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Abstract

Different approaches to do event detection, tracking, localization and classification have been
presented in the field of wireless sensor networks. As the nodes in wireless sensor networks
have limited energy resources and low processing power, theused algorithms have to be effi-
cient and energy aware. In this thesis we combine the advantages of different event detection,
tracking and localization algorithms in a distributed event localization and tracking algorithm
(DELTA). DELTA is extended with energy-efficient network management, event classification
functionality and an energy based source localization. Theenergy-based network organization
allows communication in a multi-hop environment with the base station. We present a dis-
tributed approach to build-up a backbone which connects allthe nodes with the base station.
Nodes which are not members of the backbone only wake up periodically to report sensor data
and can so save energy. The algorithm is energy-based because nodes are not only elected as
backbone node based on their position but also based on theirenergy level. DELTA presents
a protocol to detect events and bundle information sensed bydifferent nodes about one single
logical event. In this thesis we present enhancements ,which allow DELTA to compute the posi-
tion and intensity of an event based on the sensed amplitude.Further we present a self learning
classification algorithm. Based on learned events, DELTA isable to learn event classes which
can be used to classify unknown events.





Contents

1 Introduction 1
1.1 Wireless Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . . . .. . 1
1.2 Network Organization, Event Detection, Localization and Classification . . . . 1
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Contributions of this Thesis . . . . . . . . . . . . . . . . . . . . . . .. . . . . 4

2 Related Work 7
2.1 Connected Dominating Sets . . . . . . . . . . . . . . . . . . . . . . . . .. . 7

2.1.1 CDS with Pruning Rules Approach . . . . . . . . . . . . . . . . . . .8
2.1.2 Maximal Independent Set Approach . . . . . . . . . . . . . . . . .. . 10
2.1.3 Timer-Based Connected Dominating Set Construction .. . . . . . . . 11
2.1.4 Receiver-Based Backbone Construction . . . . . . . . . . . .. . . . . 11

2.2 Overview over Event Detection, Localization and Classification . . . . . . . . 18
2.2.1 Event Localization Approaches . . . . . . . . . . . . . . . . . . .. . 18
2.2.2 Distributed and Centralized Approaches . . . . . . . . . . .. . . . . . 19

2.3 Event Tracking and Network Organization . . . . . . . . . . . . .. . . . . . . 19
2.3.1 Event Detection Using Static Sensor Clusters . . . . . . .. . . . . . . 19
2.3.2 Coarse-Grained Localization . . . . . . . . . . . . . . . . . . . .. . . 20
2.3.3 EnviroTrack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.4 SensIt - Target Tracking . . . . . . . . . . . . . . . . . . . . . . . . .21

2.4 Event Localization and Classification . . . . . . . . . . . . . . .. . . . . . . 21
2.4.1 Linear Least Square Method . . . . . . . . . . . . . . . . . . . . . . .22
2.4.2 Nonlinear Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.3 Learning Event Classes with K-Means . . . . . . . . . . . . . . .. . . 24
2.4.4 Minimum Distance Classifier . . . . . . . . . . . . . . . . . . . . . .26
2.4.5 Bayes Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.6 SensIt - Target Localization and Classification . . . . .. . . . . . . . . 28
2.4.7 PinPtr - Centralized Sniper Detection . . . . . . . . . . . . .. . . . . 29
2.4.8 A Statistical Multi-Agent Approach for Event Localization . . . . . . . 30

2.5 The DELTA Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.1 The DELTA Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.2 Event Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Real-World Hardware Environment . . . . . . . . . . . . . . . . . . .. . . . 33
2.6.1 Sensor Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

iii



2.6.2 ESB ScatterWeb Operating System . . . . . . . . . . . . . . . . . .. 35

3 DELTA Enhancements 39
3.1 Adaptations of DELTA Protocol . . . . . . . . . . . . . . . . . . . . . .. . . 39

3.1.1 Adaptations of the DELTA Group Organization . . . . . . . .. . . . . 39
3.1.2 Definition of Timer Settings . . . . . . . . . . . . . . . . . . . . . .. 39

3.2 Energy-Efficient Network Management - Backbone Support. . . . . . . . . . 40
3.2.1 Adaptations of Receiver-Based CDS Protocol . . . . . . . .. . . . . . 40
3.2.2 Definition of the CDS Data Packets . . . . . . . . . . . . . . . . . .. 43

3.3 Energy-Based Source Localization . . . . . . . . . . . . . . . . . .. . . . . . 44
3.4 Event Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 45
3.5 Configuration Distribution over the CDS . . . . . . . . . . . . . .. . . . . . . 45

4 Implementation 49
4.1 Modification in the ScatterWeb OS . . . . . . . . . . . . . . . . . . . .. . . . 49
4.2 CDS Backbone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Details on the Implementation of the CDS Algorithm . . .. . . . . . . 50
4.2.2 Data Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Localization Using Simplex Downhill . . . . . . . . . . . . . . . .. . . . . . 54
4.4 Event Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 56

4.4.1 Implementation in Simulator . . . . . . . . . . . . . . . . . . . . .. . 56
4.4.2 Implementation on Sensor Boards . . . . . . . . . . . . . . . . . .. . 56
4.4.3 Bayes Classification Configuration Distribution . . . .. . . . . . . . . 56

4.5 Logging Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 56

5 Evaluation 59
5.1 Adjusting the Transmission Power . . . . . . . . . . . . . . . . . . .. . . . . 59
5.2 Testing the CDS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . .. . 60

5.2.1 Basic Functionality of CDS . . . . . . . . . . . . . . . . . . . . . . .61
5.2.2 Long Sleep Cycles Test . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 DELTA Localization Evaluation . . . . . . . . . . . . . . . . . . . . .. . . . 67
5.3.1 Performance Evaluation in the Simulator . . . . . . . . . . .. . . . . 67
5.3.2 Real-World Evaluation of Simplex Downhill . . . . . . . . .. . . . . 70
5.3.3 Parameter Optimization . . . . . . . . . . . . . . . . . . . . . . . . .78

5.4 Delta Classification Evaluation . . . . . . . . . . . . . . . . . . . .. . . . . . 80
5.4.1 Simulator Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4.2 Real-World Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Conclusion and Outlook 83
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Bibliography 86

iv





Chapter 1

Introduction

1.1 Wireless Sensor Networks

Wireless Sensor Networks (WSN) have a wide application range. They are for example used for
environmental or animal habitat monitoring, health-care,industrial process monitoring, applica-
tions in daily live and also military applications. In all these fields the main task of the WSN
is to monitor physical or environmental conditions using the nodes of the network, which are
equipped with arrays of sensors. Typically, these nodes communicate with a radio transceiver or
with some other wireless communication device.

WSNs are self-organizing ad-hoc networks supporting multi-hop communication. Nodes
can be distributed randomly. For example, they can be thrownout of a plane. In most cases,
nodes which have been deployed in the environment, are difficult to be replaced. Consequently,
the network must be remotely maintainable and robust in caseof node failures. As WSN nodes
commonly operate independently of a power supply, they are battery powered. Therefore, energy
resources are a critical issue and nodes have to operate as efficiently as possible. This means
that nodes are based on low power consuming hardware and alsoneed efficient software, such
as optimized network protocols.

1.2 Network Organization, Event Detection, Localization and
Classification

In this work we present a distributed event detection, tracking, localization and classification
framework (DELTA) [37], [38]. We present enhancements of the framework and evaluate them
in real-world environments. The four main tasks addressed in this work are presented next.

Network Organization

In order to communicate in a multi-hop environment with the base station, to send some updates
to the sensor nodes, or to report sensed data, communicationpaths are necessary. As commu-
nication is an energy consuming task, the network traffic needs to be minimized. In order to
reduce energy consumption, the network nodes are switched off most of the time. As sleeping
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Figure 1.1: Network organization in DELTA.

nodes cannot communicate and therefore are also not able to forward messages, some mech-
anisms to support stable communication paths have to be provided. Therefore, we present a
network organization with two different kinds of nodes: Backbone nodes that provide a persis-
tent communication path to the base station and non-backbone nodes which are sleeping most
of the time and wake up periodically to send their sensed datato the base station over the back-
bone. In Figure 1.1 the green nodes are members of the backbone over which all data is routed.
The red nodes are in a sleep state and wake up asynchronously to communicate with the base
station. The roles are changed periodically to keep the energy on the same level over the whole
network. Thus, a long network life time can be achieved. Finally, backbone nodes can move or
fail. Therefore, a backbone repair mechanism is provided.

Event Detection

Events such as a vehicle are sensed by different nodes and different kinds of sensors on these
nodes. Our WSN is able to bundle all information sensed by allnodes around an event source
together to model one single logical event (see Figure 1.2).Upon sensing a measurement with
a higher level than a predefined threshold, the nodes around an event elect a leader node, the
red node in Figure 1.2, which will be responsible for the management of the sensed event. This
manager node coordinates the distributed handling of the event. Neighbor nodes send their
sensed information to the elected leader node for further handling. As events can be moving, the
management node is responsible to perform the event tracking. Finally, the leadership is handed
over to a node located closer to the moving event.

Event Localization

For some applications the event position needs to be known. We have implemented and eval-
uated different localization algorithms. Localization algorithms have to be fast and efficient,
because computation power on WSN nodes is limited. In some cases not only the event po-
sition, but also other characteristics are interesting. Therefore, the presented algorithms also
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Figure 1.2: Event detection and group organization in DELTA.

support the computation of the emitted signal strengths of the event. Figure 1.3 illustrates the
event localization. The red node receives information about the event from its neighbour nodes.
Based on this information it computes the events position and intensity. Therefore, a sensor
model assuming isotropic signal attenuation is used.

Figure 1.3: Event localization in DELTA.

Event Classification

A single event can be composed of different characteristicssuch as sound, vibration and light
emissions. We present a simple distributed and self-learning classification algorithm to cate-
gorize these different characteristics into classes of events. We want, for example, to classify
different vehicles in road traffic. Depending on the characteristics such as sound and vibration,
we classify detected events into one of the classesBicycle, Motorbike, Car or Lorry as shown in
Figure 1.4. To update the classification rules on the networknodes we further provide a simple
update mechanism.
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Figure 1.4: Event classification in DELTA.

1.3 Thesis Outline

We present related work on the topics addressed in this work in Chapter 2. We present ap-
proaches of Connected Dominating Sets to manage routing andnetwork organization. Further,
related work of event detection, localization and classification is presented. Chapter 3 introduces
the enhancements to the existing DELTA framework done in this thesis. We have added local-
ization and classification methods as well as a backbone mechanism to support communication
between nodes and a base station. Chapter 4 describes implementation details of DELTA and
its extensions. The real-world sensor node hardware is introduced. We describe how differ-
ent parts of DELTA are implemented on these nodes. Chapter 5 provides the evaluation of the
DELTA framework enhancements. We have implemented and evaluated the DELTA framework
on a real-world sensor platform. Results of the evaluation from the different parts of the DELTA
framework are discussed. Finally Chapter 6 concludes the presented work and discusses some
topics for further investigations.

1.4 Contributions of this Thesis

This thesis is mainly build around the existing DELTA framework. In different areas DELTA
has been extended. Mainly existing algorithms have been integrated into DELTA. They have
been implemented and evaluated on real-world hardware. In the following we introduce the
contributions in detail.

Network Organization

An existing algorithm for an energy efficient network organization based on connected dominat-
ing sets (CDS) was implemented on real-world hardware. Somemodifications have been done
due to fit the algorithm to the real-world environment. Different scenarios were constructed to
evaluate the different parts of the algorithm on the real-world network. A framework for moni-
toring the distributed network communication was introduced.
To update the sensor nodes with new configuration settings wehave extended the CDS algorithm
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with a configuration distribution ability. Therefore no newdata traffic has been introduced. The
basestation informs the network nodes about new settings bypiggy-backing this information to
existing communication packets.

Event Localization

Different existing algorithms have been used to enable DELTA doing an appropriate localiza-
tion and event strength estimation. After evaluating different algorithms the Simplex Downhill
algorithm was chosen for an implementation on real-world hardware. DELTA with the extended
localization abilities has been evaluated with real-worldlight emitting events.

Event Classification

To classify the estimated event locations and event amplitudes DELTA was extended by a clas-
sification framework. In a training phase the clustering algorithm K-Means is used to learn the
event classes. In a second phase these information is used toclassify the events during runtime.
Two classifier algorithms are investigated. Finally, the Bayes classifier was chosen to be im-
plemented on the real-world environment. The real-world implementation was evaluated with
real-world light emitting events.
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Chapter 2

Related Work

This chapter presents related work in the topics addressed later in this work. The first section
deals with routing aspects. The theory of Connected Dominating Sets is introduced. In a second
section different approaches for event detection, localization and classification are introduced.
At the end we present the sensor hardware which has been used for the real-world implementa-
tion and evaluation.

2.1 Connected Dominating Sets

Energy savings and self-organizing topology control are important tasks of many WSNs due to
limited energy resources and randomly deployed sensor nodes. Therefore, topology control and
the construction of energy efficient virtual backbones havebeen largely investigated in ad-hoc
and wireless sensor networks. The main focus of connected dominating set (CDS) approaches
is to minimize the number of nodes in the backbone. This is referenced in literature as the
ability of the algorithm to approximate the minimal connected dominating set (MCDS). This
task is known to be NP-hard [3], though. There are different heuristics to approximate a MCDS
backbone, which will be discussed in the following subsections, after a short introduction into
the theory of CDS.

Let’s have a graphG = {G,V }, whereV is a set of vertices andE is a set of edges. A
dominating set (DS) is a subsetD of V such that every vertex not inD is connected to at least
one member ofD by an edge inE. In other words a DS of a graph G is a subsetV ′ ⊂ V ,
where each node inV − V ′ is adjacent to some node inV ′. Figure 2.1 shows a DS, where the
brown vertices are the nodes ofD and the blue nodes are joined to at least one member ofD.
In a connected dominating set we have the constraint that thesubsetD needs to be connected.
Figure 2.2 shows a CDS: The brown nodes are inD, the blue ones are joined to at least one
member ofD.

Different types of algorithms which make use of CDS to build abackbone in a wireless
ad-hoc network, are presented in the next four subsections.
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Figure 2.1: Dominating set.
Figure 2.2: Connected dominating set.

2.1.1 CDS with Pruning Rules Approach

In [41] a simple distributed algorithm is proposed. It aims of building a CDS close to the MCDS.
The algorithm supports changes in the underlying graph, which means that node failures or
moving nodes are supported.

A marking process in an unweighted graphG = (V,E) is proposed.Unweightedmeans
that the edges have no labels or costs. A marker for a vertex v∈ V can either be T (marked) or
F (unmarked). Initially all vertices are unmarked. In the marking process and the subsequently
applied pruning rules the following two terms are used: Anopen neighbor setN(v) of a vertex
v is the set containing all neighbors ofv and is represented byN(v) = {u|{v, u} ∈ E}, where
{v, u} is the edge between vertexv and vertexu. A closed neighbor setN [v] also containsv and
is defined asN [v] = N(v) ∪ {v}. In Figure 2.1 for example the set{1, 5} is a open neighbour
set of 2 and set{1, 2, 5} is a closed neighbor set of 2. The marking process has three steps:

1. All vertices v get marked with F (unmarked).

2. All vertices exchange their open neighbor set with their neighbors. After this step every
node knows its two-hop neighborhood.

3. Every v which has two unconnected neighbors changes its marker to T (marked).

Using the example in Figure 2.2 we have the following open neighbor sets:N(1) = {2, 3},
N(2) = {1, 5}, N(3) = {1, 4}, N(4) = {3} andN(5) = {2}. After step 2 of the marking
process vertex 1 knows the neighbor sets of nodes 2 and 3, node2 knows the sets of nodes 1
and 5, node 3 knows the sets of nodes 1 and 4, node 4 knows the setof node 3 and node 5
knows the set of node 2. In step 3 vertexes 1, 2 and 3 are marked with T, because they have
two unconnected neighbors: node 3 has nodes 1 and 4, node 1 hasnodes 3 and 2 and node 2
has nodes 1 and 5. Set V’ is defined as the set of vertexes markedwith T. The resulting set is
not necessarily minimal. To reduce the size of the dominating set two pruning rules have been
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introduced.

Rule 1: We consider the reduced graph G’ = G - V’ and consider two vertices v and u∈ G’.
For each node an unique numerical identifierid() is introduced. It is used to avoid simultaneous
removal of nodes from the CDS. IfN [v] ⊆ N [u] and id(v) < id(u) then set the marker of
v to F. This means that if the closed neighbor set of vertex v iscovered by the set of vertex
u, the vertex v can be removed from the CDS. In Figure 2.3 (a)v andu are CDS nodes and
N [v] ⊂ N [u], so the marker of v is removed from the CDS ifid(v) < id(u). In 2.3 (b) either v
or u can be removed. To prevent removing both, the node with the smaller ID is chosen.

Rule 2: Vertexes v and w are marked neighbors of an also marked vertexu. If N(u) ⊆
N(v) ∪ N(w) and id(u) = min{id(w), id(u), id(w)}, the marker of u can be set to F. This
means that if the closed neighbor set of a vertex is covered bythe neighbor sets of two marked
neighbors, this vertex can be removed from the CDS if the ID ofthis vertex is the minimum. In
Figure 2.3 (c)N(u) ⊆ N(v) ∪ N(w). If id(u) = min{id(u), id(v), id(w)}, vertex u can be
removed from the CDS based on Rule 2. Ifid(v) was the minimum, vertex v could be removed
based on Rule 1. The difference between Rule 1 and Rule 2 is that Rule 1 uses the open neighbor
sets, while Rule 2 applies the closed neighbor sets.

(a) (b) (c)

Figure 2.3: Pruning examples. Rule 1 is applied in (a) and (b), rule 2 in (c).

Repair mechanisms for the following three cases have been presented:mobile hosts switch
on, mobilehosts switch offand themobile hosts move. The first two cases can be covered by
the already known marking process and the two pruning rules.If nodes are moving the nodes
can be updated locally. For this case a heartbeat signal is introduced which signals that nodes
will start to move. Nodes in the backbone monitor this heartbeat signals after overhearing a start
message. If they do not receive a heartbeat after a predefinedinterval, they determine a broken
link to the moving host. If a node receives heartbeats without start signal, it determines a new
link to a moving host.

The need of two-hop neighborhood information and poor performance in certain network
topologies [35] makes the algorithm not appropriate for ourpropose.

In [40] an enhancement is presented which is based on the energy levels of the nodes instead
of their link degrees. This supports longer lifetimes because only nodes with higher energy
levels are elected into the backbone. In some cases non shortest paths are preferred to shortest

9



paths containing nodes with poor battery levels. The rules defined in [41] are adjusted to get an
energy-aware algorithm.

2.1.2 Maximal Independent Set Approach

Before explaining the algorithm we define an independent set(IS) and a maximal independent
set (MIS). Given a graph G an IS is a subset of vertices V, so that none of these vertices in
V is adjacent to another vertice. It is a MIS if adding any vertex to the set would break the
independency property of the set. Consequently, any node not within the set must be adjacent
to some node in the set in a IS as well as in a MIS. Figure 2.4 shows a graph with MIS. If one
would remove one of the nodes in the MIS the set would be an IS.

Figure 2.4: Example of a MIS.

[39] makes usage of a MIS in a first phase to build a CDS afterwards. The aim is to build
a CDS with a low message complexity and good approximation ofthe MCDS. In the following
we give a short conceptual overview over the CDS generating process.
In a first phase a MIS is build. First, a distributed leader-election algorithm such as presented in
[2] is used to construct a rooted spanning tree. A communication protocol is proposed which is
used to define the level for each node. The level of a node is defined as the number of hops to
the root node of the tree. After this step all nodes know theirown level and the levels of their
neighbors. Based on this information a color-marking process is started which constructs the
MIS.

In a second phase the root node initializes a process to connect the MIS to a CDS. In the
presented approach only one-hop neighbourhood information is exchanged which leads to a
message complexity ofO(n log n). The algorithm has a good approximation factor in respect
to an MCDS, but does not concern energy level of the nodes elected as CDS members. This
would reduce the lifetime of the WSN. Furthermore, there is not mentioned any repair or update
strategy. So CDS nodes which fail or move will not be replaced. Sleep cycles for non-CDS
members are not supported. All these points make this algorithm inappropriate for our purpose.
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2.1.3 Timer-Based Connected Dominating Set Construction

[42] presents a MAC-Layer Timer-based Connected Dominating Set Construction Protocol
(MTCDS). The aim of the proposed algorithm is simplicity. The algorithm is optimized for
IEEE 802.11 ad-hoc networks. No extra control messages are used, but all the messages are
included in the beacons sent by the protocol. Changes in network topology such as failing or
moving nodes, are supported. The algorithm is split into twophases: In the first phase an ini-
tiator is elected. In a second phase a CDS is constructed fromthe initiator node. The MTCDS
protocol is based on a greedy strategy: The more uncovered neighbors a node has, the higher is
its chance to be included into the CDS backbone. For the buildprocess three states are proposed:

• uncovered: The node is not covered by a node in the CDS.

• covered: The node has a neighbor which is in the CDS.

• inDS: The node is in the CDS itself.

The initiator determines itself as member of the DS and starts the build process by broadcasting
broadDS messages to its neighbors. Nodes inuncovered state overhearing this message switch
to covered state and set a timer∆T as described in equation 2.1.

∆T = Tmax ∗
1

(number of uncovered neighbors)α
(2.1)

If this timer expires and thecovered node has not overheard a further broadDS, they set their
stateinDS, enters the DS and also starts broadcasting itsinDS state. Nodes incovered state
overhearing a broadDS message compete for theinDS state only as long as they have any
uncovered neighbors. The more uncovered neighbors a node has, the higher is the chance that
the node switches intoinDS state.

The MTCDS can also adapt to node mobility. Nodes which fail, leave or are added or move
are supported.

The proposed algorithm converges in only one algorithmic step. Thus, it is simple to imple-
ment, but it has a rather poor approximation factor. The energy distribution in the network is not
concerned. The members of the CDS are elected based on their number of uncovered neighbors.
Their energy level has no influence. As in all the other presented approaches, again no sleep
cycles for non-CDS nodes are proposed.

2.1.4 Receiver-Based Backbone Construction

The goal of the approach presented in [35] is to support tracking and monitoring applications.
The implementation of the protocol on real-world hardware and its evaluation is part of this
thesis. Based on static or slowly moving nodes, the focus is on long-term lifetime. Therefore,
the CDS adapts itself to local energy distributions in the network. Nodes not participating in
the backbone shut down their radios and go to sleep for a predefined period, thus conserving
energy. Primarily source-to-sink communication is supported. The algorithm builds a CDS by
using periodically sent HELLO messages. Within these HELLOmessages information about
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the one-hop neighborhood and on-demand also about the two-hop neighborhood is exchanged.
The two-hop information is piggy-backed in the HELLO messages. The algorithm can be split
in to three phases:

• Learning phase: The nodes learn their neighborhood.

• Setup phase: The backbone is constructed.

• Operation and maintenance phase: Data is sent from the sources to the base station. The
CDS reacts on topology changes.

Learning phase

To learn its neighborhood each node sends HELLO messages in periodic cycles. A HELLO
message contains also the actual state of the sending node. The state indicates if the node is
already covered by the CDS or not. All nodes maintain a neighbor table containing neigborhood
information. Neighbor nodes are all the nodes witch can be reached directly over a single-hop
communication path. The table contains neighbor IDs, the state (dominator, dominated or none)
of the neighbor and the timestamp of the last received message. The length of the learn phase is
adapted according to the packet error rate. If it is high, thelearning phase is longer to ensure that
all nodes are able to learn their neighbors. It is set manually before distributing the sensor nodes.

Setup Phase

The base station is the only node which can start the network setup phase. Setting up the CDS
is considered as a graph coloring problem. We first give a theoretical introduction into the setup
phase and show the whole process according to an example afterwards. At the beginning all
nodes are colored white. The network is setup as following:

1. The base station sets itself as dominator node and starts broadcasting DOMINATOR mes-
sages. These messages contain the neighbor table and the sender ID.

2. The nodes which receive the DOMINATOR messages check if they cover additional nodes
by comparing their own neighbor table with the neighbor table of the DOMINATOR node.
If they do cover any additional node, they go to sleep. If theycover any additional node
they change to dominated state and start broadcasting DOMINATED messages. In these
messages the neighbor table from the DOMINATOR message is forwarded, too. So the
receiving nodes learn about the two-hop neighborhood.

3. The nodes two-hops away from the dominator node overhearing this DOMINATED mes-
sage compare their own neighbor table with the one from the dominator node. Based
on this information they prioritize their upstream neighbor as dominator and schedule a
DOMINATOR CHOICE message. This is the reason why the method is calledReceiver-
BasedBackbone Construction. The priority of this message depends on the link-degree
and the remaining energy of the dominator candidate. If there is only one known path
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to the backbone, the DOMINATORCHOICE message is sent with the highest possible
priority, without considering the remaining energy or link-degree of the dominator candi-
date. If there is more than one path to the dominator node, thepriority depends only on
the energy level of the sending node: The higher energy levelof the sending node is, the
higher is it prioritized.

4. Dominated nodes which receive a DOMINATORCHOICE message switch to dominator
state and start also broadcasting DOINATOR messages.

An example is given in Figure 2.5. We assume that node D has received a DOMINATED mes-
sage from node B and node E has received one from node C. As nodeD has no other path to the
backbone than over node B, node B is elected as dominator. If node E will send a DOMINA-
TOR CHOICE before node D, node C might be elected as dominator too. This would lead to
an additional dominator (C) which is not needed to guaranteeconnectivity. Therefore, node B
has to be elected as dominator by node D immediately to prevent that node E elects node C as
dominator.

Figure 2.5: Example for short delay timer.

In Figure 2.6 the construction phase is depicted. Node A and Bare neighbors of the base
station. Node C is in the neighborhood of node B. The base station broadcasts a DOMINATOR
message to its neighbors. Upon receiving the message, node Asets its state to dominated and
enters sleep mode because it does not cover any other node. Node B, which has an uncovered
neighbor, sets a timer to send a DOMINATED message. After theDOMINATED message has
been sent to the neighbors of node B, node C sets a DOMINATORCHOICE timer. Node C has
no other connection to the dominator, so the DOMINATORCHOICE timer is set with highest
priority, which means with shortest possible delay. If nodeC would have other neighbors and if
these neighbors would have an additional connection to the upstream dominator, node C would
set a timer delay according to the energy levels of the dominator candidates.

Upon receiving the DOMINATORCHOICE message, node B joins the CDS, sets itself
to the dominator state and broadcasts a DOMINATOR message. When node C receives this
message it sets its state to dominated and enters the sleep phase because it covers no additional
nodes. The algorithm terminates as soon as there is no uncovered node left. This means that all
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the nodes are connected in a CDS.

In the following paragraph some details about the timer settings are presented. For
the release timers of the control messages DOMINATOR, DOMINATED and DOMINA-
TOR CHOICE the same contention time is used. For the HELLO messages a longer contention
period is chosen. The shorter intervals for control messagemake the network construction phase
faster. HELLO messages are sent with longer interval periods to reduce the number of packets
which has to be sent by dominator nodes. The maximal durationof these intervals depends on
the sensor network properties and needs to be configured by the operator. The timer for the
DOMINATOR CHOICE message is composed of the dynamically chosen delay determined by
the priority of the backbone candidate. If a control messagetimer is set, the hello interval is
interrupted until the control message has been sent. More details about the timer settings are
presented in the implementation part of this work (see Section 4.2.1).

Figure 2.6: Sequence diagram CDS set up phase.

Operation phase

After the CDS has been established, the nodes keep their states for a predefined period called
backbone time. After that the whole backbone is reestablished adapting itself to new network
conditions and trying to keep the energy level uniformly distributed. During the backbone time
the nodes follow a predefined listen/sleep cycle. In Figure 2.7 the cycles for a dominator and
for a dominated node are shown schematically. The dominatornodes stay awake for the whole
backbone time. The dominated nodes sleep mainly and listen to the medium periodically.
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Figure 2.7: Different cycles during a CDS lifetime.

Path adaptation and repair mechanism

Our algorithm presented in [35] previews the following cases of network changes:

• A new node is added during run time.

• A dominated node is disconnected.

• A dominator node fails.

The first case is solved by just synchronizing new added nodeswith the next backbone. If there
is no backbone node within the nodes communication range, the node has to wait until the CDS
network is reestablished. This is done periodically to adapt the network to the new energy levels
of the nodes.

If a connection to a dominated node fails, this node is removed from the neighborhood table
of a dominator node after a predefined timeout. If there was temporal link disruption and the
node reappears it is again added to the neighborhood table.

If a dominator node fails, a link break is detected by one of its down-link nodes. The
down-link node could either be the next dominator node in thepath (green start point in Figure
2.8) or a neighboring dominated node (red start point in Figure 2.8). Link breaks are detected
if the nodes do not overhear any hello message during a predefined time. Nodes which have
detected a link break switch into a link break state (yellow in Figure 2.8) and start broadcasting
link break messages to inform their neighborhood about the link break. Dominated nodes which
overhear a link break message save the address of the link break node and forward the link break
message. As soon as a backbone node with a valid route to the base station receives a link break
message, it starts broadcasting link repair messages containing its valid path to the base station.
Upon receiving such a link repair message, each node updatesits path to the base station and
forwards the message, with its ID added to the path, in its ownlink repair message. Dominated
nodes rebroadcasting LR messages change their state to dominator nodes. To minimize the
number of dominators after a link break, the path update distribution is done in contention.
Nodes overhearing a link repair message from a node from which they have received a link
break message before cancel their own path update procedure. They know that the link has been
repaired by an alternative path.

Figure 2.9 shows an example of the repair mechanism. Dominated node A did not receive
any hello message from its dominator. So it starts sending link break messages in its wake period.
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Figure 2.8: Sequence diagram of the repair algorithm.
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Its dominated neighbors B and D overhear this message when they wake up. They forward the
link break message. Dominator node C overhears this messageand replies with a link repair
message, which contains the path to the base station. Upon reception of the link repair message,
node B changes its state to dominator. Then, it forwards the link repair message after adding its
ID to the path to the base station. Finally, node A receives the link repair message and switches
its state to dominator too. It forwards the link repair message. Node D does not change its state
because it has overheard a link repair message from a node (A)from which it has overheard a
link break message, before.

Figure 2.9: Example of the link break repair mechanism.

Two-hop neighborhood information is only distributed in the DOMINATOR and DOMI-
NATED messages. This keeps communication and storage requirements low, while providing
two-hop neighbors with relevant data considering the CDS setup process. This happens in a
unidirectional way: The dominated nodes know the neighborhood table from the dominator
node but not vice versa. During the operation phase, only one-hop neighborhood information
is transmitted. The algorithm supports a long network lifetime, because the energy level is kept
distributed over the network. By reestablishing the backbone periodically, not only the resources
of a few single nodes are used, but from the whole network. A node with low battery level should
not be elected as backbone node, as long as there is an alternative node. We have chosen this
algorithm for a real-world implementation because it fits best our purpose. In simulations two
different types of dominator prioritization have been evaluated: A selection depending on the
link degree (CDS-LD) and a selection depending on the up-stream nodes energy level (CDS-E).
We put our focus on the CDS-E approach in the real-world implementation.
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2.2 Overview over Event Detection, Localization and Classifica-
tion

There exist several approaches in event detection, localization and classification. After an intro-
duction of some general aspects of event detection, localization and classification we present in
a first section contributions from the networking and communication research field. Their focus
is on optimizing network load. Often only coarse-grained tracking is supported. An accurate
estimation of the events position is not possible. A classification of events is not possible as the
approaches do not compute any characteristics of the events. In another section the focus is on
approaches doing accurate localization and classification. These are mostly contributions from
the collaborative signal processing (CSP) research field. Information from multiple sensor nodes
is used to localize or classify an event. The price for the accurate localization and classification
are higher network loads. Finally, we present the DELTA framework which tries to combine the
advantages from both fields.

2.2.1 Event Localization Approaches

Localization based on sensor information can be done in different ways. The simplest way is
to find the closest point of approach (CPA). The node with the highest measured amplitude is
the node closest to the event. The location of this sensor node can be used as an estimate of the
events location. CPA provides low accuracy, but is a fast andsimple solution. CPA approaches
are often used in event tracking.

Another solution is to make usage of the time difference of arrival of the signals at different
sensors (TDOA). It is possible to compute an event position based on the time difference of
arrival time of two signals at different sensors, the known position of the sensor nodes and the
known speed of the signal propagation. By using this information, the position of the event can
be computed using different existing algorithms such as PinPtr [14], which will be discussed
later in this section. This method requires that the clocks of the nodes are synchronized, which
causes additional network traffic.

A third possibility is to do energy-based source localization. This method is based on the
fact that the energy level of the amplitudes of any kind of signal decreases with distance. In
order to be able to use the sensor readings to accurately localize an event, adequate sensor
models for the particular sensors are required. It is assumed that the sensor signals propagate
isotropically (e.g. light, sound, vibration emitted by point sources). Such isotropic radiation
models have been used in energy-based source localization ([32], [25] and [20]). The according
sensor model is shown in Equation 2.2:

ρi =
c

||x− ξi||α
+ ω (2.2)

The received signalρi at sensor nodei at positionξi is inversely proportional to the emitted
signal powerc. ω is some additional white Gaussian noise and||.|| the Euclidean norm.α
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depends on the kind of source which is sensed. It describes the attenuation degree of the emitted
signal.

2.2.2 Distributed and Centralized Approaches

The presented contributions are either centralized or distributed. In the first case, sensor infor-
mation is routed to a base station (BS) where the localization or classification is done. These
approaches often use localization or classification algorithms with high complexity, which could
not be performed on simple sensor nodes. Consequently, a base station with more resources and
computing power is necessarily and a lot of network traffic isgenerated by routing all the sensed
information to the base station. On the other hand distributed approaches often use less accurate
and simpler algorithms for localization and classification. Network traffic can be reduced as
only aggregated sensor information is routed through the network to the base station.

2.3 Event Tracking and Network Organization

The following approaches are mainly contributions from thenetworking and distributed commu-
nication research field. All contributions propose a kind ofgroup organization and management
of the nodes suited around an upcoming event, either in a dynamic or static way. Organizing
nodes in local groups around the events reduces communication costs, because not the whole
network is involved in the event handling.

2.3.1 Event Detection Using Static Sensor Clusters

In [43], after the deployment of the sensor nodes, static clusters are built. Each cluster has a
cluster head which is expected to have more computational capabilities than the rest of the sen-
sor nodes. The cluster heads are managing the clusters and domost of the computations. The
target localization is organized by a two-step communication protocol. A sensor node sensing
an event sends an event notification message to the cluster head. This is only a one bit mes-
sage which indicates the appearance of an event. Detailed information like detection strength
level is provided to the cluster head upon subsequent queries from the cluster head. Only the
node which is assumed to be closest to the reported event is queried for more information. This
method reduces network load as only selected events are reported to the base station. After the
deployment of the sensor nodes the cluster head computes a table, which contains the probabili-
ties of a sensor node sensing an event at a certain position. This table is used to choose the node
which is queried for detailed information about the event.

The static cluster approach is not flexible. Events close to the cluster border could be re-
ported by multiple cluster heads. This could lead to additional network load. The sensor network
is not homogeneous as different node types are used which results in additional costs.
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2.3.2 Coarse-Grained Localization

In [12] and [13] the localization of both node and event positions is proposed. In both ap-
proaches landmark nodes which know their absolute positionare used. A distributed algorithm
makes usage of geometric constraints induced by radio connectivity to estimate the nodes or
events positions. The approaches use negative and positiveconnectivity information. Positive
information reduces the location of the node or event to a region of finite size. If for example
a node receives a message from a landmark node it knows that its own position must be some-
where in the estimated sending range of the landmark node. Negative information precludes
a node or event from appearing in a certain region. In other words it is information about the
position where a node or event cannot be located. [12] makes usage of rectangles to represent
the possible node position, while [13] uses Bézier polygons, which supports also non-convex
regions.

The accuracy of the algorithms is limited and the algorithmsimpose rather high delays.
Classification of the events is not intended.

2.3.3 EnviroTrack

EnviroTrack ([1] [23]) is a middleware layer that exports a new address space to the sensor net-
work. Not the sensors themselves but the physical events in the environment are the addressable
entities. Objects are tracked by dynamically established groups of sensor nodes. EnviroTrack
[1] implements a CPA based tracking and it offers a group management service. It organizes the
nodes which are responsible for tracking an event and also determines if the event is moving.
Figure 2.10 illustrates the group organization of EnviroTrack. Each of the event tracking groups
has a single leader node. Nodes which are sensing an event start a leader election process. The
leader is elected based on a randomly defined timeout. After the timeout has expired a message
is broadcasted. The first node sending this message is the leader of the tracking group. Nodes
which receive such a message and sense the same event become group members. EnviroSuite
([23]) has a slightly different leader election algorithm.The timeout for the leader message is
not chosen randomly, but it is defined inversely proportional to the remaining battery level of a
node. So nodes with higher energy level will have a higher chance to be elected. This prolongs
system lifetime. Leader nodes continue to send heartbeat messages periodically. These mes-
sages inform the members that the leader is active. If a leader becomes inactive, a new leader
election is started after a predefined timeout. Nodes which are not sensing the event, but over-
hear heartbeat messages, are called group followers. If theevent is moving into the direction of
a follower node, it has a high probability to start sensing the event soon too. So it joins the group
instead of building a new group. Leaders getting out of sensing range send a leader handover
message to initiate a new leader election.

EnviroTrack offers a simple and efficient algorithm. But there are also some limitations.
It requires a communication radius larger than twice the sensing radius to prevent concurrent
leaders. EnviroTrack offers only tracking. There is no localization or classification functionality.

20



Figure 2.10: Group organization in EnviroTrack.

2.3.4 SensIt - Target Tracking

In the SensIt project [21] a framework for event detection, tracking and classification is pre-
sented. The WSN is split into dynamically established regions. Each region has at least one
manager node. Event classification has been the main focus ofthe work and will be discussed
in Section 2.4. The tracking of a target consists of five steps:

1. Nodes of a cell A (see Figure 2.11) detect a target. It is detected as soon as the sensor
output exceeds a threshold. The detecting nodes report their measured energy levels to the
cell manager nodes atN successive time instants.

2. The manager nodes compute at each time instant the location of the target using the re-
ceived information. Therefore, an energy-based target localization algorithm has been
proposed.

3. Manager nodes predict at the N time instants the location of the event atM (M < N )
future time instants.

4. These predicted positions are used to create new cells that the event is likely to enter. The
cells are built based on the velocity of the tracked target. In Figure 2.11 this is shown with
the three dotted squares. The new cells are activated for subsequent detection of the event.

5. When the event enters one of the new cells, the old cell A is deactivated. The new cell
takes over the control. Nodes in the old cell are set into standby state to conserve energy.

Information collected by manger nodes of cell A is passed to the managers of the next cell. This
is important in case of tracking multiple targets. The presented handover mechanism involves
rather high communication costs. A lot of nodes are involvedwhen an event moves from one
cell to another. The communication required within the cells is high too. Details about the event
localization and classification aspects of SensIt can be found in Section 2.4.
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Figure 2.11:Event tracking using SensIt.

2.4 Event Localization and Classification

In the last section we have presented related work focusing on event detection and tracking
and the organization of networks while events occur. In the following section we present
related work which focuses on event source localization andclassification. As mentioned in the
introduction, most of the contributions in this section arefrom the CSP research field and focus
on solving the localization and classification problems. Optimization of the communication
load is often marginally considered. First we present some generic methods for localization and
classification before presenting some more complex approaches.

2.4.1 Linear Least Square Method

To solve a system of equations of the form (2.2) with a standard linear least-square method,
Equation (2.2) has to be transformed into a linear form. Assuming that the kind of signal is
known, we also know the exponentα. If sound sources are sensed, thenα = 2 (see [18]).
Equation (2.2) can be written as:

||x||2 + ||ξi||
2 − 2xT ξi −

c

ρi

(2.3)

The noise parameterω can be neglected, as it is regarded by over-determining the resulting
system. From Equation (2.3) we remove the quadratic constraints on the unknown vectorx.
Therefore we subtract the first equation (i = 1) from all the others (i 6= 1). N is the number of
sensor nodes. The resulting system consists ofN − 1 linear constraints of the following form:

22



2(ξ1 − ξi)
T x + c

(

1

p1
−

1

pi

)

= ||ξ1||
2 + ||ξi||

2 (2.4)

Next we combine some terms in a vectorx̂ = [x; c] and simplify Equation (2.4) by setting

ai =

[

2(ξ1 − ξi);

(

1

p1
−

1

pi

)]

(2.5)

and
bi = ||ξ1||

2 + ||ξi||
2 (2.6)

Substituting Equation (2.5) and Equation (2.6) in Equation(2.4) we get a simplified equation
aT

i x̂ = bi. Considering all N-1 linear constraints, we can write the system in matrix form as
AN−1x̂ = bN−1. Thus, we have got a system which can be solved in closed-formwith a
standard Linear Least Square methodx̂ = (AT A)−1AT b. The number of sensing nodes has to
be at least one element larger than the problem dimension. However, to obtain useful results an
over-determined system should be used.

2.4.2 Nonlinear Methods

In order to use nonlinear optimization methods, we have to reformulate Equation (2.2) as a
nonlinear least-square objective function:

f(x, c) =

k
∑

i=1

(

ρi −
c

||x− ξi||α

)2

(2.7)

Using Simplex Downhill or Conjugate Gradient Descend this equation can be minimized.
This means that Simplex Downhill or Conjugate Gradient Descend are used to search an input
value for which Equation (2.7) results in a minimal output.ρi is the measured sensor reading
and c

||x−ξi||α
is the model. This means the minimum error between the sensedvalue and the

according model is determined.

Simplex Downhill

Simplex Downhill [26] works without derivations, it only uses function evaluations. The
solution to the problem is found iteratively by searching a minimum in a multidimensional
function space. As the name of the algorithm says it is based on simplexes. A simplex is a
form with the simplest volume in aN -dimensional space. IfN = 1 it is a line, forN = 2
it is a triangle and so on. For each point of the simplex a function value is computed. The
function value can be seen as cost or error. From theN + 1 resulting values the lowest and
highest values are identified. In each iteration the highestvalue gets replaced. This is done
by geometrical operations. The highest point is mapped to a point with lower costs using
either reflection, reflection and expansion, contractions or multiple contraction (see Figure 2.12).
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Figure 2.12:Possible geometrical operations in Simplex Downhill.

Using these transformations the Simplex Downhill is able toapproximate any local or global
minimum in the multidimensional function space. The termination criterion of the algorithm
is defined by the size of the simplex. If it falls below a definedthreshold Simplex Downhill
terminates. As with all nonlinear optimization algorithms, it is also possible that Simplex
Downhill finds a local minimum. The choice of the starting point has great influence on that.
There exist some additional search procedures for finding a global minimum such as Monte
Carlo methods. These methods are very cost-intensive and are not applicable on hardware with
low computing power such as sensor nodes.

Conjugate Gradient Descent

Conjugate Gradient Descent [27] is an iterative method which, in contrast to Simplex Downhill,
is using derivations. The problem to be solved is described as a N-Dimensional pointP. For
these point valuesf(P) and also the gradients (∇f(P)) have to be computed. Conjugate Gradi-
ent Descend is similar to the Steepest Descent method. This method starts from a pointP0. As
many times as needed the algorithm move from pointPi to the pointPi+1 in the direction of the
local downhill gradient defined by−∇f(P). In many cases the Steepest Descent method is not
efficient and needs many steps to terminate. Conjugate Gradient Descend improves this method
by computing the direction of the descent in a more sophisticated way. Instead of using the local
gradient it uses the conjugate directions for going downhill. Figure 2.13 shows two example
paths of a Steepest Descent and Conjugate Gradient Descent.After each iteration both algo-
rithms define the direction and the distance they want to go. As we can see, Conjugate Gradient
Descend converges in fewer steps than the Steepest Descent method. Like Simplex Downhill
also Conjugate Gradient Descend can terminate in a local minimum.

2.4.3 Learning Event Classes with K-Means

K-Means [11] is a popular clustering algorithm. It is simpleto program and apply. It takes
the computed event amplitudes and the expected number of clusters as input and computes the
cluster centers. It does not need any user interaction for computing the clusters. K-Means is
searching exactly one splittingC = {C1, ..., CK} of the given data setS = {x1, ..., xM} where
Ci are the clusters andxi are the given sensed samples. The expected number of clusters K is
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Figure 2.13: Comparison of the Steepest Descent and the Conjugate Gradient Descent (Figure: Oleg
Alexandrov).

given by the user and does not change during the computation of the clusters. The following
pseudo code 1 shows the basic functionality of K-Means:

Input : S = {x1, ..., xM}; K = The number of clusters to find
Output : ClustersC = {C1, ..., CK}

ChooseK initial cluster centersm1, ...,mK repeat
Compute for eachxi the closest cluster center;
Compute for each clusterCi the costs;
Recompute each cluster centermj;

until Exit condition fulfield;

Pseudocode 1: Psuedocode of K-Means.

There are different exit conditions possible:

• The cluster centers do not or only marginally change from oneiteration to the other.

• The maximum number of iterations is reached.

• The number of patternsxi which change the cluster from one iteration to the other is
small.

• The costs are lower than a threshold or do not change from one iteration to an other.

The resulting clustersC = {C1, ..., CK} depends on the initially chosen cluster centers
m1, ...,mk. The solution is not necessarily an optimal one. Different strategies to choose the
initial cluster centers are possible:

• Randomly chooseK elements fromS.
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• Randomly generateK elements which are in the same n-dimensional cube as the elements
from S.

• Use both mentioned methods above with the following additional constraint: A minimal
distance has to be between the chosen cluster centers K.

There exist also optional post processing methods to improve the K-Means clustering. A
method is to survey the compactness of the resulting clusters or to split clusters with a large
variance. Methods for K-Means that guess the appropriate number of clusters for a specific
K-Means clustering have been presented in [17]. We do not need such techniques in our imple-
mentation because the number of clusters is known in advance.

A disadvantage of the K-Means algorithm is the already mentioned problem with the initial
cluster centers. The choice of the initial cluster centers influences the resulting clusters. By
analyzing the training sets at the base station appropriatecluster centers can be determined in
our application, though.

2.4.4 Minimum Distance Classifier

The minimum distance classifier is an intuitive and simple approach. The cluster centersCi

computed by the K-Means clustering algorithm are used. An event is represented by a feature
vectorx. The components ofx could be estimated with a technique such as presented in the
previous section. For any sensed event the Euclidian distance Di between the cluster centerzi

of clusterCi and the eventx is computed. We get the following classification rule:

x ∈ Ci ⇔ Di(x) < Dj(x) for eachj = 1, ...,m; j 6= i (2.8)

If there is no unique minimum a random sample is chosen as closest neighbor. The Euclidian
distance can be simplified as we are interested in the relative value rather than the distance. So
the square Euclidian distance is used:

D2
i (x) = ||x− zi||

2 = x
′
x− 2x′

zi + z
′
izi (2.9)

The termx
′
x is independent of classCi, so it can be neglected and Equation 2.9 is simplified to:

d2
i (x) = −2x′

zi + z
′
izi (2.10)

Consequently, Equation 2.8 is equivalent to Equation 2.11:

x ∈ Ci ⇔ d2
i (x) < d2

j (x) for eachj = 1, ...,m; j 6= i (2.11)

2.4.5 Bayes Classifier

The Bayes Classifier [11] uses, in contrary to the minimal distance classifier, statistical and
probability methods for classification. To train a Bayes classifier the membership of an element
to a class has to be known. The training data is generated by the K-Means clustering algorithm.
Important values and formulas which are used in the following are:
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• p(Ci): This is the probability of appearance of classCi.

• p(Ci|x): Is the likelihood ofCi given a samplex.

• p(x|Ci): Is the likelihood ofx given a classCi.

• The Bayes theorem to getp(Ci|x):

p(Ci|x) =
p(x|Ci) ∗ p(Ci)

p(x)
(2.12)

The Bayes classifier assumes that each assignment of an element to a certain class causes
costs. One aim of the Bayes classifier is to minimize these costs. Lij, with Lij >= 0 are the
costs to classify an element in a wrong classCj while classCi was the correct class. The mean
costsrj(x) if a givenx is classified intoCj havingm classes are:

rj(x) =
m

∑

i=1

Lijp(Ci|x) (2.13)

To minimize the mean costsrj(x) the following classification rule can be applied:

x ∈ Ci ⇔ ri(x) < rj(x) for j = 1, ...,m; j 6= i (2.14)

The mean costsri are computed for an unknown feature vectorx in respect to each classCi.
Becausep(Ci|x) in Equation (2.13) is not known in most cases , it can be substituted withp(Ci)
andp(x|Ci) using Equation (2.12):

rj(x) =
1

p(x)

m
∑

i=1

Lijp(x|Ci)p(Ci) (2.15)

The term 1
p(x) is independent of the classCi so it can be discarded. We define the costsLij. If

an element is assigned to the correct class, the costsLii are0. In the other case the costs are
Lij = 1 (i 6= j). Inserting this values into Equation (2.15) we get:

rj(x) =
m

∑

i=1

p(x|Ci)p(Ci)− p(x|Cj)− p(Cj) (2.16)

Equation (2.16) can be simplified. We know that

m
∑

i=1

p(x|Ci)p(Ci) = p(x) (2.17)

So, the classification rule can be written as:

x ∈ Ci ⇔ p(x|Ci)p(Ci) > p(x|Cj)p(Cj) for i, j = 1, ...,m; j 6= i (2.18)
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We have now a classification rule which assigns a patternx to a classCi with minimal costs.
The only elements which need to be known arep(Ci) and p(x|Ci) of each classCi. If the
p(x|Ci) are normal distributed, we get in the case onn- dimensions (2 ≤ n):

p(x|Ci) =
1

(2π)
n

2

exp

[

−
1

2
(x−mi)

′
K

−1
i (x−mi)

]

(2.19)

mi andKi are defined as following:

• mi = Ei{x} is the mean of classCi.

• Ki = Ei{(x−mi)(x−mi)
′} is the covariance matrix of classCi. |Ki| is the determinant.

Instead of usingp(x|Ci)p(Ci) we use a monotone function to reducep(x|Ci). As we are
not interested in the absolute values but only in the relations between ap(x|Ci)p(Ci) and a
p(x|Cj)p(Cj) we define:

Di(x) = log [p(x|Ci)p(Ci)] (2.20)

Classification rule (2.18) can now be written as

x ∈ Ci ⇔ Di(x) > Dj(x) for j = 1, ...,m; j 6= i (2.21)

Finally we substitutep(x|Ci) in Equation (2.21) with Equation (2.19) and get the final deci-
sion function:

Di(x) = log(p(Ci))−
n

2
log(2π) −

1

2
log |Ki| −

1

2
(x−mi)

′
K

−1
i (x−mi) (2.22)

The summandn2 log(2π) can be neglected as it is independent from classCi.
If only one dimensional input data is available, Equation 2.22 can be simplified.

2.4.6 SensIt - Target Localization and Classification

In the SensIt project work in event localization and classification has been done. Parts of the
project are based on an energy decay model. The developed algorithms make usage of one
single signal. In the following paragraphs we present different approaches which have been
used in the SensIt project for classification and localization.

In [21] seismic signals have been localized and classified. As described in Subsection 2.3
the network is divided into groups with management nodes. Localization and classification are
performed at these management nodes. The seismic signal is modeled as shown in Equation 2.2.
To compute amplitude and position of the event, a system of Equations of the form 2.2 is solved
with a linear least square (LLS) method. To classify the resulting values three classification
methods are explored: Ak-nearest neighbor (kNN) classifier, maximum likelihood (ML) classi-
fier and a support vector machine (SVM) classifier. The presented algorithms operate on time
series of measurements associated with detected events. This fact leads to classification delays
as data has to be collected over a time period. It also sets high requirements on computational
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power and memory storage. In [29] and [30] refinements of these statistical methods have been
presented.

In [19] methods for single event localization have been investigated. Four nonlinear
optimization methods have been presented: Exhaustive Search (ES), Nelder and Mead Simplex
Downhill, Conjugate Gradient descent method and Multi Resolution (MR) search. The
performance of ES is worst, Simplex Downhill, MR and GD have approximately the same
search complexity. All these methods face the problem of finding local optimums. To minimize
this risk, the feasible solution space is overlaid by a grid,whereof the respective optimization
procedure is performed at each point. The conclusion in [19]is to apply ES on a coarse grid
in a first step and apply one of the better performing algorithms (Simplex Downhill, Conjugate
Gradient descent or MR) in a second step. Doing this, the problem of finding local optimums
is decreased, while higher computational power is tolerated. In our own work we use Simplex
Downhill too. We avoid local optimums by choosing appropriate starting points and by selecting
sensor readings from well-located sensor nodes. Thus, computation and storage costs can be
kept low.

In subsequent work [20], the nonlinear optimization methods have been replaced by a closed-
form linearized least-square solution. A similar approachhas been presented earlier in [32]. The
closed form solution is much more efficient than the approaches presented before. However, to
achieve sufficient accuracy an over-determined system is needed. Wireless sensor network often
cannot offer redundant data. In such situations a non-linear solution might produce useful data,
while a linearized method fails.

2.4.7 PinPtr - Centralized Sniper Detection

PinPtr [14] presents a centralized sniper detection framework. Nodes distributed in the field are
equipped with microphones. The computation of sniper positions is based on time difference of
arrival (TDOA) of two different acoustic signals: muzzle blasts and acoustic shock waves. The
sensed data is sent to the base station by each node sensing the event. Using this information
the base station computes the position of the sniper. A four dimensional consistency function
Ci(x, y, z, t) is defined as described in Equation 2.23:

Ci(x, y, z, t) = counti=1,K,N(|ti(x, y, z, t) − ti| ≤ τ) (2.23)

x, y, z describe the hypothetical shooter position andt the shoot time.ti is the time of arrival of
thei th measurement andti(x, y, z, t) is the theoretical time of arrival of the muzzle blast at the
sensor of thei th measurement. It is defined as described in Equation 2.24:

ti(x, y, z, t) = t +

√

(x− xi)2 + (y − yi)2 + (z − zi)2

v
(2.24)

v is the speed of sound andxi, yi, zi are the positions of the node, that has sensed thei-th event.
If the i-th measurement is a direct line of sight detection, which means that it is not an echo, then,
ti(x, y, z, t) andti should be equal. Due to errors in time synchronization, sensor localization
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and signal detection the uncertainty valueτ is introduced. To find the global maximum of the
consistency Equation 2.23, which is the searched location of the sniper, a Generalized Bisection
method is applied [16].

PinPtr also supports the self-localization of node positions. This is done by evaluating ra-
dio and acoustic signals. The measurements are again transmitted to the base station which
computes the relative positions of the nodes.

The localization of node positions and of snipers both require synchronized clocks. This
causes additional communication costs. Furthermore, all sensor measurements are sent to the
base station. This traffic could be reduced with a distributed approach.

2.4.8 A Statistical Multi-Agent Approach for Event Localization

In [22] the tracking of multiple, interacting targets has been analyzed. In order to estimate
the state of multiple events the amount of needed data grows exponentially with the number
of targets. Consequently, the communication costs increase too. To solve this, the problem is
split into smaller sub problems. The estimation of the eventposition and the events identity
management are handled separately. Location estimation needs frequent local communication
as the target has to be tracked continuously. For identity management infrequent long range
communication is sufficient, because it is only used if multiple targets are close together and
their emission ranges overlap.

If two targets are far away from each other they can be treatedas two single events. Com-
ing closer together and finally crossing each others paths the error due to inter-target inference
increases. Therefore, the events are estimated jointly. When they separate again, the events will
be tracked separately again.

For tracking statistical methods are used. At time instantt the target positionx(t) based
on the sensor measurement historyz(t) = {z(0), ..., z(t)} is estimated. Therefore, a sequential
Baysian filtering approach is used. In the presented approach event localization and classification
is not mentioned.

2.5 The DELTA Framework

This section discusses the DELTA framework, which supportsdistributed event localization,
tracking and classification presented in [37]. DELTA is described in more detail than the other
algorithms as it builds the basis for the enhancements and implementation done in this work.
Nearly all functionality is done in a distributed and decentralized way. Only the tuning of the
classifiers, which is asynchronously done upon demand, is not done distributed. Nodes are
self-organizing and form groups around events and handle them very localized. DELTA does
not need to satisfy the condition that the communication range is significantly higher than the
sensing range of the nodes. This is achieved by a periodic notification procedure which will
be described later in this section. DELTA bridges the gap between the presented cost intensive
CSP approaches and the less accurate but more cost efficient approaches focused on minimizing
communication load.
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2.5.1 The DELTA Protocol

Detecting and tracking moving events by distributed signalprocessing requires some collabora-
tion among the network nodes. To handle appearing events DELTA establishes dynamic groups
and allocates different roles to the member nodes. The statediagram of the algorithm is shown
in Figure 2.14. Nodes can be in one of the following five states:

• LEADER: The leader node is responsible for group management, localization of the
events position and communication with the base station.

• MEMBER: These nodes are close to an event and are part of the group which does the
tracking and localization of the event. They provide the leaders with the required info.

• PASSIVE MEMBER: These nodes are in the neighborhood of the member nodes and are
informed about the presence of a leader node. In case of moving targets passive member
nodes are prepared for an upcoming event.

• IDLE: Nodes which are not in the direct event neighborhood.

• ELECTION RUNNING: Nodes in the ELECTION RUNNING state are leader candi-
dates. They have either sensed an event or are members which have lost their leader.

Delta uses the following communication messages:

• Heartbeat: Informs the one-hop neighbors, which are the members of a tracking group,
about the presence of a leader node. Moreover, they request sensor readings from the
members. The position of the sender and the estimated position of the event are transmit-
ted in this message too.

• Passive Heartbeat: Informs the passive members about the presence of a leader node.
In other words, passive heartbeat messages inform neighbors tow-hops or further away of
the leader about the presence of an event. The passive heartbeat dissemination depth can
be configured.

• IREP: Information response message provide the leader with the needed data. They are
also overheard by other member nodes. More about the IREP messages is said in the next
paragraph.

• Leader Reelection: A leader reelection message is sent by a leader which detects that
there exists a member node which is closer to the event than itself. Leader reelection
messages are also sent if the signal amplitude of an event sensed at the leader is below a
predefined threshold.

As long as there is no event detected the nodes are in state IDLE. Upon starting to sense an event
the concerned nodes switch to ELECTION RUNNING state and schedule a timer. The duration
of this timer is determined by the sensor readings: the stronger an event is sensed the shorter the
timer is set. When the timer expires a heartbeat message is broadcasted. Thus, the neighborhood
is informed about the presence of the group leader. Other nodes that are also in ELECTION
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Figure 2.14:State diagram of DELTA.

RUNNING state and which receive this message switch to MEMBER state and cancel their own
election timer. The specific computation of the timer depends on the underlying hardware and
will be described in Section 3.1.

If events such as a person walking around are moving into the network, a leader handover
mechanism is required. DELTA supports this with the following mechanism: Leaders which
stop sensing, because the event is out of their sensing range, switch to member state. If member
nodes do not overhear a heartbeat message for a certain time and still sense something, they
compete for the LEADER state by switching into ELECTION RUNNING state.

As mentioned before, DELTA does not require that the communication range must be larger
than the sensing range. If an event with a large emitting range could not only be sensed by
a leader and its member nodes, a new, independent group wouldbe built farther away. This
would cause the existence of multiple groups for one single event. The information response
(IREP) messages prevent this to some extend (see Figure 2.15). Depending on the expected
sensing ranges, event information could be distributed deeper into the network by the passive
heartbeat mechanism. This implies some overhead, of course. Using optimized broadcasting
techniques [15] the overhead could be minimized, though. InFigure 2.15 node D, which is three
hops away from the leader could this thus be informed about the existence of the tracking-group.

All packets used in DELTA contain aroundfield. This field is used to avoid the processing
of outdated information. It is incremented with every heartbeat the leader broadcasts. If a node
receives a packet with a round number smaller or equal than the current round, this message can
be ignored. Further, the packets contain a time to live (TTL)field which defines the depth until
which the event information is disseminated into the network.
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Figure 2.15: Sequence diagram of the DELTA communication scheme.

The leader election process aims at quickly determining a single leader node. This means
that the leader choice should minimize the number of reelections and hand-overs, by keeping its
LEADER state, as long as possible. The election process needs furthermore to be fast to avoid
periods where no leader is present.

2.5.2 Event Tracking

DELTA supports coarse- and fine-grained event tracking. Thecoarse grained tracking is based
on a CPA approach. As described before, leader nodes are the nodes which have sensed the
highest amplitude. Leader nodes have a high possibility to be the closest node to the tracked
event. Therefore, the event position assumed to be close to the leader node. If the event is
moving also the tracking group is moving. So the event can be tracked by tracking the position
of the actual leader node. Fine grained tracking, localization and classification of events have not
been included into DELTA up to now. These tasks are part of this thesis and will be presented in
the next chapter.

2.6 Real-World Hardware Environment

This section is split into three sections. First, we give an overview over the sensor nodes. In the
subsequent subsection the operating system running on the sensor nodes is presented. Finally,
some details about of the tool chain which was used for developing the DELTA framework on
the hardware nodes is given.

2.6.1 Sensor Nodes

For testing real-world scenarios the Embedded Sensor Boards (ESB) [4] (see Figure 2.16) are
used. These sensor boards are equipped with several sensor and communication interfaces. The
Texas Instruments MSP430F149 [33] is used as microcontroller. It has a CPU clock rate of 8
MHz. The ESB node is powered with three AAA batteries.
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Figure 2.16: The ScatterWeb ESB sensor node.

Sensors

The ESB nodes are equipped with five different sensors:

• Passive Infrared Sensor: The passive infrared sensor (PIR) allows the detection of mov-
ing objects within a radius of 100◦. The maximum measuring distance is, depending on
the angle, between 1.5m and 5m [7] [8].

• Temperature Sensor: It measures temperatures from -55◦C to +125◦C. The thermome-
ter provides 9-bit temperature readings [5].

• Microphone: The ESB boards are equipped with a microphone, which allowsdetecting
noise levels with adjustable thresholds (signal noise ratio 40 dB, 120 dB max) [6].

• Vibration Sensor: To monitor tilt and vibrations the ESB contains a vibrationsensor [9].

• Infrared Receiver: There is an infrared light to frequency converter for receiving infrared
(IR) signals on the board which responds to an infrared rangefrom 800nm to 1100nm [10].
In our evaluations this sensor has been used to sense the intensities of the infrared part of
light.

Communication Interfaces

The ESB nodes have different possibilities to communicate.On the ESB nodes are three colored
LEDs which can be used to signal the state of the node. Furthermore, the nodes are equipped
with a parallel interface. This provides a Joint Test ActionGroup (JTAG) interface over which
the nodes can be flashed with new software. Also real-time debugging can be done over the
JTAG. Over a serial port the node can exchange data with otherdevices. For example, the node
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can sending log data over GSM or via serial cable to a computer. Of course, also the infrared
sensor can be used for communication.

The essential communication interface is the radio transceiver TR-1001 [28]. It is ideal for
short range communication. Its small size and low energy consumption make it ideal for wireless
sensor network applications. The TR-1001 is operating in the license-free 868 MHz band. The
signal can either be modulated using On-off Keying (OOK) or Amplitude Shift Keying (ASK).
By using OOK a maximal communication speed of 30 kbps is possible. ASK reaches up to
115.2 kbps but consumes slightly more energy.

Microcontroller and Memory

The MSP430 microprocessor is a 16 Bit RISC processor. It supports 27 basic instructions and
five different power modes LMP0 to LMP5. Depending on the modemore or less energy is
consumed. The modes differ in switching on or off the peripheral modules. The fewer modules
are active, the less energy is consumed. Most of the time there is no network administrator
around who could reset the system if it crashes. Therefore, the MSP430 is equipped with a
watchdog. It increments a timer which has to be reset by the program periodically. If the
program crashes or a very time consuming task is performed, the watchdog timer overflows and
the system is reset. The JTAG interface on the ESB nodes, allows, as already mentioned, real
time debugging on the sensor nodes. On the ESB boards 2 kB of RAM and 64 kB of flash
memory (EEPROM) are available. Reading and writing from theEEPROM is energy and time
consuming.

2.6.2 ESB ScatterWeb Operating System

ScatterWeb is a tiny operating system which is developed forthe ScatterWeb platforms eGate,
ECR and ESB, that we use in our real-world experiments. Our implementation is based on
version 3.1. ScatterWeb offers the following features [4]:

• Configuration of the sensors.

• Control of peripheral interfaces: Timers, serial port, EEPROM, radio transceiver, infrared
communication, switches and LEDs.

• Configuration and management via terminal commands over theserial interface or also
over the radio.

Further functionality such as the support of communicationover GSM by using SMS can
be added upon demand by using the applications. In ScatterWeb the system is split up into
operating system and application parts. This means that in most cases a developer does not have
to modify the ScatterWeb core code, but can just use the API ofScatterWeb.

When switching on the sensor node themain() method is called. Peripheral interfaces are
initialized and the main loop gets started (see Listing 2.1). In every loop the watchdog timer is
reset. If there is no task to be done, which is signaled by therunModulevariable, the node is set
to sleep state LPM1. In LPM1 state the CPU gets switched off. The CPU can be woken up by
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interrupts, though. These interrupts set a flag inrunModuleand wake the node up from LPM1
state. The node continues looping and can calls the event handler interrupts. This is needed in
our application to schedule events like periodically sending data packets.

for(;;) {
System_startWatchdog();

// Starts&resets the watchdog, long procedures should call

// stop watchdog, else MSP will reset.
if(runModule & MF_SCOS) Threading_eventHandler();

// Radio tasks.
if(runModule & MF_RADIO_RX) Net_rxHandler();

if(runModule & MF_RADIO_TX) Net_txHandler();

if(runModule & MF_TIMER) Timers_eventHandler();
// Callback for serial line

if(runModule & MF_SERIAL_RX) {
extern volatile UINT8* serial_line;

if(serial_line != 0) {

if(callbacks[C_SERIAL]) {
callbacks[C_SERIAL]((void*)serial_line);

}
}

}

#if defined(ESB) || defined(ECR)
if(runModule & MF_SENSORS)

if(Data_sensorFlags != 0x00) Data_sensorHandler();
#endif

#if defined(ESB)
if(runModule & MF_RC5) Data_RC5ReceiveHandler();

#endif

dint();
nop();

if(runModule==0) {
// enter lpm3 and enable GIE at once to not loose an interrupt

System_stopWatchdog();

eint();
LPM1;

} else eint();
}

Listing 2.1: Main loop in ScatterWeb.System.c.

As already mentioned, in time consuming computations it is important to reset the watchdog
timer periodically to prevent the system from resetting because the main loop hangs.
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Step Action Timeat 19.2 kbps Time at 76 kbps

1 Listening to radio 417µs 105µs

2 Turning on interface 833µs 211µs

3 Sending preamble 3333µs 842µs

4 Sending start bytes 1250µs 315µs

Total time 4583µs 1158µs

Table 2.1: Time needed until a transmission starts using 19.2 or 76 kbps.

Communication aspects

Most of the communication logic is in the fileScatterWeb.Net.c. To save energy and avoid packet
collisions the transmission power can be set by the user between 0 and 99. ScatterWeb offers
a default packet typepackett shown in Figure 2.17. Its size without header and data field is
10 bytes. Most of the fields are self explaining. Thenumfield is used to recognize duplicated
packets and does not need to be set by the user. Thetypehas to be set to identify a packet at
receiver side for further processing. A packet can either besent in unicast or broadcast mode.
This is done by setting theto field to either a node ID or the broadcast address.

Figure 2.17:ScatterWeb default data packet.

A packet is sent by calling theNet sendroutine. The packets get queued in a ring buffer
and a checksum is added to the packet. If the buffer is full, new incoming packets are dropped.
Before the node starts sending, it checks if the medium is free. If it is not free, a random backoff
time is set, after which the node checks the medium again. If the medium is free, the node
switches from receive to send state and starts to send a five byte long preamble. The preamble
is used to synchronize the radios of the sender and receiver.The three start bytes signal the start
of the following data packet. Table 2.1 gives an overview over the time used for transmitting
a message with a transmission rate of 19.2 kbps and 76 kbps, respectively. In the example in
the table we assume that the medium is free and no other node issending, so no backoff time is
used. Using 19.2 kbps each byte takes 417µs to be sent. Using 76 kbps it takes 105µs.
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The ScatterWeb implementation uses Manchester encoding. Thus, the amount of data is
doubled. At the end of each packet a postamble of 3 bytes is added. Considering unicast packets
the sender waits for 30 transmission cycles for an acknowledgment packet. The length of this
cycles is depending on the transmission rate. Broadcast packets are not acknowledged. If the
sender gets no acknowledgment the node tries up to 15 retransmissions by default.

If a packet arrives at the receiver, the packet is forwarded to the packet handling method
which has been registered by the application. The application checks in aswitchstatement the
typeof the packet and decides what shall be done with the packet.

Sensor Aspects

In ScatterWeb each sensor can be enabled or disabled by a system function call. Applica-
tions which are interested in sensor data have to register themselves in the callback structSys-
tem callbacks[CSENSOR]. Sensors can be enabled with special parameters such as the interval
indicating how often the respective sensor needs to be read.For the DELTA implementation
only the light sensor has been used. Details are provided in the next paragraph.

Tool Chain and Development Tools

The development has been done on a Fedora 7 Linux desktop computer. We have used the
mspgcc tool chain. This is a port of the GNU C and assembly toolchain to the TI MSP430
microcontroller family. The mspgcc port of GNU C comes with afull set of header files and
a basic libC library for the MSP430 microprocessor [34]. Most standard C data types are sup-
ported expect double precession floating points. In the package is also a GDB debugger which
can be used with the JTAG interface. The GDB debugger can be integrated in multiple graphical
front-ends. We have used the Eclipse IDE for coding and debugging.

38



Chapter 3

DELTA Enhancements

As presented in the previous chapter, DELTA currently supports event detection and tracking.
We will extend the framework by adding event localization and classification abilities. Addition-
ally, the CDS backbone mechanism presented in Subsection 2.1 is integrated and functionality
which supports updating nodes with new configuration settings is provided. In the first Section
we will introduce some changes of the DELTA protocol done in our implementation.

3.1 Adaptations of DELTA Protocol

The implementation of DELTA supporting event tracking, group organization and tracking has
been presented in [31]. We introduced some small modifications in the DELTA protocol. In the
following section the differences to the reference implementation in [31] are described.

3.1.1 Adaptations of the DELTA Group Organization

Group leaders receiving IREP messages store the information sent by group members for later
computations of event positions and amplitudes. In the previous implementation the leader has
stopped storing new sensor information, received in the IREP messages, after having collected
the required number of sensor values. In our implementationthe leader node first stores the
minimum required number of sensor readings. If the leader receives more sensor readings, it
searches the lowest received sensor reading and replaces itwith the new value if the new value
is higher . Thus, only the sensor readings from sensors closeto the event are stored for further
computation.

3.1.2 Definition of Timer Settings

In [36] a leader election timer is mentioned. The ESB nodes sense light values between 0 and
10’000. As nodes with high values should compute short delays and those with low values long
delays, the following formula is designed:

△t[ms] =
Imax − IC

10
(3.1)
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Imax is the maximal input value, for light this is 10’000.IC is the current sensed light value.
The leader election delay△t is between 0 ms and 1’000 ms.

3.2 Energy-Efficient Network Management - Backbone Support

The DELTA framework is currently not providing routing functionality and energy efficient node
management. It is required that the group leaders of DELTA can report the computed informa-
tion back to the base station and the network should be running over long time periods. This is
enabled by the node management by a CDS. Only the backbone nodes stay awake. Dominated
nodes only wake up periodically to update their neighbor table and to transmit pending sensor
readings over the backbone. If nodes overhear an event, the DELTA tracking, localization and
classification functionality is started. The distributed computed event data will then be sent to
the base station over the CDS backbone.

3.2.1 Adaptations of Receiver-Based CDS Protocol

Some small modifications in the presented CDS algorithm (seeSection 2.1) have been done.
The changes are introduced next.

Learning Phase

The proposed algorithm does not explicitly mention the neighborhood learning phase. Before
the CDS setup starts, the nodes broadcast HELLO messages containing their actual state for
four hello cycles. This is enough to ensure that every node has overheard a message from its
neighbors.

Differences in Dominator Election

In [35] the delay for sending DOMINATORCHOICE messages is computed based on the re-
maining energy of the up-link dominated node, on the nodes receiving the DOMINATED mes-
sage as shown in Figure 3.1. We moved this decision upwards tothe receivers of the DOMINA-
TOR messages. In our implementation these nodes add the delay before sending DOMINATED
messages according to their remaining energy level (see Figure 3.2). Dominated nodes with
high energy levels send the DOMINATED message faster than nodes with a lower level. In [35]
the two-hop neighbors of the dominator receiving the DOMINATED message need to know
the energy level of the sender nodes. However, basically they do not need to know the energy
level, because the prioritization of the dominated nodes for being elected as dominator node can
be done on the dominated nodes themselves. Thus, we save two bytes in the DOMINATED
message, because we have not to transmit the energy level of the dominated nodes.

Modification on Message Timers

Figure 3.3 describes the delays and intervals used in the algorithm. We have added an other de-
lay, which is not used in the original paper. To get an overview we introduce all the used delays
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Figure 3.1: Energy based delay set in original version.

Figure 3.2: Energy based delay set on dominated node.
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and intervals. A HELLO message is sent after each HELLO interval with an additional jitter
delay if the node is not sleeping. The interval duration is set fixly. The additional jitter is used to
prevent packet collisions when sending HELLO messages. It is a relatively long jitter because
the possibility of collisions of HELLO messages is higher than for the other packet types. Es-
pecially at the beginning when all nodes send HELLO messages. The DOMINATED messages
have a shorter jitter. It is again used to avoid collisions. As mentioned before DOMINATED
messages are sent with an additional energy delay which is defined by the following function:

ENERGY DELAY =
100 ∗ (MAX VOLTAGE −MIN VOLTAGE)

battery−MIN VOLTAGE + (MAX VOLTAGE −MINV OLTAGE)

This function is optimized for the energy levels of the ESB nodes.MIN VOLTAGEis set at
2150 andMAX VOLTAGEat 2500. Thus, the minimum delay computed by this function is41
milliseconds while the maximum delay is 100 milliseconds.

DOMINATOR messages are sent with aSHORT DELAY. The DOMINATORCHOICE mes-
sage is sent with only aSHORT DELAYtoo. If the nodes have more than one known path to the
backbone, an additional delay is added to prioritize DOMINATOR CHOICE messages of nodes
with only one known path to the backbone.
The length of the timer forLINK BREAKmessages is at least as long as aVERY SHORT DE-
LAY, but not longer than aSHORT DELAY. From this range the length is randomly chosen. The
length of theLINK REPAIRtimer is at maximum equal to the length of aVERY SHORT DELAY.
We have introduced the restrictions on theLINK BREAKmessages and theVERY SHORT DE-
LAY because theLINK REPAIRmessage has to be sent before aLINK BREAKmessage. This is
necessary to prevent a distribution of the link break in the whole network. The link break should
be repaired as local as possible byLINK REPAIRmessages. The absolute values of the timer
lengths are discussed in Subsection 4.2.1 where the other implementation details are discussed.

Figure 3.3: Delays for each packet type.
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Optimizations for non Bidirectional Links

In real-world the links between sensor nodes are not always bidirectional and the link quality
is varying. Therefore, we have introduced some filters whichwere not foreseen in [35]. When
receiving a DOMINATED message it is not only checked if the receiver node has any links to the
dominator, but also if the dominator is not already a direct neighbor of the receiving node. This
could be possible because the intermediate dominated node has not overheard a DOMINATOR
message due to temporal link problems.

DOMINATOR, DOMINATED and DOMINATORCHOICE messages are all sent not only
once but for a predefined number of times. The number of retransmissions is set to five. The
first message is sent after a normal delay (see Figure 3.3). The following messages are sent
with additional retransmission delays to prevent an overloading of the network. Because we
use retransmissions, there is an additional state check necessary: The nodes have to register if
they have already received a DOMINATOR message from a certain node to prevent handling a
message twice.

Changes in Link Repair Mechanism

There are also some small changes in the repair algorithm. LINK BREAK messages are en-
hanced with a Time To Live (TTL) field. This helps to keep link-breaks locally. Furthermore, in
our version we handle only one LINK BREAK message at the same time. We think that it does
not make sense to handle more than one. Very often LINK BREAKshave the same origin (i.e.
the same failed dominator). In [35] nodes which overhear a LINK REPAIR message from a node
which is in their list of broken nodes cancel their own link update procedure. We changed this
slightly. All nodes which started reporting a link break andreceiving a LINK REPAIR message
just set their state to dominated immediately and do not forward the LINK REPAIR message
further. This limits the number of resulting dominator nodes after the repair process.

3.2.2 Definition of the CDS Data Packets

[35] does not provide any details about the design of the communication packets. As mentioned
before in Section 2.1.4 the following data packets are foreseen: HELLO, DOMINATOR, DOM-
INATED, LINK BREAK and LINK REPAIR messages. In Figure 3.4 all packets sizes and the
needed fields for each message type are shown.

All packet structures in Figure 3.4 are embedded into the fielddata of the default ScatterWeb
data packet shown in Figure 2.17. The HELLO packet has a field callednodeOrConfigID. This
field is used by the configuration updated mechanism and indicates new configuration updates
that are available. In the dominator packet is a field calleddynData. This array contains the
neighbor table and the source path. In our configuration the neighborhood table is an array with
maximal eight neighbors and the path is an array of the node IDs with a maximal length of 5
hops. We take these two arrays into one because of technical reasons: Often the neighbor table
or the source path are not completely occupied. As we do not want to send empty arrays we
only send the filled fields of these arrays. Therefore, these two arrays have a dynamic size. If
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Figure 3.4: Data packets of CDS.

there were two different variables with dynamic size in the data packet, the receiver would not
know at which memory address it should start reading for the second array. In other words the
pointer for the second field would not be at the expected position. With only one dynamic field
the receiver just has to know the sizes of the first and the second array. Thus, it can first read
from the start address ofdynDatato the end of the first array and then from that address to the
end of the second array.

As you can see, the DOMINATORCHOICE packet has no additional data fields. The re-
ceiver ID is the only value which has to be sent and is includedin ScatterWebs default data
packet.

3.3 Energy-Based Source Localization

Up to now DELTA provides no efficient localization algorithm. As the algorithm needs to be
implemented on hardware with low processing power and with memory restrictions, the range of
adequate localization algorithms based on sensed energy levels is limited. We have been looking
for an efficient and reliable algorithm which computes eventpositions and amplitudes using
the sensor measurements according to the energy-based decay model described in Equation
(2.2). We present three different algorithms (see Section 2.4) and evaluate them in Section 5.3.
These are Linear Least Square, Simplex Downhill and Conjugate Gradient Descend. Simplex
Downhill and Conjugate Gradient Descend are nonlinear optimization methods which again
minimize the square error. The algorithm with the best performance will be integrated in
DELTA for a appropriate event localization.

The sensor model on which all three presented algorithms arebased is defined in Equation
(2.2). The unknowns are the coordinates of eventx and its emitted amplitudec. If the event
has to be detected in space,x has 3 dimensions. So to solve the according system we need
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at least measurements from five sensor nodes. This implies that the sensor readings of at least
5 (4 members and + 1 leader) sensor nodes are required. If the system is solved with Linear
Least Square, the accuracy might not be sufficient. An over-determined system is needed to
improve accuracy of Linear Least Square. The three localization estimation algorithms Linear
Least Square, Conjugate Gradient Descend and Simplex Downhill, presented in the previous
chapter are evaluated in Section .

3.4 Event Classification

The estimated localization information and event amplitudes computed on a sensor node, by
either Linear Least Square, Simplex Downhill or Conjugate Gradient Descend, can be used for
the classification of sensed events. Classification can be interesting for different tasks. In some
applications it is not sufficient to know only the position ofan event but, also the kind of event
needs to be known. This might for example be the case when classifying a vehicle (bicycle, car,
lorry). If the classification of the events is done on the sensor nodes, less information has to be
routed to the base station, because not all the sensed data has be sent to the base station. One
can also do dedicated filtering on the sensor nodes: If the base station is only interested in some
kind of events, only information about these events will be routed to the base station.

For finding the clusters we will introduce K-Means (see Section 2.4) into DELTA. It is an
unsupervised algorithm which is used to identify clusters in existing data sets. These clusters
represent the different event types (classes). The learning phase is performed at the base station.
In a learning phase different event types are fed to the system. The sensor nodes compute
emitted signal strength and position with DELTA. This information is routed to the base station,
where it is stored as training data. The clusters are then extracted from this training data by
K-Means. Then the cluster information is distributed to thesensor nodes, where it is used for
event classification.

The Bayes classifier allows us to classify n-dimensional events. This could for example be
an event with light and sound emissions. To apply the Bayes classifier on the sensor nodes the
following parameters have to be precomputed at the base station:

• The covariance matrixKi for each classCi.

• The mean vectormi for each classCi.

• The probabilityp(Ci) for each classCi.

These three parameters can easily be determined from the K-means output and are distributed
and applied onto the sensor nodes with the protocol presented in the next section.

For the classification the Bayes classifier and the Minimal Distance classifier will be imple-
mented an evaluated.

3.5 Configuration Distribution over the CDS

Once the sensor nodes are deployed, it still should be possible to change their configuration
settings. The tasks of DELTA nodes remain more or less the same. The nodes have to classify
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events. So it does not make sense to implement a complex update functionality, which supports
the replacement of the whole behavior of a node by exchangingthe application software on the
nodes. Simple adjustments in the sensor network are done by only changing some configuration
parameters. A concrete example: The delta nodes are able to classify events by using a classifier.
Using Bayes classifier, the covariance matrix, the mean vectors, and the probabilities for each
class have to be updated on the nodes if the event classes change (see Subsection 2.4.5).

To update such configuration settings we have implemented a simple protocol which
supports dissemination of configuration information in thenetwork. The protocol is based
on the receiver-based backbone algorithm presented in section 2.1. The backbone is used
to distribute the information. In the actual real-world implementation the algorithm is used
to distribute the classifier settings for Bayes classifier. This algorithm could also be used to
distribute other configuration settings to the sensor nodes.

The distribution algorithm is designed to keep the network traffic low. The control messages
of CDS are used to signalize new configuration settings. No new control packet is introduced.
The algorithm is designed to reach as many neighbor nodes as possible with one single update
packet. The node which sends the update packet waits until all its neighbor nodes are awake and
ready to receive the update packet.

Each configuration setting has its own version identifier (VID). The VID is incremented
with each update. A new field is added to the HELLO packet of thebackbone construction
algorithm to signalize the version of the actual configuration setting. Each node adds the VID
to the HELLO packet. So the HELLO packet size has one additional byte.

Initially, the network administrator updates the configuration setting at the base station. The
VID of the base station is incremented by one. The incremented VID is broadcasted with each
HELLO message. The nodes receiving the HELLO packet check iftheir VID is smaller than the
broadcasted VID. If this is the case, the node sends a GET packet with the desired VID to the
base station. The base station sets a timer to broadcast an update packet. The length of this timer
is set to one sleep interval. This timer is used to guarantee that all neighbors overhear the update
message which contains the updated configuration settings.Dominated nodes periodically sleep
for one sleep interval. After that, they overhear HELLO message from their dominator. If this
HELLO message contains a higher VID as their own, the dominated node also sends a GET
request and stay awake until it receives the update message.Thus, all neighbors can be updated
with one single update message.

Figure 3.5 describes the whole update process. The base station sends HELLO messages
which indicate a new configuration setting. The Dominator node overhears this message and
sends a GET message to the base station. The base station setsthe timer to send the update
packet. The dominated node is sleeping and has not overheardthe HELLO message yet. After
the dominated node wakes up, it overhears the HELLO message which indicates the new config-
uration settings. It also sends a GET message to the base station and suppresses its sleep timer.
Both, the dominator and the dominated node get the update packet and update their configura-
tion. The dominated node goes back to sleep again after successful reception.
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Figure 3.5: Sequence diagram of configuration distribution protocol.
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Chapter 4

Implementation

pThe DELTA framework with its extensions have been implemented on real-world hardware.
We first present the modification of the operating system of the used hardware, which is used to
evaluate the algorithms. After that we present some more details about the implementation of
DELTA and the CDS backbone.

4.1 Modification in the ScatterWeb OS

We tried to keep modifications in the ScatterWeb firmware codeat a minimum. Whenever
possible our code has been implemented in the application layer. There are some cases where
this was not possible.

For the testing of DELTA we have used the light sensor. The light measurements done by
the ScatterWeb software are not appropriate for our purpose. The original implementation was
only able to make binary decisions (light on / off). So, we hadto modify the implementation
of the light sensor readings. When the light sensor is switched on the current light value is read
periodically. A mean value and the current light value are saved. This value is used as input for
the leader election process.
Some modifications are also done to adapt the communication behavior. When the radio is
switched on the ring buffer is cleaned by default. Dominatednodes in the CDS are switched
off most of the time (see Section 2.1). In the ScatterWeb implementation the application has
to check if the radio is switched on before any transmission is started. If this is not done, data
could be lost. If the radio is switched off and data is sent, itis written into the ringbuffer. By
default, ScatterWeb deletes the whole ringbuffer when switching on the radio. We changed this
behavior: When switching on the radio, we check first if thereis something in the ring buffer
and start sending possible data at start up automatically.

We have removed the Manchester encoding and have replaced itby applying an XOR op-
eration on the data with 0xAA. Thus, bandwidth usage is reduced and the sending of long 0 bit
series is prevented. Finally, we have changed the bandwidthsettings in the firmware from 19.2
kbps to 76 kbps.

We have encountered a bug in the macro, which checks if there is some space left in the radio
ring buffer, which was responsible for buffer overflows. Thebug has been fixed in ScatterWeb
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version 3.2.
Implementing the whole DELTA framework on the ESB nodes, thenodes would run out of

memory. Therefore, we removed all the methods and variablesfrom the firmware which are not
used in our application.

4.2 CDS Backbone

As mentioned in section 2.1.4 we have chosen receiver based CDS for real-world implementa-
tion. In the following section we present the real-world implementation details of the backbone
algorithm.

4.2.1 Details on the Implementation of the CDS Algorithm

In this subsection we introduce the details of the implementation of the CDS algorithm. The
timer-based CDS protocol is described in Section 2.1.4, itsadaptations are described in Section
3.2.1. First, we give an overview of the state variables usedin the CDS algorithm. In Table 4.1
the first row shows the names of the state variables. The second row shows the memory size
of each variable and the third row gives a short description of each state variable. The sizes of
neighbour tab andneighbour detail tab have to be set before deployment. It is depending
on the expected number of neighbours. The two tables store information about the nodes one-
hop neighbors. The neighbour table is splitted into two variables. Theneighbourtab is sent
within the dominator messages, where as theneighbourdetail tab is only used locally on the
node. The three counter variablesnrOfDominateeMesSent, nrOfDominatorMesSent

andnrOfDomChioceMesSent have a size of two Bytes, where as therepairMesCounter

is only one Byte long. This is because the first three counter variables are passed as parameters
to the timer setting function. The function only supports parameters with a size of 2 Bytes.

We already gave an introduction into the functionality of the algorithm in Section 2.1.4.
In the following paragraph we describe in detail when and hownodes change their state. For
each incoming control message type we present a code listing. Pseudocode listing 2 describes
the handling of an incoming DOMINATOR message. Incoming DOMINATOR messages are
only handled if the senders ID is not the one of the actual dominator node of the receiving
node. Dominator messages from the same node are handled onlyonce. Pseudocode 3 handles
DOMINATED messages. Incoming messages are only handled if the receiving node has not yet
set a dominator choice timer. If the receiving node has more than one path to the dominator
node an additionally delay is set. Pseudocode 4 handles DOMINATOR CHOICE messages.
DOMINATOR CHOICE messages are only handled, if the message is addressed only to the
receiving node. Pseudocode 5 handles LINKBREAK messages. Messages are only handled
if the receiving node is not already in link break state or hasscheduled a link repair message.
Dominated nodes forward the LINKBREAK message and dominator nodes set a link repair
timer. Finally, Algorithm 6 handles the LINKREPAIR messages. Only nodes in link break
state handle these messages. Nodes which have already received this LINK REPAIR message
remove their link repair timer and set their state to dominated.
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Name Size [Bytes] Description

nodeState 1 Describes the state which is set to the ac-
tual node color.

myDominator 2 ID of the nodes dominator node.

myDominatee 2 ID of the node which has sent a DOM-
INATED message. Used in the network
construction process.

domChoiceT imerSet 1 Indicates if the DOMINATORCHOICE
timer is set or not.

isSleeping 1 Indicates if node is in sleep mode or not.

nrOfDominateeMesSent 2 Indicates the number of sent DOMI-
NATED messages.

nrOfDominatorMesSent 2 Indicates the number of sent DOMINA-
TOR messages.

nrOfDomChioceMesSent 2 Indicates the number of sent DOMINA-
TOR CHOICE messages.

repairMesCounter 1 Indicates the number of sent LINK RE-
PAIR messages.

neighbour tab 16 IDs of the neighbor nodes. (8 neighbors
at maximum).

neighbour detail tab 40 Time stamp of the last received mes-
sage and state of the neighbor nodes. (8
neighbors at maximum).

numberOfNeighbours 1 Actual number of neighbors.

Table 4.1: State variables of each node.
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Input : DOMINATOR message
Update neighbor table;
if packet sender != myDominator AND (nodeState = uncovered OR nodeState =
inelection)then

myDominator← sender ID;
nodeState← inelection;
if I have uncolored neighborsthen

compute energy based delay;
set DOMINATED packet timer;

else
nodeState← dominated

Pseudocode 2: Incoming DOMINATOR message.

Input : DOMINATED message
if domChoiceTimerSet = 0 AND (nodeState = inelection OR nodeState = uncovered)then

Update neighbor table;
myDominatee← sender ID;
if I am neighbor of the DOMINATOR node OR there is more than one path to the
dominator nodethen

set DOMINATORCHOICE packet timer with additional delay;
else

set DOMINATORCHOICE timer without additional delay;

Pseudocode 3: Incoming DOMINATED message.

Input : DOMINATOR CHOICE message
if Message is for me AND nodeState = inelectionthen

nodeState← dominator;
set DOMINATOR timer;

Pseudocode 4: Incoming DOMINATORCHOICE message.

Next, we give an overview over the settings of the intervals and delays. The setting of the
timer lengths has influence on the network lifetime. Networktopology and the node mobility
have to be considered when timer lengths are set. The longer the hello interval is set, the longer
the dominated nodes have to listen until they overhear the first HELLO message. This means
that the listen periods have to be set longer, so that dominated nodes receive hello messages
from their dominator nodes. Moreover, the backbone setup process takes longer with long hello
interval because the neighbor learning phase is longer. On the other hand, the dominator nodes
save energy. Dominator are sending HELLO messages constantly. The longer a hello interval
is, the less HELLO messages are sent. The length of the sleeping period is also influenced
by the required frequency to report sensor readings to the BS. If sensor readings have to be
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Input : LINK BREAK message
if LRMesTimerSet not set AND not already in LINK BREAK state AND(nodeState =
dominator OR nodeState = dominated)then

decrement TTL of link break message ;
if nodeState = dominatedthen

nodeState← linkbreak;
if broken node ID of link break message is my own ID)then

Set link break timer using the ID of the sender for the broken node ID;
/* The sending node has not overheard link repair message of my LINK
BREAK. My link is already repaired. So froward the message with the
senders ID. It would also be possible to send a LINK REPAIR message back
to the sender.*/

else
Set link break timer;

if nodeState = dominatorthen
if Is link break origin in my paththen

Send REPAIR message with a delay;
else

Send REPAIR message immediately;

Pseudocode 5: Incoming LINK BREAK message.

Input : LINK REPAIR message
if nodeState = linkbreakthen

update neighbor table;
update source path ;
if I am the origin of the link break messagethen

nodeState← dominated;
else

if ! LRMesTimerSetthen
set repair timer;

if LRMesTimerSet AND an other node was faster with forwarding this message
then

remove repair timer;
nodeState← dominated ;

Pseudocode 6: Incoming LINK REPAIR message.

reported often, the sleeping period has to be set shorter. Ifwe have a dynamic network topology,
it may be necessary to set shorter long intervals. Moving nodes cause a lot of link breaks.
This leads to a more and more suboptimal backbone. Shorter reestablishment cycles would
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Interval / Timer length [s]

HELLO 6.6
LISTEN PERIOD 13.1
SLEEPING 65.5
LONG 1769.5

Table 4.2: Length of the timers.

rebuild the whole network periodically. With the timer configuration presented in Table 4.2 we
maximize the lifetime of the network. The settings are for a static network. The sleeping time
of the dominated nodes is maximized by long sleeping intervals and short listen periods. The
maximal timer length of ScatterWebs timer library is limited to 65.5 s. We set the length of the
sleeping interval to 65.5 s. Based on the sleeping interval we computed the other intervals by
multiplication or division. The listen period is five times shorter than the sleeping interval, the
hello phase is ten times shorter, and the long interval 27 times longer than the sleeping interval,
which is around half an hour. The listen period has to be at least as long as the hello interval.
We have set the listen period twice as long as the hello interval to reduce link breaks because the
possibility to overhear a HELLO message is higher.

4.2.2 Data Traffic

This subsection describes how data messages are routed overthe backbone. Data packets are
sent using the standard ScatterWeb packet type. Meta information about the data packet is
set in the header fields of the ScatterWeb packet as illustrated in Figure 4.1. At the base sta-
tion functions are registered to handle the different data packets. This is done by the function
CDSregisterDataHanler(UINT8 messageType, dataHandlerPt fp), wheremessageTypeis the
type of the data packet of interest andfp is a function pointer to which the packet has to be sent
for further processing. The registration is done dynamically at run-time.

To send data to the base station the functionCDSsendToBasehas to be called. Because
each node in the backbone knows its dominator node, a data packet is simply routed along the
backbone from one node to the other. Each hop reads the meta information in the header field
and increments the hop counter. If a packet arrives at the BS,the information transmitted in the
data field of the ScatterWeb packet is forwarded to the function which is registered to process
the data.

4.3 Localization Using Simplex Downhill

In section 3.3 the localization algorithms Linear Least Square, Simplex Downhill and Conjugate
Gradient Descend are described. In evaluations (see Section 5.3) Simplex Downhill has shown
best performance in simulator tests. Therefore, only Simplex Downhill has been implemented
on the ESB hardware for real-world tests.
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Figure 4.1: Generic data packet used by the CDS approach.

Simplex Downhill is implemented in two versions: In the firstimplementation, Simplex
Downhill computes the 2-dimensional position (x and y) and the amplitude of an event. In a
second implementation Simplex Downhill only computes the events positionX (x, y) without
computing the event amplitude. Having computedX, the amplitudec of an event can be com-
puted using the following equation:

c = ||X − ξi||
2 ∗ ρi (4.1)

WhereX is the leader position andρ is the sensor reading of the leader. In other words, by
multiplying the square distance between the event and the leader with the sensed amplitude, we
get the intensity amplitude of the event.

The start points of the Simplex Downhill computation influences the result. We define the
point located at the center of area of the sensing nodes and their measurements as the starting
point for the Simplex Downhill algorithm. This point is likely close to the sensed event.

Simplex Downhill has different configuration parameters:

• DIM : Number of dimensions of the problem. Normally the dimension is three (x, y, z).

• NMAX : This is one of the two termination conditions. It gives the maximal number of
iterations. If the maximum is reached Simplex Downhill terminates.

• FTOL : Is the second termination condition. If the distance between the highest and the
lowest value of simplex is smaller than FTOL, the algorithm terminates.

• NO OF REF POINTS: The number of reference points which are required in the Sim-
plex Downhill computation.

• COMPUTE WITH AMPLITUDE : A boolean variable which defines if the amplitude
should be computed with Simplex Downhill or afterwards.
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4.4 Event Classification

The presented classifier and clustering algorithm in Section 3.4 have both been implemented in
a simulator and on the ESB nodes.

4.4.1 Implementation in Simulator

To get an impression of the performance of the classifier algorithms Bayes classifier and minimal
distance classifier and of the clustering algorithm K-Means, all mechanisms have been imple-
mented in MATLAB. MATLAB offers a classifier toolkit which contains the K-Means clus-
tering algorithm [24]. The K-Means implementation of MATLAB minimizes thesqEuclidean
distances for each sample to the cluster center by default. We have the default settings in our
simulation. The K-Means implementation allows supplying initial cluster centers.
The implementation of Bayes classifier is simple in MATLAB. Only function 2.22 described in
subsection 2.4.5 has to be implemented. An input value is applied to each cluster to get the mem-
bership values. To compare the performance of minimal distance classifier and Bayes classifier
the number of wrong classified elements is compared.

4.4.2 Implementation on Sensor Boards

On the sensor boards we have implemented Bayes classifier forone-dimensional classification
only. It is the same function as used in the simulator environment but supports only one-
dimensional input. We have used only light sensing inputs for event classification on the sensor
boards.

The Bayes classifier implementation uses three arrays of type float. One array keeps the
probabilities of the classes, one the means and one the covariances. The lengths of these arrays
depend on the number of classes which have to be classified.

4.4.3 Bayes Classification Configuration Distribution

The classification with Bayes classifier depends on the threearrays described before. These ar-
rays are learned at the base station by applying the K-Means algorithm and have to be distributed
to the network nodes afterwards. The event characteristicscan change during runtime or new
event types can evolve. This means that also the classification parameters have to be adapted.
This is done via the update mechanism described in Section 3.5. In Figure 4.2 the data packet
for configuration updates is shown. If a sensor node receivesa packet with a higherconfigID
than the currently stored one, the Bayes classifier configuration arrays are overwritten on the
node with the received information.

4.5 Logging Environment

For the evaluation and the testing of the different implementations it is crucial to have appropri-
ate logging data. Therefore, we have implemented a logging environment which supports the
handling of log information generically. Three different ways of logging are supported:
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Figure 4.2: Packet for Bayes Classifier Update.

• Console: Each sensor writes logging information to the console. This information is
captured over a serial cable for further processing.

• Memory: The logging information is written into the EEPROM of the nodes. This infor-
mation can later be read over a serial cable for office analyses. As the ESB nodes have
very limited memory, the information which can be saved is limited.

• Radio: The logging data is sent over the radio to the BS. This information is sent directly
and does not use the CDS data packet routing. For most testingscenarios this method is
not appropriate as the data sent over the radio falsifies results.

The logging messages are standardized. A log message consists of three fields as illustrated in
Figure 4.3. The first field is the type of the log message. The next two fields are parameters,

Figure 4.3: Logging data structure.

which are two UINT16 fields. In these fields the log details canbe written. It is also possible to
use only one or none of the parameters. An example: A data packet arrives at the BS. The log en-
try would be [DATAPACKETIN, packetID, sourceID], where the type of DATAPACKETIN is
a UINT8. Depending on the log configuration these three fieldsare either written into the mem-
ory, sent to a predefined logging node which prints out the logging information, or are printed
directly to the serial interface. In the last two cases the information is made human readable.
In our example the output would look something like ”-IN-;DATA PACKET;102;0202”. This
information is then processed into a log file or a database.

The size of a single log entry is 4 bytes. According to the ScatterWeb documentation the
EEPROM size is 64 kilo bit. So, maximal 2000 log entries couldbe saved on the ESB nodes.
The configuration of the logging settings can be done over theradio at run time.
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Chapter 5

Evaluation

In this chapter the CDS algorithm and the DELTA framework with its extensions are evaluated.
To save energy and to support multihop communication, the sending power has been adjusted.
We present the evaluation and the results of the CDS backbonetests. Finally we evaluate the
tracking, localization and classification of DELTA and discuss the results.

5.1 Adjusting the Transmission Power

As mentioned in Subsection 2.6.2 the sending power can be setbetween 0 and 99 in ScatterWeb.
We are interested in an optimal ratio between sending power and node distances for multiple
reasons: Sending with full power is energy consuming. So we tried to minimize the sending
power in order to save energy. The distances between two nodes should not be too large,
because, depending on the event which should be localized, sensor nodes are densely deployed.
Nodes should be overheard only by their physical neighbors.Communication among nodes
which are two hops away should be improbable. This reduces packet collisions and saves energy.

The network topology should support transmission ranges ofapproximately two meters.
On point 0 the source node S is placed. We made two test setups.In the first one 4 nodes are
placed at a distance of 75 cm and 4 at a distance of 150 cm from the sending node S. For the
second setup 4 nodes have been placed at 125 cm and 4 at 250 cm. We have used 4 nodes at
each distance to crosscheck the nodes receivers. The test bed settings are depicted in Figure 5.1.

Node S is sending with a sending power of 10, 12, 14, 16 and 18. For each sending power
100 data packets with a size of 35 bytes have been sent. This test was repeated 4 times with
different sending nodes. So, each node should receive ideally 400 data packets for each tested
sending power value.

Figures 5.2 and 5.3 show the average number of packets which have arrived with the
different sending powers. Comparing Figures 5.2 (a) and (b)with Figures 5.3 (a) and (b) we
see that the distribution in the first two is much lager. In Figure 5.2 there is no sending power
setting, where packets are reliably received by nodes at 75 cm but not by nodes at 150 cm.
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Figure 5.1: Test bed for determining the transmission power.

Comparing Figures 5.3 we see that with a sending power of 16 most packets are overheard by
nodes at 125 cm (median of 85%) but only few at 250 cm (median ofnearly 0%). So, a sending
power of 16 for node-to-node distances of 125 cm is appropriate.

(a) (b)

Figure 5.2: Packets arrive at 75 cm (a) and packets arrive at 150 cm (b).

5.2 Testing the CDS Algorithm

For testing the CDS two different test cases have used. In thefirst case, basic functionality
such as proper backbone construction and if the repair algorithm works as expected is tested.
In a second scenario we run the CDS network over a longer period to analyze its long-term
performance.
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(a) (b)

Figure 5.3: Packets arrive at 125 cm (a) and packets arrive at 250 cm (b).

Interval / Timer length [s]

HELLO 2

LISTEN PERIOD 6

SLEEPING 10

LONG 65.5

Table 5.1: Length of the timers for the CDS experiments.

5.2.1 Basic Functionality of CDS

We have already mentioned the settings of the timers and intervals for the CDS. For the following
evaluation we use the timer configuration listed in Table 5.1. The intervals are shorter than the
ones described in Table 4.2 to get shorter test cycles. Changing the intervals does not basically
change the behavior of the backbone algorithm. The tests arestarted by sending an initial signal
over the serial cable to the base station. Then the tests run for one LONG cycle. After that all
nodes are connected to the serial interface. The data which the nodes have written into their
EEPROM is read and written into the database.

Backbone Setup

The network topology in the first experiment is a simple grid as depicted in Figure 5.4. We
check in this experiment if the backbone is well establishedand how long it takes until the path
setup is finished. The experiment has been repeated 10 times.To simulate network traffic each
node tries to send a four byte data packet every 10 seconds as soon as they are in dominator or
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dominated state.

The path setup times we have got in the test runs are between 14.8 seconds (s) and 17.0
s . In average it was 15.6 s with a standard deviation of 0.7. The setup process starts when
the first HELLO packet is sent to learn the neighbor tables. The build process ends, when the
last DOMINATED or DOMINATOR packet is sent. Before the CDS algorithm is started, four
HELLO messages are sent to build up the neighbor tables. Withthe settings of Table 5.1 this
makes4 ∗ 2s = 8s. The nodes which are sending DOMINATED or DOMINATOR messages
send the first message with a short delay of at maximum 0.2 s. After that they send four more
messages with an additional retransmission delay of 1 s. Thus, we get another4 ∗ (1s + 0.2s) +
0.2s = 5s. The learning phase of 8 s plus the time it takes until the lastnode stops sending
DOMINATOR or DOMINATED messages of 5 s results in 13 s. The remaining 2.6 s are used
for the effective network build process. The average duration of 15.6 s used in the experiments
is therefore feasible. The optimal path is depicted in Figure 5.5. The green nodes represent

Figure 5.4: Test case grid. Figure 5.5: Test case grid with optimal path.

dominator nodes in the CDS, the red ones are dominated nodes.In average in all 10 runs 3.4
dominator nodes have been elected. As shown in Figure 5.6, there was a case where five nodes
have been chosen. We investigated this case in detail. The five elected dominator nodes are the
base station (0402) and the nodes 0302, 0303, 0201 and 0202. By analyzing the network traffic
in this case we found a lot of lost packets.

Figures 5.7 (a), (b) and (c) illustrate the control message traffic during the net setup phase for
the experiment mentioned above. In all subfigures the CDS backbone nodes of the final CDS are
shown. Only the messages which arrived at the receiver nodesare depicted. Node 201 receives
the DOMINATED message from node 302. Nodes 202 and 203 got their DOMINATED message
from node 303. So node 303 was elected by node 203 and node 302 by node 201. At this point
already 3 dominators are elected. Then nodes 302 and 303 senttheir dominator message (see
Figure 5.7 (b)). The DOMINATED message of node 202 was overheard only by nodes 203 and
102. The dominator message from 201 was overheard by nodes 101, 102 and 202. Therefore,
node 202 was elected as dominator by node 203 and 201 by 101. There are different reasons for
this suboptimal CDS. First, a lot of control messages have been lost. Node 201 has a bad link
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Figure 5.6: Number of dominators in each run.

to node 301. Therefore, only a few HELLO packets have arrived. Also other links performed
badly. The main problem was that all neighbor nodes of the base station (301, 302, 303) did not
overhear each other. These two reasons lead to neighbor tables on the nodes which do not reflect
the real network topology. This leaded to an unexpected backbone.

We have also measured the median path length from all nodes, which are all at minimumn

hops away from the base station. Considering the first columnof the grid (nodes 101, 102, 103),
in all of the ten cases the path length to the base station is 3 hops. In the second column (nodes
201, 202, 203) the backbone length is between 2 and 3 hops (in average is 2.7 hops) and in
the third column (301, 302, 303) we measured between 1 and 3 hops (in average 1.9 hops). The
nodes in the first column were all reachable with the minimum number of required hops (n = 3).
The backbone length of the second (n = 2) and the third (n = 1) column is not optimal.

Evaluation of the Link Repair Algorithm

In this experiment we have configured a network that supportsthe simulation of link breaks.
Therefore, we again have built a tree-like network. In Figure 5.8 you can see a redundant link
between nodes 0405 and 0403. Either node 0304 or 0504 is initially elected as DOMINATOR
node in dependence of its energy level. After the path has been built, either node 0304 or 0504
has been manually switched of (see Figure 5.9) to produce a link break. We have repeated this
experiment 10 times. Every ten seconds a data packet with four bytes payload has been sent to
the base station. Before the link break has occurred, 6 DOMINATOR nodes have been elected
in every run. After the link break has been repaired we got seven dominator nodes in each test.
In all cases the LINK BREAK message was kept always in the leftbranch of the tree.

We have measured how long it takes to repair the path. In Figure 5.10 for each run a bar
indicating two different times is shown. The shorter one is the time which is spent between the
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Figure 5.7: Analysis of the communication messages sent in the run producing a suboptimal backbone.

Figure 5.8: Test grid before link break. Figure 5.9: Test grid after link break.
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moment node 0403 broadcasts the first link break message until the moment node 403 receives
a link repair message. In average this takes about 0.25 s. Thedelay until a link break message
is sent is between 0.1 s and 0.2 s. The delay until a link repairmessage is sent at maximum 0.1
s. Two link break messages are needed to reach node 405 which is the closest dominator node
with a valid route to the base station. Two link repair messages are required to repair the link
break at node 0403. In theory a repair time between 0.2 s and 0.6 s is expected if all nodes are
awake during the link-break period. In some cases 2.7 s have been needed. This is explained
as follows: If node 304 or node 504 is sleeping, no messages are forwarded. The link break
message is retransmitted until one of these two nodes wakes up and forwards the message.
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Figure 5.10: Time used to repair the link break.

The second time which is depicted in 5.10 is the time between the sending of the first link
break message and the stop of sending any link repair or link break messages. The average total
repair time has been 14.7 s. As our main goal was to prevent a growing amount of CDS nodes
the link-break origin, in our case node 403, does not forwardthe link repair message. Node 402
stays in link break state, which means link break state, until node 403 wakes up again and sends
a link break message to nodes 504 or 304. This message is then answered immediately by either
node 504 or 304 and forwarded down to node 403. This node continuous sending link repair
messages five times to ensure that each neighbor node has overheard this message. The sleep
cycle is 10 s. Adding the four retransmission delays which lasts at maximum4 ∗ 1.05s = 4.2s
to this10s and the actual repair time at maximum0.6s we get14.8s. Accordingly, the 14.7 s
used until the last link repair or link break message has beensent is realistic.

5.2.2 Long Sleep Cycles Test

After testing the basic functionality we have run the network for a long period. We are interested
in the percentage of time the nodes are sleeping over a longerterm of operation. Because we
need the logged information from the nodes, we have connected the nodes over a serial cable to
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Node ID Sleeping [% ] Times elected as dominatorDominator by link break link break detected

101 80 0 0 17
301 60 5 0 0
102 42 4 4 1
203 31 4 0 0
201 22 7 1 3
302 22 10 0 1
202 18 11 0 0
303 15 14 0 0
402 0 16 0 0

Table 5.2: Results of CDS long operation time evaluation.

a PC. The network is setup according to Figure 5.4. This time the runs last 8 hours. The timer
configuration is set according to Table 4.2.

One long cycle lasts about 29 minutes (1769.4 s). A dominatednode should, theoretically,
be sleeping around 80% of this time. During the 8 hours of testing the network is reestablished
16 times. Table 5.2 shows how long each node has been sleepingduring the whole experiment.
The third column shows how often a node has been elected as dominator over all. The fourth
column indicates how often a node has been elected as dominator after a link break has occurred
and the fifth column is the counter how often a node has detected a link break. Node 101 which
is never elected as dominator sleep for 80% of the whole test run. We see that the more often a
node is elected as dominator, the lower is the percentage of time it is sleeping. The number of
times nodes 102 and 203 have been elected as dominator is equivalent, but their sleeping time
is different. The reason is that node 102 has been elected as dominator after a link break while
203 was dominator for the whole long-sleep period.

Node 101, which has a poor connectivity, detects 17 link breaks. Having analyzed the
logging data we can see that lots of HELLO messages have not been overheard by node 101.
Therefore, link break messages are sent. This leads to low sleeping times for its neighbors
(nodes 102 or 201), as they are elected as dominator by the link repair mechanism. To prevent
such a behaviour nodes with bad links could be ignored after apredefined number of link breaks.
Nodes with erroneous link, for example because of a failure in hardware or software, would be
ignored and could so not flood the network with link break messages. An other solution would
be using acknowledged data packets. This would guarantee a relayable both-way link. So only
nodes with acknowledged HELLO messages would appear in the neighbour table.

We have shown that the energy-based CDS algorithm performs well on a real-world hard-
ware environment. CDS is able to reduce the energy consumption of network nodes. By reestab-
lishing the network periodically CDS leads to a constant energy distribution over the whole net-
work. The network repair algorithm makes the CDS stable and reliable in case of node failures.
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5.3 DELTA Localization Evaluation

The localization performance has been evaluated in two steps. Initially, simulator test were done.
Different localization algorithms have been implemented and tested with simulated data input.
The most promising algorithm has then been implemented and tested in a real-world wireless
sensor network using the ESB nodes.

5.3.1 Performance Evaluation in the Simulator

The three localization methods Linear Least Square, Conjugate Gradient Descend and Simplex
Downhill, presented in Subsection 3.3, have been evaluatedin MATLAB. For the evaluation,
the sensor nodes have been arranged in a square with a side length of 125 cm. Four nodes have
been placed at positions [125, 125], [125, 250], [250, 125] and [250, 250]. 200 events, randomly
distributed within the square area, have been localized. Asmentioned before Conjugate Gradient
Descend and Simplex Downhill need initial values to start the computation. The starting simplex
for the computation of the event position using Simplex Downhill is located at the center of area
of the sensing nodes and their measurements. For Conjugate Gradient Descend the center of
area of the sensing nodes is used as a starting point. Additional White Gaussian Noise (AWGN)
was used to model noisy sensor measurements. The tests have been performed with six noise
levels: 0%, 10%, 20%, 30%, 40% and 50%.

Figure 5.11 illustrates the results. The confidence intervals are not depicted as they are
too small. If there is no noise, all methods perform equally well. For Linear Least Square
the distance error as well as the signal strength error increase much faster than for Simplex
Downhill and Conjugate Gradient Descend. The distance error produced by Linear Least Square
stays constantly at about 40% of the transmission range. Theerror for the signal amplitude
is even larger, it is more than 80% of the emitted signal strength. Simplex Downhill and
Conjugate Gradient Descend in contrast show low error ratesup to a noise of 20%. After that
the distance error as well as the signal error start to increase. The signal amplitude error of Sim-
plex Downhill is slightly lower than the error of Conjugate Gradient Descend for all noise levels.

The big difference between the performance of Linear Least Square and Simplex Downhill
can be explained by analyzing Figure 5.12. The figures show the distance errors of Simplex
Downhill and Linear Least Square with a noise level of 10% and40%, respectively. Only 50
out of the 200 estimations are depicted for better readability. The distance error is highlighted
by showing the line between the exact event position and the estimated event position. The
figures on the left show estimation errors of Simplex Downhill with a noise of 10% and 40%,
respectively. On the right the according errors for Linear Least Square are depicted.

Comparing the localization estimations of Simplex Downhill and Linear Least Square with
a noise level of 10% we can see that the position estimations of Simplex Downhill are only little
affected by the noise. on the other hand all estimations of Linear Least Square tend towards
the center of the area observation. The figures at the bottom of 5.11 show a similar situation
for Linear Least Square with a noise level of 40%. The distance error for Simplex Downhill
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Figure 5.11: Evaluation of the localization accuracy of Simplex Downhill (SD), Conjugate Gradient
Descend (CG) and Linear Least Square (LLS).

increases a little with a noise level of 40%.

The performance of Linear Least Square can be improved by over-determining the system
as shown in Figure 5.13. Two additional nodes have been addedat positions [175, 125] and
[175, 250]. Instead of using the sensor readings of four nodes, six nodes are used for computing
the position and emitted signal strength of the events. Using Linear Least Square, the distance
error and the amplitude error start increasing at a noise level of 20% and reach an error of 40%
considering distance error and a noise level of 50%. Like thedistance error, the amplitude
error is also increasing slower than in the system with four nodes. The error starts increasing
with a noise level of 20% and reaches an error rate of 80% at a noise level of 50%. The
performance of Simplex Downhill and Conjugate Gradient Descend is only little improved by
the over-determined system.
Figure 5.14 visualizes the distance errors computed with the over-determined system. Again

the position estimations of Linear Least Square tend to the center of the observation area. The
estimation of the position with a noise of 10% is much better compared the results in Figure
5.14. Also the performance of Simplex Downhill is slightly improved by the two additional
sensor nodes.

To conclude, the performance of Linear Least Square in an over-determined system is better,
but does not reach the estimation quality of Simplex Downhill or Conjugate Gradient Descend.
If additional sensor nodes are used for the computation thiscauses more traffic. Furthermore,
denser networks are required to support Linear Least Square. Therefore, our choice has been
restricted to Simplex Downhill or Conjugate Gradient Descend. Simplex Downhill is simple in
implementation and usage. It requires little more time to terminate, but also need less storage.
The performance is more or less the same as the one of Conjugate Gradient Descend. We have
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Figure 5.12: Distance error visualization for Simplex Downhill and Linear Least Square (LLS).

69



0 10 20 30 40 50
0

20

40

60

80

100

AWGN [%]

E
rr

or
 [%

 T
X

−
R

an
ge

]
Distance Error

 

 

SD
CG
LLS

0 10 20 30 40 50
0

40

80

120

160

200
Absolute Emitted Signal Strength Error

AWGN [%]

E
rr

or
 [%

 S
ig

na
l S

tr
en

gt
h]

Figure 5.13: Evaluation of localization and parameter estimation accuracy using 6 sensor nodes for
Conjugate Gradient Descent (CG), Simplex Downhill (SD) andLinear Least Square (LLS).

chosen Simplex Downhill for real-world tests and implementation on the ESB nodes.

5.3.2 Real-World Evaluation of Simplex Downhill

The localization of light events using Simplex Downhill hasbeen evaluated in a real-world
environment. In these tests four ESB nodes localize an eventand compute the amplitude of the
emitted light signal. The four nodes are set up in a square in adarkened room. As in the simulator
tests, the distances between each pair of nodes is 125 cm. Thepositions of the nodesNi are
N1(125, 125), N2(250, 125), N3(250, 250 andN4(125, 250). The orientation of the nodes has
been calibrated such that the light sensor of the nodes points into the direction of the event. This
is necessary because the light sensor is not optimally placed on the sensor boards. Each node is
connected to a computer over a serial cable for logging purpose. The inputs for the computation
as well as the localization results are logged for later recomputations and comparison. The
light sources have been placed at 6 different positions, which areP1(188, 188), P2(188, 219),
P3(188, 250), P4(219, 219), P5(219, 250) andP6(250, 244). The experiment setting is shown
in Figure 5.15.

For the evaluation of Simplex Downhill five different bulbs have been used. We have chosen
bulbs with uniform light emission in all directions. We use bulbs with an output of 25 Watt, 40
Watt, 60 Watt, 75 Watt and 100 Watt. The bulbs are placed into aholder standing on the floor.

Each bulb is tested at each event position. For each combination of bulb and position 50
Simplex Downhill computations are performed. The tests have been done twice. In the first run
the following parameters for the Simplex Downhill computations have been used:

• DIM : 3.

• NMAX : 160
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Figure 5.14: Distance error visualization of Linear Least Square and Simplex Downhill in an over-
determined system.
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Figure 5.15:Experiment settings for the real-world localization tests.
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25 Watt 40 Watt 60 Watt 75 Watt 100 Watt Over all
Position µ σ µ σ µ σ µ σ µ σ µ σ

P1 6.3 0.9 4.1 0.1 0.6 0.1 2.1 1.0 1.4 0.1 2.9 2.1
P2 6.2 0.5 8.8 0.4 10.6 0.2 9.4 0.1 8.4 3.9 8.7 2.3
P3 3.9 0.6 14.9 3.2 16.6 5.2 5.3 6.4 8.8 6.6 9.7 7.1
P4 3.7 1.6 5.0 1.7 3.5 1.4 5.7 1.8 4.0 2.0 4.4 1.9
P5 17.8 3.6 15.1 4.6 12.1 6.6 18.4 4.3 13.1 7.1 15.4 6.0
P6 18.4 0.1 20.9 0.2 17.4 0.5 23.1 15.0 32.9 4.8 22.5 8.8

Table 5.3: Average localization errorµ and standard deviationσ for each event position.

• FTOL : 1.0E−2

• NO OF REF POINTS: 4

• COMPUTE WIHT AMPLITUDE : Yes, amplitude is computed in Simplex Downhill.

The meanings of the different parameters have been presented in Section 4.3.
In the second run we have used exactly the same settings and the same testbed. Instead of

computing the event intensity amplitude in Simplex Downhill we have computed it in a second
step to reduce the problem dimension. After the computationof the event location the event
intensity can be computed by the given distribution model. In the following we call the results
from the tests with the amplitudes computed in Simplex Downhill first run results and the ones
without the amplitude computed in the Simplex Downhillsecond runresults. The results of both
runs are comparable. For the evaluation of the position estimation and the amplitude estimation
the results from the first run are used. In Subsection 5.3.2 wecompare the performance of
Simplex Downhill of both runs.

Position Estimation Accuracy

Table 5.3 shows the localization errors for each bulb and event position, whereµ represents the
mean distance error andσ the standard deviations over all 50 position estimations from the first
run results. The last column shows the average localizationerror over all bulbs.P1 to P6 are the
event positions shown in Figure 5.15. The error is defined as the Euclidean distance between the
event locationPi and the estimated positionsEk computed by Simplex Downhill.

Figure 5.16 visualizes all distance errors. Each color represents an event position, which is
represented by a circle. The event positions estimated by Simplex Downhill are represented by
x symbols. The error is represented as the lines between thex andx.
Considering Table 5.3 and Figure 5.16 it can be seen that the closer the events are positioned

to the border of the sensor grid, the higher is the mean distance error. The maximal mean error
for event positionsP1 to P5 is 18.4 cm, sensed with the 75 Watt bulb. At event positionP6 the
distance errors are higher. The performance of Simplex Downhill decreases if the event position
is getting closer to a node. In these areas the range of correct solutions is small, whereas the risk
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Figure 5.16:Visualization of the event position estimation error.

of finding local minima is high. However, due to the implementation of DELTA sensor nodes
will arrange themselves around the event location. Accordingly, events are rather located near
the center of the observing sensor group. Table 5.3 shows that the intensity of the light has only
little influence on the position errors of the position estimations.

Excluding event positionP6, the position estimation of Simplex Downhill is quite robust and
works well for different bulbs. Considering the distance of125 cm between the sensor nodes, a
maximal mean distance error of 18.4 cm with a variance of 4.3 cm is acceptable (result without
event position P6).

Amplitude Estimation Accuracy

For the classification of the detected events some characteristics about the event are needed.
Therefore, Simplex Downhill not only estimates event positions but also their amplitudes. First
we present the evaluation data and discuss them in the next step: Table 5.4 shows the mean (µ)
and the standard deviations (σ) of the estimated emitted light amplitude for each event position
and bulb based on the data computed by Simplex Downhill for the first run results. The last
column shows the mean of estimated amplitudes and their standard deviations over all event
positions. The mean amplitude of events with a 25 Watt bulb is17.7e5 Hz. The mean intensity
of the 40 Watt bulb is with an estimated intensity of28.8e5 Hz around10.0e5 Hz higher. For
the 60 Watt bulb an amplitude of47.4e5 Hz was estimated, for 75 Watt bulb61.6e5 Hz and for
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P1 P2 P3 P4

Bulb [Watt] µ σ µ σ µ σ µ σ

25 16.9e5 0.88e5 16.7e5 0.23e5 13.2e5 0.05e5 17.8e5 1.30e5

40 30.0e5 0.06e5 29.1e5 0.27e5 27.5e5 1.03e5 31.1e5 2.32e5

60 47.8e5 0.14e5 46.7e5 0.20e5 42.5e5 2.73e5 49.5e5 3.06e5

75 59.3e5 0.19e5 59.0e5 0.26e5 51.5e5 6.10e5 63.2e5 5.39e5

100 82.5e5 0.19e5 80.4e5 11.6e5 71.6e5 7.63e5 86.0e5 8.58e5

P5 P6 All positions
Bulb [Watt] µ σ µ σ µ σ

25 18.7e5 2.62e5 19.8e5 0.04e5 17.1e5 2.47e5

40 27.0e5 10.5e5 28.4e5 0.07e5 28.8e5 4.53e5

60 49.8e5 11.1e5 48.1e5 0.54e5 47.4e5 5.35e5

75 73.8e5 10.3e5 65.4e5 16.3e5 61.6e5 10.8e5

100 86.0e5 15.1e5 124.0e5 24.0e5 88.5e5 21.4e5

Table 5.4: Computed amplitudes in Hz for each event position.

the 100 Watt bulb88.5e5 Hz. The standard deviations increase with the emitted lightintensity
of the bulbs.

Figure 5.17 visualizes the distribution of the amplitude estimations for each bulb as a box-
plot. The line in the middle of the boxes is the sample median.The tops and the bottom of the
box are the 75th and 25th percentiles. The length of the box describes the interquartile range.
The whiskers are the lines looking like a ”T” extending the boxes. They describe the values
which are within 1.5 times the interquartile range beginning at the end of the box. The values
displayed with a red ”+” are the outliers. We see that the interquartile ranges are small. The
number of outliers is higher for the events with 75 Watt and 100 Watt bulbs. This indicates that
the events with 75 Watt bulb and these with the 100 Watt bulb are less disjoint.

For a classification of events it is important that the spectrums of the amplitudes of different
events (i.e. different bulbs) are disjoint. This conditionis fulfilled in most of the situations
shown in Table 5.4. Only at positionP5 the computed light amplitudes are not fully disjoint:
The estimated amplitudes between the events with the 25 Wattbulb and the 40 Watt bulb and
the events with the 40 Watt and the 60 Watt bulb overlap. Furthermore, classifications of the
75 Watt and 100 Watt bulbs might cause some systematic false classifications comparing the
spectrums ofµ andσ in the last column in Table 5.4. Figure 5.17 illustrates thistoo. Some
outliers of the 75 Watt bulb are in the range of the box of the 100 Watt bulb. Over all we can say
that correct classification should be possible in most cases.

We have seen that the amplitude and also distance error increases the closer the event comes
to a sensor node (see Figure 5.16). We have used a ranking table to visualize this. In theory
the amplitude estimation should be the same at each event position. In Table 5.5 we show that
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Figure 5.17:Boxplot of the estimated emitted signal strength amplitudes using Simplex Downhill.
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25 Watt 40 Watt 60 Watt 75 Watt 100 WattTotal rank

P3 6 5 6 6 6 29
P2 5 3 5 5 5 23
P1 4 2 4 4 4 18
P5 2 6 1 1 2 12
P6 1 4 3 2 1 11
P4 3 1 2 3 2 11

Table 5.5: Ranking of the amplitudes for each position.

the amplitude estimation error also depends on the event position. For each bulb the amplitudes
at the different positions have been analyzed. We ranked in Table 5.5 each bulb. The position
where the highest amplitude for a bulb was estimated gets thehighest rank1 the position where
the lowest amplitude was estimated gets the lowest rank6. The last column is the total score.
It is the sum of ranks for each bulb at each position. The position with the lowest estimated
amplitudes for each bulb gets the highest value, the one withthe highest estimated amplitudes
gets the lowest value.
Table 5.5 shows that the error increases for the amplitude estimations the closer the event is to

a sensor node. Events at the positionsP4 andP6 have the lowest ranking, eventP3 the highest.
This means that at the positionsP4 andP6 the amplitudes have been estimated higher for the
same bulb as at the other positions and at positionP3 the amplitudes have been estimated lower
for the same bulb at the other positions. For the events at thepositionsP6, P4 andP5 which are
closer to nodeN3, higher amplitudes for the same bulb have been sensed compared the events
at the positionsP3, P2 andP1. As expected not only the localization estimation error increases
the closer the event is to a sensor node but also the amplitudeestimation error.

Evaluation of Simplex Downhill without Amplitude Computation

During the evaluation of the localization accuracy with Simplex Downhill, no result was
computed in some cases because of too many iterations of Simplex Downhill. As mentioned
before the number of iterations is limited to prevent a system reset by the watch dog. Also we
have limited the number of iterations to account for some delays which could lead to problems
in communications of the group organization algorithm of DELTA. To reduce the complexity
of Simplex Downhill and make it faster, we have reduced the problem dimension. We have
removed the amplitude estimation from Simplex Downhill andhave computed only the event
position. The amplitude estimation has been done afterwards, as described in Section 4.3. This
gives us the freedom to compute the amplitude only if it is used for further action. We run the
same tests again with the modified Simplex Downhill as beforein the real-world environment.

The estimations of event position computed with the modifiedSimplex Downhill are com-
parable with the results from the first run. An interesting difference is the number of iterations.
Table 5.6 lists the number of iterations which have been usedin the first run, where the ampli-
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Run 1 Run 2
Bulb [Watt] µ σ µ σ

25 53 24 31 7
40 62 18 32 9
60 60 21 35 11
75 57 27 32 8
100 52 21 31 7

Table 5.6: Comparing Simplex Downhill computing amplitude (Run 1) andSimplex Downhill not com-
puting amplitude (Run 2).

tude has been computed in Simplex Downhill and in the second run, where the amplitude has
not been computed in Simplex Downhill. For both runs the number of iterations per bulb in the
average (µ) and the mean (σ) is shown. In the first run we got an over all average of 56 iterations,
where as in average 32 iterations are sufficient to for compute the events position alone.

This shows that the performance of Simplex Downhill can be improved by removing the
amplitude estimation.

5.3.3 Parameter Optimization

The two test series presented in 5.3.2 have been performed with the same parameter configura-
tions. To find out if there is a more optimal parameter configuration for the localization task we
let running Simplex Downhill with different parameter settings. As it is a time consuming task
testing localization in a real-world environment we have ported the simplex code to a PC envi-
ronment and used the real-world data from the first test serieas input for further optimization
steps. In the first run we have not only logged the results of the Simplex Downhill computa-
tion but also the sensor readings. This raw data has been usedas input for Simplex Downhill.
Our main focus is on finding the optimal parameter configuration, especially considering the
settings of theFTOL termination condition. Therefore we have tested Simplex Downhill and the
modified Simplex Downhill without amplitude computation with FTOL1.0e−2, 1.0e−4, 1.0e−6,
1.0e−8 and1.0e−10. The other parameters have not been changed. To find an optimal configu-
ration parameter we define the following criteria:

1. The mean of the amplitude spectrums of each bulb have to be disjoint.

2. The mean distance error has to be minimized.

3. The number of aborted computations because of too many iterations should be minimized
(NMAX = 30).

Table 5.7 shows the results of the evaluation of Simplex Downhill with different parameters
based on the input data from the first real-world run. The firstrow shows which Simplex Down-
hill version has been used. As mentioned above, the amplitude can be computed in Simplex
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Amplitude computation FTOL Aborted Computations µ σ Amplitudes disjoint

in SD 1.0e−2 53 11.46 9.04 No
in SD 1.0e−4 149 11.18 9.37 Yes
in SD 1.0e−6 273 9.41 8.66 Yes
in SD 1.0e−8 632 8.92 7.85 Yes
in SD 1.0e−10 632 8.92 7.85 Yes
offline 1.0e−2 35 10.94 8.03 Yes
offline 1.0e−4 97 10.4 7.75 Yes
offline 1.0e−6 97 10.4 7.75 Yes
offline 1.0e−8 335 10.37 7.95 Yes
offline 1.0e−10 335 10.37 7.95 Yes

Table 5.7: Results of running Simplex Downhill (SD) with different parameters.

Downhill itself or afterwards. The columnµ shows the mean position estimation error over all
computations andσ is the standard deviation. The last column shows if the meansof amplitude
estimations between every pair of bulbs are disjoint.

Apart from the first row all amplitude computations are disjoint. The amplitude estima-
tions between the 60 Watt and the 75 Watt bulb and between the 75 Watt and the 100 Watt
bulb overlap. This means that the mean of the amplitude estimation of a bulb type A plus the
standard deviation is higher than the mean of the amplitude estimation of a bulb type B minus
the standard deviation. The optimal results we got by using the modified Simplex Downhill
with FTOL = 1.0e−4. There is a trade off between the estimation accuracy and thenumber
of aborted computations. Simplex Downhill returns accurate results withFTOL = 1.0e−4 for
the offline amplitude computation as well as for the computation of the amplitude of Simplex
Downhill.

We see that the optimized parameters lead to a better performance of Simplex Downhill com-
pared with the settings used in the real-world test runs. Themeans of the estimated amplitudes
for each bulb are disjoint and the localization errors are smaller with the optimized parameters.
The number of aborted computations is slightly higher. Fromthe raw sensor readings from
the two existing real-world tests (see Section 5.3.2) we have derived the two sets of estimation
results with the following settings:

• DIM : 2.

• NMAX : 160

• FTOL : 1.0E−4

• NO OF REF POINTS: 4

• COMPUTE WIHT AMPLITUDE : No, amplitude is computed afterwards.
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These two result sets will be used in the next section for evaluation of the classification algo-
rithms. Figure 5.18 gives an overview of the test sets and howthey interpend.

Figure 5.18: Result sets from real-world Simplex Downhill evaluation.

5.4 Delta Classification Evaluation

5.4.1 Simulator Tests

In a first step we have evaluated the proposed classification algorithms minimal distance classi-
fier and Bayesian Classifier in the MATLAB environment. This allows us to evaluate the two
classification algorithms without side effects. The classifier with the better performance is im-
plemented on the real-world hardware in a second step. The results from the simulator tests are
also used as reference to compare performance of the real-world implementation.

As input for the event classification we have used the one-dimensional real-world input data
computed with the optimized Simplex Downhill configurationparameters described in Subsec-
tion 5.3.3. As mentioned above we have two sets of real-worlddata. Figure 5.19 describes how
the classification is applied. We have used the optimized data from the first test serie as train-
ing set and the data from the second optimized test serie as test set. We have applied K-Means
on this first set to compute the cluster characteristics. Theresults of K-Means are than used to
find the parameters for the minimal distance classifier and the Bayes classifier. The two trained
classifiers are then applied on the second optimized data test set. First we give a short overview
over the characteristics of the two input sets. Table 5.8 shows the characteristics of the esti-
mated amplitudes of test and training sets.µi represents the mean amplitude andσi the standard
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Figure 5.19:Application of the classifier algorithms on the input data.

µ25 σ25 µ40 σ40 µ60 σ60

Training set 1.84e6 0.60e6 2.94e6 0.27e6 4.65e6 0.32e6

Test set 1.59e6 0.15e6 2.98e6 0.55e6 4.45e6 0.27e6

µ75 σ75 µ100 σ100

Train set 6.00e6 0.76e6 8.44e6 1.30e6

Test set 5.64e6 0.57e6 8.09e6 1.58e6

Table 5.8: Characteristics of train and test data set.

deviations of the amplitude where asi is the kind of the bulb in Watt. As already mentioned
the averages of the amplitude estimation of each bulb are disjoint. The characteristics of both
real-world tests are not exactly the same. The 25 Watt bulb has for example a mean amplitude
estimation of1.84e6 with a standard deviation of0.60e6 in the training set where as in the test
set the mean amplitude estimation is1.59e6 and a standard deviation of0.15e6. The diversity
of the data sets is desired because we want to prove that the classification algorithm is flexible
enough to be applicable on real-world data.

Table 5.9 shows the results of the classification using minimal distance classifier and Bayes
classifier. Bayes classifier classifies with a success rationof 93.6% and minimal distance classi-
fier wit 90.2%.
Some of the amplitudes computed by Simplex Downhill show high deviations. Regarding this

fact the classification accuracy of Bayes classifier is quitehigh. We decided to implement Bayes
classifier on the real-world hardware. It has not only a higher accuracy than the minimal distance
classifier but is also usable with multi-dimensional data sets. minimal distance classifier is only
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Right False Success Ratio

MDC 1040 113 90.2%
BC 1079 74 93.6%

Table 5.9: Classification of one dimensional input with Bayes classifier (BC) and minimal distance
classifier (MDC).

usable in circular clusters. If the elements of a cluster arein a non circular area they are proba-
bly classified wrong. Figure 5.20 shows two clusters in oval shapes. Figure 5.21 shows how the
elements would be classified using minimal distance classifier. The two circles symbolize the
two clusters. On the other hand, Bayes classifier is basically able to model such shapes. Thus,
we have decided to implement Bayes classifier on the real-world hardware.

Figure 5.20: Correct classification.
Figure 5.21: Classification with minimal distance classifier.

5.4.2 Real-World Tests

On the ESB nodes we evaluate the implementation of the one dimensional Bayes classifier using
the same data sets as used in the one dimensional simulator tests. Therefore, we have written a
script that sends the amplitudes of the training set to the ESB nodes over a serial cable where
they are evaluated. The results computed on the ESB nodes areslightly different from the results
obtained from MATLAB. Bayes classifier on ESB nodes has classified 89.5% correctly where
as the MATLAB implementation does this in 93.6% of the cases.This can be explained by the
differences in the implementation. On the ESB nodes only thetypefloat with single precision
is supported, whereas MATLAB computes results with higher precision. The rounding errors
leads to different results. Nevertheless, we could show that Bayes classifier performs well on
real-world hardware with limited resources.

82



Chapter 6

Conclusion and Outlook

In this chapter we give some final conclusion about the presented work. After this we present
fields for further investigations considering the DELTA framework.

6.1 Conclusion

In this thesis we have presented extensions to the DELTA framework. The thesis covers four
subject areas: Network organization, event detection, event localization and event classification.
For each of these parts we have presented real-world implementations and evaluation on WSN
nodes with limited power constraints. In the following section we present a conclusion for each
evaluated area.

Network Organization: The Receiver-Based Backbone Construction algorithm supports
DELTA with energy-efficient routing. We have shown that the algorithm is applicable to
hardware with limited resources. Real-world tests have shown, that the basic functionality of
the algorithm is working properly. In the network set-up phase the CDS is built as expected. In
a second real-world experiment we have shown that the network is able to repair itself when
a backbone node fails. We have also shown that, using the concept of backbone nodes, the
network nodes can save energy of up to 80% of their lifetime bysleeping.

Event Localization: In this thesis Linear Least Square, Conjugate Gradient Descend
and Simplex Downhill were investigated to be used for event localization. The localization
estimations of Linear Least Square tends to the center of thesensing area. The quality of the
localization estimations for Linear Least Square has been improved with an over determined
system. Therefore, Linear Least Square needs sensor readings of more nodes than Conjugate
Gradient Descend and Simplex Downhill to produce localization estimations similar quality.
Simplex Downhill and Conjugate Gradient Descend have shownboth similar performance. The
Simplex Downhill algorithm has been implemented on the ESB nodes for further real-world
evaluation. In the real-world evaluation of the event localization and of emitted signal strength
estimation, Simplex Downhill produced reliable localization information. The closer the events
are to a sensing node, the less precise is the localization estimation. The maximal localization

83



error was 14.7% of the distance between neighboring nodes, neglecting the estimation of the
event closest to the sensor node.

Event Classification: In this thesis we have presented a distributed self-learning event
classification procedure for DELTA. The Simplex Downhill algorithm can not only be used
for event position estimations but also for emitted signal strength amplitude estimations. The
real-world tests with five different bulbs have shown that the computed amplitudes of each bulb
are disjoint. Using this one-dimensional real-world data we have evaluated Bayes classifier and
minimal distance classifier. The evaluation has shown that 93.6% of the events are classified
correctly using a Bayes classifier and 90.2% of the events areclassified correctly using minimal
distance classifier. The implementation of Bayes classifieron the real-world wireless sensor
nodes has shown a slightly lower accuracy. We have also presented a solution that allows
adapting and updating the distributed event classificationalgorithm at runtime to classify new
events.

Over all we have shown that it is possible to implement an energy-efficient event localization
and classification framework on real-world wireless sensornode hardware.

6.2 Outlook

In this section we present areas for further investigations. We concentrate us on the evaluation
of the framework. Evaluating real-world networks is a time consuming tasks. In this thesis
we evaluated the basic functionality of the framework. There was no time left for further,
more realistic, evaluation scenarios. In the following paragraphs we will present areas for
future investigations in the three areas of network organization, event localization and event
classification.

Network Organization: The receiver-based backbone construction algorithm was evalu-
ated in small networks with up to 10 network nodes. Further real-world tests in larger networks
could be done. In our evaluation we have used grid topologies. Tests with randomly distributed
network nodes over larger areas could be done to get more information of the performance
characteristics of this algorithm in a more realistic environment.

Event Localization: The real-world experiments of the localization were done ina
network of four nodes. Events close to a sensor node producedhigher localization errors. To
prove that this error could be minimized in networks with more nodes the tests presented in
this thesis could be done in larger WSNs. Further event localization in non-grid-like network
topologies could be evaluated. A more complex real-world scenario such as a network with
randomly distributed network nodes could be evaluated.

Event Classification: The implementation and evaluation of the event classification
algorithm was done with light sensor readings. The evaluated classification algorithms would
be able to handle multidimensional inputs. This allows classifying more complex events,
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as for example an event which emits light and sound. Therefore, the implementation has to
be modified to support multidimensional classification. Furthermore, appropriate hardware
equipped with more sensors could be used.

The Receiver-Based Backbone and the DELTA framework have not been tested running
concurrently. To get a better overview over the performanceof the presented extended version
of DELTA a long time evaluation with larger networks and classification of more complex events
would be necessarily. The backbone support has to be integrated into DELTA for these long time
tests to see how event reporting over the CDS backbone and event detection, localization and
classification perform together.
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