tached;

Node power. Power-supply charac-
teristics (such as battery or solar) and
remaining energy of nodes;

Node connectivity. Nodes in broad-
cast range of each node and the volatil-
ity of their relationships; and

Node mobility. The movement pat-
terns nodes are subjected to if, for
example, they are mounted on public-
transport vehicles.

Users augment VTB physical nodes
by attaching emulated sensor modali-
ties not supported by hardware. Alter-
natively, they can foster experiment
repeatability by feeding emulated
(scripted) sensor data to their nodes
(physical, simulated, or emulated).
They can also increase the scale of their
VTB by selecting physical nodes from
different sites in the underlying federa-
tion, combining simulated nodes with
a core set of physical nodes, and even
multiplexing multiple emulated nodes
onto a single physical node. They can
also employ emulated node power to
facilitate repeatable battery-life inves-
tigations.

The emulation of node connectivity
is the biggest single source of VTB flex-
ibility, realized through virtual links of-
fering emulated real-time connectivity
between pairs of nodes according to
the characteristics of different types
of radio hardware. Using virtual links,
testbed users are able to explore differ-
ent connectivity patterns atop a set of
physical nodes with fixed physical con-
nectivity. For example, they might add
emulated connectivity between pairs
of nodes with no physical connectivity,
including across sites and between any
combination of physical, emulated,
and simulated nodes. They can also re-
move unwanted physical connectivity
to, say, build an emulated ring topology
on top of an underlying physical mesh.
Taking this to extremes, they can even

Here we outline the three main approaches to providing WSN testbeds. Our notion of
VTBs allows users to arbitrarily combine elements of all three (see the figure here).

Physical testbeds (such as those described in Chun et al.,4 Dutta et al.,11 Ertin et al.,13
Handziski et al.,18 Tutornet,12 and Werner-Allen et al.34) excel at high-fidelity evaluation
of mature WSN designs, as well as detailed planning for real-world deployments.
However, physical testbeds for WSN systems tend to be small in scale, expensive to
maintain, and time-consuming to set up. They also typically lack flexibility, often
offering only a single, fixed, connectivity topology and limited heterogeneity (such as
only a single type of sensor node, radio, operating system, or programming language).
They also tend to be limited in their programmability at lower levels of the system; for
example, many use fixed operating systems and networking stacks. They are also often
unsuited to experimentation scenarios requiring repeatability of experiments, as many
relevant operating parameters are beyond user control (such as local radio interference
due to infrastructure and other experiments).

problematic in traditional network environments, where simulators (such as NS-221) are
prominent, they represent significant drawbacks in WSN environments where resource
scarcity and incidental physical characteristics are of the essence. Simulation alone is
therefore of limited use in planning for real-world WSN systems and deployments.

Emulation (such as described in Girod et al.16 and Wu et al.36) is situated between
physical reality and simulation. Whereas simulation abstractly models target systems,
emulation duplicates the functionality of one system in terms of another system and
is therefore capable of much greater fidelity than simulation while potentially offering
greater flexibility than a purely physical testbed. Emulation is a much less exploited
approach in the WSN testbed context despite much potential; for example, emulation
in the form of network overlay technology could be used to support different inter-node
connectivity patterns in a physical testbed. Alternatively, a battery-based power supply
on a physical node could be emulated by interposing a mains electricity-powered
hardware module degrading power over time.

Physical Testbeds vs.
Simulation vs. Emulation

Simulation (such as described in
Fekete et al.14 and Levis et al.22) is useful
for quickly trying out new ideas and for
investigating the behavior of new protocols
and mechanisms in varied topologies at
large scale and in a repeatable manner.
The most notable drawback is a lack of
fidelity, often making it unrealistic to
simulate fully at the instruction-execution
level and with high-fidelity radio or
power-consumption characteristics.
While such limitations are not necessarily

Simulation Physical Reality

Emulation

Three-cornered testbed design space for
WSN experimentation.

contributed articles

january 2012 | vol. 55 | no. 1 | communications of the acm 85

emulate node mobility (of physical,
simulated, and emulated nodes) by dy-
namically changing the emulated con-
nectivity between nodes according to a
time-based script.3

From the user’s point of view, a VTB
would appear as an instance of a Web
services interface called iWSN support-
ing a comprehensive set of testbed-re-
lated operations, including loading ex-
perimental code and collecting results.
Users typically employ a GUI-based
front-end to mediate access to their
VTB rather than interact with their
iWSN instance directly.

The user’s view of the entire VTB-
based WSN experimentation process is
captured in a series of (potentially iter-
ated) steps (see Figure 2):

Experimental software development.
Users employ our software develop-
ment kit (SDK, http://www.wisebed.eu)
to develop and synthesize software that
can be deployed in a VTB;

VTB specification. They specify a
custom VTB that meets the require-
ments of their experiment in terms of
its physical, simulated, and emulated
elements;

VTB reservation. They contact our
reservation system to request their
custom-specified VTB be instantiated
at a particular time for a particular
duration. The reservation system re-

serves a set of underlying resources
able to support the VTB and returns a
“reservation key” that uniquely iden-
tifies the reservation and serves as a
promise that a VTB (as specified) will
be made available at the requested
time;

VTB instantiation. When the pre-
specified reservation time arrives,
users ask the instantiation system
to redeem their reservation keys. In
response, the instantiation system
builds the user-specified VTB using
the previously reserved underlying re-
sources, loads the user’s software onto

the nodes of the VTB (along with any
SDK runtime services), and returns a
dedicated iWSN instance; and

VTB operation. Users run their ex-
perimental software on their newly
instantiated VTB under the control of
a GUI that mediates access to the VTB
in real time.

To show the applicability of this ap-
proach, consider an experimental sce-
nario in which experimenters want to
select a broadcast protocol for use in a
large-scale WSN deployment.2 This ex-
perimentation requires a testbed with
three properties: scale and topology

Figure. 1. WISEBED physical testbed environment. In this federation of physical WSN testbed sites (nine today), each differs in its choice of
hardware, software, and physical layout.

The federation comprises more than 500 stationary sensor nodes (mainly iSense,5 MicaZ,8
and Pacemate,24 SunSPOT,29 and TelosB25) supporting a range of sensor modalities, including
temperature, humidity, light, acceleration, and magnetic fields, as well as approximately 60
mobile sensor nodes and 40 outdoor nodes. Each site offers a “portal server” that exposes its
capabilities to the outside world through an iWSN interface. Most sites also contribute one or
more simulator engines running simulated parts of VTBs.

WISEBED
Federation

Lancaster University, U.K.

University of Bern, Switzerland

Braunschweig Institute
of Technology, Germany

University of Berlin,
Germany

University of Lübeck, Germany

Universitat Politecnica
de Catalunya, Barcelona, Spain

Delft University of Technology,
the Netherlands

University of Geneva,
Switzerland

Institute of Patras, Greece

Heterogeneous Sensor Nodes

Portal Server

Figure 2. User view of VTB-based WSN system development.

User’s experimental
software design

User’s desired dates/times
to run experiment User’s code linked

with SDK runtime
services

User’s VTB
design

Get physical
resource

availability from
per-site physical

testbeds

Configure
reserved

resources in
per-site physical

testbeds

Reconfigure VTB

Reconfigure
user’s code

Collect/store/analyse output

Refinement/feedback loop

V
T

B
 s

pe
ci

fic
at

io
n

R
es

er
va

tio
n

ke
y

P
ri

va
te

 iW
S

N
 in

st
an

ce

1. Software
development kit

2. VTB
specification

4. VTB
instantiation

5. VTB
operation

3. VTB
reservation

86 communications of the acm | january 2012 | vol. 55 | no. 1

contributed articles

close to that of the target deployment
environment; significant use of physi-
cal nodes and radios (important, as the
forwarding decisions made by broad-
cast protocols typically rely on physical
features like RSSI thresholds difficult
to simulate with high confidence); and
repeatability. This combination would
be extremely challenging for most ex-
isting testbed environments.

Using it, experimenters might be-
gin by designing a simple VTB under-
pinned by simulated nodes and con-
nectivity. Such a VTB could be executed
on a desktop PC backed by a suitable
simulator engine (such as Shawn14).
Running their experimental code
would give an initial feel for the gener-
al behavior of the candidate protocols
and likely critical areas. They might
then create a second, more sophisti-
cated VTB underpinned by federated
physical testbeds augmented with vir-
tual links to yield a configuration with
scale and topology close to that of the
target deployment environment. The
same experimental code can then be
executed on this higher-fidelity VTB,
using emulated sensor input to drive
the experiments in a repeatable man-
ner. It could be argued that using virtu-
al links here might compromise fidel-

ity somewhat, but the flexibility of the
approach makes running a range of
what-if experiments straightforward
with different virtual-link configura-
tions to build confidence in the stabil-
ity and fidelity of the results.

Software Infrastructure
Here, we expand on key aspects of the
underlying functionality required to
support the VTB abstraction in our fed-
erated environment. We omit consid-
eration of VTB reservation (less central
to the structure and performance of
VTBs and implemented like a number
of existing purely physical testbeds),
as well as discussion of our security
provision (to ensure users are properly
authenticated and authorized to use
specific resources at specific times); for
more, see the WISEBED Project.35

The SDK includes tools for design,
implementation, synthesis, and de-
ployment of the experimental soft-
ware that will run atop a user’s VTB.
It is based on a lightweight software
component model7 offering a simple-
to-use modular development process.
The component model is runtime re-
configurable, so different components
can be deployed as the experiment pro-
ceeds, facilitating exploration of what-

if scenarios.
The SDK is also the primary means

by which we address the key research
challenge of transparency, whereby
users are protected from having to re-
implement their code when moving
from physical to simulated to emulat-
ed and mixed testbed environments.
This transparency is achieved through
an abstraction layer that selectively ex-
poses low-level APIs (such as drivers)
so both application-level software and
systems-oriented software can run un-
changed atop physical, simulated, or
emulated nodes; our Lorien operating
system28 is a good example of systems-
oriented software that runs over our
low-level APIs.

Besides its abstraction layer, the
SDK provides a set of runtime services
selectively configured into the user’s
software build by the instantiation sys-
tem, comprising these components:

Generic node management. Supports
implementation of the generic node-
management operations supported
by the iWSN interface, including, for
example, functions that support the
pinging of the node or respond to re-
quests for current battery status;

Sensor emulator. “Pretends” to be
sensors attached to the node and sup-
ply a stream of emulated sensor data
(generated internally or driven by an
external source); and

Radio stacking framework. Inserts
pseudo-network-device-driver compo-
nents in front of the bottom-level radio
device driver, a key element of our “vir-
tual links” implementation.

The SDK currently operates across
a range of platforms, including Conti-
ki,10 iSense,5 Lorien,28 TinyOS,19 and the
Shawn WSN simulator.

VTBs are specified through an XML
schema called WiseML,35 a multi-pur-
pose format also used to encapsulate
experimental output data. For VTB
specification, WiseML supports specifi-
cation of the following system elements:

Node-related information. Included
is information on node type, whether
the node should be physical, simulat-
ed, or emulated, the coordinates of the
node in a global 3D space, and the sen-
sor modalities supported; and

Connectivity information. Helps de-
fine potential connectivity between
pairs of nodes in terms of virtual links;
specifying a virtual link between two

• Get testbed description (WiseML format)
• Enable/disable virtual links between nodes
• Add/enable/disable node
• Is node alive?
• Reset node
• Send data to node
• Query node properties
• Upload software to node
• List neighbours of node

Simulated testbed
running on simulator
engine

iWSN

Physical testbed

iWSN iWSN iWSN

Virtual testbed (VTB)

Emulated node

Virtual link

Simulated node

Physical node

iW
S

N
O

pe
ra

tio
ns

Virtual link
spanning different
testbed instances

Figure 3. The iWSN interface, a Web services interface providing uniform management
access to all testbed types, whether VTBs, the underlying physical testbeds of the federated
physical environment, or purely simulation-based testbed instances (simulator engines).

The interface provides operations for acquiring a full WiseML specification of the associated testbed,
managing virtual links, adding new nodes, enabling/disabling/resetting nodes, checking node liveness,
sending commands or uploading software to a node, and querying node properties. Virtual-link management
operations include virtual links spanning testbed instances, the basis of our approach to testbed federation.

contributed articles

january 2012 | vol. 55 | no. 1 | communications of the acm 87

nodes in the VTB enables one-hop uni-
directional communication between
these nodes.b

Users typically generate WiseML-
based VTB specifications through a
GUI-based tool. Such tools are indepen-
dent of the rest of the software infra-
structure, and it is possible to imagine
a range of them with varying degrees of
sophistication. A typical tool might dis-
play graphical representations of the
available physical testbeds laid out in
space, with each testbed represented
as a graph and one-hop reachability
by directed edges. With these graphs,
users could select a subset of the avail-
able physical nodes to be allocated to
their VTB. They could also add simu-
lated nodes from a drop-down menu
and selectively add and delete edges
between arbitrary nodes to modify the
topology of their VTB.

The VTB instantiation system gets
involved when users redeem a reserva-
tion key issued by the reservation sys-
tem. The system gathers the physical
resources derived from the reservation
stage, configuring/connecting them
according to their original VTB speci-
fication. The instantiation system (and
operation step) relies on the iWSN in-
terface providing uniform access to all
testbed realizations and supporting
the federation and hierarchical com-
position of testbeds (see Figure 3).

The instantiation process involves
creating an empty VTB, then using its
iWSN interface to populate it with the
required nodes, connectivity, and other
parameters. For example, where a user
wants a VTB to include physical nodes
from multiple sites, the instantiation
system creates an overarching VTB into
which it inserts selected nodes from
the various sites; it then sets up virtual
links between nodes to create the re-
quired federated configuration.

A similar approach to federating
underlying testbeds is applied in ex-
periments involving simulated nodes
whereby the instantiation system ex-

b	 Two virtual links are needed to represent mu-
tual connectivity between two nodes, allowing
users to model situations in which a node A can
send to a node B, but B cannot send to A. The
WiseML specification of a virtual link includes
the unique identifiers of the nodes that will par-
ticipate in the link, as well as the link’s charac-
teristics in terms of its “link quality indicators,”
packet error rate, and other parameters.

ecutes one or more simulator engines.
These engines are simulator processes
instantiated on a suitably located and
resourced server machine; we primar-
ily use the Shawn WSN simulator men-
tioned earlier. As in physical sites, the
simulator engine is abstracted as a
testbed in its own right, exporting an
iWSN instance that can be federated
and “virtually linked” with testbed ele-
ments in other VTB instances to build
up the user’s required configuration.

The software behind the iWSN in-
terface’s virtual link operations uses
the SDK’s radio-stacking framework
discussed earlier to deploy “pseudo”
radio drivers that appear to software
on the node as “real” radio drivers. To
disable physical connectivity between
two nodes, the pseudo-driver on one
node simply drops packets originat-
ing from the other. To establish a vir-
tual link where there is no physical
connectivity, the pseudo-driver on the
sending node transparently diverts
(selected) outgoing packets to virtual-
link software running on a server, and
the pseudo-driver on the receiving
node inserts incoming packets arriv-
ing from the virtual-link software.

Note this virtual link creation deliv-
ers only the basic “plumbing.” On top
of it, the instantiation system inserts,
where required, an additional server
process that models a specific radio
channel. For this purpose, we are ex-
perimenting with the OMNeT++ simu-
lator, finding it fast enough to handle
virtual link packets in real time.31
For a more detailed discussion of the
implementation of virtual links see
Baumgartner et al.1

On completion of the instantiation
step, users are given a dedicated iWSN
instance through which they interact
with their newly instantiated VTB as
if it were a private physical testbed;
for example, they can then call iWSN
services to deploy, monitor execution,
and dynamically reconfigure their
code. These operations may be carried
out programmatically through the
iWSN interface directly via Web servic-
es calls but are more commonly car-
ried out through a program interact-
ing with the iWSN interface on behalf
of the user. We refer to such programs
as controllers; like VTB-specification
tools, they are distinct architectural
elements decoupled from the rest of

Figure 4. TARWIS controller graphical user interface.

88 communications of the acm | january 2012 | vol. 55 | no. 1

contributed articles

the system and can evolve or be re-
placed independently.

We have implemented two: The
first is a scriptable command-line
controller that enables batch-mode
control of experiments and is particu-
larly useful in experiments that must
be executed repeatedly with varied
parameters. The second is an interac-
tive GUI-based system called Testbed

Management Architecture for Wire-
less Sensor (TARWIS) networks20 that
offers a Web-based user interface;
it displays the attached VTB and al-
lows users to interactively issue iWSN
commands to individual nodes (such
as to reset, flash, reprogram, and re-
boot nodes and to send commands)
and store their output. Individual
sensor-node output can be displayed
in individual windows, with connec-
tivity/topology information displayed
graphically (see Figure 4). Experiment
results are stored in a WiseML file for
post-experiment archiving and analy-
sis. Note, due to the common use of
the iWSN interface, TARWIS, or in-
deed any controller, can also be used
to interact in exactly the same way
with physical sites and simulator en-
gines, as well as with VTBs.

The implementation just outlined
represents a substantial proof-of-con-
cept demonstration of the viability of

the VTB abstraction, though there is
room for further development, espe-
cially in terms of VTB-specification
tools; other interesting areas (such as
node mobility and emulated sensors)
have also yet to be explored in detail.
More generally, the implementation
highlights and validates the modular
and pluggable nature of the software
infrastructure; alternative implemen-
tations of many of the architectural
elements (such as specification, res-
ervation, instantiation, and operating
systems) can be provided indepen-
dently. We see this modular design as
crucial in testbed environments that
aspire to grow and co-evolve with their
user base.

Experimental Validation
The central issue for the viability of
the VTB concept is the extent to which
physical, simulated, and emulated
nodes are able to work and commu-
nicate seamlessly with one another in
real time. Seamless operation implies
an experimental validation of VTBs (see
Figure 5) should focus on three areas:

Real-time performance of virtual
links between physical nodes. Is the
connectivity offered by virtual links a
suitable basis for emulating the char-
acteristics of real physical radio-based
connectivity? Is it possible to support
a virtual link capable of being indis-
tinguishable from a real link in terms
of, say, message-transmission rates
and latencies?;

Real-time performance of virtual links
between physical and simulated nodes.
Can nodes running in a simulator
server “keep pace” with physical and
emulated nodes elsewhere in the VTB
in terms of sourcing and sinking mes-
sages at a rate and latency, whereby
the system as a whole executes seam-
lessly?; and

Per-node resource overhead of the
SDK’s runtime software. The VTB ab-
straction imposes this overhead on sen-
sor nodes as an experiment runs on the
VTB. The overhead is mainly subsumed
within the SDK’s abstraction layer and
runtime services, manifesting mainly
in terms of memory occupancy.

Performance of virtual links be-
tween physical nodes. The evaluation
strategy here is to establish that virtual
links perform at least as well as real ra-
dio links, giving users the potential to

Physical testbed

3. Per-node memory overhead
of the SDK’s runtime software

1. Real-time performance of virtual
links between physical nodes
(inter-site and intra-site)

2. Real-time performance of
virtual links between physical
and simulated nodes

Figure 5. Overall evaluation strategy.

Contiki

ApplicationApplication

Timing SensingRadioSDK core

Figure 6. Node software configuration used in an SDK evaluation.

Table 1. Message latencies in virtual links under various scenarios; results are averaged
over more than 1,000 messages in each case.

Hardware/OS Physical Radio Intra-site Inter-site

ScatterWeb/TinyOS 75ms 5ms 53ms

TelosB/Contiki 40.2ms 5ms 53ms

iSense/iSense 7ms 5ms 53ms

Table 2. Time for receiving packet bursts
sent from physical to simulated nodes.

Number of pairs Rx time (seconds)

1 0.109

5 0.359

10 0.452

15 0.710

20 0.881

30 1.001

contributed articles

january 2012 | vol. 55 | no. 1 | communications of the acm 89

use any spare capacity to model real
radio characteristics (such as using
a network simulator like OMNeT++
mentioned earlier).

Specifically, we measure the time re-
quired to transmit a message between
two physical nodes in three cases:

˲˲ Baseline, via one-hop physical ra-
dio link;

˲˲ Intra-site, via a virtual link that tra-
verses from one node to a PC via direct
universal asynchronous receiver/trans-
mitter (UART) connection, then to a
second PC via Gigabit Ethernet, and
finally to the second node via UART
again; and

˲˲ Inter-site, via a virtual link, as with
intra-site, except it uses the Internet
instead of Gigabit Ethernet, intercon-
necting a site in Lübeck, Germany,
with another site in Lancaster, U.K.

We examine these three cases on
three different hardware platforms:
ScatterWeb, TelosB, and iSense (see
Table 1). In both the intra-site and
inter-site cases the back-end message
transport systems represent the domi-
nant cost, so the results across all plat-
forms are similar. The main observa-
tion is that intra-site is significantly
faster than using physical hardware
radios for all three platforms consid-
ered, demonstrating the viability of
emulating sensor-node communica-
tion in VTBs. Due to the raw speed ad-
vantage a generous amount of spare
capacity is available for the model-
ing-link characteristics and radio-
contention scenarios prior to packet
delivery. Inter-site offers less spare
capacity; the relatively slow times are
attributable to our current VTB im-
plementation’s use of Simple Object
Access Protocol (SOAP) encapsula-
tion for messages sent across the In-
ternet. Even so, at least in the case of
ScatterWeb/TinyOS, the VTB provides
significant spare capacity in which to
model radio characteristics. In the
future, we expect more efficient trans-
port protocols to provide considerably
larger spare capacity; raw ping times
between the two sites in question sug-
gest approximately 23ms of one-way
latency on average.

Virtual links between physical and
simulated nodes. In this experiment
we use a physical testbed of 30 iSense
nodes connected via Ethernet to an
Intel dual-core 2.5Ghz PC with 3GB of

RAM running the Shawn WSN simu-
lator engine. We execute scenarios in
which varying numbers of physical
nodes connect one-to-one to “part-
nered” simulated nodes in the Shawn
environment. We then measure how
well the simulated nodes “keep up”
with the physical nodes sending pack-
ets at realistic rates. To model a realis-
tically demanding scenario, we employ
packet bursts of 10B x 20B packets with
5ms inter-packet gaps. These bursts
represent a far higher data rate than
would be encountered in a typical
WSN-based experimental scenario.

Given this setup, we obtained the
results in Table 2 for different num-
bers (one to 30) of active sender-re-
ceiver pairs. The “Rx time” figure, or
time to receive all packets, for the sin-
gle-pair case shows a 10-packet burst
is received in 0.109 seconds. Given
that most realistic low-power WSN
application scenarios employ sample
periods on the order of seconds, this
figure is perfectly acceptable. Fur-
thermore, as the number of pairs in-
creases, the overhead scales very well,
so despite the inherent serialization
imposed by the simulator (any event-
based simulator would be the same),
the receiving rate remains well within
the operating range of typical experi-
mental scenarios.

Per-node memory overhead. The
per-node memory overhead of the
SDK’s runtime software is incurred
primarily by its common abstraction
layer. To evaluate memory overheads,
we instrument a typical sensor network
application in which nodes sample
data every five seconds, sending it to a
parent node and also forwarding data
received from child nodes. We imple-
ment the application twice: once us-
ing only native OS facilities, represent-
ing the baseline, and once using the
SDK along with the chosen operating
system.c As outlined in Figure 6, the
SDK-based implementation uses ab-
straction-layer APIs for radio commu-
nication, including the radio-stacking
framework, sensing data input, and
timing. Both implementations run on
TelosB motes with 48KB of program
memory and 10KB of RAM.

c	 We used Contiki10 for the measurements re-
ported here but found similar results through
other operating systems.

Within these categories of memory
the SDK’s overhead is measured as
follows:

Program memory overhead. From the
machine code implementing the com-
mon abstraction layer; in our test ap-
plication, it consumes 5,331B (10.8%
of total program memory) compared to
24,750B by Contiki and 950B by the ap-
plication itself; and

RAM Overhead. The amount associ-
ated with the SDK in the example appli-
cation is 356B (3.6% of total RAM) com-
pared to 1,200B by Contiki and 368B by
the application itself.

These figures show that achieving
the convenience of a common ab-
straction layer over all platforms and
VTB operation modes—physical, sim-
ulated, and emulated—comes at very
reasonable cost; the overheads are
sufficiently low as to be a minimal im-
pediment on current hardware. More-
over, memory costs are incurred on a
pay-for-what-you-use basis depending
on which parts of the common ab-
straction layer are employed in a giv-
en experiment, per our component-
based approach.

Conclusion
We have proposed and motivated the
VTB abstraction, offering compre-
hensive fidelity/flexibility trade-offs in
WSN testbed-based experimentation,
as well as the benefits of a federated
physical testbed environment.

The VTB implementation is op-
erational and used by an increasing
number of experimenters worldwide.
We are also developing additional ex-
tensions to “harden” it into a more
widely available public facility. We
are also exploring more experimental
scenarios, particularly those involv-
ing virtual mobility.3

The underlying federated platform
is growing beyond the nine original
sites established by the WISEBED proj-
ect. In particular, a “smart city” site in
Santander, Spain, developed by the
SmartSantander project (EU FP7 proj-
ect ICT-257992, www.smartsantander.
eu), is being added to the federation
and will make available physical sen-
sors already deployed in a real-world
environment. In addition, universities
in Brazil and Argentina are in the pro-
cess of becoming WISEBED sites and
will enable us to further broaden the

90 communications of the acm | january 2012 | vol. 55 | no. 1

contributed articles

federation approach, push scalability,
and increase heterogeneity.

Full documentation of all systems
and interfaces discussed here, along
with the source code of the imple-
mentations, is available at http://www.
wisebed.eu.

Acknowledgments
This work was partially supported by
the European Union under contract
IST-2008-224460 (WISEBED). We would
like to acknowledge all those who con-
tributed to the design and implemen-
tation of the VTB concept in particular
and to WISEBED in general. 	

References
1.	B aumgartner, T., Chatzigiannakis, I., Danckwardt,

M., Koninis, C., Kröller, A., Mylonas, G., Pfisterer,
D., and Porter, B. Virtualising testbeds to support
large-scale reconfigurable experimental facilities. In
Proceedings of the Seventh European Conference on
Wireless Sensor Networks, Lecture Notes in Computer
Sciences, vol. 5970, J. Silva, B. Krishnamachari, and
F. Boavida, Eds. (Coimbra, Portugal, Feb. 17–19).
Springer, Berlin/Heidelberg, 2010, 210–223.

2.	B ernat, J. SmartSantander: The path towards the
smart city vision. In Proceedings of the First ETSI
M2M European Telecommunications Standards
Institute Machine to Machine Workshop (Sophia
Antipolis, France, Oct. 19–20, 2010).

3.	B raun, T., Coulson, G., and Staub, T. Towards virtual
mobility support in a federated testbed for wireless
sensor networks. In Proceedings of the Sixth
Workshop on Wireless and Mobile Ad Hoc Networks
(Kiel, Germany, Mar. 10–11, 2011).

4.	 Chun, B.N., Buonadonna, P., AuYoung, A., Ng, C.,
Parkes, D.C., Shneidman, J., Snoeren, A.C., and Vahdat,
A. Mirage: A microeconomic resource allocation
system for sensornet testbeds. In Proceedings of
the Second IEEE Workshop on Embedded Networked
Sensors (Sydney, May 30–31). IEEE Computer Society
Press, Washington, D.C., 2005, 19–28.

5.	 Coalesenses GmbH. iSense. Lübeck, Germany, 2006;
http://www.coalesenses.com

6.	 Cooperating Objects Network of Excellence.
Common Abstractions for Testbed Federation. FP7-
ICT-2007-2-224053, 2011; http://www.cooperating-
objects.eu/fileadmin/research/testbed-federation/
CONET_D33.pdf

7.	 Coulson, G., Blair, G., Grace, P., Taiani, F., Joolia, A.,
K. Lee, K., Ueyama, J., and Sivaharan, T. A generic
component model for building systems software. ACM
Transactions on Computer Systems 26, 1 (Mar. 2008),
1–42.

8.	 Crossbow. MicaZ. Milpitas, CA, 2007; http://www.xbow.
com/Products/productdetails.aspx?sid=164

9.	D udek, D., Haas, C., Kuntz, A., Zitterbart, M., Krüger, D.,
Rothenpieler, P., Pfisterer, D., and Fischer, S. A wireless
sensor network for border surveillance (demo). In
Proceedings of the Seventh ACM Conference on
Embedded Networked Sensor Systems (Berkeley, CA,
Nov. 4–6). ACM Press, New York, 2009, 303–304.

10.	D unkels, A., Gronvall, B., and Voigt, T. Contiki: A
lightweight and flexible operating system for tiny
networked sensors. In Proceedings of the 29th Annual
IEEE International Conference on Local Computer
Networks (Tampa, FL, Nov. 16–18). IEEE Computer
Society Press, Washington, D.C., 2004, 455–462.

11.	D utta, P., Hui, J., Jeong, J., Kim, S., Sharp, C., Taneja,
J., Tolle, G., Whitehouse, K., and Culler, D. Trio:
Enabling sustainable and scalable outdoor wireless
sensor network deployments. In Proceedings of
the Fifth International Conference on Information
Processing in Sensor Networks (Nashville, Apr. 19–21).
ACM Press, New York, 2006, 407–415.

12.	E mbedded Networks Laboratory. Tutornet Project: A
Tiered Wireless Sensor Network Testbed. University of
Southern California, Los Angeles, 2009; http://enl.usc.
edu/projects/tutornet/

13.	E rtin, E., Arora, A., Ramnath, R., Naik, V., Bapat, S.,

Kulathumani, V., Sridharan, M., Zhang, H., Cao, H., and
Nesterenko, M. Kansei: A testbed for sensing at scale.
In Proceedings of the Fifth International Conference
on Information Processing in Sensor Networks
(Nashville, Apr. 19–21). ACM Press, New York, 2006,
399–406.

14.	F ekete, S. P., Kröller, A., Fischer, S., and Pfisterer, D.
Shawn: The fast, highly customizable sensor network
simulator. In Proceedings of the Fourth International
Conference on Networked Sensing Systems
(Braunschweig, Germany, June 6–8). IEEE Computer
Society Press, Washington, D.C., 2007.

15.	G irod, L., Ramanathan, N., Elson, J., Stathopoulos,
T., Lukac, M., and Estrin, D. Emstar: A software
environment for developing and deploying
heterogeneous sensor-actuator networks. ACM
Transactions on Sensor Networks 3, 3 (Aug. 2007).

16.	G irod, L., Stathopoulos, T., Ramanathan, N., Elson,
J., Estrin, D., Osterweil, E., and Schoellhammer, T. A
system for simulation, emulation, and deployment of
heterogeneous sensor networks. In Proceedings of
the Second International Conference on Embedded
Networked Sensor Systems (Baltimore, Nov. 3–5).
ACM Press, New York, 2004, 201–213.

17.	G lobal Environment for Network Innovations. GENI-
fying and Federating Autonomous Kansei Wireless
Sensor Networks Technical Report. Ohio State
University, Columbus, OH; http://groups.geni.net/geni/
wiki/KanseiSensorNet

18.	H andziski, V., Kopke, A., Willig, A., and Wolisz, A.
Twist: A Scalable and Reconfigurable Wireless Sensor
Network Testbed for Indoor Deployments, Technical
Report TKN-05-008. Technische Universität Berlin,
Berlin, Germany, Nov. 2005.

19.	H ill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., and
Pister, K. System architecture directions for networked
sensors. SIGOPS Operating Systems Review 34, 5
(Nov. 2000), 93–104.

20.	H urni, P., Wagenknecht, G., Anwander, M., and Braun,
T. A testbed management architecture for wireless
sensor network testbeds (TARWIS). In Proceedings of
the Seventh European Conference on Wireless Sensor
Networks, Posters, and Demos (Coimbra, Portugal,
Feb. 17–19). Springer-Verlag, Berlin/Heidelberg, 2010.

21.	 Information Sciences Institute. The Network
Simulator NS-2, 2007; University of Southern
California, Los Angeles; http://www.isi.edu/nsnam/ns/

22.	L evis, P., Lee, N., Welsh, M., and Culler, D. Tossim:
Accurate and scalable simulation of entire TinyOS
applications. In Proceedings of the First International
Conference on Embedded Networked Sensor Systems
(Los Angeles, Nov. 5–7). ACM Press, New York, 2003,
126–137.

23.	L i, W., Zhang, X., Tan, W., and Zhou, X. H-TOSSIM:
Extending TOSSIM with physical nodes. Wireless
Sensor Networks 1, 4 (Nov. 2009), 324–333.

24.	L ipphardt, M., Hellbrck, H., Pfisterer, D., Ransom, S.,
and Fischer, S. Practical experiences on mobile inter-
body-area-networking. In Proceedings of the Second
International Conference on Body Area Networks
(Florence, Italy, June 11–13). Institute for Computer
Sciences, Social-Informatics and Telecommunications
Engineering, Brussels, 2007.

25.	 Memsic Corporation. TelosB. Andover, MA. 2005;
http://www.memsic.com/support/documentation/
wireless-sensor-networks/category/7-datasheets.
html?download=152%3Atelosb

26.	Ö sterlind, F., Dunkels, A., Voigt, T., Tsiftes, N., Eriksson,
J., and Finne, N. Sensornet checkpointing: Enabling
repeatability in testbeds and realism in simulations.
In Proceedings of the Sixth European Conference on
Wireless Sensor Networks (Cork, Ireland, Feb. 11–13).
Springer-Verlag, Berlin/Heidelberg, 2009, 343–357.

27.	 Park, S., Savvides, A., and Srivastava, M.B. Sensorsim:
A simulation framework for sensor networks. In
Proceedings of the Third ACM International Workshop
on Modeling, Analysis, and Simulation of Wireless and
Mobile Systems (Boston, Aug. 6–11). ACM Press, New
York, 2000, 104–111.

28.	 Porter, B., Coulson, G., and Roedig, U. Type-safe
updating for modular WSN software. In Proceedings
of the Seventh IEEE Conference on Distributed
Computing in Sensor Systems (Barcelona, June
27–29). IEEE Press, Washington, D.C., 2011, 1–8.

29.	 Project Sun SPOT. Oracle Labs, Redwood Shores, CA,
2006; http://www.sunspotworld.com

30.	S ensLAB. Very Large-Scale Open Wireless Sensor
Network Testbed. Lyon, France, 2010; http://www.
senslab.info/

31.	S taub, T., Gantenbein, R., and Braun, T. Virtualmesh:
An emulation framework for wireless mesh and ad

hoc networks in omnet++. Simulation: Transactions of
the Society for Modeling and Simulation International
(special issue on software tools, techniques, and
architectures for computer simulation) (Jan. 2011),
66–81.

32.	W eiser, M. Some computer science issues in ubiquitous
computing. Commun. ACM 36, 7 (July 1993), 75–84.

33.	W en, Y., Zhang, W., Wolski, R., and Chohan, N.
Simulation-based augmented reality for sensor
network development. In Proceedings of the Fifth
International Conference on Embedded Networked
Sensor Systems (Sydney, Nov. 6–9). ACM Press, New
York, 2007, 275–288.

34.	W erner-Allen, G., Swieskowski, P., and Welsh, M.
Motelab: A wireless sensor network testbed. In
Proceedings of the Fourth International Conference
on Information Processing in Sensor Networks (Los
Angeles, Apr. 25–27). IEEE Press, Piscataway, NJ,
2005.

35.	W ISEBED Project. Wireless Sensor Network Testbeds.
Lübeck, Germany; http://www.wisebed.eu/

36.	W u, H., Luo, Q., Zheng, P., He, B., and Ni, L.M.
Accurate emulation of wireless sensor networks.
In Proceedings of Network and Parallel Computing
(Wuhan, China, Oct. 18–20). Springer-Verlag, Berlin/
Heidelberg, 2004, 576–583.

Geoff Coulson (geoff@comp.lancs.ac.uk) is a professor
of distributed computing in the School of Computing and
Communications in the Faculty of Applied Sciences at
Lancaster University, Lancaster, U.K.

Barry Porter (barry.porter@comp.lancs.ac.uk) is a
research associate in middleware and systems research
in the School of Computing and Communications in the
Faculty of Applied Sciences at Lancaster University,
Lancaster, U.K.

Ioannis Chatzigiannakis (ichatz@cti.gr) is director of
Research Unit 1 of the Computer Technology Institute &
Press and adjunct faculty in the Computer Engineering &
Informatics Department of the University of Patras, Rion,
Greece.

Christos Koninis (koninis@cti.gr) is a research fellow at
Research Unit 1 of the Computer Technology Institute &
Press and a Ph.D. candidate in the Computer Engineering
& Informatics Department of the University of Patras,
Rion, Greece.

Stefan Fischer (fischer@itm.uni-luebeck.de) is a
professor of networks and distributed systems in the
Institute for Telematics of the University of Lübeck,
Lübeck, Germany.

Dennis Pfisterer (pfisterer@itm.uni-luebeck.de) is a
senior researcher and tenured lecturer in the Institute of
Telematics at the University of Lübeck, Lübeck, Germany.

Daniel Bimschas (bimschas@itm.uni-luebeck.de) is an
assistant researcher in the Institute of Telematics at the
University of Lübeck, Lübeck, Germany, and lead software
engineer of the WISEBED WSN testbed reference
implementation and co-author of the WISEBED APIs.

Torsten Braun (braun@iam.unibe.ch) is professor
of computer science and head of the research group
Computer Networks and Distributed Systems at the
University of Bern, Bern, Switzerland.

Philipp Hurni (hurni@iam.unibe.ch), Markus Anwander
(anwander@iam.unibe.ch), and Gerald Wagenknecht
(wagen@iam.unibe.ch) were all Ph.D. students in Braun’s
research group where they developed the TARWIS system.

Sándor P. Fekete (s.fekete@tu-bs.de) is a professor of
algorithmics in the Computer Science Department of the
Braunschweig Institute of Technology, Braunschweig,
Germany.

Alexander Kröller (a.kroeller@tu-bs.de) is an assistant
professor of algorithmics in the Computer Science
Department of the Braunschweig Institute of Technology,
Braunschweig, Germany.

Tobias Baumgartner (t.baumgartner@tu-bs.de) is
a research scientist in the Algorithms Group of the
Computer Science Department of the Braunschweig
Institute of Technology, Braunschweig, Germany.

© 2012 ACM 0001-0782/12/01 $10.00

