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A B S T R A C T

The rise of smartphones and Wifi offers a new potential for Indoor Lo-
calization technology. Using Radio Signal Strength Indications (RSSIs)
of either WiFi access points or Bluetooth Low Energy (BLE) beacons
captured with a smartphone or an integrated platfrom the distance
to the emitting device can be estimated. Additionally, Inertial Mea-
surement Unit (IMU) data can be captured for step estimation. Using a
particle filter we can fuse this data to reduce the localization error.

This thesis presents and demonstrates a particle filter implementa-
tion on a cloud server accessible with thin clients over the WebSocket
protocol. This server also allows administration of a location, record-
ing of collected data and replaying stored and live computed positions
on a floorplan. Further, an iOS client collecting Bluetooth packets
is implemented and evaluated. The iOS implementation based on
iBeacons, however, did not deliever expected results as the ranging
data was too unstable and inaccurate to be useful for localization
purposes. The particle filter implementation with data from WiFi
ranging improved localization when compared to Pedestrian Dead
Reckoning (PDR) localization.
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1
I N T R O D U C T I O N

1.1 background

The Global Positioning System (GPS), originally developed for the
US Military and declared fully operational in April 27, 1995, is now
ubiquituous in our daily life. Countless applications in aviation, on
roads or marine and in tasks such as surveying and mapping under-
line the utility of the system [28]. GPS fundamentally relies on the
reception of signals transmitted by satellites. Conventional consumer
electronics will often fail to determine an accurate position in indoor
environments. New research in indoor positioning yields solutions to
this challenge.

This thesis is following up on recent work[4]. The proposed solution
makes use of WiFi RSSI values as captured by an Android mobile phone
to compute an approximate position. Due to Software Developement
Kit (SDK) limitations imposed by Apple it is currently impossible
to gather RSSI values of individual WiFi access points. Therefore,
WiFi cannot be used in indoor positioning systems with iOS. In 2013 iBeacon as a

replacement for WiFi
based positioning

Apple introduced iBeacon, a protocol for indoor localisation[10]. Using
specialized hardware (iBeacons) that continuously emits a BLE signal
instead of the WiFi access points might allow the same approach as
suggested by [4] to be used with iOS.

The computation of a position using a particle filter is resource inten-
sive. We, therefore, propose a server responsible for computation and
clients solely responsible for data capturing (herin called thin clients).
Server-based processing brings the advantage of greater processing
capabilities, thus, allowing for faster and more accurate computation.
An additional advantage of using a server for computation is that
only one implementation must be maintained vs. three individual
implementations on each client. In this thesis an iOS client for data
capture and a server implementation for computation is developed.

The client simultaneously captures RSSIs of iBeacons and IMU data,
then continously sends this data to the server. In parallel, two other
clients by Lucien Madl [22] and Stefan Serena [33] have been imple-
mented, which both capture WiFi data and IMU data and continously
send this data to the server. One client has been implemented on an
Android smartphone, while the other has been implemented on a
ESP32 microcontroller. All clients are expected to be implemented
against the same server.

On the server, three modules are implemented. The rotations mod-
ule receives IMU data, computes the device heading and determines

1



2 introduction

Figure 1.1: Conceptual overview of the system

a step vector. The ranging module computes the distance to access
points based on RSSI values. The results of these two modules are con-
sumed by the particle filter to compute a position. The entire track can
then be drawn on a map accessible through a browser. Additionally,
an admin panel to configure locations, devices, recorded tracks and
their ground truth was implemented.

1.2 contributions

This work presents a localization system consisting of a) thin clients
responsible for IMU and ranging data collection and b) a localization
server providing an interface for data gathering clients, an implemen-
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tation of a positioning algorithm, a graphical user interface for the
administration of a location and replaying of recorded and live tracks.

This thesis is part of a joint effort with Stefan Serena [33] and Lucien
Madl [22]. The goal is to provide a cloud-based centralized indoor
localization solution for multiple clients. The contributions of this
thesis are the following:

1. We implement and evaluate an iOS client that periodically sends
IMU data (accelerometer, gyroscope and magnetometer) and RSSI

values from iBeacons to the server for further processing.

2. We present and evaluate a particle filter implementation running
on a server to fuse the RSSI data and movement vectors.

3. We provide an implementation of a browser-based map to replay
stored and live tracks with their computed path, ground truth
path, trilaterated path and PDR path.

1.3 overview

This thesis is structured as follows: Chapter 2 gives an introduction
to the theoretical background of iBeacons and the usage of particle
filter’s for indoor localization and briefly discusses some related work.
Chapter 3 highlights some implementation details, chapter 4 evaluates
the performance and chapter 5 contains the conclusion.





2
T H E O R E T I C A L B A C K G R O U N D A N D R E L AT E D
W O R K

This chapter presents the theoretical background and introduces some
related work.

2.1 ble ibeacon

2.1.1 Bluetooth Low Energy

BLE has been introduced in the Bluetooth specification version 4.0
in 2010. It operates on the unlicensed 2.4 Ghz industrial, scientific
and medical (ISM) band. BLE distinguishes between advertisers and
scanners. Devices that transmit advertising packets are called advertis-
ers. Devices that receive advertising but do not have the intention to
connect to the advertisers are called scanner[2].

The iBeacon technology has been introduced by Apple with iOS7

in 2013 [40]. The technology uses BLE with a specific advertisement
packet. Devices with iBeacon technology (iBeacons) send an advertise-
ment consisting of a field with a size of 16 bytes called UUID and two
fields with a size of 2 bytes called Major and Minor. UUID is typically
the same for all iBeacons of a deployment use case. The Major/Minor
numbers can be used to define regions depending on the use case.
Further, it typically contains the calibrated signal strengths at a 1 meter
distance to estimate distances[13].

iOS provides Application Programming Interfaces (APIs) to receive a
notification when a device enters a region defined by one or multiple
beacons. For ranging Apple provides APIs to determine an estimated
proximity to a beacon indicated with four proximity states:

immediate indicates a high level of confidence that a device is
physically very close to an iBeacon.

near indicates a proximity of approximately 1-3 meters given line of
sight (LOS).

far indicates that a beacon was detected but the level of confidence
is too low to determine the states Near or Immediate.

unknown indicates that the proximity cannot be determined (e.g.
because there are insufficient measurements).

Additionally, for each measurment there is an accuracy property in-
dicating an estimate of the distance in meters and an RSSI property,

5



6 theoretical background and related work

which holds the average of the received RSSI values for a beacon since
the last reading.

Typically iBeacon hardware batteries last up to 6 months or more.
iBeacons are readily available by a number of manufacturers and can
be deployed easily.

2.1.2 BLE-based indoor localization systems

Martin et al.[23] have successfully demonstrated localisation with
iBeacons using an external server and particle filtering. In the test
setup three beacons were set up in a room where each beacon has
a distance of approximately 7 meters to the next beacon. On a path
within the triangle spanned by these three beacons, an average error of
0.53 meters has been achieved. Li et al.[20] have employed a Kalman
filter for indoor positioning with iBeacons. They deployed 36 beacons
and tested positioning at 15 fixed points over an area of approximately
600 square meters. For each coordinate, tests have been repeated
three times, resulting in an average error of 2.9 meters over all points.
Further Zhong et al.[42] used iBeacons for more precise localization
in the context of indoor Augmented Reality (AR). They observed a
relatively good performance at distances of 0-3 meters. In their setup in
an empty room of 6x6 m with 9 equally distributed beacons, resulting
in one beacon for each 3 meter circle, an error between 0.16-0.23 meters
was observed at five measured positions.

2.2 particle filters

2.2.1 Basics of Particle Filters

The Particle Filter is a filtering algorithm used for state estimation. In
this work it uses floorplan information, WiFi and IMU signals. We
initialize it using the tuple P as parameter.

P = (σ, µ, p, f , N, α, β, l, s)

The meaning of each parameter is the following:

σ is the parameter describing the variance of the normal distribution
used to assign probabilities to the particles.

p is a set of n particles where each particle consists of a vector and a
weight noted as p.position and p.weight.

f represents the floorplan as a set of vectors which represent all
inaccessible positions (e.g. because of walls).
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N is the effective sample size (NEFF) used to trigger resampling when
the particles have degenrated execessively. Degeneration de-
scribes the situation, where, after a few iterations, all but one
particle have negligible weight[1].

α represents the average angular offset to be used to generate move-
ment vectors of the particles given step vectors.

β represents the variance of the angle to be used to generate move-
ment vectors of the particles given step vectors.

l represents the average length offset of the step length to be used to
generate movement vectors of the particles given a step vector.

s represents the variance of the step length to be used to generate
movement vectors of the particles given a step vector.

The algorithm consists of several stages which are hereafter explained.

initialisation A set of particles p is randomly distributed ac-
cross the floorplan while inaccessible positions are avoided. If the
starting position is known, the particles are distributed around the
starting position. The weight assigned to each particle is 1

n .

update When new step vectors or ranging results are available, an
update is triggered. For each particle the step vector vs is multiplied
by s′ with s′ ∼ N (l, s) and rotated with α′ with α′ ∼ N (α, β). The re-
sulting vector shall be called v′s. The new particle’s position p.position′

is then

p.position′ = p.position + v′s

After moving the particles, their weights are recalculated and system-
atic resampling takes place. If a new ranging result from one access
point is passed, it is cached. Weight recalculation and resampling is
triggered once new ranging results of all access points are available.

Using the floorplan information of f we can disallow particles to
reach an invalid position. This case is formally described as

p.position′ ∈ f

If this is the case we want to set the particle back to the last possible
valid position along its projected movement path. Formally, we have
to find i ∈ [0, |v′s|] such that

p.position + i · v′s ∈ f

It may still be possible that a particle crosses a wall. If this is
disallowed, it may be possible that all particles are trapped in a room
if no particle exits the room (through an exit). We still want particles
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that are not affected by walls to be favoured. Therefore, we introduce
a weight factor w′ that is multiplied with the current particle weight.
It is defined as follows

w′ =
(

1
|v′s|

)2

· b1 · b2

where b1 is the distance the particle filter could not travel because its
new position would have been on a wall and b2 is the distance the
particle travels on a wall.

weight recalculation The recalculation consists of several
steps. First, an access node likelihood aij for each particle pi and access
node qj is computed using the following formula:

aij =
1√

2πσ2
e−

xj−|pi−qj|
2σ2 ,

where xj is the measured ranging distance to access point j and |·| is
the euclidian metric. In this case it computes the distance from particle
pi and access point qj. These values are weighted differently such
that values corresponding to an access node that is closer contribute
more towards the final result. For this the variable uj corresponding
to access point j is introduced:

uj =
x−1

j

∑0≤i≤m x−1
i

,

where m is the number of access nodes. The weight wi or particle pi is
then computed as follows:

wi = ∏
0≤j≤m

a
uj
ij ,

These weights are then normalized such that the sum of all weights
equals 1.

w′i =
wi

∑0≤j≤n wj
,

systematic resampling Systematic resampling describes the
process of eliminating weak positions and replacing them with stronger
ones. All particles with a weight lower than the given parameter are
collected in a set. Formally

N′ =
1
n
N

r = {p1, p2, . . . , pn′} =
{

p : p.weight < N′ ∧ p ∈ P
}

The new positions are then choosen among the remaining particles
v = p\r using a version of Stochastic Universal Sampling (SUS).
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Figure 2.1: w1, w2, . . . , wn represent particles weight. In this example 8 par-
ticles are chosen. The angle of the arrows represent the random
number R.1

The selection algorithm is schematically illustrated in Figure 2.1 and
can be described by the pseudocode in listing 2.1[34].

The positions of the returned particles are now applied to the
particles in r. The process ends with normalizing the particle weights
again and is repeated as long as

1
∑0≤i≤n pi.weight2 < N′

holds.

2.2.2 Particle Filter-based Indoor Localization Systems

Zhao et al. [41] have presented an indoor localization system using
a particle filter implementation with an average tracking error of 1.7
meters. This work applies the same concepts as presented in [41] to
a cloud-based localization system with an iOS smartphone and an
integrated platform as clients. In [8] a similar architecture with the
extension that a particle filter is used to calibrate the IMU was used.

Others have used a hidden markov model for localization using RSSI

and accelerometers[19].
Sung, Lee, and Kim [35] have achieved a localization error below

10cm using only a smartphone (iPhone 5s) for computation. They have
employed machine learning algorithms, Kalman filters and support
vector machines with RSSI measurements of iBeacons and WiFi access
points. While the best accuracy was achieved with particle filters, they
considered alternative methods more suitable due to significantly
faster computation. In this work we have instead used cloud com-
puting to circumvent computational constraints on smartphones and
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Listing 2.1: Pseudocode of stochastic universal sampling

SUS(Particles, N)

F := total weight of particles

N := number of particles to resample

P := distance between the weights (F/N)

Start := random number between 0 and P

Pointers := [Start + i*P | i in [0..(N-1)]]

return RWS(Particles,Pointers)

RWS(Particles, Points)

Chosen = []

for P in Particles

i := 0

while weight sum of Particles[0..i] < P

i++

add Population[i] to Chosen

return Chosen �
did not use machine learning for computation. The work of Lo et al.
[21] focused on multi-floor building incorporating elevators and stairs.
They propose a robust particle filter weighting mechanism and achieve
a good floor detection accuracy. Their problem statement is slightly
different from the problem statement of this work, as this work does
not include floor detection. A novel, multidimensional particle filter
has been introduced by Pei et al. [29]. Additionally, their heading esti-
mation incorporates floorplan information which allows computation
of path constraints for the vector computed by PDR. Using their multi-
dimensional particle filter, they have been able to reduce the 67th error
percentile by 4cm from 58cm to 54cm and the 95th error percentile by
35cm from 124cm to 89cm, when compared to an ordinary particle
filter as used in thiw work.

Rajeshirke and Dhage [31] have implemented a similar approach
to this work with a particle filter to fuse detected step vectors and
detected RSSI distances. In their evaluation they show the effect of
people in a room and tested with different smartphones.



3
D E S I G N A N D I M P L E M E N TAT I O N

3.1 server architecture

In this thesis, thin clients are employed for data collection. The idea
of a thin client is that it is optimized for establishing a remote con-
nection and does only minimal computation on the device itself. The
computation is done in realtime on a server. Computed positions
can optionally be sent to a browser based client and displayed on an
interactive map. Figure 3.1 shows a conceptual overview of the system
architecture. Three types of clients collect IMU data and RSSI data of
either iBeacons or wireless access points. This data is sent to the server
via WebSocket for storing and computation. Using experiment data
and user information, such as device specific ranging models and
floorplan information, a position is computed. The rotations module
computes a step vector, the ranging module computes access point
distances and the particle filter computes the final position by fusing
this data. A position update is then sent via WebSocket to a browser.
A more in depth description can be found in [33]. As part of this
work, the architecture has been extended to allow recording of tracks.
Additionally, recorded tracks can be annotated with ground truth
positions reached. These known ground truth positions reached at a
known time are herein called waypoints.

3.2 bluetooth client

While the work of Zhao et al. [41] employed Android clients to collect
RSSI of WiFi access points, this thesis seeks to extend the approach
to iOS clients. A search on stackoverflow reveals, that Apple will not
allow to access this data[6, 14–17, 26, 27]. Apple had apps such as WiFi
scanners using this functionality in 2010. Using private APIs it may
still be possible to implement this functionality, but any application
making use of it would not be allowed in the AppStore[12]. For this
reason this client only implements collection of RSSI of iBeacons. This
is the approach Apple recommends for localization tasks using iOS.

3.2.1 Available iBeacons

The term iBeacon stands for the BLE-based protocol developed by
Apple as well as hardware compatible with the iBeacon protocol.
Apple does not produce iBeacons themselves, but instead instead
allows certified manufactures to build and sell their own iBeacons.

11



12 design and implementation

Figure 3.1: Conceptual overview of the system architecture.
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Figure 3.2: A selection of available iBeacons[24]

Currently there are a number of different iBeacons with different
properties available. As shown in Figure 3.2, they come in various
sizes, shapes and colors. While most iBeacons feature relatively small
internal batteries, some vendors produce iBeacons that are powered
by USB or power outlet. Typically the firmware allows control over
transmission power and advertising interval. Most manufacturers use
either a Gimbal, Nordic, Bluegiga or TI CC254x chipset. For this thesis
we chose to work with Estimote iBeacons. Besides an iPhone app to
edit the parameters, the Estimote iBeacons feature a web admin panel
and supports a number of other BLE-based protocols such as Google’s
Eddystone.

3.2.2 iOS Client Development Stack

The iOS client depends on the following software and libraries:

swift The language used to program the iOS application. It runs on
all current versions of iOS and is the successor of ObjectiveC. It
is also used to program Apple Watch applications, iPad appli-
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cations and Apple TV applications. Swift features a completely
new syntax.

ios The operating system used on the iPhone. Specifically, we were
developing for iOS 11.3. Later versions, such as the current iOS 12

have not been tested. In principle the app should be compatible
with iPads but its design has not been optimized for it.

pods Pods are used as the package manager for iOS applications.
Specifically, we have used it to include current versions of the
Estimote SDK as well as the Dropbox api and WebSocket API.

3.2.3 Goal/Design of the client

The iOS client fullfills the following purposes:

1. At early stages of developement we had to gather IMU and
RSSI data for manual analysis on a computer. To faciliate this
purpose, a specific user interface (UI) and functionality for data
recording and uploading was implemented. It allowed recording
IMU and RSSI data to a file that is subsequently uploaded to a
Dropbox. The UI featured a start/stop button, an input field
for the filename and an additional button to add a reference at
the current time in the recorded file. During the recording, the
currently recorded values were displayed in textfields.

2. To verify that all iBeacons as well as the application are function-
ing properly, a sepearate page in the app was added to display
a list of iBeacons in the vincinity and their measured distance.

3. Originally, it was intended to show the position of the device on
a map on the iPhone. Some developement went into the UI for a
map, but later it was decided to use a browser instead.

4. The client had to upload its measured values in real time via
websocket. Another page with a “connect” button to set up a
connection with the server and a “start” button to start uploading
captured values was added. An additional button allowed to
add a reference in the current recording.

3.3 particle filter for position computation

The particle filter receives data from the rotation and ranging compo-
nents. Specifically, a step vector is passed whenever a step is detected.
The ranging component forwards all computed distances to the indi-
vidual access points. In this section some of the concepts are explained.
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Figure 3.3: The Bresenham line rendering algorithm[3].

3.3.1 Step Vector Computation

The step vector component detects steps based on IMU data. An in-
depth description of the used module to detect and generate a step
vector is available in [22]. Once a step has been detected, the particle
filter receives the computed step vector. The vector is implemented as
an object with its coordinates saved as a NumPy array[18]. It overrides
functions and algebraic functions, such as +, −, ∗, / with scalars or
vectors. This simplified programming of vector manipulations such as
adding a vector to another or stretching a vector by a scalar.

Walls are stored in a 2D grid. In order to avoid that the computed
position is on a wall and therefore invalid, we had to check, whether
any part of the step vector touches a wall. For this computation the
projected step vector is decomposed into multiple smaller vectors.
For this we used the Bresenham line rendering algorithm shown in
Algorithm 3.1[3]. Figure 3.3 shows all grid cells touched by a step
vector as computed with the Bresenham line rendering algorithm.

The input vector is first transformed to the octant 1 (Figure 3.4). The
functions _input_vector_transformation(octant)and
_output_vector_transformation(octant)transform the vector to the
octant 1 and transform it back to the original octant. The function then
iterates over the x coordinates of the input vector. If it determines that
increasing the y coordinate results in a vector closer along the input
vector it will increase the y coordinate.

Listing 3.1: Bresenham line rasterization variation

def _simple_bresenham(self, vector: Vector) -> List[Vector]:

"""Returns all positions of the boxes if vector is

rendered with Bresenham

Args:
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Figure 3.4: The octants of a plane[30].

vector (Vector): The vector from which to compute

the positions

Returns: The positions of each box on the path of the

input vector.

"""

octant = self._determine_octant(vector)

output_transfromation = self._output_vector_

transformation(octant)

vector = self._input_vector_transformation(octant)(vector

)

positions = [] # type: List[Vector]

d = 2 * vector.y - vector.x # type: int

y = 0 # type: int

for x in range(0, int(vector.x) + 1):

positions.append(output_transfromation(Vector(x,

y)))

if d > 0:

y += 1

d -= 2 * vector.x

d += 2 * vector.y

return positions �
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Figure 3.5: Floorplan on the left is used in the algorithm, floorplan on the
right is used for display.

3.3.2 Floorplan Representation

The floorplan of a map is uploaded to the admin panel in two versions.
One version is used to display on the map on the frontend and may
contain all helpful features for orientation typically available on a
floorplan such as door marks. A second version is a black and white
representation of exactly the same dimensions. In this version all
positions that are impossible positions for the client such as walls and
positions outside the building are black while everything else is white.
Figure 3.5 shows a comparison of both versions of the floorplan. This
image is then computed to a boolean array which is used to check the
validity of a particle.

3.4 display client map

In order to show the computed positions of a recorded track or the
current position of a device, a map was implemented. This allows to
evaluate the particle filter’s performance and detect potential prob-
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lems. In this section the implementation and features of the client are
explained.

3.4.1 Display client implementation

There have been a number of technologies and libraries used. These
will be presented in this section. In general the map is built for the
browser environment.

typescript Typescript is programming language used in the browser
to display and animate the map. It is a typed superset of JavaScript
that compiles to plain JavaScript[37]. The language is developed
by Microsoft and is open source. The disadvantage of the ad-
ditional compile step required for execution in the browser is
more than compensated by potential bugs that can be avoided
because of available type information[9].

fabric .js Fabric.js is an HTML5 canvas library. It makes it simple
to draw paths, particles, access points and circles on the floor-
plan[7].

websocket The WebSocket protocol[38] was used for transmission
of the location and ranging data. It allows for a two-way com-
munication, which allows the server to directly initiate a stream
of data without the client having to poll the server, which would
be the case with AJAX requests. This reduces the latency and
enables near realtime replay of a position[36].

npm This is short for Node package manager which is used to install
the dependencies[25].

webpack Webpack compiles and bundles JavaScript modules. It is
mainly used to compile Typescript[39].

class-transformer This is a simple library to convert JavaScript
plain objects (JSON) to class objects[5].

3.4.2 WebSocket Communication between Server and Display Client

Figure 3.6 shows the communication of the map with the server. The
process is initialized when the user opens the webpage on
http://<server>:8100/track-id/<id> with <server> being the ip or domain
of the deployment server and <id> the id of the track that is to be
displayed. The server will then deliever the relevant HTML file after
which the client renders the website and loads all required dependen-
cies such as javascript files and images. After the browser finished
loading, a GET request is sent to the WebSocket server. Note that both
servers run on the same server instance, they simply have different
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:StaticServer :Browser :WebsocketServer

get-id/<id>

html
PrepareDOM()

GetAssets()
js+img
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Figure 3.6: WebSocket communication
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handlers. The server returns a JSON object with the following four
keys:

location contains an object with information about the floorplan
such as the image to be loaded, the map dimensions and scale,
gps coordinates as well as the name.

ranging_devices is an array of all access points on the floor in-
cluding their identifier and position.

ranging_locations : This array contains the positions used to
generate the ranging model.

tracking_devices is an array with the devices that are of inter-
est and their initial position. This may be used to render the
position of multiple devices but for the current track rendering
mechanism only one element is used.

After successful rendering of the inital map a request to the server is
made to start the reception of data. The server now sends a continuous
stream of JSON data packages containing the following keys:

timestamp The epoch timestamp of the original measurement.

positions : An object containing positions to be rendered on the
map. The following keys may be provided:

rssi_trilaterated A vector with the position with RSSI tri-
lateration only.

particle_filter is the position computed by the particle fil-
ter.

particles is an array of positions with all particles.

pdr are the vectors computed by the step recognition compo-
nent.

ranging An object containing identifiers of access points and their
measured distance in pixel and meter.

3.4.3 Features of the Display Client

The map can dispaly the following featues of either a recorded track
or a live position:

access point A colored dot representing a WiFi access point.

ranging circles describe the distance computed by RSSI values
of an access point. Radius is animated over time. Color of the
stroke corresponds to the color of the access point.
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Figure 3.7: Map live drawing showing waypoints, ranging circles and paths
(as described in section 3.4.3)

exact path When a track with waypoints and corresponding num-
bers was recorded, the path that represents the ground truth is
drawn over time.

floorplan The floorplan as an image on the background.

particles Particles with the current position and a color intensity
corresponding to its weight.

computed path is the path computed with the particle filter.

walked path is the PDR path as computed with the accelerometer,
gyroscope and magnetometer which serve as input to the particle
filter.

trilaterated path : Each time a new ranging value is available a
position is computed using trilateration.

waypoints After a waypoint is passed, a marker with the associated
waypoint number is positioned on the map. This allows the user
to see and trace the offset of previous positions.

Figure 3.7 shows a path being replayed. The latest path update is fully
colored while later sections of the path are more transparent in order
to keep the current position visible.
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E VA L UAT I O N

4.1 ios client

In this section the performance of iBeacons sampling rate and signal
strength is evaluated. For comparison, an ESP32 measuring WiFi
signals was used. Details for the ESP32 can be found in [33].

4.1.1 Experimental setup

The experiments were conducted in the seminar room, 3rd floor of the
Institute of Computer Science at the University of Bern. Six iBeacons
were positioned in the room with a maximum distance of 4 meters
between them. 15 positions in the room were choosen to create a
regression model using the ranging admin panel [33, Section 3.1.2].
The procedure required to take measurements at each position while
facing north, easth, south and west direction for 15 seconds. The
results were sent to a server running on a laptop using WebSocket.
Figure 4.2 shows the iBeacon setup. The iBeacons were set to transmit
a paket every 250ms at 0dBm. Thus the iPhone should receive four
pakets per iBeacon each second. Apple’s SDK limits the number of RSSI

measurements to one per second. If more pakets are received more
frequently, the RSSI measurements are aggregated into a single mea-
surment. Therefore, it is theoretically possible to see 60 measurements
for each iBeacon.

4.1.2 Presentation of the results

We analysed our results and summarized them in three graphs. In the
graphs each point represents one 60 second sample for one position
and one beacon. The x-axis shows the distance between the measuring
position and the beacon position. In other experiments similar data
was collected using WiFi access points [33]. In their experiemnts
data was captured at 48 locations with an ESP32 using the same
procedure described previously (Figure 4.1). We include these results
for comparison.

• Figure 4.3 shows the number of captured measurements during
the 60 seconds capture interval.

• Figure 4.4 shows the average signal strength of the iBeacons

• Figure 4.5 shows the standard deviation of the iBeacon RSSI

23
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Figure 4.1: Floorplan shows the ranging experiment setup with WiFi access
points.

Figure 4.2: Floorplan shows the ranging experiment setup with iBeacon.
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Figure 4.3: Number of datapoints per measurmenet by distance to device
(cm). Blue dots show the iBeacon measurements, the orange dots
show the ranging results of ESP32 tests.

4.1.3 Discussion of the results

On the first figure (Figure 4.3) we notice that many measurements led
to zero or a very low number of captured datapoints. There appears
to be a weak, negative correlation between distance and number of
captured datapoints. By comparison, in the experiments with the
ESP32 and WiFi access points the number of captured datapoins were
consistently around 30 to 40, even when the distance increased.

When evaluating the signal strength (Figure 4.4), we notice a num-
ber of results with 0 dBM. This is due to the Apple SDK which returns
a RSSI value of 0 when no pakets are received. These values are in-
consistent with the results of the ESP32 experiments, where a clear,
negative correlation between RSSI and distance is recognized.

4.2 patricle filter

In this section the evaluation of the particle filter algorithm with an
ESP32 client is presented.
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Figure 4.4: Average iBeacon signal strength by distance (cm). Blue dots show
the iBeacon measurements, orange dots show the results of rang-
ing tests with an ESP32.

4.2.1 Experimental setup

The following sections describe the detailed procedure of the experi-
ments.

4.2.1.1 Path recording

The experiments were conducted in an office area at the Institute of
Computer Science at the University of Bern. The projected path spans
over 7 rooms. A total of 6 WiFi access points were used for testing. The
testing device was an ESP32 client that has been previously used and
trained at the same location. The test setup involved a laptop on which
the WebSocket server was running and a smartphone that provided a
WiFi hotspot for the two devices to communicate. Once the server was
running, one person walked a defined path holding the ESP32 slightly
above waist height. A second person carrying the laptop followed the
person to ensure maximum connectivity between the ESP32 and the
server. This experiment was repeated three times. The path consists of
15 waypoints. Figure 4.6 shows the path and the 6 WiFi access points
as colored dots. Each time a waypoint was passed, a physical button
on the ESP32 was pressed. This incremented a variable corresponding
to the last passed waypoint, which is included in the data sent to the
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Figure 4.5: iBeacon signal strength standard deviation by distance (cm). Blue
dots show the iBeacon measurements, orange dots show the
results of ranging tests with an ESP32. Best viewed in color.

server. Later a change of the counter variable is used to recognize that
the ESP32 has passed a waypoint.

4.2.1.2 Data annotation

Through the admin interface the positions of the waypoints were
added. With the recording of the last passed waypoint (through press-
ing a button), the ground truth is known for all waypoints. Figure 4.7
shows the admin interface, where waypoints (ground truth positions)
can be added. The flag can be dragged and dropped onto a position
on the map. The number on the dropped marker corresponds to the
recorded waypoints.

4.2.1.3 Particle Filter Parameters

The used ranging model has an average error of 1.07m and a standard
deviation of 1.33m. Initially, it was intended to compute the Pedestrian
Dead Recognitioning (PDR) path using contributions of [22]. However,
it appeared to be impossible to use this module for with data recorded
with the ESP32 instead of the Android phone it was tested with.
Developing our own PDR module was out of scope for this thesis.
Therefore we decided to synthetically generate the PDR path. By using
synthetically generated paths it is possible to examine the effect of the
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Figure 4.6: Base path

Figure 4.7: Waypoints interface
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PDR path error on the localization performance of the algorithm. To
generate the synthetic path we used the following procedure:

• We split the ground truth into 0.7m sections which are the
estimated step the person holding the ESP32 did.

• We rotated each estimated step vector with r ∼ N (α, β)

• We stretched each estimated step vector by multiplying the
vector with s ∼ N (l, s)

Table 4.1 shows the properties of the tested PDR paths. These PDR

paths have been generated for all three recorded paths (containing RSSI

measurements) resulting in a total of 18 paths available for particle
filter evaluation.

Properties Track 1 2 3 4 5 6

Step length factor offset l 1 1 1 1 1 1

Step length factor variance s 0.2 0.2 0.2 0.2 0.2 0.2

Step rotation offset α 1◦ 2◦ 3◦ 4◦ 5◦ 6◦

Step rotation variance β 5◦ 10◦ 15◦ 20◦ 25◦ 30◦

Table 4.1: Tested PDR paths

Figure 4.8 shows the generated paths on the floorplan. The error is
computed by summing the Euler distance of each waypoint In this
figure we can see that the total PDR increases the longer the path is.
Since the particle filter is not deterministic due to randomness in the
systematic resampling step (see 2.2.1), 5 particle filter paths have been
generated.

4.2.2 Presentation of the results

Figure 4.9 shows the average error of the particle filter and the PDR

path by number of particle. Each point represents the average error
over 15 tracks.

Figure 4.10 shows the average error for the last waypoint only.
Figure 4.11 shows the average error at each waypoint.

4.2.3 Particle Filter evaluation results

We can not observe any improvement of the error by increasing the
number of particles. Fluctations are attributed to the randomness in
the particle filter algorithm. PDR paths with a higher deviation tend to
perform worse than the PDR paths with a lower deviation. The total
error of the particle filter paths becomes higher than the PDR path
error once the PDR becomes more exact.
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Figure 4.8: Generated PDR paths. Best viewed in color.

Figure 4.9: Total average error by number of particles. Best viewed in color.
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Figure 4.10: Average error at last waypoint by number of particles. Best
viewed in color.

Figure 4.11: Average error by waypoint. Best viewed in color.
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Figure 4.12: Localization CDF. The green line shows the particle filter, blue
line shows the triangulated, the orange path shows the PDR

perfomance. The average of all tracks is used. Best viewed in
color.

For the average error of the last waypoint only the particle filter
error is - apart from the exactest PDR path - consistently lower than
the corresponding PDR path. In this case we can also observe that
increasing the number of particles does not show any effect.

In Figure 4.11 on page 31 we observe that the PDR error is more
precise in the beginning of the path and tends to decrease as the track
progresses. The particle filter track is, in most cases, performing better
than RSSI trilateration. The accuracy of the of the PDR path has only
little impact on the particle filter error.



5
C O N C L U S I O N

5.1 summary

In this work, we presented and evaluated three components of a
client-server based localization system.

We implemented an iOS client for iBeacon signal capture and send-
ing data to a server via a Websocket connection. We evaluated the
performance of the client. We found that the performance in the testing
environment was inadequate for localization tasks.

Further, we implemented a particle filter implementation to fuse
ranging data and PDR path for an improved localization. The particle
filter improves the positioning when compared to PDR . When com-
pared to RSSI trilateration the localization can be slightly improved
in cases where the trilateration with RSSI shows large fluctuation in a
short time frame.

Additionally, we provide an implementation for a floorplan map. It
is capable of showing a live representation of the particle filter state,
PDR data and ranging data. With our extension to the admin interface
we provide a simple way to annotate experiment data with ground
truth.

5.2 future work

In future work other BLE protocols for proximity beacons such as
Google Eddystone[11] may be implemented. Further tests with iBeacon
may be carried out using other devices such as Android phones or
integrated platforms. A number of promising work with iBeacon’s has
already been conducted [20, 23, 35].

Further, the multi dimensional particle filter approach of 2018 could
be implemented into this system.
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