
 

  
Abstract— Communication between sensors and controlling 

entities at the edge or outside the sensor network is needed for 
reliable remote sensor node management and reprogramming. 
TCP would be useful for tasks, where reliable unicast is 
appropriate, but the high bit error rates in wireless sensor 
networks lead to energy inefficiencies reducing the sensor 
network lifetime. We introduce an approach to support energy-
efficient TCP operation in sensor networks. The concept called 
TCP Support for Sensor nodes (TSS) allows intermediate sensor 
nodes to cache TCP data segments and to perform local 
retransmissions in case of errors. TSS does not forward a cached 
segment until it knows that the previous segment has been 
successfully received by the next hop. This forms a backpressure 
mechanism for congestion control. Simulations show that TSS 
significantly reduces the number of TCP data segment and 
acknowledgement transmissions. 

Index Terms—Transport Control Protocol, Wireless Sensor 
Networks, Congestion Control 

I. INTRODUCTION 
pplications in wireless sensor networks (WSNs) typically 
require external connection to monitoring and controlling 

entities (sinks), which consume sensor data and interact with  
sensor devices. By running TCP/IP on the sensors a single 
standard protocol suite can be used and the sensor network can 
be directly connected to IP-based network infrastructures 
without proxies or middle-boxes. Data to and from the sensor 
network can be routed via any device with Internet 
connectivity (e.g. using GPRS) rather than via protocol proxy 
nodes only.  Further, experiences from industrial researchers 
point out that using a standard such as TCP/IP for (on-body) 
WSNs has facilitated application development and system 
integration in terms of data collection and configuration [1]. 
While high packet loss rates and energy-inefficiencies limit 
the incentive of utilizing TCP in today’s WSNs, we believe 
that advances in radio technology can decrease packet loss and 
energy harvesting can reduce the energy problems. Then, there 
will not be any reason not to use TCP/IP and abstain from a 
widely used standard that provides interoperability and is well 
understood by numerous practitioners and system 
administrators. In this paper we discuss problems with TCP/IP 
in today’s WSNs and propose mechanisms that both turn 
TCP/IP into a viable option even for today’s sensor networks 
and provide performance enhancements in tomorrow’s WSNs.  

While UDP may be used for transferring sensor data and 
other information that do not need reliable stream transport, 
TCP should be used for administrative tasks that require 
reliability and compatibility with existing application 
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protocols. Examples for using TCP are configuration and 
monitoring of individual sensor nodes as well as download of 
binary code and data aggregation descriptions to sensor nodes. 
In particular, downloading code to designated nodes such as 
cluster heads in a certain geographical region requires a 
reliable unicast protocol. TCP can also be used for multicast 
communications based on overlay multicast using TCP for 
establishing overlay network links [22]. Tree topologies might 
have to be established then. This might also be applicable for 
convergecast scenarios such as for collecting sensor data.  

In contrast to a common belief that TCP/IP implementations 
consume too many sensor resources, it has been shown that 
TCP/IP can be implemented on sensor nodes with limited 
processing power and memory [2]. TCP/IP may result in 
relatively large headers that may add significant overhead in 
case of short packets, but we assume that TCP is mainly used 
for configuration and programming tasks, where a rather high 
amount of data is transferred and packets become rather large. 
Nevertheless, we propose to develop a TCP/IP header 
compression scheme for sensor networks to address the header 
overhead issue. Due to the stateful approach proposed in this 
paper such a scheme should be feasible, but we leave this 
issue for future work. Other problems to be solved for TCP/IP 
in sensor networks are related to addressing. IP-based sensor 
networks may use spatial IP address assignment based on node 
locations, which might be relative to a base station location 
[3]. Data centric routing mechanisms are often preferable in 
wireless sensor networks [4]. To implement data centric 
routing in IP-based sensor networks, application overlay 
networks might be used.  

TCP has been designed for wired networks with low bit 
error rates, interprets packet loss as congestion and thus 
decreases its transmission rate. Therefore, TCP has serious 
performance problems in wireless networks [5]. While this 
results in undesired but for this kind of networks not per se 
problematic low throughput, the main problem for sensor 
networks operating autonomously with constrained power 
supply is the energy-inefficient end-to-end retransmission 
scheme of TCP. In a multi-hop network, retransmitted packets 
must be forwarded by all intermediate nodes from sender to 
receiver, thus consuming energy at every hop. In general, end-
to-end error recovery is not a good approach for reliable 
transport in sensor networks, because the per-hop packet loss 
rate may be in the range of 5% to 10% or even higher [6][9]. 

In this paper we introduce and evaluate TCP Support for 
Sensor nodes (TSS) [7], an approach that overcomes energy 
efficiency and performance problems. TSS is based on TCP 
data segment caching by intermediate nodes, local 
retransmissions after packet loss detection, aggressive TCP 
acknowledgement recovery, and backpressure congestion 
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control. TSS does not require any changes to TCP 
implementations at end points. While in [7] some of these 
mechanisms have been introduced and a TDMA-based 
network has been assumed, the contribution of this paper is the 
more detailed performance evaluation of the TSS mechanisms 
over a CSMA/CA based MAC layer,. The TSS concept has 
been improved and addresses problems that occur in 
CSMA/CA based WSNs.  In particular, we investigate 
whether round trip time measurements between intermediate 
nodes and the destination can be used for setting 
retransmission timers. We also evaluate the usefulness of 
implicit acknowledgments that might require costly 
overhearing. Our simulations show that the overhearing time 
is short, making overhearing more energy-efficient than 
implementing explicit link level acknowledgements. A key 
contribution of this paper is the evaluation of the inherently 
included congestion control scheme, which automatically 
reduces the maximum congestion window to values proposed 
by related work. This is achieved without knowledge of the 
network topology.  

While TSS focuses on TCP support, several protocols for 
reliable data transfer in sensor networks introduce new 
transport protocols and do not attempt to support TCP 
operation. Section II gives an overview about related work. 
We introduce TSS in Section III. Section IV describes 
performance results for reliable TCP data transfer across a 
multi-hop WSN using TSS. Section V concludes the paper. 

II. RELATED WORK 
TSS extends ideas introduced by Distributed TCP Caching 

(DTC) [8], which is a generalization of the Snoop [5] protocol. 
DTC aims to avoid energy-costly end-to-end retransmissions 
by caching TCP data segments inside the network and 
retransmitting segments locally, i.e., from the intermediate 
sensor nodes’ caches, when packet loss occurs. DTC assumes 
limited memory resources available for caching and proposes 
to cache a single segment per node. TSS mainly differs from 
DTC by the backpressure mechanism that keeps segments in 
the cache until a node knows that the previous segments have 
been received by the next hop node. This allows implementing 
a congestion control mechanism based on backpressure signals 
at the TCP sender. TSS does not use TCP options such as 
selective acknowledgements and retransmissions and hence 
requires less re-sequencing buffers at the receiver. 

Reliable Multi-Segment Transport (RMST) [9] is used for 
sensor data transfer but not for control data transfer such as 
targeted by TSS. It can provide a caching mechanism within 
the intermediate nodes, but requires additional negative 
acknowledgement (NACK) messages. As a reaction on NACK 
messages, an upstream node can retransmit cached packets. 
RMST assumes a limited number of bytes in flight (< 5 KB) 
and that intermediate nodes can completely cache this amount 
of data. For packet loss rates below 10 % the combined 
caching and NACK mechanism is more efficient than pure 
link level ARQ approaches. On the other hand, processing of 
NACK messages in end points only is extremely inefficient 
for packet loss rates above 10 %. The design principles of TSS 

are consistent with these results. In contrast to RMST, TSS 
caching and local retransmissions rely on information from 
TCP packets only.  

Pump Slowly Fetch Quickly (PSFQ) [6] is a reliable 
transport protocol for reprogramming sensor nodes. The pump 
operation aims to support quick forwarding in case of no 
errors and behaves like a store and forward approach for high 
error rates. It is based on broadcasting packets hop-by-hop 
from source to destination. While packet forwarding based on 
broadcasting has advantages in dynamic environments such as 
mobile ad-hoc networks and networks with unsynchronized 
sleep cycles [10], simulation experiments have shown that 
already a few packet losses due to congestion or bit errors can 
cause many duplicated packets resulting in unnecessary packet 
reception, processing and transmissions. The backpressure 
mechanism of TSS has a similar effect as the PSFQ pump 
operation: Packet forwarding will be slowed down as soon as 
errors are detected by the intermediate nodes. While PSFQ is 
focusing on code distribution using broadcast, TSS rather 
targets on communication with single nodes or smaller groups. 
PSFQ introduces NACK messages for proactively fetching 
retransmissions, while TSS supports standard mechanisms 
based on TCP acknowledgements and timeouts.  

Event-to-Sink Reliable Transport (ESRT) supports reliable 
sensor data transport in WSNs [11]. It includes congestion 
control and mechanisms to achieve reliability based on status 
report transmissions from the sink back to the source. The 
frequency of the status reports depends on the observed and 
desired reliability as well as the needs from congestion 
control. As for PSFQ, a special protocol has been proposed, 
while no transport protocol extensions are required in TSS.  

Congestion control is very important in WSNs, because 
overloading a WSN by too many transmissions can increase 
the collision probability. Collisions lead to packet loss as well 
as costly retransmissions. TCP congestion control limits the 
maximum window size according to slow start congestion 
control. However, it even might make sense to further limit 
the maximum congestion window, because the optimal 
window size in terms of throughput might be below the 
window size of standard TCP [12]. TCP’s optimal throughput 
for a chain scenario is achieved when its window size is h/4 
(h: number of hops). The backpressure mechanism used in 
TSS has a similar effect and limits the packets in transit, but 
without explicitly knowing the number of hops. Congestion 
Detection and Avoidance (CODA) [13] is based on congestion 
detection by monitoring channel utilization and buffer 
occupancy at the receiver. Detected congestion situations are 
signalled using backpressure signals towards the source, 
which then throttles down the transmission rate (open loop). 
Alternatively, sources regulate themselves on a longer time-
scale based on acknowledgements received from the sink 
(closed loop). In contrast to TSS, CODA requires new 
signalling messages.  



 

III. TCP SUPPORT FOR SENSOR NODES 
TCP Support for Sensor nodes (TSS) aims to support 

energy-efficient operation of sensor nodes and forms a layer 
between TCP and the routing layer. TSS should ideally be 
implemented in TCP sensor nodes with senders and receivers 
as well as in intermediate sensor nodes that relay TCP data 
segments and acknowledgements of a TCP connection. TSS 
mechanisms do not require explicit link or MAC level 
acknowledgements, but only rely on TCP data segments and 
acknowledgements. This approach further reduces the amount 
of transmissions and can be used on top of any kind of sensor 
network MAC layer. By ensuring in sequence arrival of TCP 
data segments at the destination, TSS avoids any re-
sequencing buffer and selective acknowledgement / 
retransmission extensions in TCP. TSS tries to reduce the 
number of transmissions by the following mechanisms.   

A. Caching 
An intermediate node caches a segment until it is sure that 

the successor node towards the destination has received the 
segment. A node knows this when it detects that the successor 
node has forwarded the segment (implicit acknowledgement) 
or when it spoofs a TCP acknowledgement that has been sent 
from the destination toward the source of the TCP data 
segment. Nodes are assumed to listen to packet transmissions 
of their neighbour nodes in order to be able to detect whether 
the neighbour nodes have forwarded TCP data segments. A 
packet that is known to be received by the successor node will 
be removed from the cache. In addition to the cache, TSS 
requires another (packet) buffer for temporarily storing the 
next packet that is waiting to be forwarded to the successor 
node. One might argue that forcing sensor nodes to overhear 
packets does not support energy efficient operation. An 
alternative would be explicit link level acknowledgements. 
However, this would not only require the node to listen and 
receive but also the successor node to transmit an additional 
acknowledgement packet. With our overhearing solution, a 
forwarding node should only listen to other’s transmissions for 
a very short time. Typically, a packet will be forwarded 
immediately by the successor node and only in case of packet 
loss a node must overhear for the whole retransmission 
timeout interval. The performance evaluation in Section IV 
shows that the overhearing costs are very low. 

B. Local Retransmissions of TCP Data Segments 
All intermediate nodes are able to perform local 
retransmissions, when they assume that a cached segment has 
not been received by the successor node towards the 
destination. Retransmissions are triggered by carefully set 
timeouts. A retransmission timeout of 1.5 * rtt allows 
repairing even multiple packet losses before an end-to-end 
retransmission timeout is triggered. Simulations showed that a 
timeout of 2 * rtt performs slightly worse. The maximum 
number of local retransmissions has been limited to four. Bit 
errors or packet loss can cause duplicated packets in the 
network. Forwarding of duplicated packets can be prevented 
by a small history list consisting of the last few (here: ten) 

forwarded packets to filter out all segments that have been 
forwarded previously. TCP data segments can be uniquely 
identified by the source address and the IP identification field. 
End-to-end retransmissions should not be filtered in order to 
support end-to-end recovery in serious error situations. 

C. Regeneration and Recovery of TCP Acknowledgements 
TCP acknowledgements are very important for TSS, since 
several mechanisms such as round-trip-time estimation, 
retransmission, and caching depend on it. Experiments showed 
that loss of acknowledgements may have severe impact on the 
amount of TCP data segment transmissions. TSS deploys two 
mechanisms that help to decrease the number of TCP data 
segment transmissions significantly: a local TCP 
acknowledgement regeneration mechanism (like DTC) and an 
aggressive TCP acknowledgement recovery mechanism. The 
local TCP acknowledgement regeneration mechanism 
becomes active when a node receives a TCP data segment, 
which has already been acknowledged by the destination: The 
TCP data segment is dropped and a TCP acknowledgement 
with the highest acknowledgement number seen is regenerated 
and transmitted toward the source. The aggressive TCP 
acknowledgement recovery mechanism retransmits TCP 
acknowledgements, if a node has not discovered the 
forwarding of the TCP acknowledgements by the successor 
node. Since TCP acknowledgements should usually be 
forwarded without significant delay towards the sender of 
TCP data segments, each node measures the time between its 
own TCP acknowledgement transmission to the successor 
node and overhearing of TCP acknowledgement transmission 
from the successor node towards the TCP data segment sender 
(source). The TCP acknowledgement retransmission timeout 
is set to the double average value (using exponential 
averaging). After timeout expiration, a TCP acknowledgement 
is recovered using the highest acknowledgement number seen.  

D. Backpressure Congestion Control 
If the successor of a node has not forwarded all received 

packets, there might be a problem in the network. For 
example, the network might be congested or packet 
forwarding does not make progress, because a previously lost 
TCP data segment needs to be recovered first. If a node would 
continue with packet forwarding in case of congestion, the risk 
of unnecessary transmissions would be rather high. A 
forwarded segment might easily get lost then. The same is true 
in case of a lost packet due to bit errors. In such a situation all 
caches on subsequent nodes are occupied and the transmission 
of a new packet would not be protected by caching. For that 
reason, a TSS node stops any forwarding of subsequent 
packets until it knows that all earlier packets have been 
received and forwarded by its successor. Successful 
forwarding can be detected by overhearing the forwarded 
packet or by detecting a TCP acknowledgement for that TCP 
data segment. If packet forwarding stops at some point, all 
other nodes in the chain behind the stopping node will also 
stop their transmissions until progress is detected at their 
respective successor nodes. A lost packet (due to congestion 
or bit errors) should be recovered by the node that forwarded 
the packet at last. In that case, we have to avoid that 
retransmissions are triggered by nodes behind the recovering 



 

node, i.e., the nodes closer to the sender. This can be achieved 
by increasing the retransmission timeouts at the nodes closer 
to the sender. The backpressure mechanism should be 
supported at the sender end point. We propose to not increase 
the TCP congestion window as long as there are a certain 
(here: three) number of packets waiting at the sender for 
transmission.  

E. Pseudo Code 
The operation of a TSS node in an intermediate system is 

presented in more detail by the C-like pseudo code below. The 
first part (1) describes acknowledgement timeout processing, 
i.e., when the node has not detected the forwarding of an 
acknowledgement by the next node towards the source. This 
implements the aggressive recovery scheme for TCP 
acknowledgements. The second part (2) shows processing of a 
TCP data segment retransmission timeout. Retransmissions 
are only performed, if the data to be retransmitted have not 
been confirmed by an implicit acknowledgement or by an 
explicit TCP acknowledgement. The main part (3) describes 
processing of received TCP acknowledgement and data 
segment packets. Part 3a describes normal processing, when a 
TCP data segment or a TCP acknowledgement has been 
received for forwarding. A newly received acknowledgement 
might confirm that some data have been received by the 
successor node. In that case, a segment waiting in the buffer 
might be forwarded by the node. The received 
acknowledgement might also stop an ongoing rtt 
measurement. If the acknowledgement acknowledges 
previously acknowledged data again, we drop it, but forward it 
towards the source otherwise. Data processing in part 3a is 
applied to packets that need to be forwarded towards the 
destination. If there is a gap between the packet’s sequence 
number and the sequence number of the highest byte 
transmitted, the packet is discarded. Otherwise, if there is a 
gap between the packet’s sequence number and the sequence 
number that the successor node has received, the packet needs 
to be stored in the buffer before it can be forwarded. The 
packet may also include data that has all been acknowledged 
by the destination. In that case, it is not forwarded further, but 
an acknowledgement is regenerated and sent towards the 
source. If all transmitted data have been confirmed and the 
packet contains the next unconfirmed byte, the packet can be 
forwarded immediately and a new rtt measurement might be 
started if such a measurement is not yet going on. Part 3b 
shows processing of an overheard packet. In case of an 
acknowledgement, the acknowledgement timer is cancelled 
and the time needed by the upstream node to forward an 
acknowledgement is measured in order to calculate the 
acknowledgement retransmission timeout. For an overheard 
data packet that has been cached, the retransmission timer is 
cancelled as well and the cache is released. If there is another 
packet waiting in the buffer, it will be forwarded if it is 
eligible. However, the forwarding must be delayed randomly 
in order to reduce the risk of collisions. Simulations have 
shown that immediate forwarding significantly increases 
collision probability.  

switch(event){ 
 case ack_timeout: // -1- 
  retransmit_ack(acknowledged); 
  start(ack_timer, acknowledged,  

  γattempts++ * ack_forwarding_time); 
  break; 
 case retransmission_timeout: // -2- 
  sequence_no = 
    sequence_number_of_packet_to_be_retransmitted;  
  if ((sequence_no + length > confirmed){ 
   retransmit_data(sequence_no); 
   if (number_of_retransmissions > limit) 
    delete(cache);} 
  break; 
 default: // -3- 
  if (packet_has_bit_error || ttl_expired || 

(own_address != next_address) &&  
(own_address != previous_address)) 

delete(packet); 
   else if (next_address == own_address) { // -3a- 
   switch (type_of_packet){ 
    case ack: 
    acknowledged=max(ack_no- 1, acknowledged); 
    if ((acknowledged > confirmed) &&  

 ((byte[acknowledged+1]∩buffered_packet) 
      ≠ Ø)){ 

     forward(buffered_packet); 
     move(buffered_packet, cache); 
      transmitted= 
           sequence_number_of_buffered_packet + 
           length-1; 
         start_timer(retransmission_timer,       

     sequence_no, β * rtt); 
        confirmed = acknowledged;} 
    if (ongoing_rtt_measurement &&  

 (ack_no > rtt_sequence_no)){     
rtt= (1–α) * rtt + α * 
(current_time–start_of_measurement); 

ongoing_rtt_measurement = FALSE;} 
 if (ack_no <= ack_forwarded) 
  delete(packet); 

 else { 
 forward(packet); 
 start(ack_timer, ackno, 
   γ * ack_forwarding_time); 

 attempts = 1;} 
 break; 

 case data: 
 if (sequence_no > transmitted + 1) 
 delete(packet); 

 else if ((sequence_no > confirmed + 1) &&  
 (buffer_is_empty ||  
 (sequence_no < seqno_of_buffer))) 

move(packet, buffer); 
 else if (sequence_no + length – 1  
  <= acknowledged){  

     retransmit_ack(acknowledged); 
start_timer(ack_timer,acknowledged, 
γ*ack_forwarding_time); 

    attempts = 1; 
delete(packet);} 

 else if ((transmitted == confirmed) &&  
 (byte[confirmed + 1] ∩ packet) ≠ Ø)){ 

if (! ongoing_rtt_measurement){ 
ongoing_rtt_measurement = TRUE; 
rtt_sequence_no = sequence_no; 
start_of_measurement = current_time;} 

     forward(packet); 
     transmitted = sequence_no + length - 1; 
     move(packet, cache); 
     start_timer(retransmission_timer,  

sequence_no, β * rtt);} 
   else 

  delete(packet);} 



 

   else if (own_address == previous_address){ //-3b- 
  switch (type_of_packet){ 
   case ack: 
    ack_forwarding_time = (1 – α) *  
        ack_forwarding_time + α * 

(current_time – transmission_time(ack_no)); 
    cancel(ack_timer, ack_no); 
    ack_forwarded = ackno; 
    break; 
   case data: 
   if (sequence_no + length – 1 > confirmed){ 
     cancel(retransmission_timer, 
sequence_no); 
   delete(cache); 
       confirmed = sequence_no + length - 1; 
    if (byte[confirmed + 1]∩buffered_packet≠Ø){ 
    forward_delayed(buffer); 
    transmitted = sequence_no_of_buffered_packet  

+ length - 1; 
    move(buffer, cache); 

start(retransmission_timer, 
sequence_no_of_buffer, β * rtt);}}} 

  delete(packet);}} 

IV. PERFORMANCE EVALUATION 
We have evaluated TSS using the Omnet++ simulator [14]. 

The simulation scenario is a chain of eleven nodes with a 
distance of 200 m between each node. A transmission range of 
200 m is feasible in outdoor environments with various sensor 
nodes such as ESB [15] or WiseNet [16] nodes. The chain 
scenario is a rather typical scenario in sensor networks, when a 
sink needs to configure a single node. Cross traffic does not 
occur, if there is a single sink communicating with a single 
node or a group of nodes at one instant. For multiple TCP 
connections in a multicast overlay network we expect 
interference rather at the sink or branch nodes. Moreover, TCP 
connections may compete with sensor data flows from sources 
to sinks. Interference issues are left for future work. The TCP 
sender implementation (node 10) and the TCP receiver 
implementation (node 0) exchange 1000 TCP data segments 
with a payload size of 1000 bits plus TCP/IP and MAC header 
(= 20 + 20 + 12 bytes = 416 bits). For throughput and packet 
transmission measurements we performed 100 simulation runs 
per experiment with 1000 TCP data segment transmissions 
from source to destination. For local rtt measurements, 
overhearing time evaluation, and congestion control 
considerations we performed a single simulation run with 
medium bit error rate.  

While the results in [7] are based on simulations featuring a 
simple TDMA MAC layer, our TSS implementation running 
on each node includes a CSMA/CA MAC implementation, 
which senses the transmission medium and backs off in case 
of a busy medium. In order to save energy we back off without 
sensing the medium for a random time between 1τ and 3τ with 
τ = time to transmit a 1000 bit payload TCP data segment. 
Furthermore, we assume equal transmission power of all 
senders. A receiver can correctly receive a packet from a 
sender if it is not further away than 200 m and the signal to 
noise ratio is less than 10 dB. A receiver can detect an ongoing 
transmission if it receives a signal that is equivalent to a 
sender 500 m away. Intentionally, we did not implement an 
RTS/CTS collision avoidance scheme, since such a scheme 

may be very costly, create 40 % overhead and may not avoid 
all collision situations [17]. Since the RTS/CTS mechanism 
doubles the number of packet / acknowledgement 
transmissions, we propose to avoid collisions on a higher layer 
than MAC level. For example, if a node has recently 
forwarded a segment to the receiver, subsequent segments 
should not be forwarded immediately but slightly delayed. We 
implemented such a collision avoidance scheme in TSS. This 
approach is somewhat similar to the adaptive rate control 
scheme proposed in [17]. In our simulations we did not put the 
nodes into any sleep mode. Integration with sleep / awake 
scheduling is also left for future work, although coordinated 
sleeping as proposed by S-MAC [21] could easily be 
integrated. Coordinated sleeping would not affect our 
proposed mechanisms. We also assume that the MAC layer 
does not use explicit acknowledgements, because they are 
considered as too costly. The bit rate of the wireless network 
is 100 kbps. Moreover, we assume that a node considers an 
overheard TCP data segment as correctly received, if the 
TCP/IP and MAC header (416 bits) has been received without 
error. We investigated certain uniformly distributed bit error 
rates [18], in particular no (0), low (10-6), medium (10-5) and 
high (10-4) bit error rates. Such uniformly distributed error 
models are rather disadvantageous for our scheme, since a 
single bit error temporarily stops packet forwarding in a chain 
of nodes. The bit error rates used result in up to 15 % packet 
errors. Similar packet error rates have been used in [9] and 
measured for connected networks in [19].  

A. Packet Transmissions 
The number of packet transmissions is the most important 

metric, because the energy efficiency strongly depends on it. 
Table 1 shows the number of TCP data segment and 
acknowledgement transmissions for different bit error rates. 
For TSS we used two variants: In the first variant 
(backpressure in end point) we combined the backpressure 
mechanism with the TCP congestion control. The congestion 
window is increased after receiving a TCP acknowledgement, 
if there are more than a certain number (here: three) TCP data 
segments waiting for transmission at the source node. In the 
second variant (maximum congestion window = 3), we limited 
the maximum congestion window dependent on the number of 
hops according to [12]. The first TSS variant resulted in better 
throughput performance, but required slightly more packet 
transmissions. Note that the first variant is independent from 
the topology, but has a similar effect as the congestion 
window limit used in the second variant. In particular for 
higher bit error rates the throughput improvement is higher. 
For high bit error rates several packets might be cached and 
buffered in the sensor network, but might wait for forwarding 
due to the timeout based retransmission mechanisms. 
Therefore, we consider the first variant as a better choice. 

 Due to the CSMA/CA MAC layer, there are always a 
certain but low number of collisions that result in corrupted 
packets. Therefore, TSS already performs better than TCP for 
zero and low bit error rates. In particular for medium and high 
bit error rates, the difference in packet transmissions between 



 

TSS and TCP becomes evident (cf. Fig.  1). The main reasons 
for the high number of packet transmissions required for TCP 
without running TSS in the sensor nodes are the many end to 
end transmissions. The optimal number of TCP data segment 
transmissions is calculated by 
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Fig.  1: Packet transmissions of TCP and TSS 

TABLE 1. PACKET TRANSMISSIONS AND THROUGHPUT 
 

Bit error rate 0 10-6 10-5 10-4

TCP 
transmitted TCP data segments  1067600 1081090 1197001 3499974
transmitted TCP ACKs 1001000 1003015 1019395 1217739
total number of packets 2068600 2084105 2216396 4717713
e2e retransmissions 33300 34494 45991 474776
throughput [bps] 1955 1811 831 7
TSS (backpressure in end point) 
transmitted TCP data segments  1002061 1016829 1058486 1231501
transmitted TCP ACKs 1001600 1000467 1002887 1075384
total number of packets 2003661 2017296 2061373 2306885
e2e retransmissions 0 146 233 1552
throughput [bps] 4997 4412 2969 465

TSS (maximum congestion window = 3) 
transmitted TCP data segments  1002061 1011693 1046849 1200717
transmitted TCP ACKs 1001600 1003210 1015297 1092203
total number of packets 2003661 2014903 2062146 2292920
e2e retransmissions 0 199 417 1909
throughput [bps] 4997 4309 2626 288
Optimal number of  transmitted 
TCP data segments 1001500 1002919 1015782 1153852

B. Throughput 
Although we did not optimize TSS for throughput - the 

main goal was to keep the number of transmissions as low as 
possible - TSS throughput is always significantly higher than 
for TCP. For zero or low bit error rates we achieve a 
throughput of nearly 5 kbps. Compared with the network 
bandwidth of 100 kbps, this is a reduction by a factor of 20. 
First, we have to take into account that TCP 
acknowledgements consume a high fraction of the capacity 
and the TCP/IP/MAC header overhead is high. Each payload 
byte causes nearly another byte to be transmitted in the header 
part of the TCP data segment or the TCP acknowledgement. 
This could be improved by TCP/IP header compression. 
Second, packets need to be forwarded 10 times and spatial 
reuse is rather limited in our investigated scenario. Typically, 
two nodes can send simultaneously. Therefore, we can not 
expect a total throughput of more than 10 kbps. A further 
throughput decrease is caused by the delay of the CSMA/CA 
MAC scheme, collisions, and TCP congestion control. TSS 
has rather low throughput decrease up to the medium bit error 
rate, while plain TCP drops significantly already for medium 
bit error rates.  
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Fig.  2: Throughput of TCP and TSS 

For high bit error rates the packet error rate is 
approximately 14 % per link. In that case, nearly every packet 
is dropped for TCP without TSS on the path from source to 
destination. TCP throughput is therefore close to 0, while TSS 
can at least achieve some low throughput (cf. Fig.  2). For 
such high bit error rates, packet sizes could be decreased in 
order to decrease the packet error rate for a given bit error rate.  



 

C. Local RTT Measurements 
The local retransmission scheme deployed at TSS nodes is 

similar to DTC and depends on the estimation of the round trip 
time (rtt) between the node and the destination. The 
retransmission timeout is set to 1.5 * rtt, while the rtt is 
calculated using exponential averaging of rtt samples. To 
support fast convergence, we initialize the rtt value by the 
delay measured during a SYN/SYNACK exchange during 
TCP connection establishment. Fig. 3 shows that the average 
rtt values used for retransmission timeout calculation decrease 
at the nodes that are closer to the destination and further away 
from the source. This is exactly the behaviour we need for 
both the local retransmission and backpressure schemes.  
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Fig. 3: Average rtt at nodes 9-1 (node 1 = neighbor of destination) 
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Fig. 4: rtt samples at node 5 

Fig. 4 shows rtt development at node 5 (in the middle 
between source and destination) for a single simulation run 
(exchange of 1000 packets) and medium bit error rate. All 
simulations for rtt measurements have been performed using 
TSS with backpressure in the end point. The same variant has 
been used in the following subsections too. 

D. Overhearing Time 
Another issue to be investigated further is the problem that 

has been caused by using implicit acknowledgements. After a 
node has forwarded a packet it needs to overhear its 
successor’s transmission. This requires a node to stay in idle 
state and prevents it from going into sleep state. In the worst 
case, a node needs to listen for the time interval for which a 
packet is stored in the cache. This time is limited by the 
retransmission timeout interval. We measure the time a packet 
is stored in the retransmission buffer until the transmitted 
packet is either overheard or the retransmission timeout 

expires. This time includes at least two packet transmissions, 
i.e., the transmission from the first node to its successor and 
the transmission by the successor node. For a packet size of 
1416 bits and 100 kbps link, this time must be at least 28 ms 
plus a small back-off time.  
Fig. 5 plots the cumulative distribution function for these 
times. To get the results we performed again a single 
simulation run transmitting 1000 packets with medium bit 
error rate and measured the time values at node 5. We see that 
in 97 % of the cases, the packet is overheard after 
approximately 28 ms. However, due to packet loss and 
retransmission timeout expirations, the time values go up to 
280 ms, but in average a node must store the packet 33.5 ms 
only, which is less than 20 % above the minimum value. Link 
level acknowledgements may be an alternative to overhearing. 
However, if we assume that transmitting a bit is 50 % more 
costly than receiving or overhearing a bit, transmission of link 
level acknowledgements with 24 bytes (= 1416 bits * 20 % / 
1.5 / 8) costs more energy than overhearing.  
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Fig. 5: Overhearing time (cumulative distribution function) 

E. Packets in Flight 
The backpressure based congestion control limits the 

maximum congestion window for TSS to approximately 15 in 
all investigated scenarios. However, the number of packets in 
flight is much lower. We measure the number of packets in 
flight after each segment has been sent by determining how 
many segments did not yet arrive at the receiver. Fig. 6 and 
Fig. 7 show histograms for the number of packets in flight 
between the sender and the receiver for a scenario with 11 and 
21 hops respectively. We see that there are less packets in 
flight for a lower number of hops. The values for the packets 
in flight are in most cases lower than h/4 (h = number of 
hops), which is the optimal value for the TCP window size in 
a multi-hop chain scenario [12]. The average values are 1.4 
and 2.5 respectively. This shows that the backpressure 
mechanism effectively limits the number of packets in flight to 
a similar number that has been proposed by other related work 
on congestion control in multi-hop wireless networks. Note 
that in our case, we do not have to know the number of hops 
between sender and receiver, but the backpressure mechanism 
adapts automatically to an appropriate value! 
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Fig. 6: Number of packets in flight for 11 hops 
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Fig. 7: Number of packets in flight for 21 hops  

F. Memory Consumption 
Another issue is the memory consumption in a sensor node 

to support TSS. For each supported TCP connection, we need 
memory space for 2 packets. The history list for detecting 
packet duplicates requires 2 D 32 bit variables, if we store the 
last D packets. Moreover, we need 12 further 32 bit variables 
for storing state information such as sequence numbers. For D 
= 10, this adds up to 128 bytes. In total a TCP connection 
needs 128 bytes plus the memory for storing two TCP data 
segments. The memory limitations of a node will limit the 
number of concurrent TCP connections to be supported.  

V. CONCLUSIONS 
TCP support in WSNs is desirable to allow direct 

communication of sensor nodes with other systems for various 
purposes such as configuration, reprogramming or 
management. This paper showed that even in scenarios with 
high error rates, TCP can be used in an energy-efficient way, 
if some protocol support is provided in intermediate nodes. 
The proposed mechanisms drastically reduce the number of 
TCP data segment transmissions needed to transfer a certain 
amount of data across a WSN with relatively high bit / packet 
error rates. Moreover, we have evaluated a novel congestion 
control mechanism that is very effective as well as easy to 
implement and deploy. Future work will analyse the 
performance in more complex network scenarios such as tree 
structures and consider background data traffic from sensors 
to the sink as well as multiple TCP connections. Additional 
work needs to be done for considering more complex bit error 
patterns [20]. We also plan to integrate scheduling 
mechanisms for sleep cycles and consider real implementation 
on real sensor nodes. Further reduction of transmissions might 

be achieved by combining data and acknowledgement 
transmissions. Also, packet sizes need to be adapted for very 
high bit error rates. We also propose header compression for 
reducing the header overhead of TCP data segments and 
acknowledgements.  
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