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Abstract
In this document we present an initial design that accommodates ‘virtual
mobility’ into testbeds for wireless sensor networks. The virtual mobility of
physical, simulated or emulated nodes is treated in a uniform manner by
embedding the nodes in a virtual space. The virtual space is formed by a
simulation model and handles all the traffic from the nodes. The traffic of
physical nodes is therefore intercepted and redirected to this model. We
discuss the aspects of ‘virtual mobility’ and provide an initial design that
supports ‘virtual mobility’ across a federated testbed for wireless sensor
networks.
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1 Introduction
Research on wireless sensor networks (WSNs) has grown rapidly in re-
cent years, and large-scale experimental deployments of WSNs are now
becoming widespread [1]. This rapid growth has led to a strong emerg-
ing requirement for flexible experimental facilities to support not only the
design and evaluation of new protocols and mechanisms for WSNs, but
also the planning of large-scale, real-world, WSN deployments. To this
end, a number of testbeds for WSNs have been built, among them the
WISEBED testbed [2] (see www.wisebed.eu) that forms the background
of the present proposal.
WISEBED is an extremely flexible testbed that supports experimentation at
all levels from low-level communications to applications. It addresses the
need for flexibility through the concept of virtual testbeds, as discussed in
Section 3.2, in which physical, simulated and emulated testbed elements
can be freely mixed. So far, WISEBED has explored the virtualisation of a
number of key aspects of the testbed environment, but the area of virtual
mobility has been identified as an area that needs further development.
This document is therefore an attempt to further explore virtual mobility
in the WISEBED context and to set out a roadmap for its integration into
WISEBED.
The remainder of this proposal is structured as follows. In Section 2, we
survey relevant related work and then, in Section 3, we provide back-
ground on the key WISEBED-derived concepts needed on which to build
virtual mobility. Then, in Section 4 we discuss the concept of virtual mobil-
ity in detail and consider general issues for the design of a support infras-
tructure to support virtual mobility. Then, in Section 5 we put froward an
‘straw man’ design for a virtual mobility infrastructure, raising further de-
sign issues as we proceed. Finally, in Section 6 we offer our conclusions
and discuss the way forward.
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2 Related work
The research community has so far relied on three main approaches to the
design and construction of WSN testbeds: physical testbeds, simulation
and (to a much lesser extent) emulation:

• Physical testbeds (e.g. [3, 4, 5, 6, 7, 8]) are extremely useful for the
high-fidelity evaluation of mature WSN designs, and for the detailed
planning of real-world deployments. However, physical testbeds for
WSN systems tend to be small in scale, expensive to maintain, and
time-consuming to set up. They are also typically lacking in flexibility,
often offering only a single, fixed, connectivity topology or being lim-
ited in their support for heterogeneity (e.g., offering only a single type
of sensor node, radio, operating system or programming language).
They also tend to be limited in their programmability at lower levels of
the system (e.g., many use fixed OSs and networking stacks). Fur-
thermore, they are often unsuited to experimentation scenarios that
require repeatability of experiments, as many relevant operating pa-
rameters are outside the user’s control (e.g. local radio interference
from infrastructure or other experiments).

• Simulation (e.g. [9, 10, 11]) offers complementary characteristics: it
is useful for quickly trying out new ideas, and for investigating the be-
haviour of new protocols and mechanisms in varied topologies, at a
large scale and in a repeatable manner. However, the big drawback
of simulation is its lack of fidelity – e.g., it is often not realistic to sim-
ulate fully at the instruction execution level, or with high fidelity radio
or power consumption characteristics. While such limitations are not
necessarily problematic in traditional network environments, where
simulators such ns2 [11] are prominent, they are serious drawbacks
in WSN environments where resource scarcity and incidental phys-
ical characteristics are of the essence. Therefore, simulation is of
limited use in planning the practicalities of real-world WSN systems
and deployments.

• Emulation (e.g. [12, 13]) is situated between the end points of phys-
ical reality and simulation. Whereas simulation abstractly models a
target system, emulation duplicates the functionality of one system
in terms of another. It is therefore capable of much greater fidelity
than simulation, while potentially also offering greater flexibility than
a purely physical testbed. Emulation is a much less exploited ap-
proach in the WSN testbed context, but one for which there is much
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potential. For example, emulation in the form of network overlay tech-
nology could be used to support different inter-node connectivity pat-
terns in a physical testbed; or, a battery-based power supply on a
physical node could be emulated by interposing a mains electricity
powered hardware module that degrades power over time.

In the following sections we examine related work—i.e. work related to
virtual mobility—in each of these areas in turn.

2.1 Physical wireless sensor network testbeds
Physical testbeds allow us to perform experiments in real-world environ-
ments and have been succesful for developing applications and protocols
in the Internet. PlanetLab [14] is a global research network that supports
the development of new network services. Since the beginning of 2003,
more than 1,000 researchers at top academic institutions and industrial
research labs have used PlanetLab to develop new technologies for dis-
tributed storage, network mapping, peer-to-peer systems, distributed hash
tables, and query processing. PlanetLab currently consists of more than
1000 nodes at more than 500 sites. PlanetLab is rather suited for exper-
iments on application level and for overlay networks. PlanetLab provides
only little support for wireless network applications and protocols. In [15]
the authors describe a mobile node running the PlanetLab software en-
abling its inclusion into the PlanetLab network but this does not support
mobility per-se, just the inclusion of mobile communication technologies
(e.g. UMTS).
A number of testbed activities on European level aim to build pan-
European testbed infrastructures for future Internet research [16]. These
projects are running under the FIRE (Future Internet Research and Ex-
perimentation) umbrella. Most of them such as OneLab [17], PII [18], and
Federica [19], aim at fixed networks. PII implements an infrastructure for
federating (fixed network) testbeds. It aims to develop a common control
framework to interconnect and federate different testbeds. Federica is de-
veloping an European testbed infrastructure based on optical transmission
facilities and nodes, which are capable of virtualization to host these ex-
perimental activities on future Internet architectures and protocols. There
is no support for wireless or mobile networks. Onelab is based on Plan-
etLab technology and covers European PlanetLab sites. An activity within
Onelab addresses wireless network testbeds and is based on the ORBIT
testbed [20]. ORBIT provides a configurable indoor radio grid for con-
trolled experimentation and an outdoor wireless network for testing under
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real-world conditions. The indoor radio grid offers a controlled environment
as an isolated network, in which background interferences can be injected.
Although the 20x20 grid of nodes offers a large variety of different topolo-
gies, it is probably too restrictive for many scenarios, and mobility tests are
even more limited. Furthermore, the scarce ORBIT resources may be not
available for all experiments. ORBIT does not comprehensively address
mobility and is rather focused on wireless mesh network like testbeds.
Experimentation in wireless mesh networks (WMNs) has also been quite
popular during recent years. Reference [21] gives a good overview of ear-
lier wireless mesh network testbeds. Several testbeds and experiments
have been established to explore and evaluate wireless mesh networks in
campus and city networks [22]. Experiments with real-world deployments
have proven the usability of directional antennas for wireless radio net-
works to connect nodes over long distances [23]. Heraklion MESH [24],
WildNet [25], and Quail Ridge Reserve WMN [26] successfully intercon-
nect nodes by directional antennas, providing cheap, stable and robust
broadband network access using low-cost radio technology. DOME (Di-
verse Outdoor Mobile Testbed) has been built for large-scale outdoor ex-
perimentation and monitoring in a vehicular network [27] based on wireless
mesh technology. In [28] throughput experiments using trains in a net-
work of wireless access points have been performed. These data rather
served as input for more comprehensive simulation models. In the case of
APE (Ad hoc Protocol Evaluation) [29] students carry laptops in a coordi-
nated way through buildings and measurements are performed during that
movement. Results are processed by central entities. Reproducibility is
somewhat difficult, since situations of wireless channels may change and
mobility patterns are not exactly the same for each experiment. The Illinois
Wireless Wind Tunnel (iWWT) [30] is a reduced-scale testing environment
for wireless networks implemented in an electromagnetic anechoic cham-
ber. Its main goal is to create a realistic scaled version of the wireless
environment maintaining full control over all relevant parameters that af-
fect the performance of the wireless network like obstructions, interferers,
etc. Mobility is supported by placing the wireless hosts (laptops, PDAs,
sensor nodes) on top of remotely controlled cars. Despite these efforts
for complete control of the RF environment, repeatability of small-scale
experimental results remains elusive due to intrinsic randomness in the
evaluated protocols, and object positioning errors. Several wireless mesh
networks have been built in university campuses, e.g., the DES-Testbed
(Distributed Embedded Systems) [21] at Berlin. Those wireless mesh net-
work testbeds can be easily extended to wireless sensor network testbeds
by directly connecting sensors to the mesh nodes. This approach has also
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been followed in the WISEBED project, see below [31].
Physical wireless sensor network testbeds [3, 4, 5, 6, 7, 8, 32] have been
developed to support high-fidelity evaluation of mature wireless sensor
network designs, and detailed planning of real-world deployments. How-
ever, physical testbeds for WSN systems tend to be small in scale, expen-
sive to maintain, and time-consuming to set up. Mobility is rather difficult to
maintain since the sensor nodes must be controlled and therefore remain
inside a certain region of controller nodes. Moreover, while planning mo-
bility of nodes, accidents must be avoided. Reproducibility of experiments
is challenging, since network conditions may vary significantly in mobile
scenarios. Trio [3] is one of the largest wireless sensor testbeds yet built,
consisting of 557 solar-powered motes. However, Trio was targeted at a
specific application and not designed for multiple or external users.
MoteLab [4] is a smaller indoor camus-based sensor network testbed (fea-
turing 190 Tmote Sky sensor nodes) that was specifically designed for
ease of programming by external users (e.g. it provides a web-based inter-
face and incorporates a hardware backbone for direct node access). How-
ever, like most physical testbeds, it lacks flexibility, providing only homoge-
nous nodes and a fixed connectivity topology. TWIST [5] has around 200
nodes, with a degree of heterogeneity and a 3-tier network topology that
is configurable to a limited extent. TutorNet [6] (with around 100 nodes)
also uses a three-tier topology but without any configurability. However,
it has good user support with command-line tools enabling the control of
individual nodes, and a system for user authorisation.
Intel SensorNet [7] (now discontinued) is an indoor sensor network testbed
that featured 100 MicaZ sensor nodes in the Berkeley Intel Research facil-
ities. It allows resource allocation between multiple users submitting their
jobs to be scheduled and executed in the sensor testbed.
CitySense [33] is an urban (both indoor and outdoor) sensor network
testbed, consisting of 100 wireless sensors deployed across a city, such
as on light poles and buildings. Each node consists of an embedded PC
with WiFi and various sensors for monitoring weather conditions and air
pollutants. There are also a few recent initiatives that apply the concept
of federation to WSN testbeds. For example, [34] combines the infras-
tructure and software of the Kansei testbed with the GENI facility [35] to
provide a unified solution. Kansei [8] currently provides around 200 sensor
nodes, with gateway stations attached to each one of the sensor nodes.
Kansei features a web-based interface and supports the visualisation of
sensor readings and remote debugging. The Senslab project [36] aims to
unify four discrete heterogeneous testbeds into a single one of 1000 nodes.
SENSEI [37] aims to provide a Pan-European test platform, enabling large-
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scale experimental evaluation and execution of field trials - providing a tool
for long term evaluation of the integration of sensor and actuator networks
into the Future Internet. While all these wireless sensor network testbeds
allow experiments in real-world scenarios, mobility support is not available.
One approach to the support of mobile wireless sensor network testbeds is
to carry nodes by robots within a controlled testbed environment. TrueMo-
bile (Mobile Emulab wireless sensor network testbed, [38]) is an extension
to the popular EmuLab wireless ad-hoc networks testbed. Robots carry
motes and single board computers through a fixed indoor field of sensor-
equipped motes, all running the user’s selected software. MiNT-m [39] is a
testbed designed to be deployed in small environments. MiNT-m consists
of nodes comprising a wireless computing device and a mobile robot for
physical movement. The nodes are controlled by a control server using
a different frequency range than the nodes are using for their inter-node
communication. The mobile nodes are each confined to a sector in which
they can move, lest the wires connecting to the PCs entangle. MiNT-m
does not provide a localization system, robots are tracked by cameras re-
porting to tracking server. Reference [40] describes a wireless sensor net-
work testbed for mobile data communication. The testbed is implemented
with one base station node, one ‘data mule’ and five sensor nodes, where
data mules move in a random manner through a community of fixed sen-
sor nodes. When the mule comes within range of each sensor node, it
collects the available data. After collecting data from all the sensor nodes,
the mule returns to a central node, where it uploads all the data collected.
The motes are connected to the central node through a LAN. The motes’
behavior when communicating with the mule can be monitored in real time.

2.2 Simulation environments for wireless sen-
sor networks

A number of simulators have been developed and/or extended to allow
modeling and simulation of WSNs. Several simulators for wireless sensor
networks [41, 42, 9, 10, 43, 11] have been implemented and are widely
used in the research community. Some of them simulate rather application
level behaviour and do not sufficiently simulate wireless sensor network
characteristics. Another shortcoming is lack of support of application and
system level processing. To address this problem, MSPSim/Cooja [44]
and AvroraZ [45] support the simulation of instruction level processing on
sensor nodes for different hardware platforms such as MSP and MicaZ
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nodes.
There are a few approaches that have attempted to combine physical el-
ements with simulation and emulation in the area of wireless sensor net-
worka. The TOSSIM system [10, 46] has attempted to bridge the gap
between simulation and real-world performance by exploiting the TinyOS
programming model to generate discrete-event simulations directly from
TinyOS component graphs. The resulting platform is primarily a simulator
with a small number of attached physical nodes as opposed to a true inte-
gration in which the simulated and the physical are equal partners. Other
examples of systems in which part of an experiment is conducted in simu-
lation and part on physical hardware are [47, 48, 49, 50]. In [48] and [49]
only the wireless communication channel of the real devices is utilised,
with the rest of the software being executed inside a simulator. In [47]
and [50] the software is executed iteratively on real and simulated devices
with certain arbitration and timing schedules applied. Mobility issues are
not addressed in those systems.
In general, mobility support is rather limited in wireless sensor network
simulation environments, except for the simulators also supporting other
network scenarios such as mobile ad-hoc networks. While many mobil-
ity models have been developed for fixed and wireless network evalua-
tions, little work has been done to extend wireless sensor network simu-
lation tools by mobility models. BonnMotion [51] has developed several
(standard) mobility models such as Random-waypoint or Reference Point
Group Mobility to be integrated into simulation tools such as ns-2, OM-
Net++ and Cooja.

2.3 Emulation for wireless (sensor) networks
As mentioned, emulation is capable of much higher fidelity than simula-
tion, while potentially also offering greater flexibility than a purely physical
testbed. In the case of network emulation, the characteristics of the un-
derlying network is reproduced, e.g., by use of simulation or system-level
implementation. Emulation can approximate the real environment more
accurately than pure simulation. In particular, processing delays intro-
duced by applications, operating system and hardware are ignored in most
simulation models. This is, however, important to perform evaluations of
complete systems in real-world environments.
The combination of node virtualization and network emulation has been
proposed by various researchers [52, 53, 54]. The approach presented
in [52] tries to integrate the behaviour of the real network stack and the
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operating system by using virtualized hosts connected through an emula-
tion framework. The virtual hosts are running an L4 microkernel on top of
a real-time kernel. To integrate the wireless network behaviour, the hosts
are connected by the 802.11b network emulator MobiEmu [55]. The wire-
less interface driver has been modified to communicate with the emulator
instead of the physical interface, but keeping the interface to the applica-
tions unaltered. A drawback of the approach is inherited by the use of Mo-
biEmu: The communication is either possible without errors or not at all.
MobiEmu does not model any communication errors. JiST/MobNet [53]
provides a comprehensible Java framework for the simulation, emulation
and real-world testing of wireless ad hoc networks. MobNet is a wireless
extension on top of the Java in Simulation Time (JiST) simulator. The draw-
back of this approach is that most communication software and network
protocol stacks are not written in Java and therefore a further transition to
a real-world system may be necessary afterwards. The network testbed
Emulab [56] provides various experimentation facilities with advanced ex-
periment management controls. For experiments with wired networks, net-
work nodes run standard operating systems (FreeBSD, Linux and Win-
dows XP) and communicate over an emulated network using virtual local
area networks (VLANs) and the emulator Dummynet [57]. Emulab has
been extended to wireless networks [58] by an IEEE 802.11a/b/g testbed.
Several nodes with real wireless interfaces are deployed on the floors of
an office building and can be integrated in an Emulab experiment scenario.
Besides the lack of mobility support, the Emulab wireless testbed suffers
from limited repeatability due to the shared location in an office building
with interferences from productive networks. The wireless network emu-
lator QOMET converts the wireless scenario into a time-series of network
states [59]. This state description is then delivered to Dummynet [57] in
order to emulate the wireless link between end points. As the normal oper-
ating system tools cannot change the wireless parameters of the network,
QOMET is not suitable for testing software that influences the wireless
interface of a node. The newly developed network simulator ns-3 [60] al-
lows the integration of virtualized nodes running native applications and
protocol stacks under the Linux operating system. The virtualized nodes
in ns-3 are connected through a TUN/TAP device of the Linux kernel and
a proxy node to the simulation. However, there is no support to modify
device parameters of the simulation directly and dynamically by the vir-
tualized nodes, especially for wireless devices. OppBSD [61] integrates
the TCP/IP stack of FreeBSD in the network simulator OMNeT++. The
Network Simulation Cradle [62] project provides support for using the real
network stacks of Linux, FreeBSD and OpenBSD with the network sim-
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ulator ns-2. The integration of a real TCP/IP stack provides results that
are closer to a real-world network. Nevertheless, it does not support the
testing of native unaltered applications. When injecting real network traffic
into a network simulator, there is always the problem that the simulation
may not keep pace with the real network. The simulation may be too slow.
In order to cope with the problem of a simulator overload during network
emulation, reference [63] introduces the concept of synchronized network
emulation. They replace real hosts with virtualized hosts using XEN. A
central synchronizer component then controls the time flow of the virtual
hosts by an adapted scheduler for XEN. It keeps them synchronized with
the network simulator OMNeT++ [41]. Synchronized network emulation
represents a valuable extension to avoid scalability problems.
Another interesting approach is a wireless emulator using hardware chan-
nel simulators [64, 65, 66]. In [64] the unaltered network nodes are packed
in radio frequency (RF)-shielded boxes and their radio interfaces are con-
nected to the hardware channel simulator, which then emulates the signal
propagation using a field-programmable gate array (FPGA). The channel
simulator supports directional antennas and mobility. The system pre-
sented in [65] supports 15 nodes operating in a 2.4GHz industrial, sci-
entific and medical (ISM) band. The main advantage of an FPGA-based
wireless emulator is the provided repeatability in combination with a real
media access control (MAC) layer and a realistic physical layer support-
ing multipath fading. The main drawbacks are the costs and the limited
number of nodes. MeshTest [66] is a laboratory-based multi-hop wire-
less testbed that can subject real wireless nodes to reproducible mobile
scenarios. It uses shielded enclosures and an RF matrix switch to dynam-
ically control the attenuation experienced between pairs of nodes. The
testbed is an ideal platform for experimenting with MANET and DTN (de-
lay tolerant networking) implementations, offering convenient experimental
control and data management. The Emulated Wireless Ad Hoc Network
Testbed (EWANT) [67] is a reduced-scale MANET testbed with emulated
RF environment using in-line attenuation and RF multiplexing. Mobility is
simulated by discrete switching between different antennas connected to
the outputs of the 1:4 RF multiplexers attached to the wireless cards.
VirtualMesh [68, 69, 70] provides instruments to test the real communica-
tion software including the network stack inside a controlled environment.
The main concept of VirtualMesh is to intercept and redirect real traffic
generated by real nodes to a simulation model, which then handles net-
work access and the behaviour of the physical medium. VirtualMesh has
been implemented by capturing real traffic through a virtual interface at
the mesh nodes. The traffic is then redirected to the network simulator
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OMNeT++. The network stack is split into two parts: First, the application,
transport and Internet layer are handled by the real/virtualized node. Sec-
ond, at the MAC layer, the traffic is captured by a virtual network interface
and then redirected to the simulation model. The simulation model calcu-
lates the network response according to the virtual network topology, the
propagation model, the background interferences and the current position
of the nodes. Only the MAC layer and the physical medium are simulated.
All the other layers remain unchanged and work just as in a real testbed of
embedded Linux nodes. VirtualMesh has proven to be scalable, to have
minimal influence on throughput and to introduce only negligible delays
(less than 0.4 ms per hop). VirtualMesh combines the advantages of real-
world tests performed on embedded Linux systems with the flexibility and
the controlled environment of a network simulator. The main advantages
are: the real communication software is used, the real network stack is
tested, the effects of temporary unavailable nodes can be evaluated, back-
ground traffic/interferences can be controlled and different mobility tests
can be easily performed. The real implementation of the communication
software can be tested. Accordingly, the behaviour of the Linux network
stack is embedded in a controlled testing environment. There are no irre-
pressible influences on the experiments such as interferences from neigh-
bouring networks and power lines, steel structures of buildings or changing
weather conditions. In addition, the underlying simulated network enables
large-scale experiments. It supports changing topologies and different mo-
bility scenarios. This makes automated testing of the real communication
software with a high variety of scenarios possible. VirtualMesh consists of
an arbitrary number of computers hosting the simulation model and real or
virtualized mesh nodes. A dedicated Ethernet network interconnects the
nodes and the model. The wireless interfaces of the nodes are replaced
by virtual interfaces, which communicate over the service network to the
simulation model. Besides real nodes, the architecture supports virtual-
ized hosts. Host virtualization is performed by XEN, but other virtualiza-
tion techniques could be used too. Host virtualization provides additional
scalability of the system. One standard server machine may hold up to ten
virtual mesh nodes without any problem.
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3 Background on WISEBED

3.1 The WISEBED project
WISEBED (www.wisebed.eu) [2] is a project of the EU FIRE program [16].
Its aim is to provide an infrastructure of interconnected testbeds of large-
scale wireless sensor networks for research and experimentation pur-
poses. The WISEBED experimentation infrastructure interconnects dif-
ferent testbeds across Europe and forms a federation of distributed test
laboratories, interconnects the wireless sensor network testbeds with the
Internet and especially with other testbeds from FIRE in order to provide
a virtual laboratory to enable testing and benchmarking in a controlled
way. WISEBED allows researchers to use the experimentation facilities
remotely, thus reducing the need for a local, private testbed and, more
importantly, reducing the cost for research and integrates simulated and
physical sensor node support large-scale sensor network experiments.
Since WISEBED interconnects heterogeneous and previously incompati-
ble sensor nodes among each other, users are able to set up a testbed with
nodes equipped with different sensors, memory sizes and energy supplies.
WISEBED provides services for allowing algorithms and applications to be
tested in large-scale environments by providing a repository of algorithms,
mechanisms and protocols (Wiselib library) that can be directly used in
future applications and experiments as reference for benchmarking pur-
poses. Within the WISEBED project a sophisticated testbed management
system including federated authentication and authorization using single
sign-on, allocation and reservation of testbeds and sensor nodes, deploy-
ment of experiment software, and experiment monitoring has been devel-
oped. WISEBED introduced the notion of a virtual link, which enables the
interconnection of two different sensor nodes in two remote testbeds as
if they were close to each other. By means of a virtual link, such remote
nodes can communicate directly. Finally, WISEBED has started to inte-
grate mobile nodes into different testbed sites, but full control of mobile
sensors is not yet available.

3.2 The WISEBED approach to virtualisation
As a result of observing the complementary strengths and weaknesses
of the the physical, simulated and emulated approaches, the WISEBED
project has designed an abstract WSN testbed abstraction called virtual
testbeds. Virtual testbeds (henceforth VTBs) offer an abstraction of a
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user-designed, private WSN testbed in which some of the primary testbed
elements are physically real, some are simulated and some are emulated.
The full list of ‘primary elements’ to which we refer, each of which can be
either physical, simulated or emulated, is as follows:

1. Sensors (e.g. temperature or depth sensors).

2. Sensor input (i.e. what the sensors observe, such as the current
temperature or water depth).

3. Nodes (the CPU+memory+radio device to which sensors are at-
tached).

4. Connectivity (which is a function of node location and radio charac-
teristics).

5. Power to nodes.

6. Mobility of nodes.

Users design their VTBs in such a way that their mix of the above physical,
simulated and emulated elements is appropriate to their goals. They then
instantiate their testbed, deploy their software onto it, and observe the
outputs and behaviour of their experimental system as if it were running
on a single physical testbed. The key benefit of the VTB abstraction is that
it allows users to exert fine-grained control over the makeup of their own
personal testbed environment.
To date, the project has explored virtualisation of most of the above pri-
mary elements, but the least explored (apart from ‘Power to nodes’ which
requires specialised hardware development) is virtual mobility – to date
the general issue mobility has only been considered in WiseML and in
simulation environments.

3.3 WISEBED’s federated environment
The VTB abstraction has been implemented in the federated WISEBED
environment. In this implementation, multiple VTBs, e.g. one per user or
one per experiment, can be dynamically instantiated, and are simultane-
ously supported by the WISEBED environment.
A key characteristic of the WISEBED environment is that its underly-
ing physical infrastructure adopts a federated approach that incorporates
physical equipment from a number of different sites across Europe where
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each site communicates with the others via a per-site portal server. Feder-
ation enhances the flexibility of the VTB abstraction in two key dimensions:

• Scalability – this is enhanced by combining physical nodes from dif-
ferent federated sites into a single VTB (of course, when a VTB
needs to be even larger than the combined set of available physi-
cal nodes, scalability can be further enhanced by adding simulated
or emulated nodes).

• Heterogeneity – users can explore highly heterogeneous WSN envi-
ronments by building VTBs that incorporate different kinds of physical
nodes taken from a number of diverse sites to obtain their required
mix.

3.4 WiseML
VTBs are specified by users in terms of an XML schema called WiseML
[71] which supports the specification of the following types of information.
WiseML is in fact a multi-purpose format used throughout the WISEBED
federation for specifying and recording various aspects of experimental
configuration and output data. The generation of WiseML specifications of
VTBs is typically carried out by a GUI-based tool.
The basic shape of a WiseML specification is as follows:

<wiseml version="1.0" xmlns="http://wisebed.eu/ns/wiseml/1.0">

<setup>

...

<defaults>

<node>

<capability> <name>temperature</name>

</capability>

...

</node>

...

</defaults>

<node id="urn:wisebed:node:tud:M4A0P2OV">

</node>

</setup>
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<scenario id="...">

...

</scenario>

<trace id="...">

<timestamp>2</timestamp>

<node id="...">

<data key="temperature">12</data>

</node>

...

</trace>

</wiseml>

As can be seen there are three sections in a WiseML specification which
are further described as follows:

– The setup section describes the experimental setup and the data to be
collected. There are two basic concepts: attributes (compulsory features
of elements, such as name) and capabilities (optional user-defined char-
acteristics such as pressure gradient).
The setup section has three sub-sections as follows:

• setup description – geographical placement of nodes, starting time
information, mobility interpolation

• node-related information – attributes such as position, plus capabili-
ties and default values

• link-related information – attributes such as default RSSI, is-virtual,
etc., plus capabilities and default values, such as LQI.

The general approach is to define defaults for nodes and links, and then
to override the defaults for (presumably small numbers of) non-default
nodes/links.

– The scenario section describes changes to be applied to an experiment
such as simulated node failure (enableNode, disableNode tags tags), sim-
ulated interference at the virtual link level (enableLink, disableLink) or sim-
ulated sensor noise level or failure (achieved by making modifications of
default sensor values). Here is an example:
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<scenario id="...">

<timestamp>0</timestamp>

<enableNode id="..." />

<disableNode id="..." />

<enableLink source="..." target="..." />

<disableLink source="..." target="..." />

<node id="...">

<position>

<x>0</x>

<y>1</y>

<z>2</z>

<phi>0</phi>

<theta>1</theta>

</position>

<data key="lqi">50</data>

</node>

</scenario>

– Finally, the dynamic information section captures actual collected data
such as sensor readings, network layer information (links and rssi values)
or mobility information. For time description, the dynamic information sec-
tion makes use of a timestamp tag, marking moments in time relative to a
global start time specified in the setup section. Intervals can also be em-
ulated, and if data has a continuous characteristic (such as a sine wave)
the user can define an interpolation type in the setup section. Finally, for a
mobility description we can specify positions at successive points with the
user specifying the interpolation type between points. Here is an example:

<trace id="...">

<timestamp>2</timestamp>

<node id="...">

<position>

<x>2</ x><y>4</ y><z>6</ z>

</position>

<data key="ranger">12</data>

<data key="...">...</data>

</node>

<link source="..." target="...">
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<rssi>12</rssi>

<data key="lqi">100</data>

</link>

<timestamp>4</timestamp>

</trace>

3.5 Virtual links
So-called virtual links are an important element in the underpinning of
WISEBED’s VTB concept. They are used to define potential connectiv-
ity between pairs of nodes that are physically distant but virtually close.
Specifying a virtual link in WiseML represents the possibility of 1-hop uni-
directional communication between two nodes in the VTB1. The WiseML
specification of a virtual link includes the UIDs of the nodes that will partic-
ipate in the link, and the link’s capabilities in terms of its LQI, packet error
rate, etc.
Each physical testbed provider in WISEBED uses its own private mech-
anisms (e.g. based on backbone management networks) to implement
the required virtual link machinery, and Internet tunnels between testbeds
are used where the linkage is across sites. A detailed discussion of the
implementation of virtual links is available in the literature [72].
Within the sensor nodes themselves, the WISEBED Software Develop-
ment Kit’s radio stacking framework is used to engineer the end points of
virtual links. This framework is used to deploy ‘pseudo’ radio drivers that
appear to software on the node as ‘real’ radio drivers; however they trans-
parently divert (selected) outgoing packets to the virtual link machinery,
and insert incoming packets arriving from the virtual link machinery.

1So, two virtual links are needed to represent mutual connectivity between two nodes;
this allows us straightforwardly to model situations in which a node A can send to a node
B, but B cannot send to A.
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4 Virtual mobility
This section is structured as follows: first Section 4.1 defines virtual mo-
bility. Section 4.2 then examines the support already offered by WiseML
for the specification of virtual mobility in a VTB environment. Finally, Sec-
tion 4.3 then raises a number of issues that should be addressed in an
infrastructure to support virtual mobility.

4.1 Definition
We define virtual mobility in the context of a WISEBED VTB as follows: a
VTB features virtual mobility if, during the course of a users’s experiment
on the VTB, the positions of nodes (be they physical, simulated, or emu-
lated), as initially specified in the VTB description (i.e. using the WiseML
setup section), change. Note that this definition is in the context of VTB
specifications in which node positions are specified in virtual terms, rela-
tive to the 3-D space defined in the setup section of the VTB’s WiseML
specification.

4.2 Existing virtual mobility support in
WiseML

From Section 3.4, we can see that there is already a degree of support
for mobility in WiseML. To summarise, the mobility related concepts in
WiseML are the following:

• In the setup section there is an interpolation tag that specifies which
type of interpolation (e.g. cubic) should be used between positions
at adjacent timestamps.

• In the scenario section it is possible to specify a new location for a
node at a particular timestamp.

• In the dynamic information section, information on the the post-hoc
mobility of nodes can be recorded just like sensor readings: at cer-
tain moments in time the position of the node is given and in between
an interpolated position can be used.

It therefore seems to be possible to specify virtual mobility for a node by
providing a list of scenarios with increasing timestamps and for each of
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which the coordinates of mobile nodes is made to change. This could, for
example, be derived from a standard mobility model.
The presence of links in the scenario section, however, would seem to con-
siderably complicate the picture because these would have to be changed
in very close coordination with node positions. For virtual mobility a more
likely possibility is to employ only node-related specification and to leave
reachability information to be deduced by a ‘virtual mobility interpreter’ as
discussed in Section 4.3.

4.3 Virtual mobility support in VTBs
The basic concept is this: Where we have a VTB featuring virtual mo-
bility, all communication between virtually mobile nodes and other nodes
(whether virtually mobile or fixed) needs to be channeled through a Virtual
Mobility Interpreter (VMI). The VMI maintains a list of the current (virtual)
locations of all the nodes involved, and communication is channeled to the
VMI using components from the standard virtual link machinery (i.e. via
the SDK’s virtual radio framework and the local physical testbed’s portal
server). When the VMI receives a radio packet it pushes it through a radio
channel model, and thereby defines a virtual area within which the packet
can be heard. The VMI then pushes the radio packet to all nodes within
this virtual area. Again, this pushing is done through the standard virtual
link machinery.
Drilling down into this basic design it is clear that there are many issues
arising:

1. Specification: how do we specify virtual mobility? The most likely
answer is to use WiseML which, as discussed above, seems to have
most or all of the required descriptive capability. But there are other
options such as the ‘BonnMotion format’2. Another option is based
on representing time as intervals3. A further option would be to em-
ploy vector-based descriptions of mobility – these would not need to
rely on interpolation between successive discrete instances of time.

2The BonnMotion format [51] specifies a plain text file, where every line describes the
motion of one host. A line consists of one or more (t, x, y) triplets of real numbers, like:
t1 x1 y1 t2 x2 y2 t3 x3 y3 t4 x4 y4 ... the meaning is that the given node gets to (xk,yk)
at tk; there’s no separate notation for waiting, instead x and y are simply repeated; see
http://www.cs.uni-bonn.de/IV/BonnMotion/. The BonnMotion format is actually conceptu-
ally identical to the WiseML approach.

3The WISEBED project considered this option but made a decision to support the
expression of time only as a series of discrete events.
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And a more left-field option would be to adopt the virtual time concept
proposed by RWTH [63]. At the present time, however, the native
WiseML approach seems to be adequate.

2. Centralised vs node-autonomous specification: As well as the obvi-
ous centralised approach whereby a consolidated mobility specifica-
tion is fed to the VMI, another possibility that might well be useful
is to have individual nodes autonomously determine their own vir-
tual mobility – e.g. according to private scripts owned by each node
(or simply recording their position in the case of a physically mov-
ing physical node). In this case, the individual nodes would need
to continually update the VMI with their current position. The option
of autonomous nodes would also facilitate the modelling of adaptive
mobility – or at least it would delegate the problem of how to adapt
mobility to individual nodes.

3. Static vs dynamic specification: Another design dimension is
whether a mobility specification is fixed and deterministic prior to ex-
periment runtime, or if it may change during runtime. It is not clear at
the moment if the latter case is either feasible or useful.

4. Distributed VMIs: To scale up virtual mobility the obvious approach
is to distribute VMIs – e.g. have one at each physical testbed site
(they could be time synchronised using NTP or PTP). This raises
further questions of how to optimally place VMIs within the physical
infrastructure underlying the VTB to maximise scalability. The com-
munication between VMIs may be a problem – especially if several
are involved – such that it is not immediately clear what would be the
sensitivity of an experiment outcome to the communication latency
between multiple VMIs (and, indeed, between individual nodes and
the VMI or VMIs).

5. VMI realisation: what technology do we use to realise the VMI? One
possible approach would be to use specialised hardware based en-
gines (e.g. as discussed in Section 2.3) to support high resolution
and high throughput of modelled radio channels. However, this ap-
proach is likely to be expensive and it had also been shown not to
scale very well. Another approach, which we currently favour, is to
use a simulator engine such as OMNet++ as the basis of the VMI.
Experience at UBERN has indicated that real-time throughput can
be achieved with this simulator at a reasonable scale [68, 69]4.

4The choice of a realisation for the VMI also impacts to some extent the above-
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6. Scope of a VMI: When we have virtual mobility in a VTB do we have
to force all communication through a VMI - or can we leave some
nodes in the VTB to communicate using their default mechanisms
(such as physical radios, virtual links) outside of the VMI context –
e.g. if some nodes are out of communication range of anything that
might move. But given that nodes are moving how do we know which
areas of the VTB are ‘safe’ from virtual mobility? Maybe we can
deduce this in static mobility scenarios, but presumably not when
nodes can autonomously virtually move.

7. Co-existence of virtual and physical mobility: A special case seems
to emerge when we consider integrating physical mobility into a VTB
that employs virtual mobility (this only arises, of course, in the case of
physical nodes). Here, we want the physical mobility to be consistent
with virtual mobility elsewhere in the VTB so that, for example, if we
have two physical nodes within range of each other, and one moves
physically and the other virtually, but in the same direction and at the
same speed, we expect the (virtual) distance and therefore (virtual)
connectivity between the two to stay the same.

discussed choice of a virtual mobility specification format because a mapping will be
needed from the specification format to the underlying VMI realisation. Our current un-
derstanding, however, is that a mapping from WiseML to the native OMNet++ format is
not a problematic issue.
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5 Outline design
Having considered the issues above we now present our initial design of
an infrastructure to support virtual mobility. This is presented as a ‘straw
man’ for the sake of concreteness in the hope that it will stimulate further
thought and lead to a more refined design.
We proceed by first considering a ‘simple case’ design and then, in the
following section, considering complicating factors and extensions.

5.1 Consideration of the simple case
The main players in our design are as follows (see Figure 1):

• The set of nodes that comprise the VTB.

• The virtual space in which nodes live and in which virtual mobility
takes place.

• A set of VMIs.

• Processes called Portal Server Agents (PSAs) running on the por-
tal servers of each physical testbed site (simulator servers that host
simulated nodes will also have an associated PSA).

Each node has a dynamically-varying coordinate attribute (x, y, z) which
places it somewhere in virtual space; and virtual space is statically divided
up between VMIs5. The individual ‘sub-spaces’ of each VMI slightly over-
lap so that each VMI can ‘see’ nodes just over its border. The motivation
for this is to handle cases where packets travel over borders, and the VMIs
on each side of the border need to be aware of all in-range nodes so that
they can factor them into their modeling of radio interference. We refer

5This raises issues of how to determine the optimal number of VMIs per virtual testbed
space, and how best to divide virtual space among these VMIs. This is for further study,
but heuristics such as the following seem plausible: (i) VMs should be allocated to areas
whose nodes tend to be supported by a common underlying physical testbed; and (ii) VMs
should allocated to areas between which there is not likely to be much virtual mobility. The
question of whether we want to constrain how virtual space is divided up is also for further
study: for example, do we insist that each VMI takes a ‘slice’ of virtual space such that
each has at most two neighbours, or do we allow unconstrained partitions (maybe even
such that a VMI can be responsible for several irregularly-shaped non-contiguous areas)?
Dynamic partitioning for load-balancing purposes is also worth considering (e.g., to cover
extreme situations such as all nodes moving to a single corner of virtual space).



22 IAM-10-004

Portal Server 1 Portal Server 2

sn01 sn02 sn03 sn04 sn05 sn06 sn07

VMI 1 VMI 2
Virtual Space

Sub-space 1 Sub-space 2

in
te

rfe
re

nc
e 

ar
ea

sn01

sn02

sn03

sn04

sn05

sn06

sn07

VMI-T1

PS-T1

PS-T2

Figure 1: General architecture showing the main components with two
PSAs and two VMIs
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to these overlaps between VMI sub-spaces as interference areas and the
non-overlapped areas as core areas.
So, at any given time, each virtually-mobile node is associated with at least
one VMI: we will say that nodes within a VMI’s core area are supervised by
the VMI and that nodes within the VMI’s interference area are secondarily-
supervised by the VMI. We will also say that each node is managed by
some specific PSA at the physical, implementation, level. The ‘supervised
by’ and ‘secondarily-supervised’ mappings will change as the node virtu-
ally moves; but the ‘managed by’ mapping will be invariant as it is part of
the physical infrastructure (barring physical mobility).
The design then incorporates the following structures and functions:

• Each PSA has a table PSA-T1 that maps each of the nodes it is
managing to the node’s current coordinate attribute value.

• Each PSA has a table PSA-T2 that maps each VMI in the system to
the bounding coordinates of the VMI’s associated sub-space.

• Each PSA has a ‘rough’ model of radio propagation for the radio type
supported by the sending node – this is likely to be as simple as the
radius of a circle drawn from the sender’s coordinates6.

• Each VMI has a table VMI-T1 that maps each of the nodes it is super-
vising to the node’s current coordinate attribute value and the PSA
that manages it.

• Each VMI has a detailed model of radio propagation that also han-
dles radio interference issues.

We are now in a position to describe how virtual mobility occurs. We as-
sume here the case where virtual mobility is deterministically defined by a
single mobility script which is interpreted tick-by-tick7 by a so-called script
interpreter8.

1. The script interpreter performs initialisation: it divides virtual space
into a suitable number of sub-spaces, instantiates a VMI for each
of these, and passes each VMI the information it needs to populate

6The ‘rough’ model should tend overestimate the propagation range as overestimates
can be corrected later by the detailed modelling performed by the VMIs.

7These ticks will occur in real-time, but must be of a sufficiently coarse grain that all
the required inter-tick actions have time to occur.

8This may run in any convenient location in the distributed system – e.g., on the portal
server that manages most of the nodes in use in the virtual testbed (if there is such).
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Figure 2: Example packet flow: sn03 sends to sn04 and sn06

its VMI-T1 table (i.e. the list of nodes it is initially supervising and
secondarily-supervising, their initial coordinate attribute values, and
their managing PSA). It also similarly initialises all the involved PSAs.

2. On each tick the script interpreter sends an update of this information
to each VMI. As well as updating node coordinates, this will cause
deletions of nodes from a VMI when nodes moves out of the VMI’s
sub-scope, and additions when nodes move into a sub-scope.

3. On each tick, each VMI sends to each of its associated PSAs the
required information to update the PSA’s PSA-T1 table with new co-
ordinate values for its managed nodes.

Having sketched how virtual mobility works, we are now in a position to
describe what happens when a virtually-mobile node sends a packet (see
Figure 2):

1. When a node sends a packet, the packet is intercepted by the node’s
radio stacking framework which forwards it over the management
backbone to the node’s PSA.

2. The PSA consults PSA-T1 to determine the sending node’s current
coordinate attribute value.
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3. The PSA runs its ‘rough’ model of radio propagation and from this it
derives the bounding coordinates of an area in virtual space likely to
be reachable by the packet.

4. The PSA consults PSA-T2 to derive a list of all the VMIs that own
points in the reachable area – i.e., all VMIs that potentially super-
vise or secondarily-supervise nodes that might be reachable by the
packet.

5. The PSA forwards the packet to all those VMIs.

6. The VMIs push the packet through their radio models; as a re-
sult, they determine the actual, accurate, spatial extent to which the
packet should propagate.

7. The VMIs consult their tables VMI-T1 to determine the set of su-
pervised (but not secondarily-supervised) nodes that currently lie
within this extent and thus the PSAs that are managing each of these
nodes.

8. The VMIs forwards the packet to the respective PSAs.

9. The PSAs forward the packet to the respective receiver nodes.

Finally, we exemplify this protocol with specific reference to Figure 2. Note
that nodes sn03 and sn06 are in the interference areas of their respective
sub-spaces: sn03 is supervised by VMI 1 and secondarily-supervised by
VMI 2; whereas sn06 is supervised by VMI 2 and secondarily-supervised
by VMI 1 (the step numbers in the below correspond to those above).

1. Node sn03 sends a packet; the packet is intercepted and transferred
to PSA 1 (Figure 2, step 1).

2. PSA 1 consults PST1 to determine sn03’s location.

3. PSA 1 runs its ‘rough’ propagation model and determines the bound-
ing coordinates of the area in virtual space likely to be reachable by
the packet.

4. PSA 1 determines that the packet should be forwarded to both VMI
1 and VMI 2 (Figure 2, step 2).

5. PSA 1 forwards the packet to VMI 1 and VMI 2.
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6. The propagation of the packet is modelled by both VMIs (Figure 2,
step 3) using a suitable propagation model and taking interference
into account.

7. As a result, VMI 1 determines that the packet should be received by
sn04. VMI 1 also determines that the packet should be received by
sn06, but as it only secondarily-supervises this node it should not
forward the packet in this case. In parallel, VMI 2 determines that the
packet should be received by sn06.

8. VMI 1 forwards the packet to PSA 2 (destination: sn04); and VMI 2
also forwards the packet to PSA 2 (destination: sn06) (Figure 2, step
4).

9. PSA 2 forwards the packets respectively to sn04 and sn06 (Figure 2,
step 5).

5.2 Consideration of more complex cases
The above design fails to consider a number of complicating factors such
as:

• Time and race conditions

• Automomously mobile nodes

• Accommodating physical mobility alongside virtual mobility

• Optimising by avoiding use of the VMI where possible.

We now consider such cases.

5.2.1 Time and race conditions

Race conditions can occur in the above design. For example, it may be that
a VMI ‘loses’ a node (removed by the script interpreter’s update) just before
a PSA sends it a message for that node. More generally, race conditions
occur on each ‘tick’ when the script interpreter initiates a cascading update
to the VMIs (node position updates, nodes arrive at/ leave a VMI), and then
from the VMIs to the PSAs (node position updates).
Essentially, there are two independently time-triggered processes going
on that may interfere with each other:
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• The tick-based updates discussed above, and

• Nodes sening packets.

We need to identify in detail the pathological effects that might arise from
such factors and design consistency mechanisms that address the prob-
lems without significantly slowing the packet propagation process (e.g. can
we simply update the PSAs first and then if a VMI gets a message for node
it doesn’t currently supervise, it can wait until that node arrives?).
In case it is not possible to completely solve these issues, we should log
packets lost due to infrastructure errors and clearly distinguish these from
application errors when reporting to the user.

5.2.2 Automomously mobile nodes

In the above outline design, we assumed that virtual mobility was driven by
a central script interpreter. We now consider the case in which each node
autonomously determines its mobility, meaning that nodes must proac-
tively inform PSAs/ VMIs of their virtual positions.
Our initial view is that this can be achieved relatively straightforwardly:
rather than position updates coming from the script interpreter, they now
come from each individual node. The main impact that this would seem to
have would be on the consistency mechanisms discussed in Section 5.2.1.
It may be that different mechanisms are needed for the script interpreter
and autonomous node cases.

5.2.3 Accommodating physical mobility

Physical mobility would probably be implemented by attaching a sensor
mote to some sort of robotic device that could move around a floor, and
could also host an out-of-band wireless network that could communicate
with the management backbone network used for the rest of the system.
We would then apply a design similar to that discussed in Section 5.2.2
in which autonomous nodes (including the physically mobile ones) repeat-
edly report their positions to the PSAs/ VMIs. In this case, the reporting
process would have to apply a mapping from the floor coordinates to the
virtual space’s coordinate system. This mapping, which would be estab-
lished statically at the start of the experiment, would correspond to exactly
where in the virtual space the floor space (and thus the the limits of the
node’s mobility) was supposed to be located.
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When a physically mobile node sent a message, it would be handled by
the usual PSA/VMI machinery and would therefore have exactly the same
semantics as the virtually mobile case. The same would apply for the case
of a physically mobile node receiving packets from virtually mobile nodes.
The same would even apply for one physically mobile node communicating
with another physically mobile node.

5.2.4 Optimising by avoiding use of the VMI where pos-
sible

It seems that a situation may often arise in which virtual mobility is confined
to a small area within virtual space, In such a situation, it would seem
unnecessary to direct all traffic in the virtual testbed through VMIs – it
would seem in fact to be much preferable to avoid using VMIs in ‘static’
areas and instead use the default communication mechanism such as the
physical radio. The problem, however, is that to the extent that virtual
mobility is unpredictable, it is impossible to be sure that on the next tick a
mobile node may not end up at any arbitrary point in virtual space – so it
would seem that VMI-mediated communication must be used universally
to prepare for such an eventuality.

5.2.5 Integration of energy measurements and models

Wireless sensor network deployments are usually energy-constrained. A
testbed should therefore support energy measurements and evaluations.
One option is to power the nodes by special energy measurement cir-
cuits such as the Sensor Node Management Devices (SNMD) [73]. These
boards have been developed as a cost- effective alternative to using high-
frequency multimeters or oscilloscopes for side- effect free high-resolutive
energy-measurement of wireless sensor nodes. They provide continous
current and voltage measurements with resolutions up to 20’000Hz. Al-
though, they are a convenient measurement tool for lab environments, they
may be too expensive for large deployments. Therefore, an alternative so-
lution is the integration of a newly developed fine-grained software-based
energy estimation model that is currently evaluated and verified with the
nodes powered with SNMD devices at the University of Bern.
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6 Conclusions and next steps
In this technical report, we presented an architecture for adding virtual
mobility to a federated testbed for wireless sensor networks. Our con-
cept adds virtual mobility by embedding physical, emulated and simulated
nodes into the same virtual space. The traffic of physical is therefore in-
tercepted and redirected to a simulation model responsible for a virtual
sub-space. Our concept provides unlimited mobility of all nodes within the
virtual space.
The next steps for the implementation of virtual mobility are defining Mas-
ter and Bachelor projects and running a first initial experiment. Topics of
Master and Bachelor thesis are different prototype implementations, exten-
sion of the virtual link concept and VirtualMesh, virtual space partitioning,
integration into WISEBED and runtime optimisation.
A first initial experiment shall proof the feasibility of virtual mobility among
the two wireless sensor network testbeds at the University of Bern and
the University of Lancaster. The scenario contains three nodes in a line
in Bern and three nodes in a line in Lancaster. VTB puts them all in a
single line. A seventh node then virtually moves along the line receiving
messages sent by the six fixed nodes. Our main interest is to evaluate
the amount of discontinuity that we get when the seventh node passes
between the 3rd and 4th nodes, i.e. crosses the border between the virtual
sub-spaces.
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