
JVAR: Java Virtual Active Routing

Diplomarbeit
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von
Marc Brogle

2004

Leiter der Arbeit:
Prof. Dr. Torsten Braun

Forschungsgruppe Rechnernetze und Verteilte Systeme (RVS)
Institut für Informatik und angewandte Mathematik

JVAR: Java Virtual Active Routing
Diploma Work 2004

Marc Brogle
RVS-Group

IAM, University of Berne, Switzerland

April 2, 2004

Abstract

This document describes an implementation of a virtual active routing frame-
work written in Java. First an overview over classical networks compared to
active networks is given. Possible applications of active networking are then
presented. Following that the idea behind the framework and the techni-
cal aspects and implementation are discussed. Some examples realised with
the implemented framework are explained in detail as well as some per-
formance issues are evaluated. An outlook with possible extensions of the
framework and a summary conclude the document. The appendices contain
more detailed information about the programmed classes with additional
source code examples and a closer look at the used logging framework.

The diploma work was under the lead of Prof. Dr. Torsten Braun
RVS-Group, IAM, University of Berne, Switzerland

Duration: April 21st 2003 till April 2nd 2004

i

ii CONTENTS

Contents

1 Introduction to active networking 1
1.1 Traditional passive networks . 1
1.2 What is active networking? . 1
1.3 Routing based active networking example applications 4
1.4 Examples of security related active networking applications 5
1.5 Multimedia active networking example applications 8
1.6 Network quality active networking application examples 13
1.7 Content analysing active networking example applications 15
1.8 Virtual routers for network emulation 16
1.9 Existing Java active networking platforms 17
1.10 Structure of the document . 19

2 The JVAR approach 21
2.1 Overview . 21
2.2 Why use JAVA? . 22
2.3 The beauty of JUnit . 23
2.4 The basic JVAR architecture . 24
2.5 JVAR compared to other active networking platforms 28
2.6 Basic JVAR architecture issues and advantages 29
2.7 Packet modifiers: Filters and FilterSets 31
2.8 The organisational units: JVARCore and Tasks 32
2.9 Watching the action: Observers and Clients 35
2.10 Class loading and serving . 36
2.11 Routing through the network: Routers / RouterHandlers 36
2.12 Different packets: IP and JVAR and matching them 37
2.13 Security and logging . 40

3 Evaluation 42
3.1 Simple network layout example 42
3.2 Complex network layout example 43
3.3 GZIP tunnel . 47
3.4 JPEG stream manipulation . 48
3.5 Explicit routing . 50
3.6 SplitCrypt tunnel . 52
3.7 MJPEG explicit multicast stream manipulation 54
3.8 Overview of performance measurements 57

CONTENTS iii

4 Outlook 60
4.1 Filter / FilterSet extensions . 60
4.2 Security extensions . 61

5 Summary 63

A Class overview 65
A.1 Package listing of the JVAR framework 65
A.2 com.brogle.jvar.clients . 65
A.3 com.brogle.jvar.cores . 65
A.4 com.brogle.jvar.demos . 66
A.5 com.brogle.jvar.filters . 68
A.6 com.brogle.jvar.filters.jpeg . 70
A.7 com.brogle.jvar.filtersets . 71
A.8 com.brogle.jvar.handlers . 73
A.9 com.brogle.jvar.loaders . 73
A.10 com.brogle.jvar.observers . 74
A.11 com.brogle.jvar.packets . 75
A.12 com.brogle.jvar.routers . 75
A.13 com.brogle.jvar.servers . 76
A.14 com.brogle.jvar.utils . 76

B Source code examples 79
B.1 JVARCore . 79
B.2 Task . 81
B.3 AbstractClassLoader . 83
B.4 SocketClassServer . 84
B.5 RouterHandler . 84
B.6 ComplexIPMask . 86

C Log4J 88

References 90

iv LIST OF TABLES

List of Figures

1 Traditional passive network example 2
2 out-of-band and in-band approach 3
3 Packet splitting / duplication . 4
4 GZIP tunnel through a network 7
5 Encryption strength conversion 8
6 Encryption tunnel through a network 9
7 Example of splitting and encrypting packets 10
8 Type conversion . 11
9 Video split in a network . 12
10 Example of a virtual router setup on different computers 18
11 Basic setup of a node with JVAR 27
12 Packet flow with JVAR . 28
13 JVAR header definition . 39
14 JVAR header example . 39
15 Simple network layout . 44
16 Complex network layout . 46
17 Screen-shot of complex setup example 46
18 GZIP packing of payload . 47
19 Modifying image payload . 50
20 Screen-shot of JPEG stream manipulation example 51
21 Explicit route setup . 52
22 Screen-shot of explicit route example 53
23 Split-crypt setup . 55
24 Screen-shot of split crypt example 55
25 Explicit multicast of image with payload modification 57
26 Screen-shot of MJPEG multicast example 58

List of Tables

1 Log output showing class loading 44
2 Log output showing packet handling 45
3 Log output showing setup of (de)compression point 48
4 Log output showing GZIP compression / decompression 49
5 Log output showing explicit route packet flow 53

1

1 Introduction to active networking

1.1 Traditional passive networks

Classical networks deliver data, or more specific, packets from a sender to a re-
ceiver. The stations (routers) in the network which these packets pass through are
simple store and forward points. These routers just examine the packet headers,
and then forward these packets according to a predefined routing table. This table
tells the router the next point in the network for the packet to visit. The packet
will be handed from one router to another, until the recipient of the packet has
been reached. This means that the recipient is in a sub-network, which is directly
connected to a router. In this case this would be the last router on the route from
the sender to the recipient. So these passive routers hand the packet from one
network to another via ports or links of the router without modifying the contents
of the packet. See also figure 1 on page 2 which shows a traditional router and
network setup through which a data packet is being sent by the store-and-forward
method.

1.2 What is active networking?

Active networking [Tiw00] is a relatively new idea, in which routers are not only
simple store-and-forward points for network packets. In an active network, routers
or switches perform actions on the packets which go through them.

It is possible to put certain special programs into the network to configure and
re-program the routers in the specific active network. Two main approaches to
the realisation of active networking exist. First, there is the programmable switch
(or out-of-band) approach, where the packet format is maintained, and a mecha-
nism for downloading and triggering (active) programs is provided. The other is
the capsule (or in-band) approach, where packets are replaced by capsules. These
capsules contain small programs that are executed in the active nodes (routers) in
the network. The possible actions these small programs contained in the capsule
can cause, are only limited by the programming language used and the creativity
of the implementer. Though a limitation of this approach is that the program size
carried in the capsule should not be too big. Since the packet size in a network
is limited they should for example be less then 1 Kilobyte). See also figure 2 on
page 3.

Also resource management has to be taken into account. There are two categories
of active network applications. The first one only deals with header processing,
the second one does also some processing on the payload itself. Header process-

2 1 INTRODUCTION TO ACTIVE NETWORKING

Figure 1: Traditional passive network example

1.2 What is active networking? 3

Figure 2: out-of-band and in-band approach

ing applications are restricted to read and write in the header of the packet, thus
the processing complexity is independent of the packet size. On the other hand,
the payload processing applications are allowed to read and write all the data in
a packet. The complexity of an active application is increased if the payload pro-
cessing approach is used. To use the payload applications efficiently and safely,
the resources of the framework and also the router itself have to be managed.
Active nodes resource management includes managing bandwidth usage, free or
used memory of the router as well as the resources of the router’s processing unit
(CPU).

To have a better understanding of active networking and the actions mentioned
earlier, some possible active networking applications will be presented. This
diploma work wants to provide a simple framework, in which some of those appli-
cations could be realised very easily. All presented example applications of active
networking can be realised in a real network or in an virtual network with virtual
routers (see also chapter 1.8 on page 16). These examples could be realised either
with the in-band or the out-of-band approach. Some of the example applications
could even be realised with both approaches. In the chapter 2 the problems and
limitations of both approaches will be discussed. A good general overview to
active networking can be found in [TSS+97] or in [Hua02].

4 1 INTRODUCTION TO ACTIVE NETWORKING

Figure 3: Packet splitting / duplication

1.3 Routing based active networking example applications

Basic actions for these examples include to duplicate packets or even make a cer-
tain number of copies of them. This can be used by multicast1 applications. The
decision of how and where to duplicate is done by the packets themselves. They
setup a prior rule matching their stream, which will duplicate the packets by some
additional information the packets provide. This information can for example be
directly contained in their payload. These actions can be realised by using either
the in-band or out-of-band approach as well as using them both in a mixed form.

Other possible actions include splitting a packet into smaller sub-packets (see also
figure 3 on page 4). These split packets can be sent through alternate routes to in-
crease overall performance or to make the stream more reliable. These actions can
be realised by using either the in-band or out-of-band approach as well as using
them both in a mixed form.

Explicit Multicast

Packets can be sent to reach multiple users which is called multicasting. Explicit
multicast ([BFI+] and [BL]) differs by not sending a packet to a group address but
by having all the recipients addresses stored within the packet. The packets or its
programs decide on each router, if there is a client that might be interested in the
data that the packet holds in the attached subnet. Also some receivers of the packet
could have to be reached by separate links from this router on. Then copies of the

1Multicast: same kind of information for more than one recipient in only one packet

1.4 Examples of security related active networking applications 5

packet are being created by the packet itself or by a program preloaded prior to the
sending of the explicit multicast stream. These copies are then sent on different
links further through the network. This might happen multiple times until all the
possible receivers have been reached.

Explicit Routing

Explicit routing of packets helps to provide guaranteed bandwidth or response
times. Instead of using the predefined route defined by the routing tables in the
router the packets themselves or the programs matching the stream decide what
route they want to take. This can be decided by asking the router about bandwidth
usage of its links as well as contacting agents. These agents which are also ac-
tive network components in other routers can be asked about the bandwidth and
other resources usage at their location. The requests for that information can be
executed periodically which allows the programs or packets requesting the infor-
mation to be served immediately.

Usage based rerouting over alternate routes

If some links of the router are heavily used, some packets could be routed over
alternative routes to the same receiver. This helps to distribute bandwidth usage
over the subnets laying in between more evenly. The packets get delivered and
bandwidth usage of some links are kept low in order to have them ready for other
clients with guaranteed bandwidth.

If some links have faster response time and the sender has an agreement with
the network service provider like mentioned above (for example for a maximum
packet delivery time), this service can be guaranteed by changing the standard
routes on-the-fly for certain flows. This would assure a short delivery time if some
routes are heavily used or their response time would be too low for the requested
service.

1.4 Examples of security related active networking applications

Tunnelling data streams

To reduce the bandwidth usage in a network, specific data streams being sent
through a network, can be put through a GZIP2 tunnel. This means, that at a
certain point in the network, the payload of a packet gets compressed with the
GZIP algorithm. From this point on, the packet normally is reduced in size and

2GZIP: freely available compression algorithm

6 1 INTRODUCTION TO ACTIVE NETWORKING

can be passed faster through the network. It is then passed on, until it reaches
a point in the network, where the payload will be decompressed. From there
the packet passes on in its original form as it entered the network before being
compressed. This way the whole compression / decompression and tunnelling is
completely transparent. Neither the sender nor the receiver know that the packet
has been manipulated. See also figure 4 on page 7.

Changing encryption strength

The encryption strength could be changed on-the-fly in the active routers. The
strength for example could be changed from an encryption with a 64 bit key to
an encryption with a 256 bit key. The decision would be made depending on the
free CPU resources, the encryption algorithm or the key strength, which a router
can provide (see also figure 5 on page 8). Therefore, on heavy traffic and not
much CPU resources available, the overall encryption could be lowered for some
packets. The decision could be made directly by the packets themselves which
provide the algorithm for the decision making process (in-band). On the other
hand the decision could be made by a predefined rule that would have been setup
prior to the stream transmission. Then a rule matching certain streams or resource
capacity conditions would make the decision (out-of-band).

Secure pathways

If the trust in a network (and the parties in between) is doubtful, a secure pathway
through the network can be created on demand. A packet could enter a network
asking for at least being encrypted by a 128 bit key. Therefore it has to be routed
through the network using only the safe routers on a pathway providing the desired
strength of encryption and security. The packet could become encrypted by for
example 3DES [Cas] or Blowfish [Ane01] algorithms. Once the packet has been
encrypted, only routers supporting this encryption method and strength will be
able to handle the packet correctly. The whole encryption / decryption happens
completely hidden from the user, which will receive the packet without knowing,
that on a certain path on the way it has been encrypted and decrypted. See also
figure 6 on page 9.

Sending encrypted and split packets over two different routes

Packets could be split into two separately encrypted packets (only the payload
would be encrypted), which then are sent over two different routes ([Bro00],
[GBBb] and [GBBa]). The packets would travel on separate paths and towards
the end reach together a certain point, where the original data (one packet) would

1.4 Examples of security related active networking applications 7

Figure 4: GZIP tunnel through a network

8 1 INTRODUCTION TO ACTIVE NETWORKING

Figure 5: Encryption strength conversion

be restored again and continue its way to the target. Both of the packets are needed
to reconstruct the original data contained. If someone intercepts the stream and
tries to figure out the data contained, the original data cannot be restored. The in-
terceptor would miss the other part needed which is sent over a complete different
route through the world wide network. See also figure 7 on page 10.

1.5 Multimedia active networking example applications

Payload in general can be modified by the packets themselves on their way through
a network. There are various kinds of modifications that can be applied by the al-
gorithms provided by the packet (in-band) or by preset rules and modification
filters (out-of-band). One of the possible modifications include conversion of the
payload to another format. While an image is sent through a network, its format
for example can be changed from GIF to JPEG (see also figure 8 on page 11).
Information on video streaming in networks can be found in [BGB] and [Bal].

Basic image modification on flow usage and free capacities in routers

To make video conferencing or live camera feeds more reliable, the images sent
over the network could be modified on certain conditions. Since no dropped
frames should occur the quality of the image gets reduced, which will lead to
smaller packets and less information to transmit. This works fine if the quality of
the image is secondary but it is more important to send images without loosing
them at all. The images of certain formats (JPEG, GIF) are being sent through
the network. Periodically or on each packet containing such an image the status

1.5 Multimedia active networking example applications 9

Figure 6: Encryption tunnel through a network

10 1 INTRODUCTION TO ACTIVE NETWORKING

Figure 7: Example of splitting and encrypting packets

1.5 Multimedia active networking example applications 11

Figure 8: Type conversion

of the resources of the router are being requested. This information could include
CPU usage, router link usage, overall bandwidth usage, free memory resources,
general QOS information, link speeds or information of other routers attached to
the links of this router. Therefore the modifications of the image will be evaluated
regarding the mentioned information and then the decision is done, how much or
if at all images have to be modified. Modifications could include changing the
compression factor (for example JPEG quality), reducing the colour depth (for
example 24 to 8 bit), conversion to black and white, resizing the image (80%,
50%, etc.) or even some combinations of those.

Video-split

Frames of a video stream (for example from a video conference or a movie being
played) can be "split" into different quality streams. This splitting would happen
on critical nodes in the network pathways. Since the active components on the
routers have information about the speed or restrictions of their links, some path-
ways might not be able to handle the full quality stream. The frames sent are then
only distributed from such a critical node with a reduced quality (see also figure 9
on page 12).

Voice modifications

Voice streams (PCM, WAV, MP3) could be reduced in quality (for example 128
kbit/s to 64 kbit/s MP3), depending on the network bandwidth resources, that are
available at the moment. On each packet this decision can be done, so it is an in-

12 1 INTRODUCTION TO ACTIVE NETWORKING

Figure 9: Video split in a network

1.6 Network quality active networking application examples 13

stant adaptation to the current situation. This would work for VoIP (Voice over IP)
as well as for any other live sound streams (Internet radio, chat programs, etc.). If
the network is at high usage or at its limits, still all information will be sent. No
packet drops would occur and only a bad voice quality will result out of the taken
modifications. It is more important to get the whole spoken sentence (even if in a
bad quality), than some words would be missing of the spoken sentence.

The voice streams could also be sent with an explicit multicast and voice protocol
conversion points could be setup (PCM to MP3, WAV to WMA, etc.) for certain
streams or on certain points. This could help to distribute one stream in different
formats for different recipients in a network by combining the explicit multicast
and the voice conversion points. Instead of sending many different streams di-
rectly, the other streams in a different voice format could be created on-the-fly at
the needed points in the network. From this point on after or before the packets are
split up they would be sent further through the network, till all recipients would
be provided as needed.

1.6 Network quality active networking application examples

Packet dropping

An active router can drop packets [YNR98]. The decision is not made by the
router itself, but more by the packets themselves (in-band) or a special task match-
ing a certain stream that has been setup before by another packet (out-of-band).
After that, for example all late or as less important tagged packets get dropped
on certain conditions. These could include high bandwidth usage in the network
around the router, to which the packets will be forwarded, so it cannot support any
additional packets to be processed.

The selection of what to drop is really made by an algorithm or a condition the
stream itself provides to the router (either in-band or out-of-band). After a certain
time, this rule or algorithm can be erased or modified by the stream itself (out-of-
band). The capsules could contain no more or different drop-algorithms and rules
(in-band).

Packet buffering

Another possibility could be the buffering of packets in a router [GKPR], which
can be decided as well by the packets directly. They for example would have to
wait for some other packets to arrive first at this point before the travel to the next
router would go on. The buffer time and rules how or for what to wait can be

14 1 INTRODUCTION TO ACTIVE NETWORKING

decided directly by each packet (in-band) or these rules could be setup ahead by
some packets containing the rules for the following packets on that stream (out-
of-band).

Flow based payload compression

Instead of setting up fixed GZIP algorithms as described before, the compression
factor can be adapted depending the bandwidth usage in the whole network or the
free CPU resources of the router. Alternative compression algorithms could be
used that provide different types of compression factors like RAR [Rar] or other
ZIP algorithms. These actions will help to reduce bandwidth usage, if the free
bandwidth gets to a critical level. Instead of dropping the packets (if for example
the network provider does not guarantee packet delivery) they get compressed and
sent through the network as long as there are some little free resources left.

Agent notification of flow / usage / status

Agents ([Gün01] and [dMCPT]) could be setup on the active router components
which could request and send status information about their location. This infor-
mation could include CPU usage, free resources (memory, etc.), bandwidth usage,
link status of the router to which they are connected to, running programs and ac-
tual rules on certain flows. Depending on this information provided, programs or
rules that are running on the other nodes can decide how to reroute or to modify
a certain packet. Instead of asking the other involved active router components
for these informations directly, the rules or programs can ask the agents running
on the same node they reside on. These agents already might know the informa-
tion. The agents would provide a well defined interface to get the information.
This way all the different applications described earlier could ask the requested
information from the agents by the well defined interface instead of having each
of them their own way of getting this remote information.

Redundancy reduction of stream casts

If for example two clients receive the same stream, which is sent as two sepa-
rate streams, the router can make a packet content comparison. If they are in a
certain time frame, these two packets could be put together to one explicit multi-
cast packet as described earlier. This packet would then then be sent through the
network and split up again to the two original packets as needed. This could be
used in slow networks or when a high bandwidth usage occurs. Important issues
to consider would be to use just a little queue, which holds back packets for a
certain short time only. If after a certain time no duplicates would be detected in

1.7 Content analysing active networking example applications 15

the queue, the packet should be sent as it is with high priority. Since through this
hold back in a queue a certain delay occurs, this delay has to be quite short if the
redundancy reduction is applied to real time streams (audio and / or video). This
detection should not be done on every node, since the delay gets augmented on
every redundancy checking node a packet passes through and gets queued up.

Classical TOS handling, QOS and other services

Also classical TOS (Type of Service) and QOS (Quality of Service) handling can
be provided by the active components ([Bau02] and [BBb]). Like mentioned
above bandwidth can be guaranteed (for example always 128 kbit/s dedicated
for certain flows). Also minimum response times can be assured (not more than
100ms delay till it arrives at the receiver). Burst rates could be optimised (trying
to get as much as possible burst rate available). Packet priorities could be handled
or changed. Packets with lower priority would get delayed, to guarantee fast han-
dling of high priority packets. Finally real time streams would also be supported
and explicit multicast could be provided.

1.7 Content analysing active networking example applications

Unwanted words in the packet’s payload can be removed for example with the
help of a word blacklist. Also a virus check of the payload can be done at some
designated virus checking points. Content analysing active networking applica-
tions can be realised with the out-of-bound approach.

Parental rated payload modification

Text payload streams could get analysed, and if any offensive words are contained,
they get either replaced, censored or deleted. Also images could be analysed by
certain algorithms for unsuitable content. This can either be done by analysing
keywords in the image header or by image content recognition algorithms. It could
even be applied on voice streams if some voice recognition algorithms exist that
would recognise these offencive words, which then could be censored or modified.
Also HTTP (Hypertext Transfer Protocol) requests or responses could be dropped,
if they contain offencive or not for minors suitable content.

On-the-fly text translation or correction

Text being sent through a network could be checked for writing errors (for certain
streams) on-the-fly at certain designated checking points in a network. This could
be done for example by using the Ispell [Kue] program or other libraries provided.

16 1 INTRODUCTION TO ACTIVE NETWORKING

Also on-the-fly translation of text for example in UDP payload of chat messages
could be done on these designated points. This could be realised by setting up
a rule on a certain stream from a sender to a receiver that might speak different
languages. Only real text payload and not additional headers of for example the
chat programs should be translated or corrected. Translating or correcting the chat
protocol header would make the packet unrecognisable for the chat program.

1.8 Virtual routers for network emulation

Virtual routers [BBKW] simulate a real router implementation. They are little
programs or services running on a machine. They provide the basic router func-
tionality without actually being a real router. They do not use the real network of
the computer that executes them.

Virtual routers [BBc] can be connected together in order to simulate a whole router
setup of a big network. These virtual routers behave like they would exist in a real
network, providing the routing functionality by the routing tables implemented in
these virtual routers. Only the architecture and the resources of the used machine
limit the amount of routers that can be simulated on one computer at a time.

These virtual routers and virtual networks [BBa] help to use and test the JVAR
framework without actually having a real big network infrastructure. Changes
and new functionalities can be tested directly without having the fear of breaking
a running system or disabling a stable running network by introducing the new
components.

It is also possible to use different computers and span the virtual routers over those
connecting them together virtually through the existing real network between the
used computers. Instead of only having one virtual router per computer, it is also
possible to setup complete virtual networks on one computer. These virtual net-
works can then be connect through the real network between the computers to
other virtual networks that run on other computers. See also figure 10 on page 18
which shows two computers running each a virtual network with virtual routers
and where the two virtual networks are connected through the real network.

The different virtual routers used are completely transparent to the underlying
system. It is even possible to have an entry point from a real network to a virtual
router setup with a lot of virtual routers included. A packet from the real network
enters the virtual network at the mentioned entry point and after it has been routed
through this virtual network it can exit the virtual network and re-enter the real
network at a designated exit point in the virtual network.

1.9 Existing Java active networking platforms 17

Generally it is possible to simulate complex behaviour and different applications
with the help of the virtual routers and the virtual networks. On top of the virtual
routers, active networking implementations can be added. It is then possible to
simulate a whole active networking setup without having of a lot of machines or
real routers.

The active networking implementations provide basic interfaces to communicate
with the virtual routers. The packets can be taken out of the flow that passes
through the virtual network. The extracted packets will be processed by the algo-
rithms the packets provide themselves or by other preset rules. After the modifi-
cations they get injected back into the virtual network through the virtual router.

1.9 Existing Java active networking platforms

Different active networking platforms written in Java exist. ANEP [AB+], ANTS
[Weter], JANOS [THL01] and ASPEE [BLBF] will be shortly presented. For a
technical comparison of JVAR and other active networking frameworks see also
chapter 2.5 on page 28.

ANEP

AENP is an interoperability layer for Active Networks. The platform is described
on the ANEP webpage [WPA]:

ANEP specifies a mechanism for encapsulating Active Network frames
for transmission over different media. The suggested format allows
use of an existing network infrastructure (such as IP or IPv6) or trans-
mission over the link layer. In order to support ongoing research, the
proposed mechanism is as generic and extensible as possible. This
mechanism allows co-existence of different execution environments
and proper demultiplexing of received packets.

ANEP is the work of many institutions currently researching active networks. The
project started like ANTS in the early years of active networking with Java.

ANTS

The ANTS webpage [Weter] describes the toolkit:

ants is a Java-based toolkit for experimenting with active networks.
It provides a node runtime that can participate in an active network,

18 1 INTRODUCTION TO ACTIVE NETWORKING

Figure 10: Example of a virtual router setup on different computers

1.10 Structure of the document 19

and a protocol programming model that allows users to customize the
forwarding of their packets.

ANTS was one of the first available active networking platforms written in Java.
Different new versions of ANTS exist which are often using JANOS to access the
network.

JANOS

The authors of JANOS describe their project in [THL01]:

Janos is an operating system for active network nodes whose primary
focus is strong resource management and control of untrusted active
applications written in Java. Janos includes the three major compo-
nents of a Java-based active network operating system: the low-level
NodeOS, a resource-aware Java Virtual Machine, and an active net-
work protocol execution environment. Each of these components is
separately usable.

JANOS is a very well maintained active networking environment. A lot of other
active networking projects rely on JANOS or some of its sub-projects.

ASPEE

In [BLBF] the authors describe ASPEE:

[...] the ASP Execution Environment (EE), a prototype general-purpose
active network execution environment that initiates and controls the
execution of Java-based active applications. Features of the ASP EE
include support for persistent active applications, finegrained network
I/O control, security, resource protection, and timing services.

1.10 Structure of the document

This chapter gave a short overview on active networking. Differences between
traditional networks and the active networking world have been explained. The
presentation of virtual routers and possible applications concluded the chapter to-
gether with this overview over the document.

In the following chapter 2 the JVAR framework, its usage and some other as-
pects of it will be presented in more detail. The chapter will explain the approach
chosen for the JVAR framework. A discussion on the advantages of Java and the

20 1 INTRODUCTION TO ACTIVE NETWORKING

JUnit framework will be presented. Comparison to other active networking solu-
tions will be followed by the technical realisation of the JVAR framework. The
different kind of components included, their duties as well as some short code
example of how easy the framework can be used will demonstrated. Also some
security issues, how they have been solved and the advantages of using a logging
framework will be presented.

The usage of the JVAR framework will be exemplified in chapter 3. Different
applications will be explained, and the solution using JVAR will be provided.
All these examples are also fully programmed and can be used when starting the
corresponding scripts that come with the JVAR framework. Performance mea-
surements will conclude the chapter.

An outlook of possible extensions will be discussed in chapter 4. Extensions of
basic packet manipulation as well as security issues will be examined. Possible
performance accelerations will also be discussed.

For more technical issues, the appendices provide a complete class overview, as
well as some more code examples that help to understand the JVAR framework.
Also the usage of the logging framework will be presented in the appendixes.

21

2 The JVAR approach

2.1 Overview

JVAR is an active networking framework, that can be used with different kind of
routers. The routers only have to support some basic communication possibilities.
The framework makes it very easy to explore the active networking world.

The JVAR framework is simple to use and it is also very easy to understand the
concepts used in it. It can be extended without much coding needed, because ab-
stract3 super classes provide all basic functionality and the application flow. Only
the program parts or algorithms working on the data packets have to be imple-
mented. Since there is also a separate layer for the communication with the router
attached to the framework, almost any router providing a basic communication
interface can be used.

The framework has been built as well to be used for simulations. An extensive
configurable logging framework and GUI (Graphical User Interface) or console
output information have been integrated. Therefore it is possible to follow every
step while the framework is running in action and processing network packets.

The source code of the framework has been well documented. Javadoc4 com-
ments have been extensively used to help understanding the framework by brows-
ing through the source code or the provided HTML overview. Also a lot of demos
showing the use of the framework have been written, which helps to understand
and simulate different kind of active networking applications.

The packet handling and packet header related operations have been written very
efficiently. Therefore the basic operations, which are executed often do not reduce
the overall performance of the framework. A pluggable Filter / FilterSet architec-
ture has been chosen, which allows to easy integrate, change and extend possible
actions on different kind of packet streams. The filters can be chained together
with other filters to the so called filter queues.

A big focus was the platform in-dependency of the framework. This has been
realised by using JAVA as the programming language for the framework.

3abstract classes cannot be instantiated, they can only be inherited from
4Javadoc: documentation standard for Java source code, that allows to generate automatic

cross-referenced HTML documentation)

22 2 THE JVAR APPROACH

2.2 Why use JAVA?

Java [mic] does not seem to be the perfect candidate on first sight for system near
manipulation of IP packets. But on closer observation a lot of advantages, which
speak for the use of Java are found. Java is completely platform independent. So
called virtual machines to run Java programs exist for almost every hardware plat-
form, operating system and even for embedded devices. Java is easy to learn and
widely spread. People are familiar with the language, which makes it reach wider
target group to understand, extend and work with the framework.

It is possible to integrate native C and C++ code with JNI [Lia99] (Java Native
Interface), which allows to integrate existing codes and algorithms into the frame-
work very easily. JIT (Just in Time) compilers help to get higher performance
over normal Java execution, since when executing the program the first time, it
gets compiled to the platform it runs on. Thereby all platform specific features to
optimise the overall performance of the system are used.

A lot of high level APIs (Application Programming Interface) for Java are avail-
able, which provide a large basis of additional frameworks and algorithms, that
can be easily integrated into the existing framework. Good networking basic
classes are already implemented like socket handling and higher level protocols
(for example HTTP). Dynamic class loading supports loading unknown classes at
start up time of the framework. During the execution life cycle of an application,
other classes from remote locations can be loaded (even over the network) and
then instantiated at runtime in the running program.

Classes can also be built and compiled during the runtime of the application and
then integrated and used directly without having to restart the application.

Introspection of classes allows to detect new unknown methods at startup time.
Also all features and methods of a class can be analysed this way. Thus it is pos-
sible to call methods, which are not provided by the super-classes and not known
to the current instance scope.

The Java development and runtime environment is freely available and a very
modern, object oriented programming language. A lot of freely available third
party products for development, runtime optimisation and analysis exist. Java ap-
plets are runnable inside a web browser (Netscape, Mozilla, Opera, Konquerer,
Internet Explorer, etc.) which could be used to access configuration programs for
routers, or to get other statistical data of running applications.

2.3 The beauty of JUnit 23

There are also some disadvantages. Java does not always have a good perfor-
mance. This mainly depends on the programming skills and as well on the avail-
ability of optimised JIT compilers for the platform it runs on. The IP manipulation
is not directly available in the basic Java classes. The use of socket stream classes
is not very flexible, since there are certain limitations inflicted by its usage. Adapt-
ing the configuration for different platforms can be time consuming. But still, the
advantages that speak for the use of Java to create the JVAR framework dominate
over the few disadvantages that could inflict on the usage of the framework.

To improve the performance or to avoid some other discussed disadvantages dif-
ferent kind of alternatives exist. Using JNI [Lia99] to access external platform spe-
cific optimised programs and algorithms would improve the performance of time
critical applications. Also other programming languages optimised for certain
specific applications could be integrated via bridges available for the Java plat-
form. There exist are a lot of bridges or Java implementations of other program-
ming languages like for example Python (Jython [PR02]), Tcl (Jacl), Ruby, Delphi
and Haskell. Also the usage of special Java virtual machines and paradigms opti-
mised for real time execution [BGB+00] and operating systems exist.

There exist several active networking projects that are realised in Java ([Weter],
[AB+], [THL01] and [BLBF]). Java has become one of the favourite program-
ming languages for active networking. [Tiw00] gives a good overview over dif-
ferent active networking implementations.

2.3 The beauty of JUnit

JUnit [GB] is a regression testing framework written by Erich Gamma and Kent
Beck [Bec02]. It allows the developer to test the written source code by using unit
tests for each class and its methods. These tests or even some tests put together
to test suites are then run all together automatically. As a result, they will show
if the classes and methods tested work as expected. Without automated testing, it
is time consuming and difficult to ensure that changes will not break existing code.

The advantage for the JVAR framework by using unit tests is, that new com-
ponents can be introduced and existing classes can be extended without the need
to test the extensions or additions in a real environment. Existing tests can be
re-run to ensure, that the added extensions did not break any existing code and
functionality. The tests can be extended to assure also the reliability of the new
functionality. Also new tests can be added to the framework to test the newly
added components. All this helps to check if the newly added components work
fine after integration into the JVAR framework.

24 2 THE JVAR APPROACH

Other active network implementations lack often this kind of "test before use"
possibility. The new functionality has to be tested on real systems and also the
assuredness that these extensions work as expected cannot be checked easily. The
added components would have to be tested manually. This process has to be re-
done every time a faulty component has been detected. A long turn around when
extending the active networking framework will then lead to less motivation of
playing with the framework and extend and explore its possibilities.

With the simulated routers and the JUnit testing framework integrated in the JVAR
framework, a stable active network implementation can be kept even when extend-
ing the existing functionality. Tests have to be written to check the new compo-
nents incorporating with other existing components. These components also have
to be tested with different input and the behaviour with non valid input has to be
checked. The source code written for this diploma work provides a lot of simple
example components. They all have according test example classes, which makes
it easy to understand how to extend and add new tests to the framework.

2.4 The basic JVAR architecture

Basic node architecture overview

Generally a packet is sent from a client to another through a network by passing
through some routers on its way. Packets traversing a router can get modified in-
side the active component attached to the router. The combination of router and
its active component will be regarded as an active node. The mentioned modifica-
tions can vary and also other side actions might be triggered by this packet.

After a packet has been processed it might gets injected back into the network.
The mentioned actions being triggered might execute tasks inside this node or no-
tify other nodes to do different kind of tasks there as well. These tasks can include
loading missing objects for this node or for the other nodes, notifying agents (lo-
cally or remotely) or even setup new rules and actions on certain streams trough
this node or other nodes.

Now follows an overview with a short description of the main components that
are used in a concrete active node using the JVAR framework.

A Client represents a real or simulated network client. Clients are connected
to subnets, which are as well connected to routers. To simplify the overview and
the examples, the clients have been connected directly to the routers.

2.4 The basic JVAR architecture 25

Routers are real (or simulated) routers in a setup. Routers are interconnected
with each other. They can have (to simplify the setup) clients directly connected
to them. Routers have JVARCores connected (via RouterHandlers) to themselves.

The RouterHandler is the communication interface to and from the router for
a JVARCore. It passes all data and requests to a JVARCore by a well defined
interface and knows how to communicate with the special router implementation
to that it is connected to.

The main component of a node is theJVARCore. It is the main active networking
handler / execution unit, that matches actions to packets and also communicates
with a router (through a RouterHandler) if needed. JVARCores can communi-
cate with other JVARCores through the network by using the provided IP packets,
which hold special tasks that have to be executed in the remote JVARCores.

To manipulate packets in a JVARCore,FilterSets (often several per JVARCore)
are used. They are the active networking components, working on complete IP
packets. The JVARCore delegates the IP packets to the corresponding FilterSets.
FilterSets also use Filters to work on the IP packets. FilterSets can communicate
directly with the Router (via the JVARCore) as well as creating new tasks to be
executed locally or even remotely.

Filters (often several per JVARCore) are the simple components working on the
IP payload only. Filters are used by FilterSets and never directly by a JVARCore.
Filters cannot communicate with the Router and are only doing simple actions.
Filters can be chained together (by a FilterSet) to build complex actions.

To observe the actions in a node,Observerscan be attached to clients and JVAR-
Cores. These Observers are only used for the example active networking applica-
tions presented in chapter 3 to follow and see the active networking modifications.
They display images or text, which are in the payload of a packet. They can be
used with the GUI or just provide output information to the logging facility and
console. Observers help to understand how the JVAR framework reacts in a net-
work setup by watching the payload and actions happening in a JVARCore or
client to which such an Observer is attached to.
Tasksare executable objects, which are passed between different remote JVAR-
Cores and executed in a JVARCore. Tasks are put into the TaskCore, which holds
all tasks within the JVARCore. Tasks can be generated by JVARCores and Fil-
terSets. They can be sent to remote JVARCores. They can be configured to be
executed either once, several or even infinite times.

26 2 THE JVAR APPROACH

TheSocketClassLoaderin a JVARCore loads unknown active components from
an (external) socket class server. These actions are triggered by tasks, which can
either be created locally or can come from a remote location. SocketClassLoad-
ers know from the task, from which specific SocketClassServer they should load
the requested classes.SocketClassServersare specific implementations of class
servers providing a source to load unknown but requested active components.
Classes can be loaded by SocketClassLoaders. The SocketClassServers exist out-
side the JVAR framework and can exist on multiple locations. They have to be
started aside a JVAR node setup.

The so calledMatchMaker is a specific method inside the JVARCore, match-
ing IP packets to TaskCores, Observers or FilterSets. After analysing the header
data of an IP packet, it can find the corresponding class to hand the packet to. It
will be either manipulated by a FilterSet, its contents be displayed by an observer
or it will trigger some internal actions by a task in a TaskCore. Unlike Filters
and FilterSets the MatchMaker does not manipulate the packet and its contents at
all. The MatchMaker only finds the corresponding action represented by a Filter,
FilterSet, Observer or TaskHandler that has to be executed on the packet. For an
example of a basic node setup, see also figure 11 on page 27.

Packet flow

An IP packet passes through different stations on its way through a network and
the active nodes. In this section, the packet flow inside a complete JVAR node
setup (see also figure 12 on page 28) will be presented.

First the router receives an IP packet from the connected network. The JVAR-
Core connected to the router (via the RouterHandler) asks the RouterHandler for
the next IP packet by telling the RouterHandler to receive the next IP packet from
the router. Then the JVARCore tries to find a matching observer for the IP packet
or for the stream the IP packet belongs to. Eventually the packet gets passed
to the found observer to display the payload in a readable form. Afterwards the
JVARCore checks if the IP packet holds a task object and eventually passes it to
the TaskCore for storage and scheduling after the task data has be extracted from
the IP packet. Finally the JVARCore tries to find a matching FilterSet for the IP
packet or for the corresponding stream. The matching FilterSet receives the IP
packet to modify it. After the modification, the FilterSet returns zero to several
new IP packets to the JVARCore. The JVARCore passes these received and even-
tually modified IP packets to the RouterHandler. The RouterHandler passes the
IP packets to the Router, which routes them according to its routing table.

2.4 The basic JVAR architecture 27

Figure 11: Basic setup of a node with JVAR

28 2 THE JVAR APPROACH

Figure 12: Packet flow with JVAR

2.5 JVAR compared to other active networking platforms

Often, active networking frameworks are limited either to use the in-band or the
out-of-band approach (see also chapter 1). Both of these approaches have their
advantages and disadvantages.

The in-band approach reacts very quickly and is very flexible. With each packet
(or capsule) a new little program to manipulate itself inside an active networking
node can be provided. There is though the limitation, that the size of the programs
is limited (normally to 1 Kilobyte), so it can be transported with the packet. Also
the overhead for a stream of packets of the same kind is high, since each packet
could carry the same program to manipulate itself each time. The protocol used
could be a proprietary one, which would not be widely distributed or only avail-
able for this special active networking implementation. Then it would be hard to
integrate this new protocol into the real world and the existing routers.

The out-of-band approach has no real program size limitation. Programs can be
sent in multiple packets and put together or downloaded from a remote location
by the router. This action can be initiated by a packet holding all the necessary
information. These programs and the packets holding the program information do
not need to be implemented in a special protocol. Widely distributed protocols can
be used to carry the information. All the manipulations can be done on packets
that are using existing protocols (like IP, Ethernet, etc.). The reaction time though
is very high. To apply changes, the whole download and initiating process has to
be done first. Packets do not hold the programs directly. So if a situation changes,
the corresponding programs to be loaded have to be triggered or instantiated first
in the active node where the action has to be done.

2.6 Basic JVAR architecture issues and advantages 29

A better solution is to take the best of both worlds, which also has been chosen
for the JVAR framework. Programs and algorithms can be triggered to be down-
loaded from remote locations, as well as sent directly with some packets. All
these programs then will work on certain streams, on which a FilterSet can be
setup. FilterSets are the active networking components manipulating the packets
for a certain stream. During the life cycle of a FilterSet, interactions between the
packets and the FilterSets can happen. Additional configuration data or informa-
tion can be embedded in the existing IP protocol, without modifying the protocol,
just additional header information is added to the IP payload. Normal routers can
then process the packets as if they were normal IP packets. The active network-
ing nodes on the other hand can use the additional information to react on each
packet. They do not have to wait for another trigger or program packet as with the
out-of-band approach. Thereby the overhead, which would occur with the in-band
approach by having each packet carrying a program, is reduced. But the flexibility
of reacting on the spot by having additional configuration data or programs in a
packet (if needed) is maintained.

Existing active networking frameworks [WGT98] written in Java often use special
defined protocols for their active networking packets or capsules. This prevents
them of being used easily in the real world with existing routers. The JVAR ap-
proach on the other hand uses the existing IP / UDP protocol, without having
to re-program existing routers to support the active networking packets. The ac-
tive networking data, programs or information is embedded within the IP packet,
which allows every router to process them as normal IP packets. The active net-
working nodes on the other hand can extract and remove the additional data. When
such a packet reaches the receiver, it is regarded and treated as a normal IP packet.
Therefore all additional active networking manipulations and actions can be as
well applied to any higher level protocol data or header information embedded
inside the IP payload and of course also directly on the IP payload and headers.

2.6 Basic JVAR architecture issues and advantages

The basic advantages of the JVAR architecture include, that the framework is
thread5 free, well documented (javadoc), using a highly adaptive and configurable
logging framework, doing efficient IP matching and routing list / table handling
and that all vital classes have corresponding test classes using the JUnit [Bec02]
framework (see also chapter 2.3 on page 23).

5Threads: quasi parallel executed actions

30 2 THE JVAR APPROACH

The whole framework is documented very well using the Javadoc standard. An
automatically generated HTML documentation, which is completely linked, very
easy to understand and allows browsing through the framework classes is pro-
vided. The source code in general has been documented very well. Someone
using the framework or extending it can easily program new classes or build new
active networking applications.

Threads can be hard to synchronise, and since only the examples use threads,
the basic core of the JVAR framework is thread free. There are not any starving or
unfair treated tasks or jobs handled by the framework. It is also very easy to follow
a process happening in a node, since all actions are executed sequentially on one
packet completely, before the next packet will be processed. Multiple JVAR in-
stances running on the same machine cannot interfere or block each other through
threads, since no deadlocks caused by threads can occur.

The logging framework [Gul03] used allows the user to configure the produced
output of the JVAR framework and all classes involved. It is very easy to follow a
packet stream and the actions happening on the payload data by following the out-
put. This can be done either on the console or in a file, depending on the desired
configuration. The logging framework has been built with the goal to have a very
low resource usage, which makes the overhead minimal. For crucial applications,
the logging can be set to show and deal only with severe errors.

The IP/UDP representing classes and all helper classes matching streams to cer-
tain actions, have been programmed to be very efficient and using low resources.
All algorithms used have been either known to be fast or have been optimised for
the given tasks. The access to the payload and the header fields of a packet have
been simplified, so crucial actions can be done quick and easy.

By using a well known and widely used testing framework (JUnit), the quality
of the framework can be augmented easily. On any extensions of the existing
framework, the basic functionality can be verified to still work by using the pro-
vided test classes. The provided test classes can be extended or new ones can be
added to assure the quality and stability of the framework and not break the whole
system.

2.7 Packet modifiers: Filters and FilterSets 31

2.7 Packet modifiers: Filters and FilterSets

Filters

Filters do simple payload modifications. They can be concatenated to various
kinds of chains6. They also have no access to the TaskCore of a JVARCore and
cannot create any tasks (see also chapter 2.8 on page 32). Also no communication
with the router via the RouterHandler can be done by Filters. They are the simple
IP manipulating version and always belong to FilterSets, which often use multiple
Filters for their actions.

To create a new filter, only one method has to be overridden after inheriting the
AbstractFilter super class:

public abstract byte[][] manipulatePacket(byte[] aPacket);

A simple payload duplicating filter could look like this:

public byte[][] manipulatePacket(byte[] aPacket) {
// duplicate packet
byte[][] result = new byte[2][];
result[0] = aPacket;
result[1] = aPacket;
logger.info("Duplicated packet successfully");
return result;

}

FilterSets

FilterSets do the high level IP and JVAR packet modifications. They can use dif-
ferent concatenated / chained filters and have access to the TaskCore of a JVAR-
Core. They can create tasks for delayed sending or for agent7 and self notification
(see also chapter 2.8 on page 32). Unlike filters, they can communicate directly
with the router via the RouterHandler (see also chapter 2.11 on page 36) but they
also can work directly on the payload of an IP packet without a filter.

To create a new FilterSet at least one method has to be overridden after inher-
iting the AbstractFilterSet super class:

public IP[] applyFilters(IP aPacket)

6Filters have references to the next filter in a chain and automatically pass the data to the next
filter in this chain after they have modified it

7Agents in JVAR would be special FilterSets in remote JVARCores

32 2 THE JVAR APPROACH

To create a simple ”spy” FilterSet just some few simple lines of code are needed:

public IP[] applyFilters(IP aPacket) {
//Simple "spy" (copy of IP packet + address rewrite)
IP spyIP = new IP(aPacket.getIPPacket(), 0);
spyIP.dest4 = 234;
IP[] ipArr = {aPacket; spyIP};
return ipArr;

}

2.8 The organisational units: JVARCore and Tasks

JVARCore

The heart of the framework is without any doubt the JVARCore. Main duties of a
JVARCore include handling all traffic received by the router via the RouterHan-
dler (see also chapter 2.11 on page 36). They receive, recognise, send and execute
tasks. Each JVARCore holds a list of all instantiated FilterSets and a list active ob-
servers. These lists are stored as hash tables8. The observers are only interesting
for simulation. JVARCores have to match IP packets to observers and FilterSets
and pass modified packets back to the router via the RouterHandler.

The "MatchMaker" is the main method doing the matching of IP packets to Fil-
terSets, Observers or to the TaskCore. The FilterSet selection is done FCFS (first
come first serve) and therefore only one FilterSet matches an IP packet. The
matching FilterSet can return more than just one IP packet. Other matching ob-
jects can be inserted in the match making process (the framework can be easily
extended). The match making process is completely thread free. The JVARCore
has free resources for the next packet, after it handled the current IP packet in the
process completely.

Tasks

Tasks are being handled by the JVARCore via the TaskCore, which deals with the
scheduling of the tasks. Tasks are the main active triggers in the network. A user
or a JVARCore sets up the active components (FilterSets) by tasks. This can be
done even for remote locations. Tasks have different kind of functions (for ex-
ample remove / add FilterSets on certain flows). JVARCores and FilterSets can
communicate with other foreign instances of themselves via tasks (for example

8Hash tables store key and value pairs, which can be found / accessed by their keys

2.8 The organisational units: JVARCore and Tasks 33

agent communication to get information about foreign resource usage). IP pack-
ets can be deferred with the help of tasks for delayed transmission. Actions can be
triggered by tasks. Tasks can be extended for other applications very easily. Tasks
can be executed at a certain moment (a positive delay from now) and are executed
once, several or even infinitely.

Different kinds of tasks exist, which will be explained now more in detail.

TASK_FILTERSET_ADD (= integer 0) tells the JVARCore to instantiate a Fil-
terSet with certain parameters and then to add it to its hashtable storing them.
From that moment on, this FilterSet is active on the defined IP packet stream.

TASK_FILTERSET_REMOVE (= integer 1) tells the JVARCore to remove a cer-
tain FilterSet from duty. It gets removed from the hashtable and is no longer
working on its previously defined IP packet stream.

TASK_NOTIFY (= integer 2) notifies a sleeping FilterSet or other sleeping ob-
jects to wake up and to continue its actions.

TASK_LOADCLASS (= integer 3) triggers a class loading mechanism. The class
will get loaded by a class loader in the JVARCore. The class loader knows how
to deal with the information this special task provides and how the class can be
loaded.

TASK_SENDIPPACKET (= integer 4) schedules an IP packet for deferred trans-
mission. The IP packet gets put into the TaskCore and will be sent to its receiver
via the JVARCore / RouterHandler / router at the predefined moment. Also Filter-
Sets in other JVARCores can be periodically informed about some current status
information of the JVARCore or the network itself.

Finally a TASK_DUMMY (= integer 5) exists, which does not really do any real
action, but can be used for keeping the JVARCore alive or to test different timing
issues.

Tasks have various parameters, which hold objects, that have different kind of
meanings depending on the task type.

TASK_NOTIFY:
taskObject1 = object: reference to object being notified
taskObject2 = nothing

34 2 THE JVAR APPROACH

TASK_DUMMY:
taskObject1 = nothing
taskObject2 = nothing

TASK_FILTERSET_ADD:
taskObject1 = string: name of filterset class
taskObject2 = ComplexIPMask: complex IP mask for the filterset to match

TASK_FILTERSET_REMOVE:
taskObject1 = ComplexIPMask: complex IP mask of the filterset to remove
taskObject2 = nothing

TASK_LOADCLASS:
taskObject1 = string: name / address of class providing server
taskObject2 = string: name of the class to be loaded

TASK_SENDIPPACKET:
taskObject1 = IP: IP packet that has to be sent
taskObject2 = nothing

The following example of a simple task loads a filter from a ClassServer. The
task will be executed immediately, since the first parameter (the delay in millisec-
onds) is zero. It will be executed only one time, because the second parameter
is set with the number one. Then follows the task type and the special object
parameters described before:

Task taskLoadFilter =
new Task(0, 1, Task.TASK_LOADCLASS,

"localhost:8888",
"com.brogle.jvar.filters.SimpleFilter");

// add the serialised task to an IP payload
IP ipTaskLoadFilter =

IPFactory.getIP(192,168,0,1,192,168,10,1,222,0,
taskLoadFilter.getSerializedObject());

// route the IP packet via a RouterHandler (rh0)
rh0.routeIPPacket(ipTaskLoadFilter);

To distinguish IP packets holding tasks from normal IP packets, the protocol num-
ber in the IP header of a task IP packet is set to 222. Tasks are filtered directly

2.9 Watching the action: Observers and Clients 35

by the JVARCore before any FilterSets are matched to the IP packet. An alterna-
tive would be to create a distinguished FilterSet, which handles tasks by getting
them from the IP flow and adding them to the TaskCore. Only JVARCores and
FilterSets have access to the TaskCore and only they are allowed to create tasks.

2.9 Watching the action: Observers and Clients

Observers

Observers can be connected to JVARCores and clients. With the help of an ob-
server, the payload of an IP packet (matching a ComplexIPMask) can be analysed.
With the help of observers, for example a MJPEG stream and the way it is mod-
ified in certain nodes can be observed. At the moment two implementations of
observers and one common super class for them exist.

All observers have to inherit from theAbstractObserver. The AbstractObserver
provides a common access interface to easily connect JVARCores and clients to
the specialised observers.

An ImageObserver is used to analyse how UDP JPEG payload gets modified
on certain JVAR nodes. The JPEG pictures are shown in window displaying the
image and different image information is printed to the console. ThePayloadOb-
server shows the payload of an IP / UDP packet. The text / payload is showed in
a windows and also the same text / content is printed to the console.

The observers know by passing options on creation if they have to deal with ad-
ditional special JVAR header information. In that case they show the payload
without this additional JVAR header information.

To create a new Observer only one method has to be overwritten after it inher-
its the abstract superclass AbstractObserver:

public abstract void show(IP ip);

Simulated clients

The client written in Java, which is provided with the JVAR framework allows to
analyse the packets it receives through an attached observer. Clients are directly
connected to the already mentioned routers written in Java (see also chapter 2.11
on page 36). Like the router the client has a lightweight implementation, which
makes it easy to understand how clients are used and programmed.

36 2 THE JVAR APPROACH

2.10 Class loading and serving

SocketClassLoader

Class loaders load classes that are requested by remote JVARCores or users. Since
different class providing servers or services can exist, different class loaders would
have to be implemented. With the JVAR framework a SocketClassLoader is pro-
vided, which loads classes from a SocketClassServer.

An abstract super class called the AbstractClassLoader is provided, to have a com-
mon interface for the JVARCore to be able to use any kind of class loader. The real
implementation of a class loader just has to inherit from the AbstractClassLoader.
The newly implemented class loader also has to provide a customised constructor
and a class loading method.

SocketClassServer

The implementation of the SocketClassServer or any other class server does not
have to inherit from any abstract super class, since different kind of services could
be provided. Only the corresponding class loader has to be adapted to the specific
class server it has to connect to.

The example SocketClassServer provided offers classes to be loaded via a socket
on a specific port.

2.11 Routing through the network: Routers / RouterHandlers

RouterHandlers

RouterHandlers are the communication interface between a JVARCore and differ-
ent kinds of routers. To connect a JVARCore to a router successfully, the router
has to provide some basic communication capabilities, which then are handled by
a specific RouterHandler for this router. Since the RouterHandler inherits a ba-
sic interface from the abstract super class AbstractRouterHandler, the JVARCore
can access the router in the same way it would access any other router. Thus, the
JVARCore implementation and the whole JVAR framework is completely router
independent. Any kind of router can be used as long as the router provides the
mentioned basic interface to access itself.

For the examples and the framework, a router written in Java exists to emulate
a network with interconnections, which can be setup on one single computer. The
corresponding RouterHandler is also provided.

2.12 Different packets: IP and JVAR and matching them 37

Fragmentation and defragmentation of IP packets have to be done in the Router-
Handler that has to be implemented for a specific router. All commands that are
sent by the methodsendRouterCommand can use any "still to be defined" pro-
tocol, which then also has to be implemented in the JVARCore.

ThesetupFilter andremoveFilter provided functionality, which would
allow to tell a router that the JVARCore connected to it is only interested in a
certain stream of the flow going through a router, that has not been used so far.
The provided demo router written in Java does not provide this special function-
ality, since it is only used for simulation. These two methods are intended as
basic interface methods any other RouterHandler should implement. Therefore
the JVARCore deals only with packets it really needs to get for the its setup Fil-
ters and FilterSets. Unnecessary matching actions inside a JVARCore would be
avoided. The matching to distinguish packets which would have to be handled by
the JVARCore and the ones just passing through without any modifications would
directly be done by the router. This procedure would keep the resource usage
of the JVARCore low if there are not any packets (passing through the router) in
which the JVARCore would be interested.

Emulated routers

The router written in Java, which is provided with the JVAR framework to emu-
late several routers [BBKW] on one computer has some special features. Routers
do not use threads, which makes them easy and straight forward to use. This also
helps to simulate an active networking application in a predictable serial manner.
The examples provided with the JVAR framework always trigger the different
routers serially. Thus it is easy to compare the behaviour of an example while
executed with the expected behaviour.

Routers can have simulated clients connected to themselves. They are simply
coded, which helps understanding the router implementation easily. Routers are
connectible to other routers and they use the helper classes (for example IPAdr)
provided with the JVAR framework for their routing tables.

2.12 Different packets: IP and JVAR and matching them

All implemented protocol and packet classes inherit from the abstract "Packet"
class. This class provides basic byte and array handling.

38 2 THE JVAR APPROACH

IP

An instance of the IP class represents one IP packet. This can be either an IP or
an UDP packet. The basic functions to handle IP addresses and the UDP settings
are implemented. The class has been optimised on the low level access functions.
The header fields of an IP packet can be set and read directly.

The calculation of the checksum field has not been implemented, since this should
be done in the router itself to increase overall performance of the JVAR frame-
work. If the router does not provide this functionality, the checksum can be cal-
culated in the corresponding RouterHandler.

JVAR

The JVAR protocol / packet class allows the framework to add some extra infor-
mation to existing IP classes. The additional header information is placed at the
beginning of the IP payload field in an IP packet. For JVAR the header definition
see also figure 13 on page 39.

The following special actions on JVAR packets realised with special FilterSets
are implemented:

Explicit multicast: The JVAR header option field holds multiple IP addresses as
destination addresses for the IP packet. In each JVARCore where a JVAR packet
of this type travels through and is matching a flow rule configured in the JVAR-
Core, the links of the corresponding router get analysed. If some of the destination
addresses will be reached by different links in the router, the FilterSet multiplies
the JVAR packet. Then the option fields get adapted to the different links and the
destination addresses for the newly created JVAR packets get rewritten. Finally
the packets get sent through the RouterHandler to the router, which routes them
according its routing table.

Explicit route: The JVAR header option field holds multiple IP addresses as
designated travel points that have to be visited. In each JVARCore where a JVAR
packet of this type travels through and is matching a flow rule configured in the
JVARCore, a check is being made if the packet is at the next defined point in the
visit list. If matching a point if this list, the destination address of the IP packet
gets replaced with the next target in the list and the same address gets removed
from list in the option field.

For an example of a concrete JVAR header, see 14 on page 39.

2.12 Different packets: IP and JVAR and matching them 39

Figure 13: JVAR header definition

Figure 14: JVAR header example

40 2 THE JVAR APPROACH

Packet matching

A ComplexIPMask compares and checks different parts of an IP / UDP packet.
Comparison is made on the source address, the destination address, the protocol
type, the TOS (Type of Service) field. If it an UDP packet, the the UDP source
port and the UDP destination port get compared as well. For all those parameters,
the value-1 is regarded as a wild-card, which will always match.

Because it implements thejava.io.Serializable 9 interface, the Complex-
IPMask can be serialised and sent in an IP packet to setup a task using such a
ComplexIPMask, for example for FilterSet setup.

There are 2 main constructors provided. Either a custom ComplexIPMask is cre-
ated setting all the mentioned IP matching parts manually:

public ComplexIPMask(IPAdr source, IPAdr dest,
int protocol, int tos,
int udpsrc, int udpdst)

Or all necessary information is extracted directly from an existing IP packet:

public ComplexIPMask(IP ip)

The check itself is done very efficiently and aborts all further matching tries on
the first mismatch, which leads to a better performance.

2.13 Security and logging

Security and safety issues

Safety and security [Bro01] are very important issues when it comes to active net-
working. It has to be assured that only allowed modifications are applied. Also
mechanisms to ensure that the program senders or trigger sources are trustworthy
could be introduced. Active networks have the ability to allow users to add their
programs to the network nodes. This way, they can modify or configure the net-
work to their wishes and they can provide new services. Giving this ability to a
user increases safety and security problems. Distinctions between safety and secu-
rity should be made. A security framework protects an active node from malicious
actions. A safety framework protects it from trusted parties that unintentionally
take dangerous actions. Attacks, to which an active node is exposed to, are greater
than for the passive networks. Possible security problems that could arise are the
misuse of active node programs by other running programs on the active node,

9java.io.Serializable: interface providing basic object serialisation and deserialisation methods

2.13 Security and logging 41

the mis-usage of an active node with programs, the abuse of programs by an ac-
tive network node or the malpractice of active programs through the infrastructure
laying beneath.

Implemented security

To cover some security issues, the following security procedures have been imple-
mented in the JVAR framework. To create a random key to encrypt the payload
of an IP packet, the secure random generation provided with the SUN Java J2SE
(Java 2 Platform Standard Edition) version 1.4 has been used. This algorithm is
based on the IEEE P1363 standard for creating safe random numbers. SUN calls
the algorithm “Random Number Generation (RNG) Algorithms SHA1PRNG“.
The implementation follows the IEEE P1363 standard, Appendix G.7: "Expan-
sion of source bits" and uses SHA1 as the foundation of the PRNG (Programmable
Random Number Generation). It computes the SHA1 hash over a true-random
seed value active with a 64-bit counter which is incremented by 1 for each opera-
tion. From the 160-bit SHA1 output, only 64 bits are used. For more information
about the algorithms and the methods used as well about the safety of the whole
procedure, see also [IEE97].

Logging

To catch the runtime information the classes produce while running on a JVAR
node setup, a logging framework [Gul03] has been used. This logging frame-
work can be easily configured and turned off. It has been implemented to be very
resource effective and not time consuming. Almost all classes in the JVAR frame-
work create some logging output. Since there are different kind of logging levels,
which denote the importance or severity of a message, the logging framework can
be configured to show only messages of a certain importance or only messages
from certain classes.

The output of the logging messages can be redirected to different kind of files,
to streams or even to the log facilities10 the underlying operating system provides.
Different kind of logging levels can be redirected to different channels. Some files
register the normal information while others hold all fatal errors happening in the
JVAR node.

For more details on the logging framework, see also appendix C on page 88.

10Logging facilities like the syslog on Linux or the event handling on Windows

42 3 EVALUATION

3 Evaluation

For the presented example active networking applications, there will be first a
short overview and then details about the implementation presented.

The overview will explain the motivation behind the example applications and
the problems involved. The solution using the JVAR framework and some possi-
ble alternatives solving the problem without the use of the JVAR framework will
be shown as well.

The explanation of the implementation will consist of different parts. The basic IP
/ UDP / port configuration and the used JVAR protocol extensions (if needed) will
be explained. The description of the behaviour of the example and an example
image of the network layout or of the actions during the execution of the exam-
ple will be given as well. Finally the chosen approach of active networking (see
chapter 1.2 on page 1) will be explained and the factors influencing the choice of
the the in-band, out-of-band or a mixed form of both approaches will be described.

All these applications have been programmed and tested. For the different con-
crete implementations see also the demos provided with the JVAR framework.
All demos produce extensive logs, which allow the user to see what is happening
inside the JVARCores and all other involved classes.

See also appendix C on page 88 for information about how to configure the log-
ging framework. All actions are displayed in the attached observers, which will
show the text or image information being processed in the attached JVARCore.

3.1 Simple network layout example

Overview

This example shows the basic network layout, which has been used for the simple
examples provided. It consists of a simple private class network (192.168.x.x).
The network consists of 6 virtual routers and one simulated client attached to the
last router at the end of the network. The simulated routers and simulated clients
used, are the ones provided with the JVAR framework. The network layout and
interconnections are setup by the BasicDemoSetup class which creates the dif-
ferent instances of the "Router" and "Client" classes and connects them accord-
ing to the desired layout. The default route passes via the routers two and three
(192.168.20.1 and 192.168.30.1). See also figure 15 on page 44.

3.2 Complex network layout example 43

Implementation

Each JVARCore loads remotely a SimpleFilterSet and a SimpleFilter. This load-
ing gets triggered at the start of the whole example, where the IP packets with the
class loading commands get injected into the example network through the first
router. The matching flow rules in the JVARCores, which will trigger the use of
the FilterSets, are configured to match exactly the source / destination addresses
and the UDP protocol (port 17) of the example IP packets, which are injected into
the virtual network setup. Each JVARCore on the route modifies the IP packet.
A simple Filter and a simple FilterSet modify the IP packets. The packets only
pass through the Filter and the FilterSet without actually being modified. In the
log files, the console output and on the screen, the actions and content of the IP
packet are displayed. This example mainly shows how the JVAR framework can
be used and how a simple setup with some simple rules and simple Filters / Fil-
terSets can be realised. The out-of-band approach is used to realise this example
since all Filters and FilterSets are loaded at the startup of the example, triggered
by the SimpleDemo class, before any normal network traffic occurs.

Looking at the log output in table 1 on page 44 shows, that a packet contain-
ing a task gets recognised, and afterwards gets added to the TaskCore. From
the TaskCore the task gets executed by the JVARCore, requesting the class to
be loaded from a SocketClassServer. The SocketClassServer then hands the re-
quested class to the JVARCore.

The log output in table 2 on page 45 shows the processing of an example packet.
The packet is destined for a specific client and travels through the network and
through the routers with the attached JVARCores. The observers and FilterSets
are matched to the stream of the packet and actions are taken accordingly. Finally
it reaches the client which then also displays the message (payload of the packet)
it received to the log and console.

3.2 Complex network layout example

Overview

The network setup for this example uses like the example presented in chap-
ter 3.1 on page 42 virtual routers and simulated clients provided with the JVAR
framework. The class ComplexDemoSetup creates the different instances of the
"Router" and "Client" classes and connects them according to the desired lay-
out. The example network layout consists of five private class subnets 10.10.x.x
/ 10.20.x.x / 10.30.x.x / 10.40.x.x / 10.50.x.x. The default route through the net-

44 3 EVALUATION

SocketClassServer - Created server socket on port: 8012
Router - Routing packet 192.168.10.1
Router - Found matching router 0.0.0.0/0.0.0.0
JVARCore - JVARCore1: no observer found
JVARCore - JVARCore1: Found a matching task
TaskCore - Task found queue ready for execution
SocketClassServer - Initialised listener on socket server
SocketClassServer - Received request for className:com.[...].SimpleFilter
SocketClassServer - Found and loaded class:com.[...].SimpleFilter
SocketClassServer - Sent class:com.brogle.jvar.filters.SimpleFilter
JVARCore - JVARCore1: Executed TASK_LOADCLASS
JVARCore - JVARCore1: no observer found
JVARCore - JVARCore1: Found a matching task
TaskCore - Task found queue ready for execution
SocketClassServer - Initialised listener on socket server
SocketClassServer - Received request for className:com.[...].SimpleFilterSet
SocketClassServer - Found and loaded class:com.[...].SimpleFilterSet
SocketClassServer - Sent class:com.[...].SimpleFilterSet
JVARCore - JVARCore1: Executed TASK_LOADCLASS
JVARCore - JVARCore1: no observer found
JVARCore - JVARCore1: Found a matching task
TaskCore - Task found queue ready for execution
JVARCore - JVARCore1: Executed TASK_FILTERSET_ADD with com.[...].SimpleFilterSet
JVARCore - JVARCore1: no observer found
JVARCore - JVARCore1: no filterset found

Table 1: Log output showing class loading

Figure 15: Simple network layout

3.2 Complex network layout example 45

192.168.10.1 Router: Packet for 192.168.60.10 - This is a Test - This is a Test
JVARCore - found an observer
JVARCore - JVARCore1: found a filterset
Router - Routing packet 192.168.60.10
Router - Found matching router 0.0.0.0/0.0.0.0
192.168.20.1 Router: Packet for 192.168.60.10 - This is a Test - This is a Test
JVARCore - found an observer
JVARCore - JVARCore2: found a filterset
Router - Routing packet 192.168.60.10
Router - Found matching router 0.0.0.0/0.0.0.0
192.168.30.1 Router: Packet for 192.168.60.10 - This is a Test - This is a Test
JVARCore - found an observer
JVARCore - JVARCore3: found a filterset
Router - Routing packet 192.168.60.10
Router - Found matching router 0.0.0.0/0.0.0.0
192.168.60.1 Router: Packet for 192.168.60.10 - This is a Test - This is a Test
JVARCore - found an observer
JVARCore - JVARCore6: no filterset found
Router - Routing packet 192.168.60.10
.Router - Found matching client 192.168.60.10/255.255.255.255
192.168.60.10 Client: Packet for 192.168.60.10 - This is a Test - This is a Test

Table 2: Log output showing packet handling

work from left to right passes via the 10.30.x.x subnet. There is an interconnection
between the 10.20.x.x and the 10.30.x.x subnets. There are five clients in the net-
work, where two of them are in the 10.20.x.x subnet and one is in each of the
10.30.x.x / 10.40.x.x / 10.50.x.x subnets. See also figure 16 on page 46.

Implementation

To test the example network setup, a packet containing some simple text payload
is sent to each of the clients. No Filters and FilterSets are being loaded (by the
class loader) at the startup of the example. No Filters and FilterSets are being in-
stantiated during this example. This example is used to show how to setup a more
complex layout of a network to be simulated with the JVAR framework. Since no
Filters or FilterSets are being used, this example uses neither the in-band nor the
out-of-band approach.

Figure 17 on page 46 shows how the packets for the different clients are sent
trough the network and how the different clients receive these packets. The ob-
server for JVARCore attached to the router 10.10.112.1 shows all packets being
sent. The other observers attached to the clients show how the right packets get
received by the clients.

46 3 EVALUATION

Figure 16: Complex network layout

Figure 17: Screen-shot of complex setup example

3.3 GZIP tunnel 47

Figure 18: GZIP packing of payload

3.3 GZIP tunnel

Overview

A network provider wants to optimise bandwidth usage or wants to get some ad-
ditional reserved resources in a subnet. From this moment there would be less
bandwidth in the affected subnets that could be used for the normal services. To
solve the problem with JVAR, a GZIP or other tunnels in and through selected
subnets could be created. Then no bandwidth reduction for the general services
would be needed, since the additional reserved bandwidth for the special services
could be provided by compressing the normal traffic. Alternatives without using
JVAR could include the usage of a packet shaper, which would reduce the over-
all granted bandwidth for the normal services. This would keep some bandwidth
reserved for the special services.

Implementation

In this example the network layout is the same as explained in section 3.1 on page
42. Text in the UPD payload part of an IP packet (no special protocol needed)
will be sent through the example network. In a certain part of the network the
payload gets sent through a GZIP tunnel, which will compress the payload of a
packet as long as it is in this tunnel. There is one compress point and one decom-
press point to setup a GZIP tunnel. The FilterSets in these points have strict rules.
They match only on the specific source and destination addresses and the UDP
protocol of the example packets sent through the network. All the actions and
modifications made are completely transparent to the users (client and sender).
They do not know, that their packets have been compressed and decompressed on
the way through the network. The GZIP tunnel uses the GZIP algorithm, which is
included in the Java libraries. See also figure 18 on page 47.

The log output in table 3 on page 48 demonstrates the setup of the compression
and decompression filters and FilterSets in the corresponding JVARCores after
they have been loaded remotely from a SocketClassServer. This example uses

48 3 EVALUATION

JVARCore - JVARCore1: Found a matching task
TaskCore - Task found queue ready for execution
[...]
SocketClassServer - Sent class:com.brogle.jvar.filters.GZIPOutputFilter
JVARCore - JVARCore1: Executed TASK_LOADCLASS
[...]
TaskCore - Task found queue ready for execution
JVARCore - JVARCore1: Executed TASK_FILTERSET_ADD with [...]GZIPOutputFilterSet
[...]
JVARCore - JVARCore3: Found a matching task
TaskCore - Task found queue ready for execution
[...]
SocketClassServer - Sent class:com.brogle.jvar.filtersets.GZIPInputFilterSet
JVARCore - JVARCore3: Executed TASK_LOADCLASS
[...]
TaskCore - Task found queue ready for execution
JVARCore - JVARCore3: Executed TASK_FILTERSET_ADD with [...]GZIPInputFilterSet

Table 3: Log output showing setup of (de)compression point

only the out-of-band approach since all Filter and FilterSet setups occur before
the normal network traffic starts and the packets do not modify these Filters and
FilterSets anymore.

The GZIP demo log output in table 4 on page 49 shows, that the payload of the
IP packet gets compressed at the JVARCore attached to the second router. At
the JVARCore attached to the third router the payload gets decompressed. Only
the sending client attached to the first router and the receiving client attached to
the last router send and get the message in an uncompressed form. On its way
through the network the IP packet is passed through the GZIP tunnel. The quan-
titative benefit gained by the compression depends on the nature of the payload.
An Apache (web server) log file can be compressed by the factor 1:20 to 0.05%
of its original size. The text of this diploma work can be compressed by the factor
1:4. A GIF / JPEG image or already compressed data cannot be reduced in size
anymore and typically its size even grows when a compression is reapplied.

3.4 JPEG stream manipulation

Overview

A user wants to send (M)JPEG images or streams to another user. The overall
network traffic could be high or the connections of the users could be very slow.
This could lead to packet drops, timeouts and asynchronous flows, which would

3.4 JPEG stream manipulation 49

192.168.10.1 Router: Packet for 192.168.60.10 - This is a Test - This is a Test
JVARCore - found an observer
GZIPOutputFilter - Wrote data to GZIPOutputStream successfully
JVARCore - JVARCore1: found a filterset
Router - Routing packet 192.168.60.10
Router - Found matching router 0.0.0.0/0.0.0.0
192.168.20.1 Router: ?HL?N-QH?/R0?4?34??33?34P???,V?D????1?*:
JVARCore - found an observer
JVARCore - JVARCore2: no filterset found
Router - Routing packet 192.168.60.10
Router - Found matching router 0.0.0.0/0.0.0.0
192.168.30.1 Router: ?HL?N-QH?/R0?4?34??33?34P???,V?D????1?*:
JVARCore - found an observer
GZIPInputFilter - Read data from GZIPInputStream successfully
JVARCore - JVARCore3: found a filterset
Router - Routing packet 192.168.60.10
Router - Found matching router 0.0.0.0/0.0.0.0
192.168.60.1 Router: Packet for 192.168.60.10 - This is a Test - This is a Test
JVARCore - found an observer
JVARCore - JVARCore6: no filterset found
Router - Routing packet 192.168.60.10
Router - Found matching client 192.168.60.10/255.255.255.255
192.168.60.10 Client: Packet for 192.168.60.10 - This is a Test - This is a Test

Table 4: Log output showing GZIP compression / decompression

then result in incomplete or slow streams. With JVAR, the image quality could be
changed on certain active nodes. This modification would depend on the overall
bandwidth usage of the network or on the free resources available at the very mo-
ment the packet (image) passes through such a node. Alternatives without JVAR
could include a client side (at the users) negotiation of available bandwidth. The
processing of the images would happen according to the negotiated and other in-
formations at the sender. However, the sender could not react that fast to resource
changes in the network. The network would have to be analysed periodically and
new negotiations between sender and receiver would have to be done before the
modification method could be changed.

Implementation

The network layout for this example is the same as explained in section 3.1 on
page 42. A JPEG image is sent in the UDP payload of an IP packet (no special
protocol needed). This payload gets modified at different JVARCores by strict
filters, which are matching on the specific source and destination address with the
UDP protocol of the example IP packets. These filters modify the image with
certain actions, which include size reduction, bigger compression and black and

50 3 EVALUATION

Figure 19: Modifying image payload

white conversion. These actions are completely transparent to the users (recipient
and sender). All packets will be delivered and the overall frame rate is guaranteed.
No packets will be dropped, only the quality of the image gets adapted to the cur-
rent situation of the network usage. Therefore the delivery can be granted with a
certain maximum delay produced by the image manipulation. The example uses
the libraries integrated in Java for the JPEG image manipulation. The images get
reduced in size or colour depth (conversion to black and white). See also figure
19 on page 50.

Figure 20 on page 51 shows the final state of the example after its execution with
observers attached to the routers and the client. The colour conversion after the
first router (192.168.20.1) is shown. Also the dimension resize of the picture
before it reaches the client (192.168.60.10) via the last router (192.168.60.1) is
recognisable. As explained in section 3.8 on page 57 the image manipulation
on the benchmarking test system took about 61 ms. This example uses only the
out-of-band approach, since the image modifying nodes are setup before the reg-
ular network traffic starts and no further packet manipulating setup information is
passed to the nodes during the image transfer.

3.5 Explicit routing

Overview

A network provider wants to optimise the bandwidth usage and distribute the traf-
fic over the subnets evenly. Also a sender could want to use only fast routes. These
wishes would originate from the bad utilisation of the free network resources.
While some subnets or network pathways would be heavily used, others would be

3.5 Explicit routing 51

Figure 20: Screen-shot of JPEG stream manipulation example

only slightly used or completely unused. With JVAR, packets can be sent explic-
itly via a specified route. The nodes and packets themselves can decide where the
packets have to go through. Alternatives without JVAR would be to rewrite peri-
odically the routing tables in the routers. This procedure would react less faster
on changing situations. There would be some overhead and performance issues to
consider when these routing tables would have to be rewritten.

Implementation

The network layout for this example is the same as explained in section 3.2 on
page 43. For this example a special JVAR protocol is used. The option field of
the JVAR header holds different IP addresses that have to be visited. If these
visiting points are reached, the destination address in the IP header of a packet
matches with the address of the local router. Then the matching FilterSet modifies
the packet and removes the first address in the JVAR header option field of the
packet. The removed IP address from the JVAR header option field is then used
as the new destination address for the packet (rewrite of destination address). The
packet then gets sent back on its way through the network. See also figure 21 on
page 52.

52 3 EVALUATION

Figure 21: Explicit route setup

The log output on table 5 on page 53 and the figure 22 on page 53 show, that
the packet does not use the default route that would go via the 10.30.132.1 router.
Instead it gets redirected via the 10.20.122.1 router and then the packet goes back
on the default route. The packet address gets rewritten on each JVARCore as
mentioned before. This example uses both the in-band and out-of-band approach,
since first the nodes get setup for a certain stream (out-of-band) and then the pack-
ets themselves (in-band) provide the information of where and how to route them.

3.6 SplitCrypt tunnel

Overview

A user wants to send to another user sensitive data. They do not trust the networks
between them [GBBb]. Therefore any third party could access the sensitive pay-
load sent. To solve this problem with JVAR, a special 2-way split point can be
created. There the payload gets encrypted by a key. The encrypted payload and
the key get sent on 2 different routes (= 2 way encrypted tunnel). Alternatives not
including JVAR could use a public / private key signing [RSA77] on clients.

Implementation

The network layout for this example is the same as explained in section 3.2 on
page 43. An encryption tunnel, which encrypts the UDP payload of an IP packet
(no special protocol) will be created. One encrypt point, which splits the packet
into two new packets is introduced to the network. Also one decrypt point, which

3.6 SplitCrypt tunnel 53

[...]
JVARCore - JVARCore 112: found a filterset
Router - Routing packet 10.10.112.1
Router - Found matching router 0.0.0.0/0.0.0.0
10.30.131.1 Router: Packet for 10.50.151.251
JVARCore - found an observer
JVARCore - JVARCore 131: found a filterset
Router - Routing packet 10.20.122.1
Router - Found matching router 10.20.0.0/255.255.0.0
10.20.122.1 Router: Packet for 10.50.151.251
JVARCore - found an observer
JVARCore - JVARCore 122: found a filterset
Router - Routing packet 10.30.133.1
Router - Found matching router 10.30.0.0/255.255.0.0
10.30.133.1 Router: Packet for 10.50.151.251
JVARCore - found an observer
JVARCore - JVARCore 133: found a filterset
Router - Routing packet 10.50.151.1
Router - Found matching router 0.0.0.0/0.0.0.0
10.50.151.1 Router: Packet for 10.50.151.251
JVARCore - found an observer
JVARCore - JVARCore 151: found a filterset
Router - Routing packet 10.50.151.251
Router - Found matching client 10.50.151.251/255.255.255.255
10.50.151.251 Client: Packet for 10.50.151.251

Table 5: Log output showing explicit route packet flow

Figure 22: Screen-shot of explicit route example

54 3 EVALUATION

restores the original data from the two packets mentioned is added to the net-
work. These two points create the encrypted tunnel. The payload of the original
IP packet is in plain text. Therefore the encryption and decryption can be followed
with the observers and with the output the example generates. The random key,
which will encrypt the data at the encrypt point has the same size as the data pay-
load. This key is generated at the encrypt point each time a new packet passes by.
It is generated for this packet only, which leads to an increased security, but also
to a higher CPU usage. A new packet with the key as a payload and another new
packet with the encrypted original payload are then created at the encrypt point.
The encrypted data is generated by an XOR operation applied to the original pay-
load with the generated key. The original packet is destroyed and explicit route
information for the JVAR header option field is added to the two newly created
IP packets. Therefore they will use the different predefined path routes through
the simulated network. At the decrypt point, the first packet is being cached in
a queue until its counterpart arrives. Packets from different key / encrypted pay-
load packet pairs can be distinguished by the sequence number field in the JVAR
header protocol. The original data is then restored with the same XOR operation
of the key with the encrypted data. The restored original IP packet can then be
sent through the rest of the network path until it arrives at the recipient. For an-
other example of the "split crypt method" see also [Bro00]. See also figure 23 on
page 55.

Figure 24 on page 55 shows how and where the packet with the original data
gets split up into two new packets. They travel on two different pathways through
the network until they get reassembled back to the original data packet. The re-
stored original packet is then sent normally to the client, which receives it. As
explained in section 3.8 on page 57 the whole process of generating the key, en-
crypting and decrypting the data without any graphical output displayed to the
console and the observers takes about 188ms on the test system. This example
uses only the out-of-band approach since the tunnel is setup on a certain stream
before the actual network traffic occurs. The packets themselves do not provide
any additional information for the active networking nodes.

3.7 MJPEG explicit multicast stream manipulation

Overview

A stream provider wants to send a (M)JPEG stream [BGB] to different clients,
which have different network speed connections. The clients might not support
the bandwidth the stream needs. This would lead to dropped frames for certain
clients and those streams could get out of sync if only one multicast stream would

3.7 MJPEG explicit multicast stream manipulation 55

Figure 23: Split-crypt setup

Figure 24: Screen-shot of split crypt example

56 3 EVALUATION

be serving all the clients. With the JVAR framework, an explicit multicast [BFI+]
stream with different flow modifications on critical node points could be intro-
duced. An alternative without using JVAR would be for example multiple classic
multicast streams for different connection speeds with different levels of quali-
ties of the stream. This would lead to an overall higher bandwidth usage than the
solution with the JVAR framework would offer.

Implementation

The network layout for this example is the same as explained in section 3.2 on
page 43. A special JVAR protocol with the option field of the JVAR header hold-
ing the different IP destination addresses is used. The payload (images) gets mod-
ified by the FilterSets and sent as explicit multicast packets. The final packet for
the recipient is again pure IP UDP (no special protocol needed). There are five
modifying JVARCores with FilterSets and five clients that are receiving the image
stream, which leads to 5x30 frames. In each modifying FilterSet, the JVAR header
option field is checked for the IP addresses of the recipients. These addresses are
then compared with the routing links of the routers. The packet is copied, if it has
to be sent through different links of the router instead of only one link to reach all
recipients defined in the JVAR header option field. All the destination addresses
in the JVAR header option field are matched to the different links and added to
the JVAR header option fields of the new IP packets. The allocation depends on
the link through which the packet has to be sent through. At the end there are
different explicit multicast packets that cover all recipients desired. The destina-
tion addresses of the new packets have been rewritten and the packets are then
routed through the simulated network. This copying and matching to the links
can happen at several JVAR nodes in the setup. In some of the FilterSets in the
JVARCores the image contained in the IP payload gets modified before copying
or routing it further. These modifications could include a conversion to black and
white, a change of the image quality or a resizing of the image dimensions. Be-
fore the packets reach their final recipients, all JVAR related information (JVAR
header option fields) gets removed and a normal UDP packet, which is addressed
to the recipient is created. See also figure 25 on page 57.

Figure 26 on page 58 shows how the sender attached to the first router sends
only one image through the second router (10.10.112.1). On its way through the
network the image gets modified and duplicated in different ways. Changes of
the resolution and the colour depth occur. The explicit multicast for the different
routes and recipients continues until all clients have been served. As explained in
section 3.8 on page 57 the whole 30 frame animation modification by the image
processors on the benchmarking test system takes about 2781 ms which results

3.8 Overview of performance measurements 57

Figure 25: Explicit multicast of image with payload modification

in 54 frames processed per second. This example uses both the in-band and the
out-of-band approach. First the nodes get setup with certain image modification
algorithms (out-of-band) and then the packets (images) themselves (in-band) pro-
vide the multicast information.

3.8 Overview of performance measurements

The measurements are made on a computer with the following configuration:
Athlon XP2800+ 166 FSB with 1 GB RAM (PC2700 CL 2.5), Operating Sys-
tem: Windows XP Professional, Mainboard with NForce2 Chipset. The log file
output is disabled, no observers are attached to the JVARCores and the SUN J2SE
1.4.02 SDK is used. All measurements are made ten times, from which the aver-
age is taken. Especially fast or slow measurements differing significantly from the
average are not used to build the final average. Possible system or Java garbage
collector activity can provoke a significant slower execution of the example. Us-
ing this measurement falsifies the calculated average. The standard deviation for
the different performance measurements presented did never exceed a maximum
of five percent of the calculated average.

Simple copy: <1 ms

The duration for handling one single IP packet in one JVARCore is less than
one ms. In the JVARCore 255 FilterSets are setup. They all have different IP
mask rules and only the last one of these 255 matches. So the JVARCore has to
calculate the match on 254 rules (of the FilterSets) before it finally finds the active

58 3 EVALUATION

Figure 26: Screen-shot of MJPEG multicast example

matching FilterSet for the IP packet in question. The standard deviation for this
measurement was 0.

Simple image manipulation: 61ms

A simple JPEG image with a size of 16.6 kilobyte is chosen. The conversion from
a colour space (24bit) to black and white image is executed on the image by using
the JPEGFilter in the JVAR framework. The final image after modification has the
new size of 4.5 kilobyte. The original image resolution of 119x150 pixel is not
modified. Only the image handling and manipulation is measured. No IP packet
handling or JVARCore overhead is included in the measurement. The standard
deviation for this measurement was 0.994.

Explicit route: 16 ms

An IP packet passes five JVARCores that analyse and modify the packet. Several
routers without an active JVARCore are visited. Passing the packet from one
router without a JVARCore attached to another is plain reference passing in Java.
The overhead for this reference passing is negligible, the IP packet is not handed
as a copy from a router to another, but only the memory reference is passed. Since
the complete IP packet does not have to be copied and not sent through a media
like a network, the performance is augmented drastically compared to a distributed

3.8 Overview of performance measurements 59

setup with different computers involved. Having only reference passing instead of
copying objects helps only measuring the routing analysis and packet modification
actions. The time for the packet handling between routers is not added to the
measurement since the reference passing is not measurable and hence negligible.
The JVAR header option field of the IP packet that is sent trough the network holds
five IP addresses of routers that have to be visited. Each JVARCore at these five
routers has to remove the first address in the JVAR header option field and uses it
as the new destination address for the packet (rewrite of destination address). The
standard deviation for this measurement was 0.568.

SplitCrypt tunnel: 188 ms

The setup consists besides the routers of one split JVARCore (encrypt point) and
one reassemble JVARCore (decrypt point). The payload of the IP packet (in plain
text) is "Packet for 10.50.151.251: Some text - And more". At the encrypt point,
a random key with the same size like the payload is generated. Two new packets
are created, where one is holding the generated key. The other holds the encrypted
data, which is created by applying the XOR operation on the payload with the gen-
erated key. An explicit route JVAR header is added to the IP packets to send them
through separate network paths. The two packets are sent through several routers
in the network setup. The packet passing from one router to another is negligible
for the measurement, since this is nothing else than memory reference passing.
The first arriving packet is stored at the decrypt point, which is a negligible opera-
tion for the measurement. The original data gets restored when the second packet
arrives. The original packet is rebuild by the XOR operation of the key with the
encrypted data packet. For another example of the "split crypt method" see also
[Bro00]. The standard deviation for this measurement was 9.141.

Mixed JPEGMulticast: 54 frames per second

The network setup has five modifying JVARCores and five clients, which receive
a MJPEG image stream. 5x30 frames (=150 frames) for effective fps (frames per
second) throughput calculation are sent through the setup. Three JVARCores (of
the five) only duplicate the packets and recalculate the explicit multicast receiver
addresses in the JVAR header option field and rewrite the destination addresses of
those packets. Four JVARCores (of the five) modify the image with a black and
white conversion or by resizing the image and might also do the duplication, the
JVAR header option field recalculation and the address rewriting. The runtime of
the complete measurement is 2781 ms which results in 11 frames processed per
second per JVARCore and in 54 frames processed per second in the setup overall.
The standard deviation for this measurement was 40.719.

60 4 OUTLOOK

4 Outlook

4.1 Filter / FilterSet extensions

In the following sections some possible extensions of the JVAR framework, that
could be implemented based on the existing framework, are shown. Some other
ideas of how to deal with security issues are also presented.

Using the native resources of the hardware and operating system of the machine
on which a JVARCore is running would be another possibility to improve the per-
formance. However, this would have the disadvantage of disabling the platform
independence, which was achieved by using JAVA. Certain special OS functions
or hardware components would be expected to execute such a platform specific
active networking node or component. Some of these disadvantages could be
avoided by presenting alternatives for the specialised functions. If in a JVARCore
the hardware accelerations or some native modules and functions could not be ac-
cessed, an alternative platform independent solution would be used.

Also some alternatives for class loading are presented. Other kind of server com-
munication as well as the earlier discussed security issues are also addressed.

Basic payload modification in native C or in hardware

Some methods to manipulate the payload could be written in a native language of
the hardware / computer on which a JVARCore would run. If for example a fast
compression algorithm is known in native C, it could be included by using JNI
[Lia99] (Java Native Interface).

If a hardware implemented encryption board would be available in the system,
it could also be used by JNI or directly by Java interfaces (if provided). All these
actions would though decrease the portability, since the platform independence of
Java could not be guaranteed anymore.

JIT and specialised compilation of Filters / FilterSets

JIT (just in time) compilation of a class could be done at the class server. Classes
could be specially compiled for a specific JVARCore with fixed values for the
IP addresses, keys and other parameters, which then would be directly put in the
source code. Finally code generators based on templates for building a class could
be introduced to the JVAR framework.

4.2 Security extensions 61

4.2 Security extensions

In the following sections theclass serverrepresents a server or service providing
the class to be loaded by remote JVARCores. Therequesting JVARCore is the
JVARCore, that wants to load a class from a foreign class server as described
above.

Sign with keys (public + private)

A public and private key pair [RSA77] for each JVARCore could be introduced.
All Filters and FilterSets could be signed / encrypted with the receiving JVAR-
Core’s public key before it would be sent to them. This would prevent manipu-
lation by the "man in the middle". A "man in the middle attack" occurs on the
way between receiver and sender when some third party picks up the message and
manipulates it. This way, all communication (between JVARCores, authentica-
tion servers, etc.) could be signed / encrypted by the public key of the recipient.
Only the requesting JVARCore would have the private key to decrypt the packet.
Therefore a packet sent through the network could not be modified on the way to
the requesting JVARCore, since it cannot be decrypted by other parties.

There are different ways how the public / private key paradigm could be used
with the class loading mechanism. Either the public key would be sent on each re-
quest, where the JVARCore requesting a class at the class providing server would
send its public key together with the request. Or the public key would already
be known by the class server, because the JVARCore upon initialising itself or on
first contact with a class loading request would send its private key to the class
server, which then would cache the key. If the key transmission would happen on
initialisation, the JVARCore would have to know the class server’s address during
its startup.

The key pair could either be hard coded in the JVARCore or it could be gener-
ated at startup of the JVARCore in order to increase security. Validity of the key
pair could be for the whole lifetime of the JVARCore instance or a certain lifetime
could be assigned to a key pair. For example every 30 minutes a new key pair
would be generated, but then the newly generated keys would have to be sent to
the class server upon the next class loading request.

Authentication servers

All requests could be checked first by a global authentication server before they
would be declared valid. When a requesting JVARCore would receive a remote
class loading request, it would check if the class server could be trusted by asking

62 4 OUTLOOK

the global authentication server. Class servers would have to do handshakes with
the global authentication server after they initialised themselves and also periodi-
cally during their runtime. The global authentication server could hold the public
keys of the class servers, so it could send those to the JVARCores requesting the
information. This would lead to a secure request of the JVARCore to the class
server, since it would not be possible to modify the request on its way to the class
server.

The communication between the authentication server and the requesting JVAR-
Core could also be secured for example by public / private key pairs. The classes
requested and then sent by the class servers remain encrypted and the check if a
class server could be trusted would be done as well. However an additional ad-
vantage would be, that the requests sent to the authentication server would also be
encrypted.

HTTPS / SSL

The class servers could be using HTTPS servers, which would encrypt their com-
munication via SSL (Secure Socket Layer). A requesting JVARCore would have
to request the class via HTTPS. The certification process used by SSL (used by
HTTPS) would help to determine the trust level of a class server. No global au-
thentication server would be needed, and the communication channel would be
secure.

SSL encryption could also be used without HTTPS for example using other desig-
nated protocols. In this case the communication channel would have to be secured
manually by SSL.

Compare checksums before class-loading

Instead of a JVARCore having to load the class on each class loading request, the
JVARCore could first compare the checksum of the class. The class could already
be locally available in the JVARCore. Either the class loading request would
contain the checksum of the class to be loaded. Or the class loading JVARCore
would first make a request for the checksum at the class loading server, before it
would decide to load the class completely.

63

5 Summary

In chapter 1 classical networks and their behaviour have been presented. Their
disadvantages have been explained as well as their limitations that arise from
their statical nature. A short introduction to active networking has been given,
by showing the different kind of approaches to it. The in-band and out-of-band
approaches were illustrated as well as the limitations and disadvantages for each
of them have been pointed out. Resource management issues were outlined and
different examples with possible solution approaches have been shortly discussed.
Issues concerning emulated virtual routers and networks were brought up, anal-
ysed and their usage and possibilities demonstrated. An overview of possible
applications has been given included tunnelling, secure pathways, video-splitting,
explicit multicast applications, explicit routing for reliability and performance is-
sues, image and voice flow modifications and conversions, compression methods,
usage based rerouting, agent handling and other interesting concepts like payload
translation, correction or even payload filtering for parental control and classical
TOS and QOS issues were discussed. Last but not least, an overview of other
existing active networking applications written in Java was given followed by a
presentation of the structure of this document.

Chapter 2 explained the approach used with the JVAR framework. It has been
outlined, why a mixed approach of in-band and out-of-band has been practised
and what both approaches would have had as disadvantages when only used on
its own. Also the importance of using the wide spread standard IP /UDP protocol
instead of a proprietary implemented protocol has been described. Java with its
advantages to use it for this framework has been observed as well, taking also
possible disadvantages in account. The JVAR framework has been explained in
more detail. First the advantages of the framework were presented. The issue of
being thread free has been described, the importance of a good documentation has
been pointed out, the use of a logging framework was mentioned, the importance
of having very efficient low level packet handling classes and to use a unit test
framework has concluded the short overview. The basic setup of a JVAR node
then has been presented. All those components were briefly described with their
main duties and interconnections between them as well as the packet flow through
such a setup. All main classes of the JVAR framework then have been analysed
and explained in more detail with eventually some short code examples to help
to understand the classes and their usage and behaviour being added to the de-
scription. To conclude the chapter, the arising security issues in an active network
environment have been brought up and the difference between a safety and a se-
curity framework has been layout followed by a closer look at the implemented
security and the logging framework.

64 5 SUMMARY

Example active networking applications have been presented in chapter 3. After
an overview, which has been including motivation issues and different arising or
before hand occurring problems has been given, the implementation of each ex-
ample scenario has been described in detail with additional images explaining the
setups or actions. Basically two main setups, a simple network layout and a com-
plex network layout, have been used to simulate the example scenarios. All these
examples are provided with the JVAR framework and can be tested out, played
with and adapted to other scenarios or network setups. Different simple and more
complex applications have been used for the performance evaluation as well as
some basic image manipulation and packet active component matching has been
measured. All those measurements have been made on one single machine. Vir-
tual networks have been built up for the analysis and measuring the speed. In
order to simulate a complex active network application the achieved performance
seemed to be reasonable.

The outlook in chapter 4 presented some extension possibilities of the JVAR
framework. Additional usage of native or in other languages provided resources,
algorithms or accelerations were observed. JIT and special compilation were dis-
cussed to provide more platform specific advantages and code optimisations. Se-
curity extensions by using the public / private key paradigm has been taken into
closer consideration. Also the possible introduction of authentication servers has
been examined. The increase of security by using HTTPS and SSL was added
to the discussion. To finish the chapter, the possibility of comparing checksums
before loading classes in order to increase the performance was analysed.

As a conclusion, the JVAR framework can be considered as very open, easy to
understand, very extensible and usable in real life as well as in simulated en-
vironments, hence working on pure IP and UDP packets without the need of a
proprietary protocol. Different paradigms (in-band and out-of-band) have been
put together to make a very reliable and flexible framework to work with. Also
a focus has been on good documentation and platform independence as well as
having the possibility to integrate or make it collaborate with different kind of
real routers. A lot of programmed example applications and example classes have
been provided to help building up other applications or extensions very easily and
to understand the basic concepts of the interactions in a JVAR node.

65

A Class overview

A.1 Package listing of the JVAR framework

com.brogle.jvar.clients simulated clients for demonstration
com.brogle.jvar.cores core classes for JVAR and scheduling
com.brogle.jvar.demos all demos provided with the JVAR framework
com.brogle.jvar.filters filters for manipulating byte arrays
com.brogle.jvar.filters.jpeg image related filters
com.brogle.jvar.filtersets high level packet manipulation classes
com.brogle.jvar.handlers handlers for communication interfaces
com.brogle.jvar.loaders class loaders for remote class loading
com.brogle.jvar.observers observers to view what is happening in a network
com.brogle.jvar.packets all packet related classes (IP, JVAR)
com.brogle.jvar.routers simulated routers for demonstration environment
com.brogle.jvar.servers class servers providing classes for loaders
com.brogle.jvar.utils helper classes and utilities used with JVAR

Now follows for each package a list of the included classes, with a short descrip-
tion of their duties.

A.2 com.brogle.jvar.clients

SimpleClient

Simulates a real client in a network and is connected to a router. Is needed for the
programmed examples of active networking applications to show the behaviour
of the framework. Can have observers attached to it to view what is happening
inside a client.

A.3 com.brogle.jvar.cores

JVARCore

This is the main core class that handles all manipulation, task handling, IP match-
ing, class loading and unloading. Has methods, which analyse packets and match
them to a corresponding FilterSet or add the tasks being sent to the TaskCore.

66 A CLASS OVERVIEW

TaskCore

A TaskCore holds all the tasks that have to be executed. Calls are being made by
the JVARCore to get next task that has to be executed. The JVARCore adds the
tasks it receives from other JVARCores to its TaskCore.

A.4 com.brogle.jvar.demos

AbstractDemo

A helper class for all programmed examples of active networking that implements
the basic example handling and provides the round robin execution / triggering
of JVARCores. All other examples have to inherit this class. The AbstractDemo
checks for packets to be handled by a JVARCore and also triggers all other actions
outside the JVARCore.

BasicDemoSetup

This is the base class for all programmed simple examples of active network-
ing. Sets up the routers, RouterHandlers, clients, observes and JVARCores for
the simple example network layout. All other programmed examples of active
networking based on this network layout inherit this class.

ComplexDemo

This is a basic demonstration of the complex example network setup. Sends an
IP packet with text payload to all clients in the simulated network. Observers are
attached to each client, to follow the way of the IP packet through the simulated
network layout.

ComplexDemoSetup

This is the base class for all programmed complex examples of active networking.
Sets up the routers, RouterHandlers, clients, observers and JVARCores for the
complex network demo layout. All other demos based on this network layout will
inherit this class.

ExplicitRouteDemo

This is a demonstration of explicit routing with the JVAR framework. It sends a
text payload through the simulated network setup. On the observers attached to
the demo, the path of the packet can be followed and it will show, that it does not
follow the default route, but the path defined in the JVAR header option field.

A.4 com.brogle.jvar.demos 67

GZIPDemo

This example of active networking shows how a text payload gets compressed
and decompressed on certain nodes in the simulated network setup. Builds a
GZIP tunnel through the network. Observers either show the readable text or
the compressed payload.

JPEGDemo

This is a demonstration of the image manipulation with the JVAR framework.
Does black and white conversion and image resize using the JVAR framework.
Observers will show the different kind of manipulated images on the correspond-
ing JVARCores they are attached to.

MulticastDemo

This is an example of explicit multicasting using the JVAR protocol with the JVAR
header option field. Observers will show that only one packet is injected into the
simulated network layout, but that on the corresponding nodes it will get copied,
multiplied and routed further.

MulticastJPEGDemo

This example application shows the combination of explicit multicast and image
manipulation using the JVAR framework. Observers will show how packets will
get copied and multiplied, as well as the manipulations of the images that have
taken place on the corresponding JVARCores they are attached to.

MulticastMJPEGDemo

In this demonstration, a 30 frame video sequence is sent through and modified
in the simulated network layout. Observers will show, how different clients will
receive the video in different qualities. All starts from one single high quality feed.
The points in the simulated network, which do the the multiplication / copying of
the packets and image modifications are also displayed.

SimpleDemo

This is a basic demonstration of the simple example network setup. Shows the use
of the base classes for an example and how these demonstration classes have to be
implemented. Also shows how to use observers, SimpleFilters / SimpleFilterSets
and the use of remote class loading and remote FilterSet / Filter setup. The output

68 A CLASS OVERVIEW

is written to the console and a log file. The observers show the payload of the
packets, which the attached clients or JVARCores receive.

SplitCryptDemo

A more complex example of active networking, which uses explicit route and
packet splitting to encrypt the payload with a key. The encrypted packet and the
key are sent over separate paths through the simulated network. At a certain node
in the simulated network layout, the two packets get merged again to the original
data. Observers show the content of the different packets (either original data,
encrypted data or the generated key).

A.5 com.brogle.jvar.filters

AbstractFilter

This is the base class for all filters. It holds basic filter handling functions and
provides filter chaining. All filter implementations have to inherit from this class
to match a common interface and to allow the integration of unknown filters at
runtime. This integration is done with the help of polymorphism11.

DuplicateFilter

A simple duplicating filter used as an example how to create real filters. Duplicates
the byte array it receives. Since filters can return more than only the one byte array
they received, this filter also shows how this has to be done and handled with.

DuplicateFilterTest

The test class for DuplicateFilter that shows how test classes should be written for
real filters. Checks if from a single byte array input two equal byte arrays (equal
in contents, not references) will be produced as an output.

GZIPFilterTest

This is the test class for GZIPInputFilter and GZIPOutputFilter. Checks if a sim-
ple byte array containing some text will be compressed and successfully decom-
pressed having the same content as the input.

11In object-oriented programming, polymorphism (from the Greek meaning "having multiple
forms") is the characteristic of being able to assign a different meaning or usage to something in
different contexts - specifically, to allow an entity such as a variable, a function, or an object to
have more than one form. There are several different kinds of polymorphism.

A.5 com.brogle.jvar.filters 69

GZIPInputFilter

Decompresses the byte array it receives with the free GZIP compression algo-
rithm. Used by the GZIPInputFilterSet.

GZIPOutputFilter

Compresses the byte array it receives with the free GZIP compression algorithm.
Used by the GZIPOutputFilterSet.

ObjectInputFilter

Receives a serialised object in a byte array and deserialises it back to the object.
Could be used for sending or migrating objects (mainly Filters and FilterSets) with
a certain state from one JVARCore to another (remote) JVARCore.

ObjectOutputFilter

Receives an object and serialises it to a byte array. Could be used for receiving
objects (mainly Filters and FilterSets) with a certain state from other (remote)
JVARCores.

SimpleFilter

An example filter implementation that only passes the data it receives to the next
filter (or receiver). Helps to understand how to implement real filters. Used for
the SimpleDemo.

SimpleFilterTest

The test class for SimpleFilter that helps to understand how to implement real
filter tests. Tests only if the byte array sent as input contains the same as the
output provided by the SimpleFilter.

StripSizeHeaderFilter

A filter that removes a certain header length from a byte array. Mainly used as an
example of how to remove obsolete parts from payload data.

StripSizeHeaderFilterTest

The test class for StripSizeHeaderFilter that checks if a certain amount of a byte
array is removed from the input.

70 A CLASS OVERVIEW

A.6 com.brogle.jvar.filters.jpeg

JPEGFilterAbstract

This is the base class for all image manipulation filters. All filters doing image
manipulation have to inherit from this class, which provides basic image serial-
isation and deserialisation from and to a byte array, which holds a valid JPEG
image. Also provides basic functionality for all filters to change the image qual-
ity (compression factor), which all other filters automatically will also provided
additionally to their specialised manipulation functionalities.

JPEGFilterBW

A colour to black and white conversion JPEG filter that changes the colour depth
of a true colour (24 bit palette) image to a (8 bit) black and white image.

JPEGFilterBWTest

The test class for JPEGFilterBW that checks if the output image is smaller in size
than the input image.

JPEGFilterResize

An image resize JPEG filter that resizes the image by a certain factor (0.0 - 1.0)
on both dimensions equally.

JPEGFilterResizeTest

The test class for JPEGFilterResize that checks if the output image is smaller in
size than the input image.

JPEGFilterSimple

A simple image filter to show how to implement real image manipulation filters.
This filter keeps the image dimensions and colour depth, but only changes the
compression (quality) factor of it. Shows also how to use the basic manipulation
methods inherited from the JPEGFilterAbstract.

JPEGFilterTest

An example of a test class for image manipulation filters that shows how to im-
plement JPEG filter test classes. Checks if the output image is smaller in size than
the input image.

A.7 com.brogle.jvar.filtersets 71

A.7 com.brogle.jvar.filtersets

AbstractFilterSet

The base class for all FilterSets that provides a communication interface to the
TaskCore and router to which the JVARCore holding the FilterSet is connected
to. The AbstractFilterSet also gives access to the TaskCore via the JVARCore, so
that FilterSets can also create new tasks.

GZIPInputFilterSet

A FilterSet for IP payload GZIP decompression. Used to setup GZIP tunnels.
Uses the GZIPInputFilter.

GZIPOutputFilterSet

A FilterSet for IP payload GZIP compression that is used to setup GZIP tunnels.
Uses the GZIPOutputFilter.

JPEGBWFilterSet

This is a colour to black and white conversion JPEG FilterSet. Uses the JPEG-
FilterBW. Extracts the JPEG image information from the IP packet and hands it
to the Filter for image manipulation and creates the new IP packet with the new
manipulated image.

JPEGResizeFilterSet

An image resize JPEG FilterSet that uses the JPEGFilterResize. Extracts the JPEG
image information from the IP packet and hands it to the Filter for image manip-
ulation and creates the new IP packet with the new manipulated image.

JVARExplicitRouteFilterSet

An explicit route FilterSet that compares local router IP address with the IP packet
destination address. If they match, it rewrites the IP header destination address and
modifies the JVAR header option field by removing the local address from the list
of IP addresses that have to be visited.

JVARJPEGResizeMultiCastFilterSet

This is a combination of explicit multicast and the JPEG resize FilterSet. The ex-
plicit multicast part copies packets and rewrites IP destination addresses and JVAR

72 A CLASS OVERVIEW

header option fields depending on local IP address of the router. The JPEG resize
FilterSet part manipulates the newly created image payload of the IP packets. See
also JVARExpliciteRouteFilterSet and JPEGResizeFilterSet.

JVARMultiCastFilterSet

Multiplies IP packets and rewrites IP header destination address field as well as
the JVAR header option field depending on the local IP address of the router.
Before reaching the client, packets will be cleaned of any JVAR specific protocol
additions, so that the recipient receives an ordinary UDP or IP packet.

SplitDecryptFilterSet

Reconstructs the original IP packet from two IP packets. One of the two IP pack-
ets, which was created from from the original packet, contains a key. This key was
used to create the second packet, which contains the encrypted original data. The
two packets were sent on different paths through the network. An XOR function
is applied on the encrypted data with the key to reconstruct the original data.

SplitEncryptFilterSet

Splits and encrypts an IP packet into two new IP packets and transmits them via
explicit routing with additional JVAR header information by two separate paths
through the network. The first packet holds the key that has been used for the
encryption. The other packet holds the encrypted original payload, that has been
created by using the XOR function on the original data with the generated key.

SimpleFilterSet

An example of an implementation of a FilterSet that shows how to create Filter-
Sets. Uses the SimpleFilter and passes only the payload through the Filter. The
payload and the packet will not be modified during this process.

SimpleFilterSetTest

The test class for SimpleFilterSet that shows how to write FilterSet test classes.
Checks if the input packet will correspond in content to the output packet of the
SimpleFilterSet.

A.8 com.brogle.jvar.handlers 73

A.8 com.brogle.jvar.handlers

AbstractRouterHandler

The base class for all RouterHandlers that provides a basic communication inter-
face between the JVARCores and the routers they are connected to. All router
handler implementations have to inherit from this class to provide a basic inter-
face that the JVARCores then can access. Extensive test classes should be written
for all router handler implementations to guarantee the proper functionality and
reliability of the communication interface for a certain router.

RouterHandler

The router handler for the simulated router written in Java, which comes with
the JVAR framework. Shows also, how to implement a RouterHandler for other
routers. Fragmentation and defragmentation of packets have to be done in the
RouterHandler layer. Since the simulated router also works with the JVAR IP
packet implementation, the communication between the router and the JVAR-
Framework is mainly reduced to reference passing. This makes the overhead for
passing packets through the RouterHandler negligible.

RouterHandlerTest

The Test class for the RouterHandler that checks if packets sent through the router
handler will reach the router and if receiving from the router via the router han-
dler works. This simple test class also shows how to implement any other router
handler test class.

A.9 com.brogle.jvar.loaders

AbstractLoader

This is the base class for all class loading implementations. It provides the class
loading interface for a JVARCore. All other class loader implementations have to
inherit from this class to provide the same interface. This also allows to exchange
the class loader at runtime with other not yet known or remotely loaded class
loaders.

SocketClassLoader

An implementation of a class loader that loads classes through sockets by con-
necting to a SocketClassServer. The class loading is triggered by the JVARCore.
If the JVARCore receives a class loading task, it passes the class loading request

74 A CLASS OVERVIEW

to the SocketClassLoader for execution. The port of the socket is defined at start
up of the JVARCore. See also the SocketClassServer.

SocketClassLoaderTest

The test class for SocketClassLoader that checks if the right class gets loaded after
a class loading request and if a successful connection to a SocketClassServer can
be made.

A.10 com.brogle.jvar.observers

AbstractObserver

This is the base class for all observers. It provides GUI and console output han-
dling. All observer implementations have to inherit from this class. Observers
then can be connected to a JVARCore or a Client via this common inherited inter-
face.

ImageObserver

An observer for image payload that shows the image in the GUI or the image
information at the console. Strips JVAR header information before displaying
the information. Used by the demos that deal with images or whenever image
manipulation wants to be followed. Shows GIF or JPEG images out of a byte
array.

ImageObserverTest

This test class for an ImageObserver checks, if an image provided in a byte array
can be displayed successfully.

PayloadObserver

The observer for text payload that shows the text payload in GUI or console.
Strips JVAR header information before displaying the information. Used by the
programmed examples dealing with text payload or whenever text payload ma-
nipulation wants to be followed. Shows the text in the payload on the console and
in the GUI window.

A.11 com.brogle.jvar.packets 75

A.11 com.brogle.jvar.packets

IP

This is an implementation of the IP protocol with UDP support and helper func-
tions for IP header manipulation. Is used throughout the whole JVAR framework,
since it represents the IP packets the JVAR frameworks receives from the routers.
This class is also used by the router implementation written in Java for simulating
complex network layouts on one computer.

IPTest

A test class for IP class that tests all header setting methods as well as all data
retrieving methods. Also UDP manipulation is tested.

JVAR

This class provides the JVAR header protocol information with helper functions.
Implements all JVAR related protocol extensions in the JVAR header and its op-
tion field. Helper functions include retrieving and adding IP addresses from the
option field.

JVARTest

The test class for JVAR class that tests all protocol extensions and specially the
helper functions to work as expected.

Packet

This is base class for all protocols and packets. It provides helper functions for
getting and setting bytes, words, etc. from and to a byte array. All packet related
classes (IP and JVAR) inherit this class to have the benefit of the manipulation
methods for the byte array handling.

A.12 com.brogle.jvar.routers

Router

A simulated router to show the use of the JVAR framework and to simulate real
networks on one computer. Is mainly used by the demos provided with the JVAR
framework. Uses the RouterHandler class so that JVARCores can actually com-
municate with this router implementation. The router itself is very efficient and

76 A CLASS OVERVIEW

fast, since passing IP addresses from routers to other routers or from and to JVAR-
Cores is done by passing references.

RouterTest

The test class for the Router class that tests the routing functionality, and the router
interconnectivity.

A.13 com.brogle.jvar.servers

SocketClassServer

A class server that provides classes on demand for JVARCores wanting to load
them. Serves the SocketClassLoader. A SocketClassServer is independent of a
JVARCore running on a computer. Therefore it can be run on a separate machine
(or on the same) as a JVAR independent service.

SocketClassServerTest

This is the test class for the SocketClassServer. Tests if the server provides the
right classes for a loading request by a SocketClassLoader and if it can be setup
successfully on a machine.

A.14 com.brogle.jvar.utils

ComplexIPMask

A helper class for matching different IP header parts with different wild-card pos-
sibilities. Mainly used by JVARCores to find matching FilterSets for an IP packet.
Matching is done by comparing addresses, TOS fields, UDP ports either strictly,
by using masks on addresses or by wild-cards (anything matches).

ComplexIPMaskTest

The test class for ComplexIPMask that checks all implemented matching mech-
anisms including the wild-card option. Also all implemented methods to retrieve
existing IP header data out of IP packets and the constructor for the the Complex-
IPMasks are tested.

A.14 com.brogle.jvar.utils 77

Constants

Holds all static constants for the JVAR framework, for example maximum IP
packet length. Can be accessed from any class within the JVAR framework with-
out actually instantiating it as an object.

IPAdr

A helper class to extract IP address information from IP packet objects and from
strings holding IP addresses. Also matches IP addresses with network masks.
Mainly used by FilterSets and by the routers written in Java to find the next match-
ing router for an IP packet.

IPAdrTest

The test class for the IPAdr class that tests the different matching methods and
constructors to retrieve IP addresses out of IP classes and strings.

IPFactory

A helper class to generate IP packets (instances of the class IP). Provides methods
to create easily IP classes by handing string IP addresses and options or partial IP
information. This will lead to a valid IP class, which holds all necessary informa-
tion to be be used within the JVAR framework. Used by the demos and the test
classes to create test and demo IP packets.

JPEGFilterApplier

A helper class to apply image manipulation filters to IP packets containing image
JPEG payload. Mainly used for all image manipulation related test classes to
reduce duplicated code and guarantee same conditions for all tests.

Task

Tasks that represent different actions to be executed by a JVARCore. Tasks are
stored in the TaskCore and are executed by the JVARCore. Tasks can be serialised
and sent to other (remote) JVARCores where they will be deserialised, stored and
executed as needed.

78 A CLASS OVERVIEW

TaskTest

The test class for Task class that checks, if tasks can be successfully serialised and
then deserialised as well as instantiates the different kind of Tasks.

TestHelper

A helper class for all test classes that provides example IP packets to run the tests
with. Helps to have same test conditions for the different tests and getting the test
IP packets very easily.

79

B Source code examples

In this chapter some parts of the source code are shown, which help to get a better
understanding of the framework.

B.1 JVARCore

Below the constructor of a JVARCore is shown, giving an idea, what is needed to
setup a running JVARCore successfully:

/**
* Constructor connects to JVARCore to a router handler
* @param routerHandler Router handler to which this
* JVARCore is connected
*/

public JVARCore(AbstractRouterHandler routerHandler,
String coreName) {

// initialise all hashtables
filtersets = new Hashtable();
observers = new Hashtable();
// connect to router handler
routerhandler = routerHandler;
taskcore = new TaskCore();
// init task mask
// (source does not matter, but destination
// and protocol have to match)
taskCIPM = new ComplexIPMask(

new IPAdr("0.0.0.0/0.0.0.0"),
routerHandler.getLocalIP(),222, -1);

// set coreName
this.coreName = coreName+": ";

}

The main matching and selection is done in one method, the "Matchmaker":

/**
* Tries to get the next packet from the router handler
* and processes it
* @return true if a packet was processed, else false
*/

public boolean processNext() {
IP ip = routerhandler.getNextIPPacket();

80 B SOURCE CODE EXAMPLES

if (ip!=null) {
// get complex ip mask from ip packet
ComplexIPMask cipm = new ComplexIPMask(ip);
// find observer
if (processByObserver(ip, cipm))

logger.info("found an observer");
else logger.info(coreName

+ "no observer found");
// check if it is a task
// (this could also be done
// by a filterset if wanted)
if (taskCIPM.matches(cipm)) {

// add task to TaskCore
taskcore.addTask(ip.payload);
logger.info(coreName

+ "Found a matching task");
// stop further processing
// of task ip packet
return true;

}
// find filter
IP[] processedIPs =

processByFilterset(ip, cipm);
// check if filter has been applied
if (processedIPs!=null) {

logger.info(coreName + "found a filterset");
}
// or else copy the original packet
// to the processed array
else {

logger.info(coreName +
"no filterset found");

processedIPs = new IP[1];
processedIPs[0] = ip;

}
// route packets
for (int i=0; i<processedIPs.length; i++) {

routerhandler.routeIPPacket(processedIPs[i]);
}
// got a packet from router handler,
// so return true

B.2 Task 81

return true;
}

B.2 Task

The following types of tasks exist (taken from the source code directly):

/**
* Task type for adding filtersets
*/

public static int TASK_FILTERSET_ADD = 0;

/**
* Task type for removing filtersets
*/

public static int TASK_FILTERSET_REMOVE = 1;

/**
* Task type to notify a class
*/

public static int TASK_NOTIFY = 2;

/**
* Task type to load a class from a remote server
*/

public static int TASK_LOADCLASS = 3;

/**
* Task to send an IP packet
*/

public static int TASK_SENDIPPACKET = 4;

/**
* Task to do nothing at all
*/

public static int TASK_DUMMY = 5;

Tasks have various parameters, which hold objects with different kind of meanings
depending on the task type:

/**
* Constructor to create a task

82 B SOURCE CODE EXAMPLES

* @param executeInMilliSecs Time when task has to be
* executed from now
* @param repeat Times the task has to be repeated
* (-1 = endless)
* @param tasktype Type of the task
* @param taskObject The task object depending
* on the type
* Parameters for task objects depending on
* the task type:
* TASK_NOTIFY:
* taskObject1 = object: reference to object being
* notified
* taskObject2 = nothing
* TASK_DUMMY:
* taskObject1 = nothing
* taskObject2 = nothing
* TASK_FILTERSET_ADD:
* taskObject1 = string: name of filterset class
* taskObject2 = ComplexIPMask: complex ip mask for
* the filterset
* TASK_FILTERSET_REMOVE:
* taskObject1 = ComplexIPMask: mask of the filterset
* to remove
* taskObject2 = nothing
* TASK_LOADCLASS:
* taskObject1 = String: Name / Address of class
* providing server
* taskObject2 = String: Name of the class
* to be loaded
* TASK_SENDIPPACKET:
* taskObject1 = IP: IP packet that has to be sent
* taskObject2 = nothing
*/

public Task(long executeInMilliSecs, int repeat,
int tasktype, Object taskObject1,
Object taskObject2) {

this.starttime =
Calendar.getInstance().getTimeInMillis();

this.executeInMilliSecs = executeInMilliSecs;
this.repeat = repeat;
this.tasktype = tasktype;

B.3 AbstractClassLoader 83

this.taskObject1 = taskObject1;
this.taskObject2 = taskObject2;

}

Example of a simple task, that loads a filter from a ClassServer:

Task taskLoadFilter =
new Task(0, 1, Task.TASK_LOADCLASS,

"localhost:8888,
"com.brogle.jvar.filters.SimpleFilter");

// add the serialised task to an IP payload
IP ipTaskLoadFilter =

IPFactory.getIP(192,168,0,1,192,168,10,1,222,0,
taskLoadFilter.getSerializedObject());

// route the IP packet via a RouterHandler (rh0)
rh0.routeIPPacket(ipTaskLoadFilter);

B.3 AbstractClassLoader

The real implementation of a class loader has to inherit from the AbstractClass-
Loader and has to provide a custom constructor and a class loading method:

/**
* Constructor gets parameter to which server
* it should connect
* @param ServerSource Source indicating the server
*/

public AbstractLoader(String serverSource) {
this.serverSource = serverSource;
}

/**
* Fetches a class from a server specified by
* constructor and saves it locally for further use
* @param className Fully qualified class name
* to be fetched
*/

public abstract boolean getClass(String className);
}

84 B SOURCE CODE EXAMPLES

B.4 SocketClassServer

The implementation of the SocketClassServer or any other class server does not
have to inherit from any abstract super class, since any kind of service can be
provided. Only the corresponding class loader (the class loading class) has to be
adapted to the class server (and to the communication interface it provides) it has
to connect to.

The example SocketClassServer provided offers classes to load via a socket on
a specific port:

/**
* Constructor initialises the socket server
* @param port Port on which the server should listen
*/

public SocketClassServer (int port) {
try {

// create new socket server bound to port
serversocket = new ServerSocket(port);
logger.info("Created server socket on port: "

+ port);
}
catch (Exception e) {

logger.warn("Could not create socket server "
+ "on port:" + port);

}
}

B.5 RouterHandler

To show how easy the implementation of a router new access is, the basic methods
of the abstract super class, which have to be overwritten are listed below:

/**
* Returns the local IP address of the router which
* the handler is connected to
* @return ipAdr Local IP address of connected router
*/

public abstract IPAdr getLocalIP();

/**
* Returns all routing table entries of the router

B.5 RouterHandler 85

* to which a router handler is connected to,
* could be realised in the implementing class
* by the help of sendRouterCommand
* @return Routing table of the router connected to
*/

public abstract Vector getRoutes();

/**
* Returns next IP packet to handle, defragmentation
* should be made here if needed
* @return IP Next IP packet to handle
* from connected router
*/

public abstract IP getNextIPPacket();

/**
* Receives next packet for the router to route,
* fragmentation should be made here if needed
*/

public abstract void routeIPPacket(IP aPacket);

/**
* Sends a command or information to the router
* @param aCommand byte array holding the command
* or information
* @return Answer of the router to this command
*/

public abstract byte[] sendRouterCommand(
byte[] aCommand);

/**
* Sends a filter configuration to the router, that
* handler would like to receive all packets
* matching the filter setup sent
* @param complexIPMask Filter setup for router
* to be configured
* @see #removeFilter(ComplexIPMask)
*/

public abstract void setupFilter(ComplexIPMask
complexIPMask);

86 B SOURCE CODE EXAMPLES

/**
* Removes a filter configuration from the router
* @param complexIPMask Filter setup for router
* to be configured
* @see #setupFilter(ComplexIPMask)
*/

public abstract void removeFilter(ComplexIPMask
complexIPMask);

B.6 ComplexIPMask

There are two main constructors provided.

Either a custom ComplexIPMask is created by setting all the mentioned IP match-
ing parts manually:

public ComplexIPMask(IPAdr source, IPAdr dest,
int protocol, int tos,
int udpsrc, int udpdst)

Or all necessary information is extracted directly from an existing IP packet:

public ComplexIPMask(IP ip)

The check itself is done very easily and it aborts on the first mismatch all further
matching tries (better performance):

/**
* Compares 2 ComplexIPMasks and checks if they match
* (with wild-cards)
*/

public boolean matches(ComplexIPMask other) {
// check for matching tos
if (this.tos!=-1 && this.tos!=other.tos)

return false;
// check for matching protocol
if (this.protocol!=-1 && this.protocol!=

other.protocol) return false;
// check for matching destination
if (!this.dest.isMatching(other.dest))

return false;
// check for matching source
if (!this.source.isMatching(other.source))

B.6 ComplexIPMask 87

return false;
// check for udp parts only if protocol = 17
if (this.protocol == 17) {

// check udp src
if (this.udpsrc!=-1 && this.udpsrc !=

other.udpsrc)
return false;

// check udp dst
if (this.udpdst!=-1 && this.udpdst !=

other.udpdst)
return false;

}
// all match
return true;

}

88 C LOG4J

C Log4J

To write to a log file or to the std out12, the LOG4J framework [Gul02] from the
Apache Software Foundation has been used.

It can be easily configured (and also turned off) and is known to be very very
resource effective and time saving.

Only one line has to be inserted to make a class logging aware:

protected static Logger logger =
Logger.getLogger(ClassName.class);

Almost all classes in the JVAR framework do some kind of logging (console and
/ or log-file output). Since each of the classes belong to a certain package, and all
of them have distinguished logging ids (the class name itself), logging can be con-
figured on different levels. Exceptions can directly be handed over to the logging
framework to format them nicely as logged output. The whole log file / console
output can be formated in many variations (with fully classified classname, date,
time, level, etc).

In the file logoptions.properties , logging can be set to different levels
(debug, warn, info, fatal, error, log), in order to show only logging messages of
that kind and above the configured level. This way, for example only fatal mes-
sages would be logged. On the other hand, logging can be configured on any class
or per package. See the example configuration (logoptions.properties),
that is used for the JVAR framework by default, which includes logging to the
std out and to a log-file with a rollover. For the rollover settings, the maximum
size of a log-file and the maximum number of backup-files are defined. After the
maximum file size has been reached and all numbers of backups allowed are used
up, the oldest backup log file gets deleted and a new one for current logging is
then created.

The example configuration (stored in the file called logoptions.properties):

log to console (std out), debug (std err) and
file appender R
log4j.rootLogger=debug, stdout, R

configure standard out

12Standard output to console or error stream provided by the operating system

89

log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=

org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=

%d [%t] %-5p %c - %m%n

configure customised file appender R
log4j.appender.R=org.apache.log4j.RollingFileAppender
log4j.appender.R.File=jvar.log
log4j.appender.R.MaxFileSize=100KB
log4j.appender.R.MaxBackupIndex=1
log4j.appender.R.layout=org.apache.log4j.PatternLayout
log4j.appender.R.layout.ConversionPattern=

%d [%t] %-5p %c - %m%n

Print only messages of level WARN or above
for this package
log4j.logger.com.brogle.jvar.filters.jpeg=WARN

For more logging options and examples of log file configurations, see [Gul03].

90 REFERENCES

References

[AB+] D. Scott Alexander, Bob Braden, et al. Active network
encapsulation protocol (ANEP). Request for Comments:
DRAFT, Category: Experimental. Document can be found at:
http://www.cis.upenn.edu/˜switchware/ANEP/docs/ANEP.txt, visited
on February 17th 2004.

[Ane01] George Anescu. A C++ implementation of the blowfish encryp-
tion/decryption method, September 2001. Webpage can be found
at: http://codeproject.com/cpp/blowfish.asp, visited on February 17th
2004.

[Bal] Y. Mario Baldi. End-to-end delay of videoconferencing over packet
switched networks. IEEE/ACM Transactions on Networking, vol. 8,
pp. 479-492, Aug. 2000.

[Bau02] Florian Baumgartner. Quality of service support by active networks,
February 2002. PhD Thesis, RVS Group, Institut of Computer Sci-
ence and Applied Mathematics, University of Bern, Switzerland.

[BBa] Florian Baumgartner and Torsten Braun. Distributed emulation of IP
networks. Speedup Workshop, Bern, March 22-23, 2001.

[BBb] Florian Baumgartner and Torsten Braun. Quality of service and active
networking on virtual router topologies. In Hiroshi Yasuda, editor,
Active Networks, Second International Working Conference, IWAN,
Lecture Notes in Computer Science, pages 211-224, Tokio, Japan,
October 2000. Springer. ISBN 3-540-41179-8.

[BBc] Florian Baumgartner and Torsten Braun. Virtual routers: A novel
approach for qos performance evaluation. In Jon Crowcroft, James
Roberts, and Smirnov Mikhail, editors, Quality of Future Internet Ser-
vices, First COST 263 International Workshop. QofIS, Lecture Notes
in Computer Science, pages 336 to 347, Berlin, Germany, September
2000, Springer. ISBN 3-540-41076-7.

[BBKW] Florian Baumgartner, Torsten Braun, Evelin Kurt, and Attila Wey-
land. Virtual routers: A tool for networking research and education.
Computer Communications Review Vol. 33 No. 3, pp. 127-135, ISSN:
0146-4833, July 2003.

[Bec02] Kent Beck.Test Driven Development: By Example. Addison-Wesley
Pub Co, 1st edition, November 2002.

REFERENCES 91

[BFI+] R. Boivie, N. Feldman, Y. Imai, W. Livens, D. Ooms, and O. Pari-
daens. Explicit multicast (xcast) basic specification. Internet Draft
draft-oomsxcast-basic-spec-01.txt, March 2001. Work in progress.

[BGB] Roland Balmer, Manuel Günter, and Torsten Braun. Video stream-
ing in a DiffServ/IP multicast network. Workshop Advanced Internet
Charging and QoS Technology at Informatik 2001 (ICQT), Vienna,
September 26-29, 2001.

[BGB+00] Gregory Bollella, James Gosling, Benjamin Brosgol, James Gosling,
Peter Dibble, Steve Furr, and Mark Turnbull.The Real-Time Specifi-
cation for Java. Addison-Wesley Pub Co, 1st edition, January 2000.

[BL] Torsten Braun and Linqing Liu. Multicast for small conferences. 6th
IEEE Symposium on Computers and Communications (ISCC 2001),
Hammamet, Tunesia, July 3-5, 2001.

[BLBF] Robert Braden, Bob Lindell, Steven Berson, and Ted Faber. The ASP
EE: An active network execution environment. Document can be
found at: http://www.isi.edu/˜faber/pubs/DANCE.ARP.FINAL.pdf,
visited on February 17th 2004.

[Bro00] Marc Brogle. Active networking mit ANTS. Computer science
project for the RVS group, Institut of Computer Science and Applied
Mathematics, University of Bern, Switzerland, May 2000.

[Bro01] Ian Brown. End-to-end security in active networks, Septem-
ber 2001. PhD thesis, Department of Computer Science,
University College, London (GB), Webpage can be found at:
http://www.cs.ucl.ac.uk/staff/I.Brown/pimms/thesis.pdf, visited on
February 17th 2004.

[Cas] Kenneth Castelino. 3DES and encryption. Webpage can be found at:
http://kingkong.me.berkeley.edu/˜kenneth/courses/sims250/des.html,
visited on February 17th 2004.

[dMCPT] H. de Meer, A. La Corte, A. Puliafito, and O. Tomarchio. Pro-
grammable agents for flexible qos management in ip networks. IEEE
Journal of Selected Areas in Communication, 18(2), February 2000.

[GB] Erich Gamma and Kent Beck. Official junit web page. Webpage can
be found at: http://www.junit.org/index.htm, visited on February 17th
2004.

92 REFERENCES

[GBBa] M. Günter, M. Brogle, and T. Braun. Secure communication: A new
application for active networks. International Conference on Net-
working (ICN’01), Colmar, France, July 9-13, 2001.

[GBBb] M. Günter, M. Brogle, and T. Braun. Secure communication with ac-
tive networks. Technical Report IAM-00-007, IAM, 2000. Webpage
can be found at: http://www.iam.unibe.ch/˜rvs/publications/, visited
on February 17th 2004.

[GKPR] R. Guerin, S. Kamat, V. Peris, and R. Rajan. Scalable QoS provision
through buffer management. Proceedings of the ACM SIGCOMM
’98 conference on Applications, technologies, architectures, and pro-
tocols for computer communication, Vancouver, British Columbia,
Canada, Pages: 29 - 40, 1998, ISSN:0146-4833.

[Gul02] Ceki Gulcu. Short introduction to log4j, 2002. Webpage can be
found at: http://logging.apache.org/log4j/docs/manual.html, visited
on February 17th 2004.

[Gul03] Ceki Gulcu.The complete log4j manual. QOS.CH, February 2003.

[Gün01] Manuel Günter. Management of multi-provider internet services with
software agents, 2001. PhD Thesis, RVS Group, Institut of Computer
Science and Applied Mathematics, University of Bern, Switzerland.

[Hua02] I-Hsuan Huang. Active networks: An overview. Document can be
found at: http://www.din.uem.br/˜ra/artigos/20020612.pdf, visited on
February 17th 2004, 2002.

[IEE97] IEEE P1363 Working draft, appendices, 1997.

[Kue] Geoff Kuenning. International Ispell. Webpage can be found
at: http://fmg-www.cs.ucla.edu/fmg-members/geoff/ispell.html, vis-
ited on February 17th 2004.

[Lia99] Sheng Liang.The Java Native Interface: Programmer’s Guide and
Specification. Addison-Wesley Pub Co, 1st edition, June 1999.

[mic] Sun microsystems. Official java web page. Webpage can be found at:
http://java.sun.com, visited on February 17th 2004.

[PR02] Samuele Pedroni and Noel Rappin.Jython Essentials. O’Reilly, 1st
edition, March 2002.

REFERENCES 93

[Rar] Rarlab. Official rarlab web page. Webpage can be found at:
http://www.rarlabs.com, visited on February 17th 2004.

[RSA77] R. L. Rivest, A. Shamir, and L. M. Adelman. A METHOD FOR
OBTAINING DIGITAL SIGNATURES AND PUBLIC-KEY CRYP-
TOSYSTEMS. Technical Report MIT/LCS/TM-82, MIT, 1977.

[THL01] Patrick Tullmann, Mike Hibler, and Jay Lepreau. JANOS (java-
oriented active network OS). Appears in IEEE Journal on Selected
Areas of Communication. Volume 19, Number 3, March 2001.

[Tiw00] Manish Tiwari. Active networks, 2000. Document can be found
at: http://www.cse.iitk.ac.in/˜dheeraj/reports/active.pdf, visited on
February 17th 2004.

[TSS+97] D. Tennenhouse, M. Smith, W. Sincoskie, D. Wetherall, and G. Min-
den. A survey of active network research. IEEE Communications
Magazine, 35(1):pages 80 to 86, January 1997.

[Weter] D. Wetherall. ANTS - An Active Node Transfer Sys-
tem, 1997 December. Webpage can be found at:
http://www.sds.lcs.mit.edu/activeware/ants/, visited on February
17th 2004.

[WGT98] D. Wetherall, J. Guttag, and D. Tennenhouse. ANTS: A toolkit for
building and dynamically deploying network protocols, April 1998.
In IEEE OPENARCH ’98, April 1998. San Francisco.

[WPA] ANEP: Active Network Encapsulation Protocol. Webpage can be
found at: http://www.cis.upenn.edu/˜switchware/ANEP/, visited on
February 17th 2004.

[YNR98] Ikjun Yeom, Narasimha, and A.L. Reddy. Realizing throughput guar-
antees in differentiated services networks, November 1998. Technical
report, Texas A & M University.

