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Abstract

Different approaches to do event detection, tracking, liba#on and classification have been
presented in the field of wireless sensor networks. As thesdad wireless sensor networks
have limited energy resources and low processing powernighd algorithms have to be effi-
cient and energy aware. In this thesis we combine the adyesitaf different event detection,
tracking and localization algorithms in a distributed eviecalization and tracking algorithm
(DELTA). DELTA is extended with energy-efficient network megement, event classification
functionality and an energy based source localization. ariergy-based network organization
allows communication in a multi-hop environment with thesbéastation. We present a dis-
tributed approach to build-up a backbone which connectthallhodes with the base station.
Nodes which are not members of the backbone only wake updiesity to report sensor data
and can so save energy. The algorithm is energy-based leenadss are not only elected as
backbone node based on their position but also based onetheigy level. DELTA presents
a protocol to detect events and bundle information sensatiffeyent nodes about one single
logical event. In this thesis we present enhancements tvatliow DELTA to compute the posi-
tion and intensity of an event based on the sensed amplittd¢her we present a self learning
classification algorithm. Based on learned events, DELT&bie to learn event classes which
can be used to classify unknown events.
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Chapter 1

Introduction

1.1 Wireless Sensor Networks

Wireless Sensor Networks (WSN) have a wide applicationgafiey are for example used for
environmental or animal habitat monitoring, health-cardustrial process monitoring, applica-
tions in daily live and also military applications. In allete fields the main task of the WSN
is to monitor physical or environmental conditions using tftodes of the network, which are
equipped with arrays of sensors. Typically, these nodesywuamtate with a radio transceiver or
with some other wireless communication device.

WSNss are self-organizing ad-hoc networks supporting rindfi communication. Nodes
can be distributed randomly. For example, they can be throwtrof a plane. In most cases,
nodes which have been deployed in the environment, areuiffic be replaced. Consequently,
the network must be remotely maintainable and robust in gisede failures. As WSN nodes
commonly operate independently of a power supply, theyaitety powered. Therefore, energy
resources are a critical issue and nodes have to operatécandly as possible. This means
that nodes are based on low power consuming hardware andedsbefficient software, such
as optimized network protocols.

1.2 Network Organization, Event Detection, Localization and
Classification

In this work we present a distributed event detection, iragklocalization and classification
framework (DELTA) [37], [38]. We present enhancements ef ftamework and evaluate them
in real-world environments. The four main tasks addressekis work are presented next.

Network Organization

In order to communicate in a multi-hop environment with thedstation, to send some updates
to the sensor nodes, or to report sensed data, communiqettbe are necessary. As commu-
nication is an energy consuming task, the network traffidede be minimized. In order to
reduce energy consumption, the network nodes are switdfieaost of the time. As sleeping



Network Organisation

» Build a minimal backbone for
communication between Q Dominated node
wireless sensor nodes and the
base station. @ Backbone node

+ Saving energy by setting
dominated nodes into sleep
state.

® 00 ¢ 0
® 00 6 06
® 000 @
©0 e 0 @
© 00 0@
© ©0 € 6O

Figure 1.1: Network organization in DELTA.

nodes cannot communicate and therefore are also not abteviarl messages, some mech-
anisms to support stable communication paths have to bedgchv Therefore, we present a
network organization with two different kinds of nodes: Bbone nodes that provide a persis-
tent communication path to the base station and non-baekhodes which are sleeping most
of the time and wake up periodically to send their sensedtdatze base station over the back-
bone. In Figure 1.1 the green nodes are members of the bazkiven which all data is routed.
The red nodes are in a sleep state and wake up asynchronousdynmunicate with the base
station. The roles are changed periodically to keep theggrmr the same level over the whole
network. Thus, a long network life time can be achieved. Ikinbackbone nodes can move or
fail. Therefore, a backbone repair mechanism is provided.

Event Detection

Events such as a vehicle are sensed by different nodes dacedifkinds of sensors on these
nodes. Our WSN is able to bundle all information sensed byadles around an event source
together to model one single logical event (see Figure 1Jppn sensing a measurement with
a higher level than a predefined threshold, the nodes aroumvent elect a leader node, the
red node in Figure 1.2, which will be responsible for the nggmaent of the sensed event. This
manager node coordinates the distributed handling of tea@tevNeighbor nodes send their
sensed information to the elected leader node for furthedlivey. As events can be moving, the
management node is responsible to perform the event tiackinally, the leadership is handed
over to a node located closer to the moving event.

Event Localization

For some applications the event position needs to be knowahaVe implemented and eval-
uated different localization algorithms. Localizatiomailithms have to be fast and efficient,
because computation power on WSN nodes is limited. In sorsescaot only the event po-

sition, but also other characteristics are interestingerétore, the presented algorithms also
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Figure 1.2: Event detection and group organization in DELTA.

support the computation of the emitted signal strengthd@fevent. Figure 1.3 illustrates the
event localization. The red node receives information abimievent from its neighbour nodes.
Based on this information it computes the events positiath iatensity. Therefore, a sensor
model assuming isotropic signal attenuation is used.

Event Localization
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Figure 1.3: Event localization in DELTA.

Event Classification

A single event can be composed of different characteristich as sound, vibration and light
emissions. We present a simple distributed and self-legroiassification algorithm to cate-
gorize these different characteristics into classes ofitsveWe want, for example, to classify
different vehicles in road traffic. Depending on the charastics such as sound and vibration,
we classify detected events into one of the clagiegcle Motorbike Car or Lorry as shown in
Figure 1.4. To update the classification rules on the netwodes we further provide a simple
update mechanism.
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Figure 1.4: Event classification in DELTA.

1.3 Thesis Outline

We present related work on the topics addressed in this woBhiapter 2. We present ap-
proaches of Connected Dominating Sets to manage routingetmirk organization. Further,
related work of event detection, localization and clasaifin is presented. Chapter 3 introduces
the enhancements to the existing DELTA framework done m ttesis. We have added local-
ization and classification methods as well as a backbone anérh to support communication
between nodes and a base station. Chapter 4 describes iem&ion details of DELTA and
its extensions. The real-world sensor node hardware isdatred. We describe how differ-
ent parts of DELTA are implemented on these nodes. Chaptenvades the evaluation of the
DELTA framework enhancements. We have implemented andiaiead the DELTA framework
on a real-world sensor platform. Results of the evaluatiomfthe different parts of the DELTA
framework are discussed. Finally Chapter 6 concludes tbgepted work and discusses some
topics for further investigations.

1.4 Contributions of this Thesis

This thesis is mainly build around the existing DELTA franmetu. In different areas DELTA
has been extended. Mainly existing algorithms have beegrated into DELTA. They have
been implemented and evaluated on real-world hardwarehdrfdilowing we introduce the
contributions in detail.

Network Organization

An existing algorithm for an energy efficient network orgaation based on connected dominat-
ing sets (CDS) was implemented on real-world hardware. Suowodifications have been done
due to fit the algorithm to the real-world environment. Diéfiet scenarios were constructed to
evaluate the different parts of the algorithm on the realldvoetwork. A framework for moni-
toring the distributed network communication was intragtiic

To update the sensor nodes with new configuration settindsaweextended the CDS algorithm
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with a configuration distribution ability. Therefore no neélata traffic has been introduced. The
basestation informs the network nodes about new settingsgy-backing this information to
existing communication packets.

Event Localization

Different existing algorithms have been used to enable D¥Edding an appropriate localiza-
tion and event strength estimation. After evaluating défe algorithms the Simplex Downbhill
algorithm was chosen for an implementation on real-worldiWware. DELTA with the extended
localization abilities has been evaluated with real-wdigtit emitting events.

Event Classification

To classify the estimated event locations and event antigi#lDELTA was extended by a clas-
sification framework. In a training phase the clusteringatgm K-Means is used to learn the
event classes. In a second phase these information is uskbsify the events during runtime.
Two classifier algorithms are investigated. Finally, they&aclassifier was chosen to be im-
plemented on the real-world environment. The real-worlglementation was evaluated with
real-world light emitting events.






Chapter 2

Related Work

This chapter presents related work in the topics addresdedih this work. The first section
deals with routing aspects. The theory of Connected Dornig&ets is introduced. In a second
section different approaches for event detection, loatiim and classification are introduced.
At the end we present the sensor hardware which has beenarsgbe feal-world implementa-
tion and evaluation.

2.1 Connected Dominating Sets

Energy savings and self-organizing topology control arpdrtant tasks of many WSNs due to
limited energy resources and randomly deployed sensorsndderefore, topology control and
the construction of energy efficient virtual backbones Hasen largely investigated in ad-hoc
and wireless sensor networks. The main focus of connectetdndting set (CDS) approaches
is to minimize the number of nodes in the backbone. This isresfced in literature as the
ability of the algorithm to approximate the minimal conregtidominating set (MCDS). This
task is known to be NP-hard [3], though. There are differeniristics to approximate a MCDS
backbone, which will be discussed in the following subsej after a short introduction into
the theory of CDS.

Let's have a graplt: = {G,V'}, whereV is a set of vertices and is a set of edges. A
dominating set (DS) is a subsBtof V' such that every vertex not iR is connected to at least
one member ofD by an edge inE. In other words a DS of a graph G is a subggétc V,
where each node il — V' is adjacent to some node IY. Figure 2.1 shows a DS, where the
brown vertices are the nodes bfand the blue nodes are joined to at least one membér. of
In a connected dominating set we have the constraint thatubgetD needs to be connected.
Figure 2.2 shows a CDS: The brown nodes arédinthe blue ones are joined to at least one
member ofD.

Different types of algorithms which make use of CDS to buildackbone in a wireless
ad-hoc network, are presented in the next four subsections.
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Figure 2.2: Connected dominating set.
Figure 2.1: Dominating set.

2.1.1 CDS with Pruning Rules Approach

In [41] a simple distributed algorithm is proposed. It ainibailding a CDS close to the MCDS.
The algorithm supports changes in the underlying graphchvimeans that node failures or
moving nodes are supported.

A marking process in an unweighted graph= (V, F) is proposed.Unweightedmeans
that the edges have no labels or costs. A marker for a verte¥\can either be T (marked) or
F (unmarked). Initially all vertices are unmarked. In therkirag process and the subsequently
applied pruning rules the following two terms are used:ofen neighbor seV (v) of a vertex
v is the set containing all neighbors ofind is represented by (v) = {u|{v,u} € E}, where
{v, u} is the edge between vertexand vertex:. A closed neighbor seV[v] also containg and
is defined asV{v] = N(v) U {v}. In Figure 2.1 for example the sét,5} is a open neighbour
set of 2 and sef1, 2,5} is a closed neighbor set of 2. The marking process has treps: st

1. All vertices v get marked with F (unmarked).

2. All vertices exchange their open neighbor set with theighbors. After this step every
node knows its two-hop neighborhood.

3. Every v which has two unconnected neighbors changes itsamt T (marked).

Using the example in Figure 2.2 we have the following opemymeor sets:N (1) = {2, 3},
N(2) = {1,5}, N(3) = {1,4},N(4) = {3} and N (5) = {2}. After step 2 of the marking
process vertex 1 knows the neighbor sets of nodes 2 and 3,2nkdews the sets of nodes 1
and 5, node 3 knows the sets of nodes 1 and 4, node 4 knows tlé sede 3 and node 5
knows the set of node 2. In step 3 vertexes 1, 2 and 3 are markkd wbecause they have
two unconnected neighbors: node 3 has nodes 1 and 4, nodenbdes 3 and 2 and node 2
has nodes 1 and 5. Set V' is defined as the set of vertexes maiited. The resulting set is
not necessarily minimal. To reduce the size of the domigadiet two pruning rules have been
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introduced.

Rule 1: We consider the reduced graph G’ = G - V' and consider two eestv and & G'.
For each node an unique numerical identifié() is introduced. It is used to avoid simultaneous
removal of nodes from the CDS. I¥[v] C NJu| andid(v) < id(u) then set the marker of
v to F. This means that if the closed neighbor set of vertex soigered by the set of vertex
u, the vertex v can be removed from the CDS. In Figure 2.3 (apdu are CDS nodes and
N[v] C NJul, so the marker of v is removed from the CDSdfv) < id(u). In 2.3 (b) either v
or u can be removed. To prevent removing both, the node wétistmaller ID is chosen.

Rule 2: Vertexes v and w are marked neighbors of an also marked vartdk N (u) C
N(v) U N(w) andid(u) = min{id(w),id(u),id(w)}, the marker of u can be set to F. This
means that if the closed neighbor set of a vertex is coverdtidopeighbor sets of two marked
neighbors, this vertex can be removed from the CDS if the IEhisfvertex is the minimum. In
Figure 2.3 (c)N(u) € N(v) U N(w). If id(u) = min{id(u),id(v),id(w)}, vertex u can be
removed from the CDS based on Rule 2idfv) was the minimum, vertex v could be removed
based on Rule 1. The difference between Rule 1 and Rule ZiRthe 1 uses the open neighbor
sets, while Rule 2 applies the closed neighbor sets.

Q Q. 0 Q Q O
4 53’

\
\
NG /
O Notin CDS

4 & o

@) (b)

Figure 2.3: Pruning examples. Rule 1 is applied in (a) and (b), rule 2)n (c

Repair mechanisms for the following three cases have basepied mobile hosts switch
on, mobile hosts switch offand themobile hosts moveThe first two cases can be covered by
the already known marking process and the two pruning rufesodes are moving the nodes
can be updated locally. For this case a heartbeat signafrairced which signals that nodes
will start to move. Nodes in the backbone monitor this hesatlsignals after overhearing a start
message. If they do not receive a heartbeat after a predeéfitezdal, they determine a broken
link to the moving host. If a node receives heartbeats witlstart signal, it determines a new
link to a moving host.

The need of two-hop neighborhood information and poor perémce in certain network
topologies [35] makes the algorithm not appropriate forpapose.

In [40] an enhancement is presented which is based on thgyelesels of the nodes instead

of their link degrees. This supports longer lifetimes beseaanly nodes with higher energy
levels are elected into the backbone. In some cases noreshpdths are preferred to shortest
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paths containing nodes with poor battery levels. The ruédmed in [41] are adjusted to get an
energy-aware algorithm.

2.1.2 Maximal Independent Set Approach

Before explaining the algorithm we define an independenfIS¢tand a maximal independent
set (MIS). Given a graph G an IS is a subset of vertices V, sbrtbae of these vertices in
V is adjacent to another vertice. It is a MIS if adding any errto the set would break the
independency property of the set. Consequently, any noteititn the set must be adjacent
to some node in the setin a IS as well as in a MIS. Figure 2.4 stzograph with MIS. If one
would remove one of the nodes in the MIS the set would be an IS.

/ \ / Legend
\ @ et

Figure 2.4: Example of a MIS.

[39] makes usage of a MIS in a first phase to build a CDS aftetsvalhe aim is to build
a CDS with a low message complexity and good approximatiacheMCDS. In the following
we give a short conceptual overview over the CDS generatiogess.

In a first phase a MIS is build. First, a distributed leadectbn algorithm such as presented in
[2] is used to construct a rooted spanning tree. A commupitgdrotocol is proposed which is
used to define the level for each node. The level of a node isatkbfis the number of hops to
the root node of the tree. After this step all nodes know tbein level and the levels of their
neighbors. Based on this information a color-marking pseds started which constructs the
MIS.

In a second phase the root node initializes a process to cotire MIS to a CDS. In the
presented approach only one-hop neighbourhood informasiexchanged which leads to a
message complexity @ (nlogn). The algorithm has a good approximation factor in respect
to an MCDS, but does not concern energy level of the nodeseelers CDS members. This
would reduce the lifetime of the WSN. Furthermore, thereoismentioned any repair or update
strategy. So CDS nodes which fail or move will not be replac8teep cycles for non-CDS
members are not supported. All these points make this #@tgoinappropriate for our purpose.

10



2.1.3 Timer-Based Connected Dominating Set Construction

[42] presents a MAC-Layer Timer-based Connected Domigaset Construction Protocol
(MTCDS). The aim of the proposed algorithm is simplicity. eTalgorithm is optimized for
IEEE 802.11 ad-hoc networks. No extra control messagessa®, bbut all the messages are
included in the beacons sent by the protocol. Changes inonkti@pology such as failing or
moving nodes, are supported. The algorithm is split into pliases: In the first phase an ini-
tiator is elected. In a second phase a CDS is constructedtfrermitiator node. The MTCDS
protocol is based on a greedy strategy: The more uncoveigdbwes a node has, the higher is
its chance to be included into the CDS backbone. For the puildess three states are proposed:

e uncovered: The node is not covered by a node in the CDS.
e covered: The node has a neighbor which is in the CDS.
e inDS: The node is in the CDS itself.

The initiator determines itself as member of the DS andssthg build process by broadcasting
broadDS messages to its neighbors. Nodesgiitvvered state overhearing this message switch
to covered state and set a timexT" as described in equation 2.1.

1
(number of uncovered neighbofts

AT = Traz * (2.2)

If this timer expires and theovered node has not overheard a further broadDS, they set their
statein DS, enters the DS and also starts broadcastingnif3S state. Nodes irovered state
overhearing a broadDS message compete foritlieS state only as long as they have any
uncovered neighbors. The more uncovered neighbors a nagdéheahigher is the chance that
the node switches int D S state.

The MTCDS can also adapt to node mobility. Nodes which fadye or are added or move
are supported.

The proposed algorithm converges in only one algorithmap.sThus, it is simple to imple-
ment, but it has a rather poor approximation factor. Theggndistribution in the network is not
concerned. The members of the CDS are elected based onuhaden of uncovered neighbors.
Their energy level has no influence. As in all the other prieskapproaches, again no sleep
cycles for non-CDS nodes are proposed.

2.1.4 Receiver-Based Backbone Construction

The goal of the approach presented in [35] is to support itngcand monitoring applications.
The implementation of the protocol on real-world hardwane &s evaluation is part of this
thesis. Based on static or slowly moving nodes, the focus imig-term lifetime. Therefore,
the CDS adapts itself to local energy distributions in themoek. Nodes not participating in
the backbone shut down their radios and go to sleep for a fimedeperiod, thus conserving
energy. Primarily source-to-sink communication is supgzhr The algorithm builds a CDS by
using periodically sent HELLO messages. Within these HELth@&ssages information about

11



the one-hop neighborhood and on-demand also about thedpiowsighborhood is exchanged.
The two-hop information is piggy-backed in the HELLO messagThe algorithm can be split
in to three phases:

e Learning phase: The nodes learn their neighborhood.
e Setup phase: The backbone is constructed.

e Operation and maintenance phase: Data is sent from theesotar¢he base station. The
CDS reacts on topology changes.

Learning phase

To learn its neighborhood each node sends HELLO messagexiodjz cycles. A HELLO
message contains also the actual state of the sending ndaestdte indicates if the node is
already covered by the CDS or not. All nodes maintain a neigtdble containing neigborhood
information. Neighbor nodes are all the nodes witch can behed directly over a single-hop
communication path. The table contains neighbor IDs, the gdominator, dominated or none)
of the neighbor and the timestamp of the last received mes3dx length of the learn phase is
adapted according to the packet error rate. If it is high)ehening phase is longer to ensure that
all nodes are able to learn their neighbors. It is set maybaliore distributing the sensor nodes.

Setup Phase

The base station is the only node which can start the netvaitipgphase. Setting up the CDS
is considered as a graph coloring problem. We first give arétieal introduction into the setup
phase and show the whole process according to an exampteraits. At the beginning all
nodes are colored white. The network is setup as following:

1. The base station sets itself as dominator node and stagddasting DOMINATOR mes-
sages. These messages contain the neighbor table and dee K2n

2. The nodes which receive the DOMINATOR messages checkyfd¢bver additional nodes
by comparing their own neighbor table with the neighbordaifithe DOMINATOR node.
If they do cover any additional node, they go to sleep. If theyer any additional node
they change to dominated state and start broadcasting DAMIN messages. In these
messages the neighbor table from the DOMINATOR messagevwsfded, too. So the
receiving nodes learn about the two-hop neighborhood.

3. The nodes two-hops away from the dominator node overigpttis DOMINATED mes-
sage compare their own neighbor table with the one from theimktor node. Based
on this information they prioritize their upstream neighlas dominator and schedule a
DOMINATOR_CHOICE message. This is the reason why the method is cRiegiver-
BasedBackbone Construction. The priority of this message dep@mdthe link-degree
and the remaining energy of the dominator candidate. Ifetlieionly one known path

12



to the backbone, the DOMINATORHOICE message is sent with the highest possible
priority, without considering the remaining energy or kd&gree of the dominator candi-
date. If there is more than one path to the dominator nodepribaty depends only on
the energy level of the sending node: The higher energy tE#visle sending node is, the
higher is it prioritized.

4. Dominated nodes which receive a DOMINATARHOICE message switch to dominator
state and start also broadcasting DOINATOR messages.

An example is given in Figure 2.5. We assume that node D hasvezta DOMINATED mes-
sage from node B and node E has received one from node C. Adnbds no other path to the
backbone than over node B, node B is elected as dominatondé & will send a DOMINA-
TOR_CHOICE before node D, node C might be elected as dominatorTo@ would lead to
an additional dominator (C) which is not needed to guarantemectivity. Therefore, node B
has to be elected as dominator by node D immediately to prelrehnode E elects node C as
dominator.

Legend
@ Dominator Node
Dominator Candidate

(O Not yet connected nodes
N\
® ©®

Figure 2.5: Example for short delay timer.

In Figure 2.6 the construction phase is depicted. Node A amadeBheighbors of the base
station. Node C is in the neighborhood of node B. The basmstatoadcasts a DOMINATOR
message to its neighbors. Upon receiving the message, neaesAts state to dominated and
enters sleep mode because it does not cover any other nodie. Byavhich has an uncovered
neighbor, sets a timer to send a DOMINATED message. AfteDIB®INATED message has
been sent to the neighbors of node B, node C sets a DOMINATBI®ICE timer. Node C has
no other connection to the dominator, so the DOMINATGQROICE timer is set with highest
priority, which means with shortest possible delay. If n@eould have other neighbors and if
these neighbors would have an additional connection topseam dominator, node C would
set a timer delay according to the energy levels of the damirandidates.

Upon receiving the DOMINATORCHOICE message, node B joins the CDS, sets itself
to the dominator state and broadcasts a DOMINATOR messadgeenWode C receives this
message it sets its state to dominated and enters the slasp pécause it covers no additional
nodes. The algorithm terminates as soon as there is no urcbrede left. This means that all
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the nodes are connected in a CDS.

In the following paragraph some details about the timerirggst are presented. For
the release timers of the control messages DOMINATOR, DOMIED and DOMINA-
TOR_CHOICE the same contention time is used. For the HELLO messadonger contention
period is chosen. The shorter intervals for control messaaajee the network construction phase
faster. HELLO messages are sent with longer interval periodeduce the number of packets
which has to be sent by dominator nodes. The maximal durafidihese intervals depends on
the sensor network properties and needs to be configuredebgpirator. The timer for the
DOMINATOR_CHOICE message is composed of the dynamically chosen detayndined by
the priority of the backbone candidate. If a control mesdager is set, the hello interval is
interrupted until the control message has been sent. Mdedlgiabout the timer settings are
presented in the implementation part of this work (see Beeti2.1).

Node C

Basestation

INATOR

L I |
| | |
| | |
| |
i ! St DONINATEE :
| | timer |
| | |
| | |
0 | | |
| | | |
1‘ ! DOMIN ! INATED I
[} I
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! ! ! Spt
| | DAMINATDRCHOICE
| | | i
| i e tinper
| | |
I | | 1 Legend
1 | | |
i | mE |
[ | | | “ Sleeping
| |
| | |
| | |
| | |
| | : 1] pominated |
| | | |
T g3 T . | [ statctess |

Figure 2.6: Sequence diagram CDS set up phase.

Operation phase

After the CDS has been established, the nodes keep thais $tata predefined period called
backbone time. After that the whole backbone is reestaddisidapting itself to new network
conditions and trying to keep the energy level uniformiytrdlisited. During the backbone time
the nodes follow a predefined listen/sleep cycle. In Figureti2e cycles for a dominator and
for a dominated node are shown schematically. The domimatdes stay awake for the whole
backbone time. The dominated nodes sleep mainly and listdretmedium periodically.
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Figure 2.7: Different cycles during a CDS lifetime.

Path adaptation and repair mechanism
Our algorithm presented in [35] previews the following Gasénetwork changes:

e A new node is added during run time.
e A dominated node is disconnected.
e A dominator node fails.

The first case is solved by just synchronizing new added naiteghe next backbone. If there
is no backbone node within the nodes communication rangeydde has to wait until the CDS
network is reestablished. This is done periodically to attanetwork to the new energy levels
of the nodes.

If a connection to a dominated node fails, this node is remdr@m the neighborhood table
of a dominator node after a predefined timeout. If there wagpteal link disruption and the
node reappears it is again added to the neighborhood table.

If a dominator node fails, a link break is detected by one sfdbwn-link nodes. The
down-link node could either be the next dominator node inpidih (green start point in Figure
2.8) or a neighboring dominated node (red start point in feidu8). Link breaks are detected
if the nodes do not overhear any hello message during a pnedefime. Nodes which have
detected a link break switch into a link break state (yellowrigure 2.8) and start broadcasting
link break messages to inform their neighborhood aboutitikebkreak. Dominated nodes which
overhear a link break message save the address of the liak boele and forward the link break
message. As soon as a backbone node with a valid route toshestadion receives a link break
message, it starts broadcasting link repair messagesimiogtés valid path to the base station.
Upon receiving such a link repair message, each node upidateath to the base station and
forwards the message, with its ID added to the path, in its lovkrepair message. Dominated
nodes rebroadcasting LR messages change their state tmatomnhodes. To minimize the
number of dominators after a link break, the path updateiligion is done in contention.
Nodes overhearing a link repair message from a node fromhathiey have received a link
break message before cancel their own path update procekhag know that the link has been
repaired by an alternative path.

Figure 2.9 shows an example of the repair mechanism. Doadnadde A did not receive
any hello message from its dominator. So it starts sendikgolieak messages in its wake period.
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Figure 2.8: Sequence diagram of the repair algorithm.
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Its dominated neighbors B and D overhear this message wiegntake up. They forward the
link break message. Dominator node C overhears this messateeplies with a link repair
message, which contains the path to the base station. Upeptien of the link repair message,
node B changes its state to dominator. Then, it forwardsitkeépair message after adding its
ID to the path to the base station. Finally, node A receiveditik repair message and switches
its state to dominator too. It forwards the link repair mggsadNode D does not change its state
because it has overheard a link repair message from a nodeofA)which it has overheard a
link break message, before.

n LB Detected

Figure 2.9: Example of the link break repair mechanism.

Two-hop neighborhood information is only distributed ire tbOMINATOR and DOMI-
NATED messages. This keeps communication and storagereeagmts low, while providing
two-hop neighbors with relevant data considering the CO8psprocess. This happens in a
unidirectional way: The dominated nodes know the neighbadhtable from the dominator
node but not vice versa. During the operation phase, onlyhopeneighborhood information
is transmitted. The algorithm supports a long networkilifiet because the energy level is kept
distributed over the network. By reestablishing the badyoeriodically, not only the resources
of a few single nodes are used, but from the whole network. demvath low battery level should
not be elected as backbone node, as long as there is an @emade. We have chosen this
algorithm for a real-world implementation because it fitstb@ur purpose. In simulations two
different types of dominator prioritization have been aaétd: A selection depending on the
link degree (CDS-LD) and a selection depending on the wgasirnodes energy level (CDS-E).
We put our focus on the CDS-E approach in the real-world impeletation.
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2.2 Overview over Event Detection, Localization and Classifica-
tion

There exist several approaches in event detection, lat@lizand classification. After an intro-

duction of some general aspects of event detection, |l@taiz and classification we present in
a first section contributions from the networking and comitation research field. Their focus

is on optimizing network load. Often only coarse-graineatking is supported. An accurate
estimation of the events position is not possible. A classiibn of events is not possible as the
approaches do not compute any characteristics of the evenasiother section the focus is on
approaches doing accurate localization and classificafibiese are mostly contributions from
the collaborative signal processing (CSP) research fiefdrrhation from multiple sensor nodes
is used to localize or classify an event. The price for theieste localization and classification

are higher network loads. Finally, we present the DELTA fearark which tries to combine the

advantages from both fields.

2.2.1 Event Localization Approaches

Localization based on sensor information can be done iergifit ways. The simplest way is
to find the closest point of approach (CPA). The node with tighdst measured amplitude is
the node closest to the event. The location of this sensa nad be used as an estimate of the
events location. CPA provides low accuracy, but is a fastsiamgle solution. CPA approaches
are often used in event tracking.

Another solution is to make usage of the time difference a¥alrof the signals at different
sensors (TDOA). It is possible to compute an event positiaseld on the time difference of
arrival time of two signals at different sensors, the knowsifion of the sensor nodes and the
known speed of the signal propagation. By using this infdiona the position of the event can
be computed using different existing algorithms such a®®ifi4], which will be discussed
later in this section. This method requires that the clodkh® nodes are synchronized, which
causes additional network traffic.

A third possibility is to do energy-based source local@ati This method is based on the
fact that the energy level of the amplitudes of any kind ohalgdecreases with distance. In
order to be able to use the sensor readings to accurateliize@n event, adequate sensor
models for the particular sensors are required. It is asduthme the sensor signals propagate
isotropically (e.g. light, sound, vibration emitted by pbsources). Such isotropic radiation
models have been used in energy-based source localizE8®Jn[@5] and [20]). The according
sensor model is shown in Equation 2.2:

C
- . 2.2
Pi= =g 22)

The received signal; at sensor nodéat position; is inversely proportional to the emitted
signal powerc. w is some additional white Gaussian noise ahd the Euclidean norm.«
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depends on the kind of source which is sensed. It descrikesttbnuation degree of the emitted
signal.

2.2.2 Distributed and Centralized Approaches

The presented contributions are either centralized orilolised. In the first case, sensor infor-
mation is routed to a base station (BS) where the localimatioclassification is done. These
approaches often use localization or classification algms with high complexity, which could
not be performed on simple sensor nodes. Consequentlyeasta®n with more resources and
computing power is necessarily and a lot of network traffigaeerated by routing all the sensed
information to the base station. On the other hand distitbajpproaches often use less accurate
and simpler algorithms for localization and classificatiddetwork traffic can be reduced as
only aggregated sensor information is routed through ti@ark to the base station.

2.3 Event Tracking and Network Organization

The following approaches are mainly contributions fromrieewvorking and distributed commu-
nication research field. All contributions propose a kindjafup organization and management
of the nodes suited around an upcoming event, either in andignar static way. Organizing
nodes in local groups around the events reduces commumicadists, because not the whole
network is involved in the event handling.

2.3.1 Event Detection Using Static Sensor Clusters

In [43], after the deployment of the sensor nodes, statistets are built. Each cluster has a
cluster head which is expected to have more computatiomalbiiities than the rest of the sen-
sor nodes. The cluster heads are managing the clusters andstmf the computations. The
target localization is organized by a two-step commuricaprotocol. A sensor node sensing
an event sends an event notification message to the clustdr fdis is only a one bit mes-
sage which indicates the appearance of an event. Detailedniation like detection strength
level is provided to the cluster head upon subsequent quisoe the cluster head. Only the
node which is assumed to be closest to the reported evengiiedudfor more information. This
method reduces network load as only selected events argedpo the base station. After the
deployment of the sensor nodes the cluster head computbkeavdnich contains the probabili-
ties of a sensor node sensing an event at a certain positiostable is used to choose the node
which is queried for detailed information about the event.

The static cluster approach is not flexible. Events closén¢octuster border could be re-
ported by multiple cluster heads. This could lead to adad#imetwork load. The sensor network
is not homogeneous as different node types are used whighsra@sadditional costs.
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2.3.2 Coarse-Grained Localization

In [12] and [13] the localization of both node and event posi is proposed. In both ap-
proaches landmark nodes which know their absolute positierused. A distributed algorithm
makes usage of geometric constraints induced by radio ctivitg to estimate the nodes or
events positions. The approaches use negative and pasitiveectivity information. Paositive
information reduces the location of the node or event to @nregdf finite size. If for example
a node receives a message from a landmark node it knowsgt@atiit position must be some-
where in the estimated sending range of the landmark nodgatNe information precludes
a node or event from appearing in a certain region. In othedsvad is information about the
position where a node or event cannot be located. [12] mak&geuof rectangles to represent
the possible node position, while [13] uses Bézier polggamhich supports also non-convex
regions.

The accuracy of the algorithms is limited and the algoritimpose rather high delays.
Classification of the events is not intended.

2.3.3 EnviroTrack

EnviroTrack ([1] [23]) is a middleware layer that exportsemwnaddress space to the sensor net-
work. Not the sensors themselves but the physical eventteiarivironment are the addressable
entities. Objects are tracked by dynamically establishedigs of sensor nodes. EnviroTrack
[1] implements a CPA based tracking and it offers a group mament service. It organizes the
nodes which are responsible for tracking an event and alsordimes if the event is moving.
Figure 2.10 illustrates the group organization of Enviax’k. Each of the event tracking groups
has a single leader node. Nodes which are sensing an everd kader election process. The
leader is elected based on a randomly defined timeout. Afestitneout has expired a message
is broadcasted. The first node sending this message is tiher lefithe tracking group. Nodes
which receive such a message and sense the same event becomengmbers. EnviroSuite
([23]) has a slightly different leader election algorithfihe timeout for the leader message is
not chosen randomly, but it is defined inversely proportidadhe remaining battery level of a
node. So nodes with higher energy level will have a highencido be elected. This prolongs
system lifetime. Leader nodes continue to send heartbessages periodically. These mes-
sages inform the members that the leader is active. If aldagtmmes inactive, a new leader
election is started after a predefined timeout. Nodes whiemat sensing the event, but over-
hear heartbeat messages, are called group followers. dviirat is moving into the direction of
a follower node, it has a high probability to start sensirgyatient soon too. So it joins the group
instead of building a new group. Leaders getting out of sensinge send a leader handover
message to initiate a new leader election.

EnviroTrack offers a simple and efficient algorithm. Butrthare also some limitations.
It requires a communication radius larger than twice thesisgnradius to prevent concurrent
leaders. EnviroTrack offers only tracking. There is no laedion or classification functionality.
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Figure 2.10: Group organization in EnviroTrack.

2.3.4 Sensilt - Target Tracking

In the Senslt project [21] a framework for event detectiosacking and classification is pre-
sented. The WSN is split into dynamically established negjioEach region has at least one
manager node. Event classification has been the main fodhg efork and will be discussed
in Section 2.4. The tracking of a target consists of five steps

1. Nodes of a cell A (see Figure 2.11) detect a target. It isaletl as soon as the sensor
output exceeds a threshold. The detecting nodes reparntie@isured energy levels to the
cell manager nodes &t successive time instants.

2. The manager nodes compute at each time instant the loaztitne target using the re-
ceived information. Therefore, an energy-based targetliation algorithm has been

proposed.

3. Manager nodes predict at the N time instants the locatidheoevent atM (M < N)
future time instants.

4. These predicted positions are used to create new cdlghthavent is likely to enter. The
cells are built based on the velocity of the tracked targeEigjure 2.11 this is shown with
the three dotted squares. The new cells are activated feequint detection of the event.

5. When the event enters one of the new cells, the old cell Ae&tvated. The new cell
takes over the control. Nodes in the old cell are set intoditgistate to conserve energy.

Information collected by manger nodes of cell A is passetieéahanagers of the next cell. This
is important in case of tracking multiple targets. The pnseé handover mechanism involves
rather high communication costs. A lot of nodes are involwdakn an event moves from one
cell to another. The communication required within thescillhigh too. Details about the event
localization and classification aspects of Senslt can bedau Section 2.4.
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Figure 2.11: Event tracking using Sensilt.

2.4 Event Localization and Classification

In the last section we have presented related work focusmgvent detection and tracking
and the organization of networks while events occur. In thiowWwing section we present
related work which focuses on event source localizationcaskification. As mentioned in the
introduction, most of the contributions in this section fieen the CSP research field and focus
on solving the localization and classification problems.ti@jzation of the communication
load is often marginally considered. First we present soemegc methods for localization and
classification before presenting some more complex appesac

2.4.1 Linear Least Square Method

To solve a system of equations of the form (2.2) with a stahdiaear least-square method,
Equation (2.2) has to be transformed into a linear form. Asag that the kind of signal is
known, we also know the exponeat If sound sources are sensed, then= 2 (see [18]).
Equation (2.2) can be written as:

2]f? + 16l 2 — 22T — 2.3)
Pi
The noise parameter can be neglected, as it is regarded by over-determiningethdting
system. From Equation (2.3) we remove the quadratic canttran the unknown vectax.
Therefore we subtract the first equatian< 1) from all the othersi# 1). N is the number of
sensor nodes. The resulting system consisi¥ ef 1 linear constraints of the following form:
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Next we combine some terms in a vecfor [z; ¢] and simplify Equation (2.4) by setting

wzﬁ@—w(i—iﬂ (2.5)

P11 D

and
b = |G| ” + 1€ (2.6)

Substituting Equation (2.5) and Equation (2.6) in Equaihd) we get a simplified equation
al'% = b;. Considering all N-1 linear constraints, we can write thsteg in matrix form as
Ay 1% = by_1. Thus, we have got a system which can be solved in closed-faitima
standard Linear Least Square metifoe- (A7 A)~!ATb. The number of sensing nodes has to
be at least one element larger than the problem dimensiowetdw, to obtain useful results an

over-determined system should be used.

2.4.2 Nonlinear Methods

In order to use nonlinear optimization methods, we have tormaulate Equation (2.2) as a
nonlinear least-square objective function:

k 2
C
(D o] (A e
e =2 (P e

Using Simplex Downhill or Conjugate Gradient Descend thigiaion can be minimized.
This means that Simplex Downhill or Conjugate Gradient [@adcare used to search an input
value for which Equation (2.7) results in a minimal outpgt.is the measured sensor reading
and —5-= is the model. This means the minimum error between the sersdad and the

[Ix—&l[* . .
according model is determined.

Simplex Downbhill

Simplex Downhill [26] works without derivations, it only as function evaluations. The
solution to the problem is found iteratively by searching mimum in a multidimensional
function space. As the name of the algorithm says it is basesiraplexes. A simplex is a
form with the simplest volume in & -dimensional space. IN = 1 itis aline, forN = 2

it is a triangle and so on. For each point of the simplex a fonctvalue is computed. The
function value can be seen as cost or error. FromNhe 1 resulting values the lowest and
highest values are identified. In each iteration the higkiekte gets replaced. This is done
by geometrical operations. The highest point is mapped toiat pvith lower costs using
either reflection, reflection and expansion, contractiomawtiple contraction (see Figure 2.12).
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Figure 2.12: Possible geometrical operations in Simplex Downbhill.

Using these transformations the Simplex Downhill is ablegproximate any local or global
minimum in the multidimensional function space. The termtion criterion of the algorithm
is defined by the size of the simplex. If it falls below a definbeshold Simplex Downhill
terminates. As with all nonlinear optimization algorithnisis also possible that Simplex
Downhill finds a local minimum. The choice of the starting qidias great influence on that.
There exist some additional search procedures for findintplaaminimum such as Monte
Carlo methods. These methods are very cost-intensive ambaapplicable on hardware with
low computing power such as sensor nodes.

Conjugate Gradient Descent

Conjugate Gradient Descent [27] is an iterative method hitccontrast to Simplex Downbhill,
is using derivations. The problem to be solved is descritsed B-Dimensional poinP. For
these point valueg(P) and also the gradient¥/(f (P)) have to be computed. Conjugate Gradi-
ent Descend is similar to the Steepest Descent method. Téifsoeh starts from a poirf,. As
many times as needed the algorithm move from p6jrib the pointP; ; in the direction of the
local downhill gradient defined by V f(P). In many cases the Steepest Descent method is not
efficient and needs many steps to terminate. Conjugate &aldescend improves this method
by computing the direction of the descent in a more soplaistitway. Instead of using the local
gradient it uses the conjugate directions for going downliigure 2.13 shows two example
paths of a Steepest Descent and Conjugate Gradient Deskftat.each iteration both algo-
rithms define the direction and the distance they want to gowé can see, Conjugate Gradient
Descend converges in fewer steps than the Steepest Desetiradn Like Simplex Downhill
also Conjugate Gradient Descend can terminate in a locahmin.

2.4.3 Learning Event Classes with K-Means

K-Means [11] is a popular clustering algorithm. It is simpteprogram and apply. It takes
the computed event amplitudes and the expected numbersiéduas input and computes the
cluster centers. It does not need any user interaction fampoting the clusters. K-Means is
searching exactly one splitting = {C1, ..., Cx } of the given data se§ = {z1, ..., z)s } where
C; are the clusters ang; are the given sensed samples. The expected number of sléSisr
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Figure 2.13: Comparison of the Steepest Descent and the Conjugate Gtdakscent (Figure: Oleg
Alexandrov).

given by the user and does not change during the computatite @lusters. The following
pseudo code 1 shows the basic functionality of K-Means:

Input: S = {21, ...,z }; K = The number of clusters to find
Output: ClustersC' = {C1, ...,Ck}

ChooseK initial cluster centersny, ..., my repeat
Compute for each; the closest cluster center;

Compute for each clust&r; the costs;
Recompute each cluster center;
until Exit condition fulfield;
Pseudocode 1Psuedocode of K-Means.

There are different exit conditions possible:

The cluster centers do not or only marginally change fromitaration to the other.

The maximum number of iterations is reached.

The number of patterns; which change the cluster from one iteration to the other is
small.

e The costs are lower than a threshold or do not change fromteration to an other.

The resulting clustere’ = {C4,...,Cx} depends on the initially chosen cluster centers
mq,...,mg. The solution is not necessarily an optimal one. Differdrdtegies to choose the
initial cluster centers are possible:

¢ Randomly choosé& elements front.
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e Randomly generat& elements which are in the same n-dimensional cube as theerism
from S.

e Use both mentioned methods above with the following add#iaconstraint: A minimal
distance has to be between the chosen cluster centers K.

There exist also optional post processing methods to ingptioe K-Means clustering. A
method is to survey the compactness of the resulting chisteto split clusters with a large
variance. Methods for K-Means that guess the appropriatebeu of clusters for a specific
K-Means clustering have been presented in [17]. We do nat seeh techniques in our imple-
mentation because the number of clusters is known in advance

A disadvantage of the K-Means algorithm is the already moaetil problem with the initial
cluster centers. The choice of the initial cluster centefiénces the resulting clusters. By
analyzing the training sets at the base station appropelaster centers can be determined in
our application, though.

2.4.4 Minimum Distance Classifier

The minimum distance classifier is an intuitive and simplprapch. The cluster cente€s
computed by the K-Means clustering algorithm are used. Ameis represented by a feature
vectorx. The components of could be estimated with a technique such as presented in the
previous section. For any sensed event the Euclidian distBy between the cluster centey

of clusterC; and the evenk is computed. We get the following classification rule:

x € C; & Di(x) < Dj(x) foreachj =1,...,m;j # i (2.8)

If there is no unique minimum a random sample is chosen asstfioeighbor. The Euclidian
distance can be simplified as we are interested in the relasilue rather than the distance. So
the square Euclidian distance is used:

D2(x) = ||x — zi||* = X'x — 2xX'z; + 7}z (2.9)
The termx’x is independent of clags;, so it can be neglected and Equation 2.9 is simplified to:
A2 (x) = —2x'z; + 725 (2.10)
Consequently, Equation 2.8 is equivalent to Equation 2.11:

x € C; & di(z) < dj(z)foreachj = 1,...,m;j # i (2.11)

2.4.5 Bayes Classifier

The Bayes Classifier [11] uses, in contrary to the minimaladise classifier, statistical and
probability methods for classification. To train a Bayessifier the membership of an element
to a class has to be known. The training data is generateceliy-tleans clustering algorithm.
Important values and formulas which are used in the follgvére:
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p(C;): This is the probability of appearance of cla&ss

p(Ci|x): Is the likelihood ofC; given a sample.

e p(x|C;): Is the likelihood ofx given a class’;.

The Bayes theorem to getC;|x):

p(x|Ci) * p(Ci)

PO =)

(2.12)

The Bayes classifier assumes that each assignment of ann¢élemeecertain class causes
costs. One aim of the Bayes classifier is to minimize thestscds;, with L;; >= 0 are the
costs to classify an element in a wrong clagswhile classC; was the correct class. The mean
costsr;(x) if a givenx is classified inta”; havingm classes are:

ri(x) =Y Lijp(Cilx) (2.13)
=1
To minimize the mean costs(x) the following classification rule can be applied:

xeC;erix) <rjx)forj=1,...,m;j #i (2.14)

The mean costg; are computed for an unknown feature vectdn respect to each clags.
Becausey(C;|x) in Equation (2.13) is not known in most cases , it can be swibsti withp(C;)
andp(x|C;) using Equation (2.12):

rj(x) = L Z Lijp(x|Ci)p(Ci) (2.15)
p(x) =

The termﬁ is independent of the clags; so it can be discarded. We define the cdsts If
an element is assigned to the correct class, the dgst@are0. In the other case the costs are
L;j =1 (i # 7). Inserting this values into Equation (2.15) we get:

ri(x) =Y p(x|Ci)p(Cy) — p(x|C;) — p(C;) (2.16)
=1

Equation (2.16) can be simplified. We know that

m

> p(x[Ci)p(Cy) = p(x) (2.17)
=1
So, the classification rule can be written as:

x € C; & p(x|Ci)p(Ci) > p(x|C;)p(C;) for i, j =1,...,m; j # i (2.18)
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We have now a classification rule which assigns a pattéma clasg”; with minimal costs.
The only elements which need to be known a(€’;) and p(x|C;) of each clasg”;. If the
p(x|C;) are normal distributed, we get in the casererdimensions % < n):

1 1 Jrr—
p(x|C;) = H exp | = (x —m;)'K; '(x —my) (2.19)

m,; andK; are defined as following:
e m; = E;{z} is the mean of clas§);.
e K, = E;{(x—m;)(x—m;)'} is the covariance matrix of clag§. |K;| is the determinant.

Instead of using(x|C;)p(C;) we use a monotone function to reduyeex|C;). As we are
not interested in the absolute values but only in the relatibetween a(x|C;)p(C;) and a
p(x|C;)p(C;) we define:

Di(x) = log [p(x|C;)p(Ci)] (2.20)

Classification rule (2.18) can now be written as

x € C; & Di(x) > Dj(x)forj=1,....,m;j #i (2.21)

Finally we substituter(x|C;) in Equation (2.21) with Equation (2.19) and get the final deci
sion function:

Di(x) = log(p(C3) ~ 2 log(27) — 3 log [Ki| — 2 (x ~ m)/K; (x —my)  (2.22)

The summand; log(27) can be neglected as it is independent from cl@ss
If only one dimensional input data is available, Equatic2z2Zan be simplified.

2.4.6 Senslt - Target Localization and Classification

In the Sensilt project work in event localization and clasatfon has been done. Parts of the
project are based on an energy decay model. The developedttalgs make usage of one
single signal. In the following paragraphs we present mBffié approaches which have been
used in the Sensilt project for classification and localirati

In [21] seismic signals have been localized and classifiesidéscribed in Subsection 2.3
the network is divided into groups with management nodegalization and classification are
performed at these management nodes. The seismic signatlided as shown in Equation 2.2.
To compute amplitude and position of the event, a system o&fans of the form 2.2 is solved
with a linear least square (LLS) method. To classify the ltegy values three classification
methods are explored: knearest neighboklNN) classifier, maximum likelihood (ML) classi-
fier and a support vector machine (SVM) classifier. The piteskealgorithms operate on time
series of measurements associated with detected evernssfathleads to classification delays
as data has to be collected over a time period. It also seltsrbguirements on computational
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power and memory storage. In [29] and [30] refinements ofetls¢stistical methods have been
presented.

In [19] methods for single event localization have been stigated. Four nonlinear
optimization methods have been presented: Exhaustivelséas), Nelder and Mead Simplex
Downhill, Conjugate Gradient descent method and Multi Reésem (MR) search. The
performance of ES is worst, Simplex Downhill, MR and GD happraximately the same
search complexity. All these methods face the problem ofrfgntbcal optimums. To minimize
this risk, the feasible solution space is overlaid by a grilereof the respective optimization
procedure is performed at each point. The conclusion in 99 apply ES on a coarse grid
in a first step and apply one of the better performing algor&l{Simplex Downhill, Conjugate
Gradient descent or MR) in a second step. Doing this, thelgmolof finding local optimums
is decreased, while higher computational power is toldrabe our own work we use Simplex
Downhill too. We avoid local optimums by choosing approfgistarting points and by selecting
sensor readings from well-located sensor nodes. Thus, w@itign and storage costs can be
kept low.

In subsequent work [20], the nonlinear optimization methioave been replaced by a closed-
form linearized least-square solution. A similar approlab been presented earlier in [32]. The
closed form solution is much more efficient than the appreagresented before. However, to
achieve sufficient accuracy an over-determined systermedate Wireless sensor network often
cannot offer redundant data. In such situations a non4ligelaition might produce useful data,
while a linearized method fails.

2.4.7 PinPtr - Centralized Sniper Detection

PinPtr [14] presents a centralized sniper detection fraonewNodes distributed in the field are
equipped with microphones. The computation of sniper fositis based on time difference of
arrival (TDOA) of two different acoustic signals: muzzleabts and acoustic shock waves. The
sensed data is sent to the base station by each node seresienetit. Using this information
the base station computes the position of the sniper. A fouedsional consistency function
Ci(x,y, z,t) is defined as described in Equation 2.23:

Ci(z,y, z,t) = counti=1,k N([ti(z,y, z,t) —t;| < T) (2.23)

x, vy, z describe the hypothetical shooter position atioe shoot timet; is the time of arrival of
thei th measurement angl(z, v, 2, t) is the theoretical time of arrival of the muzzle blast at the
sensor of the th measurement. It is defined as described in Equation 2.24:

Ve —x:)2+ (y—yi)? + (2 — %)?

ti(xayazat) =t+ (224)

v is the speed of sound ang, y;, z; are the positions of the node, that has sensed-thevent.

If the i-th measurement is a direct line of sight detection, whicamseahat it is not an echo, then,
ti(x,y, z,t) andt; should be equal. Due to errors in time synchronization, aelogalization
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and signal detection the uncertainty valtés introduced. To find the global maximum of the
consistency Equation 2.23, which is the searched locafitimesniper, a Generalized Bisection
method is applied [16].

PinPtr also supports the self-localization of node pas#ioThis is done by evaluating ra-
dio and acoustic signals. The measurements are again ftwtsio the base station which
computes the relative positions of the nodes.

The localization of node positions and of snipers both negai/nchronized clocks. This
causes additional communication costs. Furthermore ecalb@ measurements are sent to the
base station. This traffic could be reduced with a distridhaigproach.

2.4.8 A Statistical Multi-Agent Approach for Event Localization

In [22] the tracking of multiple, interacting targets hasbeanalyzed. In order to estimate
the state of multiple events the amount of needed data grgpenentially with the number
of targets. Consequently, the communication costs inert@s To solve this, the problem is
split into smaller sub problems. The estimation of the eymtition and the events identity
management are handled separately. Location estimatiensrfeequent local communication
as the target has to be tracked continuously. For identitpgag@ment infrequent long range
communication is sufficient, because it is only used if npldtitargets are close together and
their emission ranges overlap.

If two targets are far away from each other they can be treagevo single events. Com-
ing closer together and finally crossing each others patheittor due to inter-target inference
increases. Therefore, the events are estimated jointherey separate again, the events will
be tracked separately again.

For tracking statistical methods are used. At time instattie target position:(Y) based
on the sensor measurement histefy = {20 ..., 2} is estimated. Therefore, a sequential
Baysian filtering approach is used. In the presented appmamt localization and classification
is not mentioned.

2.5 The DELTA Framework

This section discusses the DELTA framework, which suppdig&ibuted event localization,
tracking and classification presented in [37]. DELTA is didmad in more detail than the other
algorithms as it builds the basis for the enhancements aptéimentation done in this work.
Nearly all functionality is done in a distributed and decalited way. Only the tuning of the
classifiers, which is asynchronously done upon demand, tisloiwe distributed. Nodes are
self-organizing and form groups around events and haneia tery localized. DELTA does
not need to satisfy the condition that the communicatioryeas significantly higher than the
sensing range of the nodes. This is achieved by a periodificatibn procedure which will
be described later in this section. DELTA bridges the gapvbeh the presented cost intensive
CSP approaches and the less accurate but more cost effig@otahes focused on minimizing
communication load.
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2.5.1 The DELTA Protocol

Detecting and tracking moving events by distributed sigmatessing requires some collabora-
tion among the network nodes. To handle appearing event§BEtablishes dynamic groups

and allocates different roles to the member nodes. The di@geam of the algorithm is shown

in Figure 2.14. Nodes can be in one of the following five states

e LEADER: The leader node is responsible for group management, zatain of the
events position and communication with the base station.

e MEMBER: These nodes are close to an event and are part of the group ddes the
tracking and localization of the event. They provide thel&ra with the required info.

e PASSIVE MEMBER: These nodes are in the neighborhood of the member nodeseand ar
informed about the presence of a leader node. In case of mtaigets passive member
nodes are prepared for an upcoming event.

e IDLE: Nodes which are not in the direct event neighborhood.

e ELECTION RUNNING: Nodes in the ELECTION RUNNING state are leader candi-
dates. They have either sensed an event or are members velielolst their leader.

Delta uses the following communication messages:

e Heartbeat: Informs the one-hop neighbors, which are the members afckitrg group,
about the presence of a leader node. Moreover, they regeesbrsreadings from the
members. The position of the sender and the estimatedguositithe event are transmit-
ted in this message too.

e Passive Heartbeat Informs the passive members about the presence of a leader n
In other words, passive heartbeat messages inform neiglerhops or further away of
the leader about the presence of an event. The passive éeatibsemination depth can
be configured.

e IREP: Information response message provide the leader withebkded data. They are
also overheard by other member nodes. More about the IRERages is said in the next
paragraph.

e Leader Reelection A leader reelection message is sent by a leader which detteat
there exists a member node which is closer to the event tkal. itLeader reelection
messages are also sent if the signal amplitude of an evesgdei the leader is below a
predefined threshold.

As long as there is no event detected the nodes are in state Ihon starting to sense an event
the concerned nodes switch to ELECTION RUNNING state andduale a timer. The duration
of this timer is determined by the sensor readings: the g&oan event is sensed the shorter the
timer is set. When the timer expires a heartbeat messageaddasted. Thus, the neighborhood
is informed about the presence of the group leader. Othegstitht are also in ELECTION
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Figure 2.14: State diagram of DELTA.

RUNNING state and which receive this message switch to MERBEte and cancel their own
election timer. The specific computation of the timer degenw the underlying hardware and
will be described in Section 3.1.

If events such as a person walking around are moving into ¢heark, a leader handover
mechanism is required. DELTA supports this with the follogriimechanism: Leaders which
stop sensing, because the event is out of their sensing,rewgeh to member state. If member
nodes do not overhear a heartbeat message for a certain risingtith sense something, they
compete for the LEADER state by switching into ELECTION RUNIG state.

As mentioned before, DELTA does not require that the compatitn range must be larger
than the sensing range. If an event with a large emittingegasayld not only be sensed by
a leader and its member nodes, a new, independent group Wweubdilt farther away. This
would cause the existence of multiple groups for one singémte The information response
(IREP) messages prevent this to some extend (see Figurg DEpending on the expected
sensing ranges, event information could be distributeghelemto the network by the passive
heartbeat mechanism. This implies some overhead, of colsmg optimized broadcasting
techniques [15] the overhead could be minimized, thougRidare 2.15 node D, which is three
hops away from the leader could this thus be informed abeutxistence of the tracking-group.

All packets used in DELTA contain mundfield. This field is used to avoid the processing
of outdated information. It is incremented with every heaat the leader broadcasts. If a node
receives a packet with a round number smaller or equal theaautrent round, this message can
be ignored. Further, the packets contain a time to live (Tfidlyl which defines the depth until
which the event information is disseminated into the nekwor
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Figure 2.15: Sequence diagram of the DELTA communication scheme.

The leader election process aims at quickly determiningn@lesileader node. This means
that the leader choice should minimize the number of réelestand hand-overs, by keeping its
LEADER state, as long as possible. The election processsragtiermore to be fast to avoid
periods where no leader is present.

2.5.2 Event Tracking

DELTA supports coarse- and fine-grained event tracking. ddagse grained tracking is based
on a CPA approach. As described before, leader nodes areties nvhich have sensed the
highest amplitude. Leader nodes have a high possibilityetthe closest node to the tracked
event. Therefore, the event position assumed to be clodeettedder node. If the event is
moving also the tracking group is moving. So the event camdmkéd by tracking the position
of the actual leader node. Fine grained tracking, locatimeand classification of events have not
been included into DELTA up to now. These tasks are part efttiésis and will be presented in
the next chapter.

2.6 Real-World Hardware Environment

This section is split into three sections. First, we give a@reiew over the sensor nodes. In the
subsequent subsection the operating system running oretisersnodes is presented. Finally,
some details about of the tool chain which was used for dpumjothe DELTA framework on
the hardware nodes is given.

2.6.1 Sensor Nodes

For testing real-world scenarios the Embedded Sensor Bq&®B) [4] (see Figure 2.16) are
used. These sensor boards are equipped with several sadsooramunication interfaces. The
Texas Instruments MSP430F149 [33] is used as microcoetrolt has a CPU clock rate of 8
MHz. The ESB node is powered with three AAA batteries.

33



LEDs Power Switch

Transceiver

PIR Sensor

Beeper

Button Reset Button

Figure 2.16: The ScatterWeb ESB sensor node.

Sensors

The ESB nodes are equipped with five different sensors:

e Passive Infrared Sensor The passive infrared sensor (PIR) allows the detection@fm
ing objects within a radius of 100 The maximum measuring distance is, depending on
the angle, between 1.5m and 5m [7] [8].

e Temperature Sensor It measures temperatures from -85to +125°C. The thermome-
ter provides 9-bit temperature readings [5].

e Microphone: The ESB boards are equipped with a microphone, which altbstscting
noise levels with adjustable thresholds (signal noise #@idB, 120 dB max) [6].

e Vibration Sensor: To monitor tilt and vibrations the ESB contains a vibratgansor [9].

¢ Infrared Receiver: There is an infrared light to frequency converter for reicej infrared
(IR) signals on the board which responds to an infrared rénoge 800nm to 1100nm [10].
In our evaluations this sensor has been used to sense thsiiigte of the infrared part of
light.

Communication Interfaces

The ESB nodes have different possibilities to communicatethe ESB nodes are three colored
LEDs which can be used to signal the state of the node. Funthrer, the nodes are equipped
with a parallel interface. This provides a Joint Test Act®roup (JTAG) interface over which

the nodes can be flashed with new software. Also real-timeigigbg can be done over the
JTAG. Over a serial port the node can exchange data with dihéces. For example, the node
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can sending log data over GSM or via serial cable to a comp@eécourse, also the infrared
sensor can be used for communication.

The essential communication interface is the radio tramsc@R-1001 [28]. It is ideal for
short range communication. Its small size and low energgwmption make it ideal for wireless
sensor network applications. The TR-1001 is operating énlitense-free 868 MHz band. The
signal can either be modulated using On-off Keying (OOK) anitude Shift Keying (ASK).
By using OOK a maximal communication speed of 30 kbps is ptessiASK reaches up to
115.2 kbps but consumes slightly more energy.

Microcontroller and Memory

The MSP430 microprocessor is a 16 Bit RISC processor. It@ipR7 basic instructions and
five different power modes LMPO to LMP5. Depending on the moud®e or less energy is
consumed. The modes differ in switching on or off the peniphmodules. The fewer modules
are active, the less energy is consumed. Most of the time tiseno network administrator
around who could reset the system if it crashes. TherefaeeMSP430 is equipped with a
watchdog. It increments a timer which has to be reset by tbgram periodically. If the
program crashes or a very time consuming task is perforrhedyatchdog timer overflows and
the system is reset. The JTAG interface on the ESB nodesysllas already mentioned, real
time debugging on the sensor nodes. On the ESB boards 2 kB bf &#d 64 kB of flash
memory (EEPROM) are available. Reading and writing fromEE#ROM is energy and time
consuming.

2.6.2 ESB ScatterWeb Operating System

ScatterWeb is a tiny operating system which is developedh®iScatterWeb platforms eGate,
ECR and ESB, that we use in our real-world experiments. Oglementation is based on
version 3.1. ScatterWeb offers the following features [4]:

e Configuration of the sensors.

e Control of peripheral interfaces: Timers, serial port, FEMM, radio transceiver, infrared
communication, switches and LEDs.

e Configuration and management via terminal commands ovesdtial interface or also
over the radio.

Further functionality such as the support of communicatear GSM by using SMS can
be added upon demand by using the applications. In Scatbetkéesystem is split up into
operating system and application parts. This means thabst oases a developer does not have
to modify the ScatterWeb core code, but can just use the ABtafterWeb.

When switching on the sensor node thain() method is called. Peripheral interfaces are
initialized and the main loop gets started (see Listing.2rd )every loop the watchdog timer is
reset. If there is no task to be done, which is signaled byuh#odulevariable, the node is set
to sleep state LPM1. In LPM1 state the CPU gets switched dfé TPU can be woken up by
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interrupts, though. These interrupts set a flaguinModuleand wake the node up from LPM1
state. The node continues looping and can calls the evedtdranterrupts. This is needed in
our application to schedule events like periodically segdiata packets.

for(;;) {
System st art Wat chdog() ;
/1 Starts&resets the watchdog, |ong procedures should call
/1 stop watchdog, else MSP will reset.
i f(runModul e & MF_SCOS) Thr eadi ng_event Handl er () ;
/1 Radio tasks.
i f(runModul e & M= _RADI O RX) Net rxHandl er();
i f(runModul e & M= _RADI O TX) Net txHandl er();
i f(runModul e & MF_TI MER) Tiners_event Handl er () ;
/1 Callback for serial line
i f(runModul e & MF_SERI AL_RX) {
extern volatile U NT8+ serial |ine;
if(serial line '=0) {
i f(call backs[C SERIAL]) {
cal | backs[ C_SERI AL] ((voi d*)serial _|ine);
}
}
}
#if defined(ESB) || defined(ECR)
i f (runModul e & MF_SENSORS)
i f(Data_sensorFl ags ! = 0x00) Data_sensorHandl er();
#endi f
#i f defined( ESB)
i f(runModul e & M-_RC5) Dat a_RC5Recei veHandl er () ;
#endi f
dint();
nop() ;
i f(runModul e==0) {
/1 enter |pnB and enable G E at once to not |oose an interrupt
Syst em st opWat chdog() ;
eint();
LPML;
} else eint();

}

Listing 2.1: Main loop in ScatterWeb.System.c.

As already mentioned, in time consuming computations injgdrtant to reset the watchdog
timer periodically to prevent the system from resettingaase the main loop hangs.
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Step Action Timeat 19.2 kbps Time at 76 kbps

1 Listening to radio 417s 105us
2 Turning on interface 833s 211us
3 Sending preamble 3333 842us
4 Sending start bytes 1256 315us

Total time 4583 s 1158us

Table 2.1: Time needed until a transmission starts using 19.2 or 76.kbps

Communication aspects

Most of the communication logic is in the fifgcatter\Web.Net.cTo save energy and avoid packet
collisions the transmission power can be set by the userde#t@ and 99. ScatterWeb offers
a default packet typpackett shown in Figure 2.17. Its size without header and data field is
10 bytes. Most of the fields are self explaining. Thenfield is used to recognize duplicated
packets and does not need to be set by the user.typledias to be set to identify a packet at
receiver side for further processing. A packet can eithesdrg in unicast or broadcast mode.
This is done by setting thie field to either a node ID or the broadcast address.

ScatterWeb Packet

to: UINT16

from: UINT16

type: UINT8

num: UINT8

header: UINT8[]
header_length: UINT16
data: UINT8[]

data length: UINT16

Figure 2.17: ScatterWeb default data packet.

A packet is sent by calling thBet sendroutine. The packets get queued in a ring buffer
and a checksum is added to the packet. If the buffer is full; ileoming packets are dropped.
Before the node starts sending, it checks if the medium & 1fét is not free, a random backoff
time is set, after which the node checks the medium againhelfmiedium is free, the node
switches from receive to send state and starts to send a figddng preamble. The preamble
is used to synchronize the radios of the sender and rec@ikierthree start bytes signal the start
of the following data packet. Table 2.1 gives an overviewrdie time used for transmitting
a message with a transmission rate of 19.2 kbps and 76 kigeatévely. In the example in
the table we assume that the medium is free and no other nsdadéng, so no backoff time is
used. Using 19.2 kbps each byte takes 4370 be sent. Using 76 kbps it takes 105
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The ScatterWeb implementation uses Manchester encodihgs, The amount of data is
doubled. At the end of each packet a postamble of 3 bytes edadtbnsidering unicast packets
the sender waits for 30 transmission cycles for an acknayatemht packet. The length of this
cycles is depending on the transmission rate. Broadcakefsaare not acknowledged. If the
sender gets no acknowledgment the node tries up to 15 retissiens by default.

If a packet arrives at the receiver, the packet is forwardethé packet handling method
which has been registered by the application. The applicathecks in awitchstatement the
typeof the packet and decides what shall be done with the packet.

Sensor Aspects

In ScatterWeb each sensor can be enabled or disabled byeamsfistction call. Applica-
tions which are interested in sensor data have to registengblves in the callback strugys-
tem callbacks[C SENSOR]Sensors can be enabled with special parameters such asaihvai
indicating how often the respective sensor needs to be rEadthe DELTA implementation
only the light sensor has been used. Details are providdtkinéxt paragraph.

Tool Chain and Development Tools

The development has been done on a Fedora 7 Linux desktoputemp/\Me have used the
mspgcc tool chain. This is a port of the GNU C and assembly ¢baln to the TI MSP430
microcontroller family. The mspgcc port of GNU C comes witlful set of header files and
a basic libC library for the MSP430 microprocessor [34]. Mstandard C data types are sup-
ported expect double precession floating points. In theggelks also a GDB debugger which
can be used with the JTAG interface. The GDB debugger cantbgrated in multiple graphical
front-ends. We have used the Eclipse IDE for coding and dgibgg
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Chapter 3

DELTA Enhancements

As presented in the previous chapter, DELTA currently suigpevent detection and tracking.
We will extend the framework by adding event localization alassification abilities. Addition-

ally, the CDS backbone mechanism presented in Subsectiois Bitegrated and functionality
which supports updating nodes with new configuration sgdtis provided. In the first Section
we will introduce some changes of the DELTA protocol donetnioplementation.

3.1 Adaptations of DELTA Protocol

The implementation of DELTA supporting event tracking, smrganization and tracking has
been presented in [31]. We introduced some small modificatio the DELTA protocol. In the
following section the differences to the reference impletation in [31] are described.

3.1.1 Adaptations of the DELTA Group Organization

Group leaders receiving IREP messages store the informsadint by group members for later
computations of event positions and amplitudes. In theipusvimplementation the leader has
stopped storing new sensor information, received in thePlREessages, after having collected
the required number of sensor values. In our implementdtienleader node first stores the
minimum required number of sensor readings. If the leadegives more sensor readings, it
searches the lowest received sensor reading and replagitis ihe new value if the new value
is higher . Thus, only the sensor readings from sensors tiode event are stored for further
computation.

3.1.2 Definition of Timer Settings

In [36] a leader election timer is mentioned. The ESB nodesed¢ight values between 0 and
10’000. As nodes with high values should compute short dedang those with low values long
delays, the following formula is designed:

Ima:v - I
At[ms] = TC (3.1)
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L2 is the maximal input value, for light this is 10’000 is the current sensed light value.
The leader election delagt is between 0 ms and 1’000 ms.

3.2 Energy-Efficient Network Management - Backbone Support

The DELTA framework is currently not providing routing furanality and energy efficient node
management. It is required that the group leaders of DELTAreport the computed informa-
tion back to the base station and the network should be rgrover long time periods. This is
enabled by the node management by a CDS. Only the backboms stayy awake. Dominated
nodes only wake up periodically to update their neighboletaind to transmit pending sensor
readings over the backbone. If nodes overhear an event,Eh&/Mtracking, localization and
classification functionality is started. The distributeairputed event data will then be sent to
the base station over the CDS backbone.

3.2.1 Adaptations of Receiver-Based CDS Protocol

Some small modifications in the presented CDS algorithm Gastion 2.1) have been done.
The changes are introduced next.

Learning Phase

The proposed algorithm does not explicitly mention the hiegyzhood learning phase. Before
the CDS setup starts, the nodes broadcast HELLO messagisnau their actual state for
four hello cycles. This is enough to ensure that every nogeoliarheard a message from its
neighbors.

Differences in Dominator Election

In [35] the delay for sending DOMINATORCHOICE messages is computed based on the re-
maining energy of the up-link dominated node, on the nodesiving the DOMINATED mes-
sage as shown in Figure 3.1. We moved this decision upwaittie teceivers of the DOMINA-
TOR messages. In our implementation these nodes add thelgtae sending DOMINATED
messages according to their remaining energy level (segrd-18.2). Dominated nodes with
high energy levels send the DOMINATED message faster thdeswith a lower level. In [35]
the two-hop neighbors of the dominator receiving the DOMIEAS message need to know
the energy level of the sender nodes. However, basically dbenot need to know the energy
level, because the prioritization of the dominated nodebéing elected as dominator node can
be done on the dominated nodes themselves. Thus, we saveytesib the DOMINATED
message, because we have not to transmit the energy le\e dbminated nodes.

Modification on Message Timers

Figure 3.3 describes the delays and intervals used in tloeitdon. We have added an other de-
lay, which is not used in the original paper. To get an ovevwie introduce all the used delays
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and intervals. A HELLO message is sent after each HELLO vatewith an additional jitter
delay if the node is not sleeping. The interval duration tdig. The additional jitter is used to
prevent packet collisions when sending HELLO messages. dtrelatively long jitter because
the possibility of collisions of HELLO messages is highearttfor the other packet types. Es-
pecially at the beginning when all nodes send HELLO messages DOMINATED messages
have a shorter jitter. It is again used to avoid collisions Mentioned before DOMINATED
messages are sent with an additional energy delay whicHirsedeby the following function:

100 * (MAX VOLTAGE — MIN VOLTAGE)
battery— MIN VOLTAGE + (MAX VOLTAGE — MINVOLTAGE)

ENERGY DELAY =

This function is optimized for the energy levels of the ESBle® MIN VOLTAGEIs set at
2150 andMAX VOLTAGEat 2500. Thus, the minimum delay computed by this functioflis
milliseconds while the maximum delay is 100 milliseconds.

DOMINATOR messages are sent witlselORT DELAYThe DOMINATOR CHOICE mes-
sage is sent with only 8HORT DELAYoo. If the nodes have more than one known path to the
backbone, an additional delay is added to prioritize DOMIR_CHOICE messages of nodes
with only one known path to the backbone.

The length of the timer foLINK BREAKmessages is at least as long asERY SHORT DE-
LAY, but not longer than 8HORT DELAYFrom this range the length is randomly chosen. The
length of theLINK REPAIRtimer is at maximum equal to the length of&RY SHORT DELAY
We have introduced the restrictions on tHalK BREAKmessages and théERY SHORT DE-
LAY because theINK REPAIRmessage has to be sent befoilddK BREAKmMessage. This is
necessary to prevent a distribution of the link break in thel& network. The link break should
be repaired as local as possible IlNK REPAIRmessages. The absolute values of the timer
lengths are discussed in Subsection 4.2.1 where the otlpégrmentation details are discussed.
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Figure 3.3: Delays for each packet type.
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Optimizations for non Bidirectional Links

In real-world the links between sensor nodes are not alwaljeebtional and the link quality
is varying. Therefore, we have introduced some filters winehe not foreseen in [35]. When
receiving a DOMINATED message it is not only checked if thesieer node has any links to the
dominator, but also if the dominator is not already a diregghbor of the receiving node. This
could be possible because the intermediate dominated rasdiedh overheard a DOMINATOR
message due to temporal link problems.

DOMINATOR, DOMINATED and DOMINATOR CHOICE messages are all sent not only
once but for a predefined number of times. The number of r&tnésions is set to five. The
first message is sent after a normal delay (see Figure 3.3.fdllowing messages are sent
with additional retransmission delays to prevent an owaglitag of the network. Because we
use retransmissions, there is an additional state chedssay: The nodes have to register if
they have already received a DOMINATOR message from a centade to prevent handling a
message twice.

Changes in Link Repair Mechanism

There are also some small changes in the repair algorithiNKIBREAK messages are en-
hanced with a Time To Live (TTL) field. This helps to keep linkeaks locally. Furthermore, in
our version we handle only one LINK BREAK message at the same. tWe think that it does
not make sense to handle more than one. Very often LINK BRERd(® the same origin (i.e.
the same failed dominator). In [35] nodes which overheatNKLREPAIR message from a node
which is in their list of broken nodes cancel their own linkdage procedure. We changed this
slightly. All nodes which started reporting a link break aedeiving a LINK REPAIR message
just set their state to dominated immediately and do notdodwhe LINK REPAIR message
further. This limits the number of resulting dominator ne@éter the repair process.

3.2.2 Definition of the CDS Data Packets

[35] does not provide any details about the design of the comication packets. As mentioned
before in Section 2.1.4 the following data packets are BmrsHELLO, DOMINATOR, DOM-
INATED, LINK BREAK and LINK REPAIR messages. In Figure 3.4 phckets sizes and the
needed fields for each message type are shown.

All packet structures in Figure 3.4 are embedded into the diela of the default ScatterWeb
data packet shown in Figure 2.17. The HELLO packet has a fadlddnodeOrConfigID This
field is used by the configuration updated mechanism anddteicnew configuration updates
that are available. In the dominator packet is a field catigdData This array contains the
neighbor table and the source path. In our configuration ¢ighborhood table is an array with
maximal eight neighbors and the path is an array of the nodewith a maximal length of 5
hops. We take these two arrays into one because of techegsdms: Often the neighbor table
or the source path are not completely occupied. As we do not teasend empty arrays we
only send the filled fields of these arrays. Therefore, theseatrrays have a dynamic size. If
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HELLO DOMINATED

State: UINT8 dominatorID: UINT16
nodeOrConfigID: UINTI16 neighbourTab: UINT16[8]
DOMINATOR DOMINATOR CHOICE

numberOfNeighbours: UINT8
numberOfHops: UINT8
dynData: UINT16[13]

LINKBREAK LINKREPAIR
BrokenNode: UINT16 BrokenNode: UINT16
TTL: UINTS8 SourcePath: UINT16[4]

Figure 3.4: Data packets of CDS.

there were two different variables with dynamic size in tlagadpacket, the receiver would not
know at which memory address it should start reading for gdweisd array. In other words the
pointer for the second field would not be at the expected ipositVith only one dynamic field
the receiver just has to know the sizes of the first and thenskaaay. Thus, it can first read
from the start address diynDatato the end of the first array and then from that address to the
end of the second array.

As you can see, the DOMINATORHOICE packet has no additional data fields. The re-
ceiver ID is the only value which has to be sent and is inclule8catterWebs default data
packet.

3.3 Energy-Based Source Localization

Up to now DELTA provides no efficient localization algorithrms the algorithm needs to be
implemented on hardware with low processing power and wémary restrictions, the range of
adequate localization algorithms based on sensed enegjy Ie limited. We have been looking
for an efficient and reliable algorithm which computes eveositions and amplitudes using
the sensor measurements according to the energy-basey meck! described in Equation
(2.2). We present three different algorithms (see Sectidhahd evaluate them in Section 5.3.
These are Linear Least Square, Simplex Downhill and Cotgu@aadient Descend. Simplex
Downhill and Conjugate Gradient Descend are nonlineanropétion methods which again
minimize the square error. The algorithm with the best partoce will be integrated in

DELTA for a appropriate event localization.

The sensor model on which all three presented algorithmbased is defined in Equation
(2.2). The unknowns are the coordinates of evemind its emitted amplitude. If the event
has to be detected in spacehas 3 dimensions. So to solve the according system we need
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at least measurements from five sensor nodes. This impk¢dhé sensor readings of at least
5 (4 members and + 1 leader) sensor nodes are required. Ijyskensis solved with Linear
Least Square, the accuracy might not be sufficient. An oeg&rchined system is needed to
improve accuracy of Linear Least Square. The three loda@izastimation algorithms Linear
Least Square, Conjugate Gradient Descend and Simplex Dibwprlesented in the previous
chapter are evaluated in Section .

3.4 Event Classification

The estimated localization information and event ampétudomputed on a sensor node, by
either Linear Least Square, Simplex Downhill or Conjugatadint Descend, can be used for
the classification of sensed events. Classification cantbeesting for different tasks. In some
applications it is not sufficient to know only the positionasf event but, also the kind of event
needs to be known. This might for example be the case whesifyiag a vehicle (bicycle, car,
lorry). If the classification of the events is done on the sem®des, less information has to be
routed to the base station, because not all the sensed dateels@nt to the base station. One
can also do dedicated filtering on the sensor nodes: If the &tation is only interested in some
kind of events, only information about these events will eted to the base station.

For finding the clusters we will introduce K-Means (see S#cfl.4) into DELTA. It is an
unsupervised algorithm which is used to identify clustergxisting data sets. These clusters
represent the different event types (classes). The laapfiase is performed at the base station.
In a learning phase different event types are fed to the syst€he sensor nodes compute
emitted signal strength and position with DELTA. This infation is routed to the base station,
where it is stored as training data. The clusters are thaaagd from this training data by
K-Means. Then the cluster information is distributed to semsor nodes, where it is used for
event classification.

The Bayes classifier allows us to classify n-dimensionaheveThis could for example be
an event with light and sound emissions. To apply the Bayassifler on the sensor nodes the
following parameters have to be precomputed at the baserstat

e The covariance matriK; for each clasg’;.
e The mean vectom; for each clasg’;.

e The probabilityp(C;) for each clasg’;.

These three parameters can easily be determined from thedtsroutput and are distributed
and applied onto the sensor nodes with the protocol presémtbe next section.

For the classification the Bayes classifier and the Minimata&ice classifier will be imple-
mented an evaluated.

3.5 Configuration Distribution over the CDS

Once the sensor nodes are deployed, it still should be pedsilcthange their configuration
settings. The tasks of DELTA nodes remain more or less the sdiime nodes have to classify
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events. So it does not make sense to implement a complexeufudtetionality, which supports
the replacement of the whole behavior of a node by exchartgm@pplication software on the
nodes. Simple adjustments in the sensor network are donelypglianging some configuration
parameters. A concrete example: The delta nodes are abssifg events by using a classifier.
Using Bayes classifier, the covariance matrix, the mearov&cand the probabilities for each
class have to be updated on the nodes if the event classegecfsae Subsection 2.4.5).

To update such configuration settings we have implementeanples protocol which
supports dissemination of configuration information in tiework. The protocol is based
on the receiver-based backbone algorithm presented ifose2tl. The backbone is used
to distribute the information. In the actual real-world iEmentation the algorithm is used
to distribute the classifier settings for Bayes classifiehisTalgorithm could also be used to
distribute other configuration settings to the sensor nodes

The distribution algorithm is designed to keep the netwaaKit low. The control messages
of CDS are used to signalize new configuration settings. Nogatrol packet is introduced.
The algorithm is designed to reach as many neighbor nodegsaghfe with one single update
packet. The node which sends the update packet waits Uritd akighbor nodes are awake and
ready to receive the update packet.

Each configuration setting has its own version identifierD/IThe VID is incremented
with each update. A new field is added to the HELLO packet oftthekbone construction
algorithm to signalize the version of the actual configoratetting. Each node adds the VID
to the HELLO packet. So the HELLO packet size has one additibyte.

Initially, the network administrator updates the configiora setting at the base station. The
VID of the base station is incremented by one. The increnae¥it® is broadcasted with each
HELLO message. The nodes receiving the HELLO packet chabkif VID is smaller than the
broadcasted VID. If this is the case, the node sends a GETepadth the desired VID to the
base station. The base station sets a timer to broadcastateygacket. The length of this timer
is set to one sleep interval. This timer is used to guaraii@eatl neighbors overhear the update
message which contains the updated configuration setidwwinated nodes periodically sleep
for one sleep interval. After that, they overhear HELLO naggsfrom their dominator. If this
HELLO message contains a higher VID as their own, the dorethaibde also sends a GET
request and stay awake until it receives the update messhgs, all neighbors can be updated
with one single update message.

Figure 3.5 describes the whole update process. The basmstahds HELLO messages
which indicate a new configuration setting. The Dominatodenoverhears this message and
sends a GET message to the base station. The base statidhestitser to send the update
packet. The dominated node is sleeping and has not overtfeatELLO message yet. After
the dominated node wakes up, it overhears the HELLO messhigh imdicates the new config-
uration settings. It also sends a GET message to the bammstat suppresses its sleep timer.
Both, the dominator and the dominated node get the updatepand update their configura-
tion. The dominated node goes back to sleep again after ssfoteeception.
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Chapter 4

Implementation

pThe DELTA framework with its extensions have been impleteéron real-world hardware.

We first present the modification of the operating system eiged hardware, which is used to
evaluate the algorithms. After that we present some mo@lgetbout the implementation of
DELTA and the CDS backbone.

4.1 Modification in the Scatterweb OS

We tried to keep modifications in the ScatterWeb firmware caida minimum. Whenever
possible our code has been implemented in the applicati@r. |&here are some cases where
this was not possible.

For the testing of DELTA we have used the light sensor. Thet ligeasurements done by
the ScatterWeb software are not appropriate for our purpbse original implementation was
only able to make binary decisions (light on / off). So, we badnodify the implementation
of the light sensor readings. When the light sensor is switan the current light value is read
periodically. A mean value and the current light value aredaThis value is used as input for
the leader election process.

Some modifications are also done to adapt the communicagbavior. When the radio is
switched on the ring buffer is cleaned by default. Dominatedes in the CDS are switched
off most of the time (see Section 2.1). In the ScatterWeb émgntation the application has
to check if the radio is switched on before any transmisssostarted. If this is not done, data
could be lost. If the radio is switched off and data is sen Wwritten into the ringbuffer. By
default, ScatterWeb deletes the whole ringbuffer whenchivig on the radio. We changed this
behavior: When switching on the radio, we check first if thisreomething in the ring buffer
and start sending possible data at start up automatically.

We have removed the Manchester encoding and have replabgdjfiplying an XOR op-
eration on the data with OXAA. Thus, bandwidth usage is redwnd the sending of long 0 bit
series is prevented. Finally, we have changed the bandwattings in the firmware from 19.2
kbps to 76 kbps.

We have encountered a bug in the macro, which checks if the@me space left in the radio
ring buffer, which was responsible for buffer overflows. T has been fixed in ScatterWeb
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version 3.2.

Implementing the whole DELTA framework on the ESB nodes,rtbées would run out of
memory. Therefore, we removed all the methods and variditdasthe firmware which are not
used in our application.

4.2 CDS Backbone

As mentioned in section 2.1.4 we have chosen receiver bab&if@ real-world implementa-
tion. In the following section we present the real-world lamentation details of the backbone
algorithm.

4.2.1 Details on the Implementation of the CDS Algorithm

In this subsection we introduce the details of the implermgm of the CDS algorithm. The
timer-based CDS protocol is described in Section 2.1.4deptations are described in Section
3.2.1. First, we give an overview of the state variables uis¢lde CDS algorithm. In Table 4.1
the first row shows the names of the state variables. The daoenshows the memory size
of each variable and the third row gives a short descriptiosach state variable. The sizes of
neighbour_tab and neighbour_detail_tab have to be set before deployment. It is depending
on the expected number of neighbours. The two tables sttvemation about the nodes one-
hop neighbors. The neighbour table is splitted into twoaldgs. Theneighbourtab is sent
within the dominator messages, where asrthigghbourdetail tab is only used locally on the
node. The three counter variablesO f DominateeMesSent, nrO f Dominator MesSent
andnrO f DomChioce MesSent have a size of two Bytes, where as th@air M esCounter

is only one Byte long. This is because the first three courdgables are passed as parameters
to the timer setting function. The function only supportsgpaeters with a size of 2 Bytes.

We already gave an introduction into the functionality o thlgorithm in Section 2.1.4.
In the following paragraph we describe in detail when and lhodes change their state. For
each incoming control message type we present a code ligisgudocode listing 2 describes
the handling of an incoming DOMINATOR message. Incoming DRMIOR messages are
only handled if the senders ID is not the one of the actual dator node of the receiving
node. Dominator messages from the same node are handledrwdy Pseudocode 3 handles
DOMINATED messages. Incoming messages are only handlée ifeceiving node has not yet
set a dominator choice timer. If the receiving node has muse bne path to the dominator
node an additionally delay is set. Pseudocode 4 handles DBMDR_.CHOICE messages.
DOMINATOR_CHOICE messages are only handled, if the message is addiresketo the
receiving node. Pseudocode 5 handles LIRREAK messages. Messages are only handled
if the receiving node is not already in link break state or $etseduled a link repair message.
Dominated nodes forward the LINBREAK message and dominator nodes set a link repair
timer. Finally, Algorithm 6 handles the LINRREPAIR messages. Only nodes in link break
state handle these messages. Nodes which have alreadyecetds LINK REPAIR message
remove their link repair timer and set their state to donddat
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Name Size [Bytes] Description

nodeState 1 Describes the state which is set to the ac-
tual node color.

myDominator 2 ID of the nodes dominator node.

myDominatee 2 ID of the node which has sent a DOM-
INATED message. Used in the network
construction process.

domC hoiceTimerSet 1 Indicates if the DOMINATORCHOICE
timer is set or not.

isSleeping 1 Indicates if node is in sleep mode or not.

nrO f DominateeMesSent 2 Indicates the number of sent DOMI-
NATED messages.

nrO f Dominator MesSent 2 Indicates the number of sent DOMINA-
TOR messages.

nrO f DomChioceMesSent 2 Indicates the number of sent DOMINA-
TOR_CHOICE messages.

repair MesCounter 1 Indicates the number of sent LINK RE-
PAIR messages.

neighbour_tab 16 IDs of the neighbor nodes. (8 neighbors
at maximum).

neighbour_detail _tab 40 Time stamp of the last received mes-
sage and state of the neighbor nodes. (8
neighbors at maximum).

numberO f N eighbours 1 Actual number of neighbors.

Table 4.1: State variables of each node.
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Input: DOMINATOR message
Update neighbor table;
if packet sender '= myDominator AND (nodeState = uncovered @GR &tate =
inelection)then
myDominator<— sender ID;
nodeState— inelection;
if | have uncolored neighbotthen
compute energy based delay;
set DOMINATED packet timer;

else
L nodeState— dominated

Pseudocode 2Incoming DOMINATOR message.

Input: DOMINATED message

if domChoiceTimerSet = 0 AND (nodeState = inelection OR nadeStuncoveredjhen
Update neighbor table;

myDominatee— sender ID;
if 1 am neighbor of the DOMINATOR node OR there is more than ottetpahe

dominator nodehen
| set DOMINATORCHOICE packet timer with additional delay;

else
| set DOMINATORCHOICE timer without additional delay;

Pseudocode 3Incoming DOMINATED message.

Input: DOMINATOR_CHOICE message

if Message is for me AND nodeState = inelectiban
L nodeState— dominator;

set DOMINATOR timer;

Pseudocode 4incoming DOMINATOR. CHOICE message.

Next, we give an overview over the settings of the intervald delays. The setting of the

timer lengths has influence on the network lifetime. Netwmology and the node mobility
have to be considered when timer lengths are set. The lohgédrello interval is set, the longer
the dominated nodes have to listen until they overhear teeHIELLO message. This means
that the listen periods have to be set longer, so that doednabddes receive hello messages
from their dominator nodes. Moreover, the backbone setapgss takes longer with long hello
interval because the neighbor learning phase is longerh®nther hand, the dominator nodes
save energy. Dominator are sending HELLO messages cogstaht longer a hello interval
is, the less HELLO messages are sent. The length of the ste@griod is also influenced
by the required frequency to report sensor readings to thelfBs&nsor readings have to be

52



Input: LINK BREAK message
if LRMesTimerSet not set AND not already in LINK BREAK state AidideState =

dominator OR nodeState = dominateten
decrement TTL of link break message ;

if nodeState = dominatetthen
nodeState— linkbreak;

if broken node ID of link break message is my ownthzn
Set link break timer using the ID of the sender for the brokedenID;

/* The sending node has not overheard link repair messagey @fiRK
BREAK. My link is already repaired. So froward the messagththe
senders ID. It would also be possible to send a LINK REPAIRgage back

to the sender.*/
else
| Setlink break timer;

f nodeState = dominatahen

if Is link break origin in my patithen
| Send REPAIR message with a delay;

else
| Send REPAIR message immediately;

Pseudocode 5Incoming LINK BREAK message.

Input: LINK REPAIR message

if nodeState = linkbreakhen
update neighbor table;

update source path ;

if I am the origin of the link break messatien
| nodeState— dominated;

else

if | LRMesTimerSethen
| setrepair timer;
if LRMesTimerSet AND an other node was faster with forwardiigrhessage

then
L remove repair timer;

nodeState— dominated ;

Pseudocode 6incoming LINK REPAIR message.

reported often, the sleeping period has to be set shortee Have a dynamic network topology,
it may be necessary to set shorter long intervals. Movingesathuse a lot of link breaks.
This leads to a more and more suboptimal backbone. Shorstatdishment cycles would
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Interval / Timer length [s]

HELLO 6.6
LISTEN PERIOD 13.1
SLEEPING 65.5
LONG 1769.5

Table 4.2: Length of the timers.

rebuild the whole network periodically. With the timer canfration presented in Table 4.2 we
maximize the lifetime of the network. The settings are fotadis network. The sleeping time

of the dominated nodes is maximized by long sleeping interaad short listen periods. The

maximal timer length of ScatterWebs timer library is lintite 65.5 s. We set the length of the
sleeping interval to 65.5 s. Based on the sleeping intereat@mputed the other intervals by
multiplication or division. The listen period is five timekaster than the sleeping interval, the
hello phase is ten times shorter, and the long interval 2&dilanger than the sleeping interval,
which is around half an hour. The listen period has to be at las long as the hello interval.

We have set the listen period twice as long as the hello iatéoweduce link breaks because the
possibility to overhear a HELLO message is higher.

4.2.2 Data Traffic

This subsection describes how data messages are routetheveackbone. Data packets are
sent using the standard ScatterWeb packet type. Meta iaf@mabout the data packet is
set in the header fields of the ScatterWeb packet as illestriat Figure 4.1. At the base sta-
tion functions are registered to handle the different datekets. This is done by the function
CDSregisterDataHanler(UINT8 messageType, dataHandlefp), wheremessageTypis the
type of the data packet of interest dfipds a function pointer to which the packet has to be sent
for further processing. The registration is done dynanyicat run-time.

To send data to the base station the functZidS sendToBaséas to be called. Because
each node in the backbone knows its dominator node, a dakatpacsimply routed along the
backbone from one node to the other. Each hop reads the nfieten@tion in the header field
and increments the hop counter. If a packet arrives at théH@Snformation transmitted in the
data field of the ScatterWeb packet is forwarded to the fanctvhich is registered to process
the data.

4.3 Localization Using Simplex Downhill
In section 3.3 the localization algorithms Linear Least&gquSimplex Downhill and Conjugate
Gradient Descend are described. In evaluations (see 8éc8) Simplex Downhill has shown

best performance in simulator tests. Therefore, only Simplownhill has been implemented
on the ESB hardware for real-world tests.
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ScatterWeb Packet
to: UINTI16
from: UINT16
Data Packet type: UINT8 = CDS_DATA_PACKET

num: UINTS8

messageType: UINT8 header: UINT8[]

hops: UINT8 header length: UINT16

origin: UINT16 data: UINT8[]

packetID: UINT16 data_length: UINT16

Figure 4.1: Generic data packet used by the CDS approach.

Simplex Downhill is implemented in two versions: In the finstplementation, Simplex
Downhill computes the 2-dimensional position (x and y) amel amplitude of an event. In a
second implementation Simplex Downhill only computes thenés positionX (x, y) without
computing the event amplitude. Having compufédthe amplitude: of an event can be com-
puted using the following equation:

c=|1X = &|* * ps (4.1)
Where X is the leader position ang is the sensor reading of the leader. In other words, by

multiplying the square distance between the event and #uetevith the sensed amplitude, we
get the intensity amplitude of the event.

The start points of the Simplex Downhill computation inflaes the result. We define the
point located at the center of area of the sensing nodes airdnieasurements as the starting
point for the Simplex Downhill algorithm. This point is likeclose to the sensed event.

Simplex Downhill has different configuration parameters:

e DIM : Number of dimensions of the problem. Normally the dimensgthree (x, y, z).

e NMAX: This is one of the two termination conditions. It gives theximal number of
iterations. If the maximum is reached Simplex Downhill terates.

e FTOL: Is the second termination condition. If the distance betwihe highest and the
lowest value of simplex is smaller than FTOL, the algoritremtinates.

e NO_OF_REF_POINTS: The number of reference points which are required in the-Sim
plex Downhill computation.

e COMPUTE WITH _AMPLITUDE : A boolean variable which defines if the amplitude
should be computed with Simplex Downhill or afterwards.
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4.4 Event Classification

The presented classifier and clustering algorithm in Se@id have both been implemented in
a simulator and on the ESB nodes.

4.4.1 Implementation in Simulator

To get an impression of the performance of the classifiertlgos Bayes classifier and minimal
distance classifier and of the clustering algorithm K-Meatismechanisms have been imple-
mented in MATLAB. MATLAB offers a classifier toolkit which agains the K-Means clus-
tering algorithm [24]. The K-Means implementation of MATBAMinimizes thesqEuclidean
distances for each sample to the cluster center by defaudthaVe the default settings in our
simulation. The K-Means implementation allows supplyintial cluster centers.

The implementation of Bayes classifier is simple in MATLABal@function 2.22 described in
subsection 2.4.5 has to be implemented. An input value ikeapiw each cluster to get the mem-
bership values. To compare the performance of minimal mist&lassifier and Bayes classifier
the number of wrong classified elements is compared.

4.4.2 Implementation on Sensor Boards

On the sensor boards we have implemented Bayes classifienéadimensional classification
only. It is the same function as used in the simulator enwvirent but supports only one-
dimensional input. We have used only light sensing inputg¥ent classification on the sensor
boards.

The Bayes classifier implementation uses three arrays efftgpt One array keeps the
probabilities of the classes, one the means and one thei@owes. The lengths of these arrays
depend on the number of classes which have to be classified.

4.4.3 Bayes Classification Configuration Distribution

The classification with Bayes classifier depends on the thnegs described before. These ar-
rays are learned at the base station by applying the K-Mdgaogtam and have to be distributed
to the network nodes afterwards. The event characterisinschange during runtime or new
event types can evolve. This means that also the classificpirameters have to be adapted.
This is done via the update mechanism described in Secttonli3Figure 4.2 the data packet
for configuration updates is shown. If a sensor node receivescket with a higheconfiglD
than the currently stored one, the Bayes classifier configararrays are overwritten on the
node with the received information.

4.5 Logging Environment
For the evaluation and the testing of the different implemgons it is crucial to have appropri-

ate logging data. Therefore, we have implemented a loggnga@ment which supports the
handling of log information generically. Three differenays of logging are supported:
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BAYES Configuration

configID: UINTS
probabilities: float[]
means: float[]
covariances: float][]

Figure 4.2: Packet for Bayes Classifier Update.

e Console Each sensor writes logging information to the console. sTihformation is
captured over a serial cable for further processing.

e Memory: The logging information is written into the EEPROM of thedes. This infor-
mation can later be read over a serial cable for office anglyAs the ESB nodes have
very limited memory, the information which can be savednstid.

e Radio: The logging data is sent over the radio to the BS. This infdrom is sent directly
and does not use the CDS data packet routing. For most test@rgarios this method is
not appropriate as the data sent over the radio falsifietsesu

The logging messages are standardized. A log messagetsanfdisree fields as illustrated in
Figure 4.3. The first field is the type of the log message. The tweo fields are parameters,

Figure 4.3: Logging data structure.

which are two UINT16 fields. In these fields the log details barwritten. It is also possible to
use only one or none of the parameters. An example: A datapadiives at the BS. The log en-
try would be [DATAPACKET.IN, packetlD sourcel, where the type of DATAPACKETN is
a UINT8. Depending on the log configuration these three fiatdseither written into the mem-
ory, sent to a predefined logging node which prints out thgitag information, or are printed
directly to the serial interface. In the last two cases tlierination is made human readable.
In our example the output would look something like "-IN-; DA PACKET;102;0202”. This
information is then processed into a log file or a database.

The size of a single log entry is 4 bytes. According to the t8céteb documentation the
EEPROM size is 64 kilo bit. So, maximal 2000 log entries cdudsaved on the ESB nodes.
The configuration of the logging settings can be done overati® at run time.
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Chapter 5

Evaluation

In this chapter the CDS algorithm and the DELTA frameworkhwis extensions are evaluated.
To save energy and to support multihop communication, thdisg power has been adjusted.
We present the evaluation and the results of the CDS backieste Finally we evaluate the
tracking, localization and classification of DELTA and diss the results.

5.1 Adjusting the Transmission Power

As mentioned in Subsection 2.6.2 the sending power can liesgeen 0 and 99 in ScatterWeb.
We are interested in an optimal ratio between sending pongmade distances for multiple
reasons: Sending with full power is energy consuming. Sorigd to minimize the sending
power in order to save energy. The distances between twosnsitguld not be too large,
because, depending on the event which should be localizadpsnodes are densely deployed.
Nodes should be overheard only by their physical neighb@smmunication among nodes
which are two hops away should be improbable. This reduaggepaollisions and saves energy.

The network topology should support transmission rangeappfoximately two meters.
On point 0 the source node S is placed. We made two test sdtufise first one 4 nodes are
placed at a distance of 75 cm and 4 at a distance of 150 cm frersethding node S. For the
second setup 4 nodes have been placed at 125 cm and 4 at 250ecimavé/used 4 nodes at
each distance to crosscheck the nodes receivers. The testttiegs are depicted in Figure 5.1.

Node S is sending with a sending power of 10, 12, 14, 16 and @Be#&ch sending power
100 data packets with a size of 35 bytes have been sent. Bhiw#s repeated 4 times with
different sending nodes. So, each node should receiveyidéa0 data packets for each tested
sending power value.

Figures 5.2 and 5.3 show the average number of packets wilaeh arrived with the
different sending powers. Comparing Figures 5.2 (a) andwvith) Figures 5.3 (a) and (b) we
see that the distribution in the first two is much lager. Inur@5.2 there is no sending power
setting, where packets are reliably received by nodes anybut not by nodes at 150 cm.
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Figure 5.1: Test bed for determining the transmission power.

Comparing Figures 5.3 we see that with a sending power of 1§ parkets are overheard by
nodes at 125 cm (median of 85%) but only few at 250 cm (mediareafly 0%). So, a sending
power of 16 for node-to-node distances of 125 cm is apprtpria

Received Packets [3]

Z0 40 BO 80 100
Feceived Packets [3]
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Figure 5.2: Packets arrive at 75 cm (a) and packets arrive at 150 cm (b).

5.2 Testing the CDS Algorithm

For testing the CDS two different test cases have used. liidtecase, basic functionality
such as proper backbone construction and if the repair itlgomworks as expected is tested.
In a second scenario we run the CDS network over a longer gpéni@nalyze its long-term

performance.
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Figure 5.3: Packets arrive at 125 cm (a) and packets arrive at 250 cm (b).

Interval / Timer length [s]
HELLO 2
LISTEN PERIOD 6
SLEEPING 10
LONG 65.5

Table 5.1: Length of the timers for the CDS experiments.

5.2.1 Basic Functionality of CDS

We have already mentioned the settings of the timers andiadsefor the CDS. For the following
evaluation we use the timer configuration listed in Table JHe intervals are shorter than the
ones described in Table 4.2 to get shorter test cycles. Qimitge intervals does not basically
change the behavior of the backbone algorithm. The teststanted by sending an initial signal
over the serial cable to the base station. Then the testoruomé LONG cycle. After that all
nodes are connected to the serial interface. The data whé&hddes have written into their
EEPROM is read and written into the database.

Backbone Setup

The network topology in the first experiment is a simple griddepicted in Figure 5.4. We
check in this experiment if the backbone is well establistued how long it takes until the path
setup is finished. The experiment has been repeated 10 fifnessmulate network traffic each
node tries to send a four byte data packet every 10 second®ass they are in dominator or
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dominated state.

The path setup times we have got in the test runs are betwe8rsédonds (s) and 17.0
s . In average it was 15.6 s with a standard deviation of 0.7 Sdtup process starts when
the first HELLO packet is sent to learn the neighbor tablese Biild process ends, when the
last DOMINATED or DOMINATOR packet is sent. Before the CDQalithm is started, four
HELLO messages are sent to build up the neighbor tables. Wétlsettings of Table 5.1 this
makes4 « 2s = 8s. The nodes which are sending DOMINATED or DOMINATOR message
send the first message with a short delay of at maximum 0.2 ter &fat they send four more
messages with an additional retransmission delay of 1 ss, Mme get anothet * (1s + 0.2s) +
0.2s = 5s. The learning phase of 8 s plus the time it takes until theraske stops sending
DOMINATOR or DOMINATED messages of 5 s results in 13 s. The aanng 2.6 s are used
for the effective network build process. The average domadif 15.6 s used in the experiments
is therefore feasible. The optimal path is depicted in Fagbui5. The green nodes represent
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EE]
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“ H H E E — Dominator nodes

Figure 5.4: Test case grid.

== Dominated nodes

[

Figure 5.5: Test case grid with optimal path.

dominator nodes in the CDS, the red ones are dominated nddeserage in all 10 runs 3.4
dominator nodes have been elected. As shown in Figure ®& thas a case where five nodes
have been chosen. We investigated this case in detail. Tdelfieted dominator nodes are the
base station (0402) and the nodes 0302, 0303, 0201 and 02GhaB/zing the network traffic
in this case we found a lot of lost packets.

Figures 5.7 (a), (b) and (c) illustrate the control messeaféid during the net setup phase for
the experiment mentioned above. In all subfigures the CDEdJose nodes of the final CDS are
shown. Only the messages which arrived at the receiver remgedepicted. Node 201 receives
the DOMINATED message from node 302. Nodes 202 and 203 gotRDI@MINATED message
from node 303. So node 303 was elected by node 203 and nodey3agib 201. At this point
already 3 dominators are elected. Then nodes 302 and 303hséntominator message (see
Figure 5.7 (b)). The DOMINATED message of node 202 was oathenly by nodes 203 and
102. The dominator message from 201 was overheard by noded QP and 202. Therefore,
node 202 was elected as dominator by node 203 and 201 by 1efe &te different reasons for
this suboptimal CDS. First, a lot of control messages haea best. Node 201 has a bad link
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Number of Dominators

Mumber of COS5 members

Test run

Figure 5.6: Number of dominators in each run.

to node 301. Therefore, only a few HELLO packets have arriveido other links performed
badly. The main problem was that all neighbor nodes of the bttion (301, 302, 303) did not
overhear each other. These two reasons lead to neighbes tatkhe nodes which do not reflect
the real network topology. This leaded to an unexpectedHmatk

We have also measured the median path length from all nodesh\are all at minimum
hops away from the base station. Considering the first colofitime grid (nodes 101, 102, 103),
in all of the ten cases the path length to the base station @@8.Hn the second column (nodes
201, 202, 203) the backbone length is between 2 and 3 hopwvénage is 2.7 hops) and in
the third column (301, 302, 303) we measured between 1 ang8(maverage 1.9 hops). The
nodes in the first column were all reachable with the minimwumber of required hopsu(= 3).
The backbone length of the second=€ 2) and the third ¢ = 1) column is not optimal.

Evaluation of the Link Repair Algorithm

In this experiment we have configured a network that supgbgssimulation of link breaks.
Therefore, we again have built a tree-like network. In F&gbr8 you can see a redundant link
between nodes 0405 and 0403. Either node 0304 or 0504 mllinlected as DOMINATOR
node in dependence of its energy level. After the path has be#t, either node 0304 or 0504
has been manually switched of (see Figure 5.9) to produatdlieak. We have repeated this
experiment 10 times. Every ten seconds a data packet withbfdgas payload has been sent to
the base station. Before the link break has occurred, 6 DGWIDR nodes have been elected
in every run. After the link break has been repaired we go¢s@ominator nodes in each test.
In all cases the LINK BREAK message was kept always in thebiefhch of the tree.

We have measured how long it takes to repair the path. In Ei§ukO for each run a bar
indicating two different times is shown. The shorter onénistime which is spent between the
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Figure 5.7: Analysis of the communication messages sent in the run ginda suboptimal backbone.
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Figure 5.8: Test grid before link break. Figure 5.9: Test grid after link break.
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moment node 0403 broadcasts the first link break messadaehemtnoment node 403 receives
a link repair message. In average this takes about 0.25 sddlhg until a link break message
is sent is between 0.1 s and 0.2 s. The delay until a link repagsage is sent at maximum 0.1
s. Two link break messages are needed to reach node 405 shioh ¢losest dominator node
with a valid route to the base station. Two link repair messagre required to repair the link
break at node 0403. In theory a repair time between 0.2 s &8l i8.expected if all nodes are
awake during the link-break period. In some cases 2.7 s heen beeded. This is explained
as follows: If node 304 or node 504 is sleeping, no messagefoararded. The link break
message is retransmitted until one of these two nodes wakasdiforwards the message.

Time Used For Link Repair
25 T T T T

T T
:] Link repair finished

I Link repaired

151 T

Length [s]

101 b

: L] i

1 2 3 4 5 6 7 8 9 10
Test run

Figure 5.10: Time used to repair the link break.

The second time which is depicted in 5.10 is the time betwkersénding of the first link
break message and the stop of sending any link repair or fiedddomessages. The average total
repair time has been 14.7 s. As our main goal was to preverdvairgg amount of CDS nodes
the link-break origin, in our case node 403, does not fontiaedink repair message. Node 402
stays in link break state, which means link break state| natle 403 wakes up again and sends
a link break message to nodes 504 or 304. This message isrtber@d immediately by either
node 504 or 304 and forwarded down to node 403. This noderuanis sending link repair
messages five times to ensure that each neighbor node hdeastthis message. The sleep
cycle is 10 s. Adding the four retransmission delays whislslat maximumt % 1.05s = 4.2s
to this 10s and the actual repair time at maximuinGs we get14.8s. Accordingly, the 14.7 s
used until the last link repair or link break message has beahis realistic.

5.2.2 Long Sleep Cycles Test

After testing the basic functionality we have run the netwfor a long period. We are interested
in the percentage of time the nodes are sleeping over a ldagarof operation. Because we
need the logged information from the nodes, we have conthélseenodes over a serial cable to
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Node ID | Sleeping [% ]| Times elected as dominatorDominator by link breakl link break detected
101 80 0 0 17

301 60 5 0 0

102 42 4 4 1

203 31 4 0 0

201 22 7 1 3

302 22 10 0 1

202 18 11 0 0

303 15 14 0 0

402 0 16 0 0

Table 5.2: Results of CDS long operation time evaluation.

a PC. The network is setup according to Figure 5.4. This teetins last 8 hours. The timer
configuration is set according to Table 4.2.

One long cycle lasts about 29 minutes (1769.4 s). A dominatel® should, theoretically,
be sleeping around 80% of this time. During the 8 hours ofrtgghe network is reestablished
16 times. Table 5.2 shows how long each node has been sledymimg the whole experiment.
The third column shows how often a node has been elected amatommover all. The fourth
column indicates how often a node has been elected as damaftdr a link break has occurred
and the fifth column is the counter how often a node has detecliek break. Node 101 which
is never elected as dominator sleep for 80% of the whole test\We see that the more often a
node is elected as dominator, the lower is the percentagmefit is sleeping. The number of
times nodes 102 and 203 have been elected as dominator V&lequj but their sleeping time
is different. The reason is that node 102 has been electednaisator after a link break while
203 was dominator for the whole long-sleep period.

Node 101, which has a poor connectivity, detects 17 link kseaHaving analyzed the
logging data we can see that lots of HELLO messages have eotdeerheard by node 101.
Therefore, link break messages are sent. This leads to kepislg times for its neighbors
(nodes 102 or 201), as they are elected as dominator by theelpair mechanism. To prevent
such a behaviour nodes with bad links could be ignored afteedefined number of link breaks.
Nodes with erroneous link, for example because of a failogairdware or software, would be
ignored and could so not flood the network with link break ragss. An other solution would
be using acknowledged data packets. This would guarantglayable both-way link. So only
nodes with acknowledged HELLO messages would appear indighioour table.

We have shown that the energy-based CDS algorithm perforefisow a real-world hard-
ware environment. CDS is able to reduce the energy consaomgtinetwork nodes. By reestab-
lishing the network periodically CDS leads to a constantgyndistribution over the whole net-
work. The network repair algorithm makes the CDS stable alidhie in case of node failures.
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5.3 DELTA Localization Evaluation

The localization performance has been evaluated in twa stajtially, simulator test were done.
Different localization algorithms have been implementad tested with simulated data input.
The most promising algorithm has then been implemented esidd in a real-world wireless
sensor network using the ESB nodes.

5.3.1 Performance Evaluation in the Simulator

The three localization methods Linear Least Square, CatguGradient Descend and Simplex
Downhill, presented in Subsection 3.3, have been evaluat®iATLAB. For the evaluation,
the sensor nodes have been arranged in a square with a gitle ¢ri25 cm. Four nodes have
been placed at positions [125, 125], [125, 250], [250, 126][@50, 250]. 200 events, randomly
distributed within the square area, have been localizednéstioned before Conjugate Gradient
Descend and Simplex Downhill need initial values to stagtdbmputation. The starting simplex
for the computation of the event position using Simplex Dbilis located at the center of area
of the sensing nodes and their measurements. For ConjugatieBt Descend the center of
area of the sensing nodes is used as a starting point. Adalitithite Gaussian Noise (AWGN)
was used to model noisy sensor measurements. The tests d@vedérformed with six noise
levels: 0%, 10%, 20%, 30%, 40% and 50%.

Figure 5.11 illustrates the results. The confidence interaee not depicted as they are
too small. If there is no noise, all methods perform equalbllw For Linear Least Square
the distance error as well as the signal strength error aserenuch faster than for Simplex
Downhill and Conjugate Gradient Descend. The distance pramluced by Linear Least Square
stays constantly at about 40% of the transmission range. efitoe for the signal amplitude
is even larger, it is more than 80% of the emitted signal gtien Simplex Downhill and
Conjugate Gradient Descend in contrast show low error t#tet® a noise of 20%. After that
the distance error as well as the signal error start to isere@he signal amplitude error of Sim-
plex Downhill is slightly lower than the error of Conjugateg@ient Descend for all noise levels.

The big difference between the performance of Linear Legsaf& and Simplex Downhill
can be explained by analyzing Figure 5.12. The figures shewdigtance errors of Simplex
Downhill and Linear Least Square with a noise level of 10% 46&b, respectively. Only 50
out of the 200 estimations are depicted for better readybilihe distance error is highlighted
by showing the line between the exact event position and stimated event position. The
figures on the left show estimation errors of Simplex Downkith a noise of 10% and 40%,
respectively. On the right the according errors for Lineaast Square are depicted.

Comparing the localization estimations of Simplex Downdiild Linear Least Square with
a noise level of 10% we can see that the position estimatib8syplex Downhill are only little
affected by the noise. on the other hand all estimations édi Least Square tend towards
the center of the area observation. The figures at the botfdsrild show a similar situation
for Linear Least Square with a noise level of 40%. The distagcor for Simplex Downhill
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Figure 5.11: Evaluation of the localization accuracy of Simplex Dowh(i8D), Conjugate Gradient
Descend (CG) and Linear Least Square (LLS).

increases a little with a noise level of 40%.

The performance of Linear Least Square can be improved biydatermining the system
as shown in Figure 5.13. Two additional nodes have been aadpdsitions [175, 125] and
[175, 250]. Instead of using the sensor readings of four si0slg nodes are used for computing
the position and emitted signal strength of the events. dJsinear Least Square, the distance
error and the amplitude error start increasing at a noise t&\20% and reach an error of 40%
considering distance error and a noise level of 50%. Likedistance error, the amplitude
error is also increasing slower than in the system with faades. The error starts increasing
with a noise level of 20% and reaches an error rate of 80% atise Hevel of 50%. The
performance of Simplex Downhill and Conjugate Gradientd@es is only little improved by
the over-determined system.

Figure 5.14 visualizes the distance errors computed wilotler-determined system. Again
the position estimations of Linear Least Square tend to ¢éiméec of the observation area. The
estimation of the position with a noise of 10% is much bettmnpared the results in Figure
5.14. Also the performance of Simplex Downhill is slightlpproved by the two additional
sensor nodes.

To conclude, the performance of Linear Least Square in andstermined system is better,
but does not reach the estimation quality of Simplex DowmnilConjugate Gradient Descend.
If additional sensor nodes are used for the computationcuises more traffic. Furthermore,
denser networks are required to support Linear Least Squdrerefore, our choice has been
restricted to Simplex Downhill or Conjugate Gradient DegteSimplex Downhill is simple in
implementation and usage. It requires little more time tmieate, but also need less storage.
The performance is more or less the same as the one of ComjGgatlient Descend. We have
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Figure 5.12: Distance error visualization for Simplex Downhill and Lard_east Square (LLS).
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Figure 5.13: Evaluation of localization and parameter estimation aacyiusing 6 sensor nodes for
Conjugate Gradient Descent (CG), Simplex Downhill (SD) kimbar Least Square (LLS).

chosen Simplex Downhill for real-world tests and implenagion on the ESB nodes.

5.3.2 Real-World Evaluation of Simplex Downhill

The localization of light events using Simplex Downhill hiasen evaluated in a real-world
environment. In these tests four ESB nodes localize an erghtompute the amplitude of the
emitted light signal. The four nodes are set up in a squaréarkened room. As in the simulator
tests, the distances between each pair of nodes is 125 cmpdEiteons of the noded/; are
N1(125,125), N2(250,125), N3(250,250 and N4(125,250). The orientation of the nodes has
been calibrated such that the light sensor of the nodesioitat the direction of the event. This
is necessary because the light sensor is not optimally ghlacghe sensor boards. Each node is
connected to a computer over a serial cable for logging marp®he inputs for the computation
as well as the localization results are logged for later mgmatations and comparison. The
light sources have been placed at 6 different positionschvhre P; (188, 188), P»(188,219),
P5(188,250), P4(219,219), P5(219,250) and Ps(250,244). The experiment setting is shown
in Figure 5.15.

For the evaluation of Simplex Downhill five different bulbave been used. We have chosen
bulbs with uniform light emission in all directions. We usdlis with an output of 25 Watt, 40
Watt, 60 Watt, 75 Watt and 100 Watt. The bulbs are placed ittoléer standing on the floor.

Each bulb is tested at each event position. For each coninat bulb and position 50
Simplex Downhill computations are performed. The testeh@men done twice. In the first run
the following parameters for the Simplex Downhill compigas have been used:

e DIM: 3.
e NMAX: 160

70



Simplex Downhill —= AWGN = 10%

LLS - AWGN = 10%

250} Q * < 250t ]
* q P % o/,‘\@ @?‘
— 2] 2 & & —_ x&; %
= © © € )
= 2 o L %O o—*
5 @ o® "%x ox o S o= o 3 o x©
% S e 2 . e e
Fa) %] X
S o 0 8 e Y ® b o2 O @\f’& épge\
s Ty £ X
% & J
) ©
1250 3 125¢ '\
125 250 125 250
Position [cm] Position [cm]
Simplex Downhill - AWGN = 40% LLS - AWGN = 40%
2507 \P\ 2 < Ve 2507
—_ Gx —_
= /Q 8 £
g | e e 8
k) ) «—O k%)
g /fﬁ\\‘m R
125¢ i 125¢
125 250 125 250
Position [cm] Position [cm]
’ = Exact Position © Estimated Position —— Distance Error‘

Figure 5.14: Distance error visualization of Linear Least Square andp&m Downhill in an over-
determined system.
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Figure 5.15: Experiment settings for the real-world localization tests
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25 Watt 40 Watt 60 Watt 75 Watt 100 Watt | Over all

Position| u o | o | o | o 7 o | u o
P 6.3 09| 4.1 0.1]| 0.6 0.1] 2.1 1.0 |14 0.1 2.9 2.1
Py 6.2 0.5| 8.8 0.4] 10.6 0.2 9.4 0.1 | 84 3.9| 8.7 2.3
Py 3.9 0.6| 149 3.2/16.6 5.2|5.3 6.4 | 8.8 6.6| 9.7 7.1
Py 3.7 1.6/ 5.0 1.7 35 1.4 5.7 1.8 | 4.0 2.0 44 1.9
Ps 178 3.6/ 151 46| 121 6.6|184 43 | 131 7.11154 6.0
Ps 18.4 0.1| 209 0.2 17.4 0.5|23.1 15.0/ 329 4.8/ 225 8.8

Table 5.3: Average localization errq and standard deviatianfor each event position.

e FTOL:1.0E-2
e NO_OF_REF_POINTS: 4

e COMPUTE _WIHT _AMPLITUDE : Yes, amplitude is computed in Simplex Downhill.

The meanings of the different parameters have been prelsienge=ction 4.3.

In the second run we have used exactly the same settings arsautie testbed. Instead of
computing the event intensity amplitude in Simplex Dowhhié have computed it in a second
step to reduce the problem dimension. After the computatfothe event location the event
intensity can be computed by the given distribution modelthe following we call the results
from the tests with the amplitudes computed in Simplex DdlWiinst run results and the ones
without the amplitude computed in the Simplex Downkékond rumresults. The results of both
runs are comparable. For the evaluation of the positiomesitbn and the amplitude estimation

the results from the first run are used. In Subsection 5.3.Zamepare the performance of
Simplex Downhill of both runs.

Position Estimation Accuracy

Table 5.3 shows the localization errors for each bulb andtgwesition, wherg: represents the
mean distance error andthe standard deviations over all 50 position estimatioosfthe first
run results. The last column shows the average localizatitor over all bulbsP; to Py are the
event positions shown in Figure 5.15. The error is defineti@&ticlidean distance between the
event locationP; and the estimated positiorts, computed by Simplex Downhill.

Figure 5.16 visualizes all distance errors. Each colorasgmts an event position, which is
represented by a circle. The event positions estimated ropl8k Downhill are represented by
x symbols. The error is represented as the lines betweenahdx.

Considering Table 5.3 and Figure 5.16 it can be seen thatdisercthe events are positioned
to the border of the sensor grid, the higher is the mean distarror. The maximal mean error
for event positions’; to Ps is 18.4 cm, sensed with the 75 Watt bulb. At event positigrithe
distance errors are higher. The performance of Simplex Dildecreases if the event position
is getting closer to a node. In these areas the range of taoktions is small, whereas the risk
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Figure 5.16: Visualization of the event position estimation error.

of finding local minima is high. However, due to the implenaitn of DELTA sensor nodes
will arrange themselves around the event location. Acomlgli events are rather located near
the center of the observing sensor group. Table 5.3 showthiantensity of the light has only
little influence on the position errors of the position estiions.

Excluding event positio’;, the position estimation of Simplex Downhill is quite robaad
works well for different bulbs. Considering the distancel@b cm between the sensor nodes, a
maximal mean distance error of 18.4 cm with a variance of s3scacceptable (result without
event position P6).

Amplitude Estimation Accuracy

For the classification of the detected events some chaistaterabout the event are needed.
Therefore, Simplex Downhill not only estimates event posg but also their amplitudes. First
we present the evaluation data and discuss them in the mgxtEible 5.4 shows the meam)
and the standard deviations)(of the estimated emitted light amplitude for each eventtjors
and bulb based on the data computed by Simplex Downhill ferfitist run results. The last
column shows the mean of estimated amplitudes and theidatardeviations over all event
positions. The mean amplitude of events with a 25 Watt bullyige® Hz. The mean intensity
of the 40 Watt bulb is with an estimated intensity28f8e®> Hz around10.0e® Hz higher. For
the 60 Watt bulb an amplitude di7.4¢® Hz was estimated, for 75 Watt buli.6e® Hz and for
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P1 P2 P3 P4
Bulb [Watt] | o 1 o 1 o 1 o
25 16.9¢> 0.88¢® | 16.7¢5 0.23¢® | 13.2¢° 0.05¢® | 17.8¢° 1.30€°
40 30.0¢®  0.06e° | 29.1e® 0.27¢® | 27.5¢> 1.03¢® | 31.1¢> 2.32¢°
60 47.8¢° 0.14e’ | 46.7¢>  0.20e° | 42.5¢®> 2.73e5 | 49.5¢°  3.06€°
75 59.3¢>  0.19¢° | 59.0e¢® 0.26€° | 51.5€® 6.10e° | 63.2¢° 5.39¢°
100 82.5¢° 0.19¢° | 80.4e® 11.6€° | 71.6e® 7.63¢° | 86.0e® 8.58¢°

P Py All positions
Bulb [Watt] | o 1 o 1 o
25 18.7¢%  2.62¢® | 19.8¢°  0.04e® | 17.1¢° 2.47€°
40 27.0¢®  10.5¢° | 28.4¢®  0.07¢° | 28.8¢° 4.53¢°
60 49.8¢5 11.1€° | 48.1¢>  0.54ed | 47.4€® 5.35¢°
75 73.8¢°  10.3¢° | 65.4¢®  16.3¢° | 61.6e> 10.8¢°
100 86.0e> 15.1e | 124.0e> 24.0€° | 88.5¢® 21.4¢€°

Table 5.4: Computed amplitudes in Hz for each event position.

the 100 Watt bull®8.5¢> Hz. The standard deviations increase with the emitted ligflensity
of the bulbs.

Figure 5.17 visualizes the distribution of the amplitudénestions for each bulb as a box-
plot. The line in the middle of the boxes is the sample medidre tops and the bottom of the
box are the 75th and 25th percentiles. The length of the begrilees the interquartile range.
The whiskers are the lines looking like a "T” extending thexé® They describe the values
which are within 1.5 times the interquartile range begignén the end of the box. The values
displayed with a red "+” are the outliers. We see that therquiartile ranges are small. The
number of outliers is higher for the events with 75 Watt an@ Watt bulbs. This indicates that
the events with 75 Watt bulb and these with the 100 Watt bigdess disjoint.

For a classification of events it is important that the speos of the amplitudes of different
events (i.e. different bulbs) are disjoint. This conditisnfulfilled in most of the situations
shown in Table 5.4. Only at positioR; the computed light amplitudes are not fully disjoint:
The estimated amplitudes between the events with the 25Mtittand the 40 Watt bulb and
the events with the 40 Watt and the 60 Watt bulb overlap. [Euntlore, classifications of the
75 Watt and 100 Watt bulbs might cause some systematic fédssifications comparing the
spectrums ofx ando in the last column in Table 5.4. Figure 5.17 illustrates tois. Some
outliers of the 75 Watt bulb are in the range of the box of th@ \Matt bulb. Over all we can say
that correct classification should be possible in most cases

We have seen that the amplitude and also distance erroaseséahe closer the event comes
to a sensor node (see Figure 5.16). We have used a rankimgttabisualize this. In theory
the amplitude estimation should be the same at each eveitibposn Table 5.5 we show that
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6 Computed Amplitudes for each Bulb
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Figure 5.17: Boxplot of the estimated emitted signal strength amplitugsing Simplex Downhill.
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25 Watt 40 Watt 60 Watt 75 Watt 100 WattTotal rank
Py 6 5 6 6 6 29
P 5 3 5 5 5 23
P 4 2 4 4 4 18
Ps 2 6 1 1 2 12
Py 1 4 3 2 1 11
Py 3 1 2 3 2 11

Table 5.5: Ranking of the amplitudes for each position.

the amplitude estimation error also depends on the eveitiqgrog-or each bulb the amplitudes
at the different positions have been analyzed. We rankealiteT5.5 each bulb. The position
where the highest amplitude for a bulb was estimated getsi¢jiest rankl the position where

the lowest amplitude was estimated gets the lowest 6arikhe last column is the total score.

It is the sum of ranks for each bulb at each position. The joosivith the lowest estimated
amplitudes for each bulb gets the highest value, the onethdtlnighest estimated amplitudes
gets the lowest value.

Table 5.5 shows that the error increases for the amplituiimasons the closer the event is to
a sensor node. Events at the positidtsand P have the lowest ranking, eveRt the highest.
This means that at the positioiy and P the amplitudes have been estimated higher for the
same bulb as at the other positions and at posifipthe amplitudes have been estimated lower
for the same bulb at the other positions. For the events aidbiéionsFP;, Py and P5 which are
closer to nodeVs, higher amplitudes for the same bulb have been sensed cetfier events
at the positiong?;, P, and P;. As expected not only the localization estimation erroréases
the closer the event is to a sensor node but also the ampéstdeation error.

Evaluation of Simplex Downhill without Amplitude Computation

During the evaluation of the localization accuracy with Siex Downhill, no result was
computed in some cases because of too many iterations ofie&irdpwnhill. As mentioned
before the number of iterations is limited to prevent a systeset by the watch dog. Also we
have limited the number of iterations to account for somayteivhich could lead to problems
in communications of the group organization algorithm ofLDE. To reduce the complexity
of Simplex Downhill and make it faster, we have reduced theblem dimension. We have
removed the amplitude estimation from Simplex Downhill dra¥e computed only the event
position. The amplitude estimation has been done aftesyasidescribed in Section 4.3. This
gives us the freedom to compute the amplitude only if it isduee further action. We run the
same tests again with the modified Simplex Downhill as befotbe real-world environment.

The estimations of event position computed with the modi8edplex Downhill are com-

parable with the results from the first run. An interestinfiedence is the number of iterations.
Table 5.6 lists the number of iterations which have been uséuk first run, where the ampli-
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Run1 Run 2
Bub[Watt] | o o pu o

25 53 24 31 7
40 62 18 32 9
60 60 21 35 11
75 57 27 32 8

100 52 21 31 7

Table 5.6: Comparing Simplex Downhill computing amplitude (Run 1) &ichplex Downhill not com-
puting amplitude (Run 2).

tude has been computed in Simplex Downhill and in the secandwhere the amplitude has
not been computed in Simplex Downhill. For both runs the nends iterations per bulb in the
average () and the meam() is shown. In the first run we got an over all average of 56 fiiens,
where as in average 32 iterations are sufficient to for comhé events position alone.

This shows that the performance of Simplex Downhill can bprowed by removing the
amplitude estimation.

5.3.3 Parameter Optimization

The two test series presented in 5.3.2 have been perforntbdhei same parameter configura-
tions. To find out if there is a more optimal parameter conéigan for the localization task we
let running Simplex Downhill with different parameter segfs. As it is a time consuming task
testing localization in a real-world environment we havetgo the simplex code to a PC envi-
ronment and used the real-world data from the first test sexi@put for further optimization
steps. In the first run we have not only logged the results @fSimplex Downhill computa-
tion but also the sensor readings. This raw data has beenagsagut for Simplex Downhill.
Our main focus is on finding the optimal parameter configaratespecially considering the
settings of thé=TOL termination condition. Therefore we have tested Simplewiull and the
modified Simplex Downhill without amplitude computationtiVFTOL 1.0e2, 1.0e=4, 1.0e 79,
1.0e~% and1.0e~1%. The other parameters have not been changed. To find an bptmfagu-
ration parameter we define the following criteria:

1. The mean of the amplitude spectrums of each bulb have tsjoend.
2. The mean distance error has to be minimized.

3. The number of aborted computations because of too maaidtes should be minimized
(NMAX = 30).

Table 5.7 shows the results of the evaluation of Simplex Dullvwith different parameters
based on the input data from the first real-world run. The foatshows which Simplex Down-
hill version has been used. As mentioned above, the amelitach be computed in Simplex
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Amplitude computation FTOL  Aborted Computations p o Amplitudes disjoint
in SD 1.0e72 53 11.46 9.04 No
in SD 1.0e~% 149 11.18 9.37 Yes
in SD 1.0e6 273 9.41 8.66 Yes
in SD 1.0e78 632 8.92 7.85 Yes
in SD 1.0e~10 632 8.92 7.85 Yes
offline 1.0e2 35 10.94 8.03 Yes
offline 1.0e74 97 10.4 7.75 Yes
offline 1.0e76 97 10.4 7.75 Yes
offline 1.0e—8 335 10.37 7.95 Yes
offline 1.0e—10 335 10.37 7.95 Yes

Table 5.7: Results of running Simplex Downhill (SD) with different @aneters.

Downhill itself or afterwards. The columm shows the mean position estimation error over all
computations ane is the standard deviation. The last column shows if the meaamplitude

estimations between every pair of bulbs are disjoint.

Apart from the first row all amplitude computations are disjo The amplitude estima-
tions between the 60 Watt and the 75 Watt bulb and betweenSh&/att and the 100 Watt
bulb overlap. This means that the mean of the amplitude aettm of a bulb type A plus the
standard deviation is higher than the mean of the amplitstienation of a bulb type B minus
the standard deviation. The optimal results we got by udmegnodified Simplex Downhill
with FTOL = 1.0e~*. There is a trade off between the estimation accuracy anduheer
of aborted computations. Simplex Downhill returns acairasults withFTOL = 1.0e~* for
the offline amplitude computation as well as for the compomaof the amplitude of Simplex

Downhill.

We see that the optimized parameters lead to a better pexfmerof Simplex Downhill com-
pared with the settings used in the real-world test runs. fians of the estimated amplitudes
for each bulb are disjoint and the localization errors aralEenwith the optimized parameters.
The number of aborted computations is slightly higher. Ftbmraw sensor readings from
the two existing real-world tests (see Section 5.3.2) we ftharived the two sets of estimation

results with the following settings:

e DIM: 2.
e NMAX : 160
e FTOL:1.0E—4

NO_OF_REF_POINTS: 4
COMPUTE _WIHT _AMPLITUDE
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These two result sets will be used in the next section foruatan of the classification algo-
rithms. Figure 5.18 gives an overview of the test sets andthewinterpend.

Testrun one Testrun two
Light amplitude computed Light amplitude not computed
in Simplex Downhill in Simplex Downhill

Logged raw Logged raw
sensor data sensor data

Simplex Downhill with
optimized parameters

Optimized Optimized
result set one result set two

Figure 5.18: Result sets from real-world Simplex Downhill evaluation.

v

Result set one Result set two

5.4 Delta Classification Evaluation

5.4.1 Simulator Tests

In a first step we have evaluated the proposed classificalganitams minimal distance classi-
fier and Bayesian Classifier in the MATLAB environment. Thiigws us to evaluate the two
classification algorithms without side effects. The clissiwvith the better performance is im-
plemented on the real-world hardware in a second step. BHuitsdrom the simulator tests are
also used as reference to compare performance of the rel-wmplementation.

As input for the event classification we have used the onesdgional real-world input data
computed with the optimized Simplex Downhill configuratiparameters described in Subsec-
tion 5.3.3. As mentioned above we have two sets of real-wdatd. Figure 5.19 describes how
the classification is applied. We have used the optimized filatn the first test serie as train-
ing set and the data from the second optimized test seriestasee We have applied K-Means
on this first set to compute the cluster characteristics. réhelts of K-Means are than used to
find the parameters for the minimal distance classifier aadthyes classifier. The two trained
classifiers are then applied on the second optimized ddtagedg-irst we give a short overview
over the characteristics of the two input sets. Table 5.8vshihe characteristics of the esti-
mated amplitudes of test and training setsrepresents the mean amplitude andhe standard
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Optimized Optimized
result set one result set two
(Trainig Set) K-Means p| Cluster Centers [Test Set)

¥

kA h J L J k4

Bayesian Classifier Minimum Distance
Classifier

b4 ¥

Classified Events by Classified Events by
Bayesian Classifier Minimum Distance Classifier

.____ﬂ__,,—-""'"_""‘--.

Figure 5.19: Application of the classifier algorithms on the input data.

H25 025 H40 040 H60 060
Training set| 1.84e% 0.60e® 2.94e5 0.27¢5 4.65¢ 0.32¢6
Testset | 1.59¢%  0.15¢5 2.98¢5  0.55e8  4.45e6  0.27¢€8

5 a75 1100 0100
Train set| 6.00e% 0.76¢5 8.44¢5 1.30e°
Testset| 5.64e5 0.57¢5  8.09¢6  1.58¢8

Table 5.8: Characteristics of train and test data set.

deviations of the amplitude where ass the kind of the bulb in Watt. As already mentioned
the averages of the amplitude estimation of each bulb ajeirtis The characteristics of both
real-world tests are not exactly the same. The 25 Watt budtfdraexample a mean amplitude
estimation of1.84e% with a standard deviation ®£.60¢5 in the training set where as in the test
set the mean amplitude estimationli§9¢® and a standard deviation 6f15¢5. The diversity
of the data sets is desired because we want to prove thatabsfadation algorithm is flexible
enough to be applicable on real-world data.

Table 5.9 shows the results of the classification using nahufistance classifier and Bayes
classifier. Bayes classifier classifies with a success rafi®8.6% and minimal distance classi-
fier wit 90.2%.

Some of the amplitudes computed by Simplex Downhill shovi ldgviations. Regarding this
fact the classification accuracy of Bayes classifier is chiggh. We decided to implement Bayes
classifier on the real-world hardware. It has not only a higlogeuracy than the minimal distance
classifier but is also usable with multi-dimensional data.sainimal distance classifier is only
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Right False Success Ratio
MDC | 1040 113 90.2%
BC | 1079 74 93.6%

Table 5.9: Classification of one dimensional input with Bayes classif®C) and minimal distance
classifier (MDC).

usable in circular clusters. If the elements of a clustelimeenon circular area they are proba-
bly classified wrong. Figure 5.20 shows two clusters in okalpgs. Figure 5.21 shows how the
elements would be classified using minimal distance classifihe two circles symbolize the
two clusters. On the other hand, Bayes classifier is bagiesle to model such shapes. Thus,
we have decided to implement Bayes classifier on the redtvardware.

Legend
® Element Cluster A
® Element Cluster B
@ Cluster Center

Figure 5.20: Correct classification.
Figure 5.21: Classification with minimal distance classifier.

5.4.2 Real-World Tests

On the ESB nodes we evaluate the implementation of the onerdiional Bayes classifier using
the same data sets as used in the one dimensional simulstwr Tderefore, we have written a
script that sends the amplitudes of the training set to thB E®les over a serial cable where
they are evaluated. The results computed on the ESB nodskgdnity different from the results
obtained from MATLAB. Bayes classifier on ESB nodes has diasls89.5% correctly where
as the MATLAB implementation does this in 93.6% of the cagdss can be explained by the
differences in the implementation. On the ESB nodes onlytythe float with single precision
is supported, whereas MATLAB computes results with highecision. The rounding errors
leads to different results. Nevertheless, we could showBlages classifier performs well on
real-world hardware with limited resources.
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Chapter 6

Conclusion and Outlook

In this chapter we give some final conclusion about the ptedemwork. After this we present
fields for further investigations considering the DELTArfrawork.

6.1 Conclusion

In this thesis we have presented extensions to the DELTAdveark. The thesis covers four
subject areas: Network organization, event detectiomtdgealization and event classification.
For each of these parts we have presented real-world implatiens and evaluation on WSN
nodes with limited power constraints. In the following $estwe present a conclusion for each
evaluated area.

Network Organization: The Receiver-Based Backbone Construction algorithm stppo
DELTA with energy-efficient routing. We have shown that tHgoaithm is applicable to
hardware with limited resources. Real-world tests havavahahat the basic functionality of
the algorithm is working properly. In the network set-up gh¢ghe CDS is built as expected. In
a second real-world experiment we have shown that the nktisable to repair itself when
a backbone node fails. We have also shown that, using theepbrd backbone nodes, the
network nodes can save energy of up to 80% of their lifetimslegping.

Event Localization: In this thesis Linear Least Square, Conjugate Gradient &ebsc
and Simplex Downhill were investigated to be used for evenalization. The localization
estimations of Linear Least Square tends to the center adehsing area. The quality of the
localization estimations for Linear Least Square has begrdved with an over determined
system. Therefore, Linear Least Square needs sensor gsadfiimore nodes than Conjugate
Gradient Descend and Simplex Downhill to produce localiratstimations similar quality.
Simplex Downhill and Conjugate Gradient Descend have sHmtin similar performance. The
Simplex Downhill algorithm has been implemented on the E®Bes for further real-world
evaluation. In the real-world evaluation of the event laalon and of emitted signal strength
estimation, Simplex Downhill produced reliable localiatinformation. The closer the events
are to a sensing node, the less precise is the localizattonag®n. The maximal localization
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error was 14.7% of the distance between neighboring nodggecting the estimation of the
event closest to the sensor node.

Event Classification: In this thesis we have presented a distributed self-legreirent
classification procedure for DELTA. The Simplex Downhilgatithm can not only be used
for event position estimations but also for emitted sigriedrgyth amplitude estimations. The
real-world tests with five different bulbs have shown that ¢bomputed amplitudes of each bulb
are disjoint. Using this one-dimensional real-world datahave evaluated Bayes classifier and
minimal distance classifier. The evaluation has shown tB&% of the events are classified
correctly using a Bayes classifier and 90.2% of the eventslassified correctly using minimal
distance classifier. The implementation of Bayes classifiethe real-world wireless sensor
nodes has shown a slightly lower accuracy. We have also miszbe solution that allows
adapting and updating the distributed event classificadlgorithm at runtime to classify new
events.

Over all we have shown that it is possible to implement anggrefficient event localization
and classification framework on real-world wireless semsale hardware.

6.2 Outlook

In this section we present areas for further investigatiohe concentrate us on the evaluation
of the framework. Evaluating real-world networks is a tin@suming tasks. In this thesis
we evaluated the basic functionality of the framework. Ehems no time left for further,
more realistic, evaluation scenarios. In the followinggumaphs we will present areas for
future investigations in the three areas of network orgditn, event localization and event
classification.

Network Organization: The receiver-based backbone construction algorithm walsi-ev
ated in small networks with up to 10 network nodes. Furthal-weorld tests in larger networks
could be done. In our evaluation we have used grid topolodiests with randomly distributed
network nodes over larger areas could be done to get moreriafmn of the performance
characteristics of this algorithm in a more realistic eomiment.

Event Localization:  The real-world experiments of the localization were doneain
network of four nodes. Events close to a sensor node prochigber localization errors. To
prove that this error could be minimized in networks with moiodes the tests presented in
this thesis could be done in larger WSNs. Further eventilcatgdn in non-grid-like network
topologies could be evaluated. A more complex real-workhado such as a network with
randomly distributed network nodes could be evaluated.

Event Classification: The implementation and evaluation of the event classifioati

algorithm was done with light sensor readings. The evatLatassification algorithms would
be able to handle multidimensional inputs. This allows sifggig more complex events,
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as for example an event which emits light and sound. Thezefile implementation has to
be modified to support multidimensional classification. tRemmore, appropriate hardware
equipped with more sensors could be used.

The Receiver-Based Backbone and the DELTA framework havébeen tested running
concurrently. To get a better overview over the performasfdbe presented extended version
of DELTA a long time evaluation with larger networks and sléisation of more complex events
would be necessarily. The backbone support has to be it¢egredo DELTA for these long time
tests to see how event reporting over the CDS backbone amdl @etection, localization and
classification perform together.
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