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Abstract 
Many applications of wireless sensor networks require connectivity to external networks to let 
monitoring and controlling entities communicate with the sensors. By using the TCP/IP 
protocols inside the sensor network, external connectivity can be achieved anywhere in the 
sensor network. In such IP-based sensor networks, TCP can be used for remote management 
and reprogramming of sensor nodes. However, the high bit error rates in multi-hop sensor 
networks lead to energy-inefficiencies that reduce the lifetime of the sensor network. This 
paper introduces and compares two approaches to support energy-efficient operation of TCP 
in sensor networks: Distributed TCP Caching (DTC) and TCP Support for Sensor networks 
(TSS). Both concepts allow intermediate sensor nodes to cache TCP segments and to perform 
local retransmissions in case of errors. This allows reducing the total number of packet 
transmissions in the sensor network when transferring data to or from a sensor node. DTC 
caches and immediately forwards TCP data segments, whereas TSS does not forward a 
cached segment until it knows that the previous segment has been successfully received by 
the next hop node. We show by simulation that both approaches significantly reduce the 
number of TCP segment and acknowledgement transmissions. Their performance differs 
slightly depending on the error rate. Both approaches have also slightly different needs in 
buffer requirements and TCP options to be supported. 
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1. Introduction 
Wireless sensor networks are composed of a large number of radio-equipped sensor devices 
that autonomously form networks through which sensor data is transported. The devices are 
typically severely resource-constrained in terms of energy, processing power, memory, and 
communication bandwidth. Many applications of wireless sensor networks require an external 
connection to monitoring and controlling entities that consume sensor data and interact with 
the sensor devices. Running TCP/IP in the sensor network makes it possible to connect the 
sensor network directly to IP-based network infrastructures without proxies or middle-boxes. 
Since each sensor device is able to communicate using TCP/IP, it is possible to route data to 
and from the sensor network using standard IP-based technologies such as General Packet 
Radio Service (GPRS). 
Data transport in IP-based sensor networks is performed using the two main transport 
protocols in the TCP/IP stack: the best-effort UDP and the reliable byte-stream protocol TCP. 
UDP is used for sensor data and other information that do not use unicast reliable byte-stream 
transmission. TCP should be used for administrative tasks that require reliability and 
compatibility with existing application protocols. Examples of such tasks are configuration 



and monitoring of individual sensor nodes, downloads of binary code, and data aggregation 
descriptions to sensor nodes. In particular, downloading code to designated nodes, such as 
cluster heads in a certain geographical region requires a reliable unicast protocol. 
It is well known that TCP has serious performance problems in wireless networks [8]. One 
problem is that TCP, which has been designed for wired networks with low bit error rates, 
interprets packet loss as an indication of congestion and decreases its transmission rate in case 
of a lost packet. This leads to low throughput, which is a major problem in mobile ad-hoc 
networks that are typically operated by human users. For sensor networks, which operate 
autonomously with constrained power supply, the main problem is the energy-inefficiency of 
TCP. This energy-inefficiency is caused by TCP's end-to-end retransmission scheme, which 
requires that lost packets are retransmitted by the original sender of the packet. In a multi-hop 
network, the retransmitted packet must be forwarded by all intermediate nodes from the 
sender to the receiver, thus consuming valuable energy at every hop. In general, end-to-end 
recovery is not a good candidate for reliable transport in sensor networks, because the per-hop 
packet loss rate may be in the range of 5% to 10% or even higher [10]. 
In this paper we compare two different approaches that overcome these problems: Distributed 
TCP Caching (DTC) [1] and TCP Support for Sensor networks (TSS). Both schemes work by 
letting intermediate nodes cache TCP data segments and perform local retransmissions when 
packet loss is detected. Neither DTC nor TSS requires any changes to TCP or the TCP 
implementations at the end-points. In TSS, a caching node will not forward a cached TCP 
segment until it knows that the next-hop node has received all TCP segment with lower 
sequence numbers. This causes a backpressure that is intended to reduce the number of packet 
transmissions. DTC, on the other hand, immediately forwards all TCP segments, even those 
that are cached in the intermediate nodes. In addition, TSS uses an aggressive TCP 
acknowledgement recovery mechanism.  
Our results show that both DTC and TSS significantly enhance TCP performance both in 
terms of the overall number of transmitted TCP segments and the number of end-to-end 
retransmissions. Due to the aggressive TCP acknowledgment recovery scheme in TSS the 
total number of TCP acknowledgements is higher for TSS than for DTC. On the other hand, 
the number of transmitted TCP data segments is lower for TSS because of the backpressure 
mechanism. For low packet loss rates, DTC and TSS have a similar total number of packet 
transmissions, whereas DTC incurs more packet transmissions than TSS for high packet loss 
rates. 
In addition to the energy-efficiency issues of TCP, there are several problems that need to be 
solved before TCP/IP can be used efficiently in wireless sensor networks. In Section 2 we 
describe these problems and outline potential solutions. Several protocols for reliable data 
transfer in sensor networks have been proposed. However, most approaches introduce new 
transport protocols and do not attempt to support TCP operation. Section 3 gives an overview 
about related work in this area. We propose to use TCP for reliable data transfer in sensor 
networks and propose the DTC and TSS mechanisms in Sections 4 and 5. Section 6 compares 
performance results for transferring a certain amount of data across a multi-hop wireless 
sensor network. Section 7 concludes the paper. 

2. IP-based Sensor Networks 
Besides poor TCP performance both in terms of throughput and energy-efficiency, there are 
other problems with TCP/IP that must be solved before IP-based sensor networks can become 
ubiquitous. In this section we identify these problems and sketch solutions. We discuss these 
in more detail in [2].  
Node limitations. In order for wireless sensor networks to be feasible, each sensor node is 
typically limited in terms of memory and processing power. It has often been assumed that a 
TCP/IP stack is too heavy-weight for such a small system. However, previous work [4] shows 



that this is not the case. Our uIP implementation of the TCP/IP stack [5] runs on 8-bit micro-
controllers requiring only a few hundred bytes of RAM. 
Address centric addressing. The IP addresses in traditional IP networks are assigned to each 
network interface based on the network topology. Each network interface is assigned a unique 
IP address using either manual configuration or semi-automated mechanisms such as DHCP. 
Such address assignment mechanisms are not suited for large scale sensor networks. Instead, 
IP-based sensor networks may perform spatial IP address assignment that uses the spatial 
location of the sensor nodes to construct semi-unique IP addresses. 
Address centric routing. In traditional IP networks, each packet is transparently routed 
through the network. The routing path is based on the IP addresses and the topology of the 
network. For wireless sensor networks, data centric routing mechanisms are often preferable 
[7]. To implement data centric routing in IP-based sensor networks, we use application 
overlay networks. 
Header overhead. Compared to specialized sensor networking protocols, the protocols in the 
TCP/IP suite have a very large header overhead. The shared context nature of sensor networks 
enables efficient header compression to reduce TCP/IP header overhead. 
We have implemented and demonstrated an IP-based sensor network [3] consisting of 
Embedded Sensor Boards (ESBs) [6] running the uIP stack. This network used spatial IP 
addressing and performed application overlay routing. 

3. Related Work 
DTC and TSS are inspired by the Snoop [8] protocol that has been developed for supporting 
TCP over wireless access networks. The Snoop agent is deployed at an intermediate system 
between the wireless and wired part of the network. The agent buffers TCP segments that 
have not yet been acknowledged by the receiver and detects TCP segment loss by analysing 
TCP acknowledgements. In that case, the agent can perform local retransmissions as well as 
suppress TCP acknowledgements in order to avoid duplicate acknowledgments at the sender. 
Duplicate acknowledgements might cause end to end retransmissions for packets that could 
also be recovered locally by the agent. DTC can be considered as a generalization of Snoop 
for wireless multi-hop networks, while TSS further reduces the number of transmissions and 
adds mechanisms to throttle the transmission rate in case of packet losses.  
Reliable Data Transport in Sensor Networks (RMST) [9] has been designed for the use 
together with directed diffusion. RMST is used for sensor data transfer but not for control data 
transfer as our mechanisms. It can provide a caching mechanism within the intermediate 
nodes, but requires additional negative acknowledgement (NACK) messages. These are sent 
by an intermediate node to its upstream neighbour, when it detects, e.g. using timeouts, holes 
in the data flow. As a reaction on NACK messages, an upstream node can retransmit cached 
packets. The authors assume a low number of bytes in flight (< 5 KB) and that the 
intermediate nodes can completely cache this amount of data. They have found out that for 
packet loss rates below 10 %, the combined caching and NACK mechanism is more efficient 
than a reliable link layer approach based on ARQ due to the overhead by link level 
acknowledgements. On the other hand, processing NACK messages end to end only is 
extremely inefficient for packet loss rate above 10 %. These findings are consistent with 
design principles of DTC and TSS. Similar as RMST, DTC and TSS use caching and local 
retransmissions by intermediate nodes without introducing pure link level ARQ, but both rely 
on information from existing protocols on the link or transport layer only.  
Pump Slowly Fetch Quickly (PSFQ) [10] is a reliable transport protocol for re-tasking and re-
programming of sensor nodes. The main PSFQ idea is to pump data rather slowly towards the 
receiving sensor nodes, but to recover missing data locally from intermediate nodes. The 
pump operation aims to support quick forwarding in case of no errors and behaves like a store 
and forward approach in situations with a high number of errors. The pump operation is based 



on broadcasting packets hop-by-hop from source to destination. Segment numbers are used to 
discover duplicates. Nodes receiving a packet add random delays before re-broadcasting in 
order to avoid collisions. While packet forwarding based on re-broadcasting have significant 
advantages in dynamic environments such as mobile ad-hoc networks and networks with 
unsynchronized sleep cycles [11], simulation experiments have shown that already a low 
number of packet losses due to congestion or bit errors can cause a significant number of 
duplicated packet. Duplicates, however, cause unnecessary packet reception, processing and 
transmissions, which should be avoided for energy-efficient sensor networks. The fetch 
operation is based on proactively requesting retransmissions from neighbour nodes using 
NACK messages and applies the concept of loss aggregation. In case that the last message of 
a packet sequence is lost, a fetch operation is triggered by a timeout. Multiple lost messages 
can be recovered in a single fetch operation. In addition to NACK messages, PSFQ introduces 
report messages for reporting the reception status at the destination to the source. The 
backpressure mechanism of TSS has a similar effect: Packet forwarding will be slowed down 
as soon as errors are detected by the intermediate nodes. A TSS node stops forwarding a 
packet, if previous packets have not been forwarded by successor nodes. In contrast to PSFQ, 
which includes a specific routing and forwarding mechanism, TSS is independent of the 
routing protocol.  
Event-to-Sink Reliable Transport (ESRT) [12] aims to support reliable sensor data transport 
in wireless networks. It includes congestion control and mechanisms to achieve reliability. 
The reliability is controlled by adapting a rate at which the sink sends state reports back to the 
source. The frequency of the reports depends on the observed and desired reliability as well as 
the needs from congestion control. As in the case of PSFQ, a special protocol has been 
proposed, while no transport protocol extensions are required in TSS.  
Congestion Detection and Avoidance (CODA) [13] is based on congestion detection by 
monitoring channel utilization and buffer occupancy at the receiver. Detected congestion 
situations are signalled towards the source using backpressure signals (open-loop). Nodes 
receiving backpressure signals throttle down their transmission. In addition, a closed-loop 
mechanism operates on a longer time-scale. Based on acknowledgements received from the 
sink, sources regulate themselves. Lost acknowledgements result in reducing the rate at the 
source. Again, in contrast to TSS, new signalling messages need to be introduced into CODA.  
Congestion control is very important in wireless sensor networks, because overloading a 
wireless network by too many transmissions can increase the collision probability. Collisions 
lead to packet losses and unnecessary retransmissions, which make sensor network operation 
energy-inefficient. TCP congestion control limits the maximum window size according to the 
slow start congestion control algorithm. However, it even might make sense to further limit 
the window dependent on the number of intermediate hops in a wireless multi-hop network, 
because the optimal window size in terms of throughput might be below the window size of 
standard TCP [14]. For example, it has been proposed to limit the maximum congestion 
window size to (number of hops) / 4 in a chain of nodes that are 200 m away from each other 
and have 250 m transmission range and 550 m interference range. This result shows that it 
might be beneficial to limit the TCP congestion window in wireless multi-hop networks such 
as a sensor network. The backpressure mechanism used in TSS has a similar effect and in our 
simulation limited the maximum congestion window size in a chain of 10 hops to three.  
While several approaches perform packet caching for local retransmissions in case of packet 
loss due to congestion or lossy channels, other related works apply caching to recover from 
more serious errors such as disconnection of networks or route breaks. The design of a smart 
link layer is proposed in [15]. Packets might be re-received after a disconnection in order to 
re-trigger TCP after a longer disconnection period by putting TCP packets such as 
acknowledgements again into the input TCP queue. Re-sending packets to the peer can also 



facilitate restart of TCP in such a case. The proposed mechanisms are rather orthogonal to the 
concepts proposed in this paper.  
In [16] it is also proposed to hold copies of forwarded packets in a cache. When a downstream 
node encounters an error with packet forwarding, a route error message might be sent to the 
upstream node. The cached packet can then be retransmitted possibly on multiple alternative 
routes in order to repair the route break. TCP with BUffering capability and Sequence 
information (TCP-BUS) [17] proposes to buffer packets during route disconnection and re-
establishment. After a route becomes available again, buffered packets are retransmitted by 
intermediate nodes. Special control messages are used to indicate route breaks and re-
establishments. TCP can adapt its behaviour dependent on the knowledge that packets have 
been lost for other reasons than congestion. While DTC and TSS do not explicitly focus on 
route breaks, such failures can also be supported by both approaches.  

4. Distributed TCP Caching 

4.1. Overview 
The key idea of Distributed TCP Caching (DTC) is to avoid energy-costly end-to-end 
retransmissions by caching TCP segments inside the network and retransmitting segments 
locally, i.e. from the intermediate sensor nodes’ caches, when packet loss occurs. Ideally, each 
node would cache all segments and perform the retransmission exactly from the last node that 
has transmitted a segment before it has been lost. However, due to the constrained resources 
of the sensor nodes, we assume that each node can only cache one segment. Nodes take extra 
care to cache segments presumably not received by the next node. DTC is only implemented 
in the intermediate sensor nodes and does not require any changes on the TCP endpoints. A 
sensor node acting as the receiver may make use of the following standard TCP features: The 
receiver announces a small maximum segment size in order to avoid large TCP segments 
exceeding the capacity of the sensor nodes. Further, the receiver announces a small window 
size constraining the number of segments in flight.    

4.2. Protocol Mechanisms 

Caching 
Due to the memory constraints of the sensor nodes, it is vital to the performance of DTC to 
find an appropriate way for nodes to select which segments to cache. A desirable outcome of 
this selection is that all segments that are currently in flight are cached and extra care is taken 
to cache segments that are likely to be dropped along the path towards the receiver. To 
achieve this, nodes cache TCP segments with the highest segment number seen with a certain 
probability. This assures that some older segments can be cached in the network as well. In 
order to detect packet loss at the next hop, we use feedback from a link layer that deploys 
positive acknowledgments. Our design also works with overhearing, i.e. when a node 
overhears that its successor transmits the packet. A TCP segment that is forwarded but for 
which no link layer acknowledgment has been received may have been lost in transit. 
Therefore, the segment is locked in the cache indicating that it should not be overwritten by a 
TCP segment with a higher sequence number. A locked segment is removed from the cache 
only when a TCP ACK that acknowledges the cached segment is received, or when the 
segment times out. 

Packet Loss Detection and Local Retransmissions 
To avoid end-to-end retransmissions, DTC needs to respond faster to packet loss than regular 
TCP. DTC relies mainly on timeouts to detect packet loss. Every node participating in DTC 



maintains a soft TCP state for connections that pass through the node. We assume symmetric 
and relatively stable routes, and therefore the nodes can estimate the delays between the node 
and the connection end-points. Each node measures the round-trip time (rtt) to the receiver 
and adapts a retransmission timeout to 1.5 * rtt. This ensures that the retransmission timeout 
values are smaller for nodes close to the destination and higher for nodes close to the source. 
Since the rtt values experienced by the nodes are lower than those estimated by the TCP end-
points, the intermediate nodes are able to perform retransmissions earlier than the TCP end-
points. DTC nodes set a timer for a local retransmission when they lock a segment in the 
cache. Simulations have shown that the other standard TCP mechanism to detect packet loss, 
duplicate acknowledgements, cannot contribute significantly to the performance of DTC. 

Selective Acknowledgements 
DTC uses the TCP SACK option to both detect packet loss and as a signalling mechanism 
between DTC nodes. DTC uses the latter to inform other nodes about the segments locked in 
the cache. On reception of a TCP ACK with an acknowledgement number smaller than the 
sequence number of its cached segment a node performs the following actions: 

• If a node’s cached segment’s sequence number (cached)is not in the SACK block, 
the node retransmits the cached segment. Before transmitting the TCP ACK towards 
the sender, the node adds cached to the SACK block. Moreover, if cached fills all 
gaps, i.e. with cached all segment numbers up to the highest in the SACK block are 
acknowledged, the node can drop the acknowledgement. Note that the node should not 
generate a new ACK acknowledging all the segments in the SACK blocks since the 
receiver is allowed to discard a previously SACKed segment. 

• The node can clear its cache if the cached segment’s sequence number is in the SACK 
block since this means that either the receiver has received the corresponding segment 
or that the segment is cached and locked by a node closer to the receiver. 

Note that even if the sender does not support SACK, the base station or the first node in the 
sensor network might add and remove the SACK options to enable SACK signalling for 
DTC. 

Local Regeneration of TCP Acknowledgements 
While DTC caches TCP data segments, it does not cache and retransmit TCP ACKs. DTC 
uses a simple local regeneration of TCP acknowledgements. When an intermediate node sees 
a TCP data segment, for which it has already received and forwarded a TCP ACK, the node 
assumes that the TCP ACK has been lost. Therefore, it does not forward the data segment but 
instead locally regenerates a TCP ACK. Note that this can be done without any buffering or 
caching of the original TCP ACK. 

Example Operation 
Figure 1 shows an example of DTC using SACK as a signalling mechanism. In this example, 
a TCP sender transmits three TCP segments.  Segment 1 is cached by node 5 before it is 
dropped in the network. Since node 5 does not receive a link layer ACK, it locks segment 1 in 
the cache. Similar, segment 2 is cached and locked by node 7. When receiving segment 3, the 
receiver sends an acknowledgment ACK 1 with a SACK block for segment 3. On reception of 
the ACK segment, node 7 retransmits segment 2, adds a SACK block for segment 2 and 
forwards the acknowledgment. Eventually node 5 receives that acknowledgment and 
retransmits segment 1. Since all the gaps are filled now, node 5 drops the acknowledgment. 
Having received both segment 1 and segment 2, the receiver transmits ACK 4. Due to space 
limitations the TCP ACK sent by the receiver on reception of the retransmitted segment 2 is 
not shown Figure 1. 
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Figure 1: DTC using SACK as signalling mechanism 

5. TCP Support for Sensor Nodes 

5.1. Overview 
TCP Support for Sensor nodes (TSS) is a layer between TCP and the routing layer to be 
implemented in a communication protocol stack of sensor nodes and has the goal to support 
energy-efficient operation of sensor nodes. TSS should ideally be implemented in TCP sensor 
nodes with senders and receivers as well as in intermediate sensor nodes that relay TCP 
segments and acknowledgements of a TCP connection. As DTC, TSS requires to store state 
information for each TCP connection. The state information is less than 20 integer values and 
contains mainly sequence and acknowledgement numbers, and rtt estimates. TSS tries to 
reduce the number of transmissions by a number of concepts and mechanisms: 

• Caching of packets that might not have been received by the successor node (next 
node) based on overhearing and TCP acknowledgement spoofing 

• Local retransmission of TCP segments based on round trip time estimation 
• TCP acknowledgment regeneration and recovery based on forwarding delay 

estimation and overhearing 
• A backpressure mechanism avoids that a node forwards a packet if the successor node 

might not have received all previous packets.  
The mechanisms are completely based on TCP segments and TCP acknowledgments. They do 
not require any link level acknowledgments. Moreover, the mechanisms do not assume to 
have a CMSA/CA like scheme based on MAC level acknowledgements. TCP segments and 
acknowledgements are the only packets that are needed. This approach further reduces the 
amount of transmissions and can therefore be used on top of any kind of sensor network MAC 
layer. TSS also ensures that packets arrive at the destination in sequence. This avoids any re-
sequencing buffer and selective acknowledgement / retransmission extensions in TCP.  



5.2. Protocol Mechanisms 

Caching 
Similar as DTC, TSS allows to cache TCP segments in intermediate nodes. However, unlike 
in DTC, the decision to cache a TCP segment is completely deterministic. A node always 
caches that TCP segment with the data containing the first byte that has not yet been 
acknowledged or forwarded by the successor node. The packet is cached until it is sure that 
the successor node towards the destination has received the segment. A node knows that the 
successor has received a segment when it detects that the successor has forwarded the 
segment or when it spoofs a TCP acknowledgment that has been sent from the receiver 
toward the sender of the TCP segment. Nodes are assumed to listen to packet transmissions of 
their neighbour nodes in order to be able to detect whether the neighbour nodes have 
forwarded TCP segments. A packet that is known to be received by the successor node will be 
removed from the cache. As in DTC the cache can hold a single packet. However, the 
mechanisms selected for TSS require another packet buffer (simply called buffer hereafter) 
for temporarily storing packets that are waiting to be forwarded to the successor node.  

Local Retransmissions of TCP Segments 
All intermediate nodes are able to perform local retransmissions, when they assume that a 
cached segment has not been received by the successor node towards the destination of a TCP 
segment or acknowledgement. Retransmissions are mainly triggered by timeouts, which 
requires careful setting of timeout values. As for DTC the retransmission timeout is set to 1.5 
* rtt. Simulations showed that a retransmission timeout of 2 * rtt performs slightly worse. A 
retransmission timeout of 1.5 * rtt allows to react somewhat earlier on packet loss and allows 
to repair even multiple packet losses before an end-to-end timeout is triggered.  
The timeout values that are increasing from destination to source also meet the needs of the 
backpressure mechanism described below. The maximum number of local retransmissions has 
been limited to four. One might argue that forcing sensor nodes to overhear packets does not 
support energy efficient operation. On the other hand, a forwarding node should only listen to 
other’s transmissions for a very short time. Typically, a packet will be forwarded immediately 
by the successor node and only in case of packet loss a node must overhear for the whole 
retransmission timeout interval. Another problem might be that a forwarding node transmits 
with reduced power such that the previous node can not overhear the forwarded packet. 
However, it might be much more efficient to adapt the transmission power to both the next 
and the previous hop and perform a single TCP segment transmission than to transmit both 
TCP segment to the next hop and link level acknowledgement to the previous hop with 
individually adapted power.  
Moreover, it might happen that a node’s retransmission timeout expires and the node 
retransmits a TCP data segment although that one has been received and forwarded by the 
successor. This might happen, if the previous node receives an overheard packet header with 
an error and drops that implicit acknowledgement. Then, the already correctly forwarded TCP 
segment should not be forwarded again. Forwarding should be prevented by a filter that filters 
out all segments that have been forwarded previously. Of course, end-to-end retransmissions 
should not be filtered, because end-to-end retransmissions might be needed to recover from 
severe problems such as route breaks, which a forwarding node might not be aware of. 
Retransmitted TCP segments can be uniquely identified by the source address and the IP 
identification field.  

Regeneration and Recovery of TCP Acknowledgments 
TCP acknowledgements are extremely important for TSS, since several mechanisms such as 
round-trip-time estimation, retransmission and caching depend on it. Experiments have shown 



that loss of acknowledgements may have a severe impact on the amount of TCP segment 
transmissions. TSS deploys two mechanisms for retransmissions of TCP acknowledgements 
that help to decrease the number of TCP segment transmissions significantly: A local 
regeneration mechanism as deployed by DTC and an aggressive TCP acknowledgement 
recovery mechanism, which recovers TCP acknowledgments if their forwarding by the 
successor node has not been discovered. Since TCP acknowledgments should usually be 
forwarded without significant delay towards the sender of TCP segments, each node measures 
the time between the TCP acknowledgment transmission and the overhearing of the TCP 
acknowledgment transmission from the successor node towards the TCP segment sender. 
Similar as for the rtt estimation we use an exponential averaging scheme and set the TCP 
acknowledgment timeout to the double average value. After timeout expiration, a TCP 
acknowledgment is recovered using the highest acknowledgment number. Again, this does 
not require to cache acknowledgments, but the acknowledgments can be recovered using state 
information.  

Backpressure Mechanism 
If the successor of a node has not forwarded all the received packets, there might be a 
problem in the network. For example, the network might be congested or packet forwarding 
does not make progress, because a TCP segment with bit error needs to be recovered first. If a 
node would continue with packet forwarding in such a case, the risk that it performs 
unnecessary transmissions would be rather high. In a congestion situation, a forwarded 
segment might easily get lost and the same is true in case of a lost packet due to bit errors, 
because in such a situation all caches on subsequent nodes are occupied and the transmission 
of a new packet would not be protected. For that reason, in TSS a node stops any forwarding 
of subsequent packets until it knows that all earlier packets have been received and forwarded 
by its successor. If packet forwarding stops at some point, it will affect all the other nodes in 
the chain behind the stopping node. This means that all the other nodes will also stop their 
transmissions until progress is detected at their respective successor nodes. In the case of a 
lost packet (due to congestion or bit errors), the packet loss should be recovered by the node 
that sent the packet at last. In that case, we also have to avoid that retransmissions are 
triggered by nodes behind the recovering node, i.e. the nodes closer to the sender. We 
therefore have to increase the retransmission timeouts at the nodes closer to the sender. For 
that reason, the mechanism ensuring that the retransmission timeouts increase along the nodes 
from the receiver to the sender as explained in subsection “

” perfectly fits to the backpressure mechanism.  
Local Retransmissions of TCP 

Segments

5.3. Example Operation 
Figure 2 illustrates the operation of TSS. The first segment is forwarded without error from 
the sender to the receiver, while the second segment is lost between nodes 6 and 7. We 
assume here that node 5 overhears the forwarded packet from 6 to 7 and that node 5 therefore 
assumes that node 6 has successfully forwarded the segment to 7. This situation can easily 
occur, if node 6 is closer to node 5 than to node 7 or if the transmission from 6 to 7 is 
disturbed by another transmission such as from 10 to 9, while the latter one does not disturb 
the transmission from 6 to 5. In our example, node 6 caches the second segment and will 
timeout. In order to avoid that node 6 has to drop the third segment, we have to provide an 
additional packet buffer for buffering the third segment. This segment will not be forwarded 
and therefore, node 5 will stop forwarding subsequent packets. Assuming the nodes have  
measured the rtt as described above, node 6 times out before node 5 and retransmits the 
second segment to node 7. Node 5 will overhear that transmission and continue with packet 
forwarding, i.e. with forwarding packet 4. In general, the timeouts (resulting from the 
measured rtts) at nodes closer to the TCP receiver must be smaller than the timeouts at nodes 



closer to the sender. If we assume the minimum round trip measured for the first segment, we 
see that node 6 times out before node 5. However, in this special case, the timeout for the 
fourth packet expires too soon at node 1, but typically the average rtt values will be higher at 
nodes far from the receiver, since retransmissions will also contribute to the rtt calculation. 
More severe problems result from multiple packet losses. For example, if in our scenario the 
retransmission of the second segment by node 6 would be unsuccessful again, nodes 5 would 
time out too early and retransmit unnecessarily.  
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Figure 2: TSS operation in case of a lost TCP segment 

In another scenario shown in Figure 3, an error might occur with the second segment between 
nodes 6 and 7. The segment is correctly received by node 6 and node 7 forwards it correctly to 
node 8. However, the transmission from node 7 to node 8 is disturbed at node 6 and node 6 
does not even receive the packet header of the third packet forwarded from node 7 to node 8. 
Node 6 therefore assumes that the second packet has not been received by node 7 and stops 
the transmission of new packets. However, after a while the TCP acknowledgment for 
segment 2 arrives at node 6 and node 6 can then continue to forward the third segment.  
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Figure 3: TSS operation in case of an overhearing error 

5.4. Comparison with DTC 
While both DTC and TSS allow intermediate sensor nodes to cache packets and locally 
retransmit packets in case of errors, there are some differences between the approaches: In 
DTC each segment is forwarded immediately while TSS’s backpressure mechanism keeps 
cached segments until it knows that the previous segments have been received by the next hop 
node. Furthermore, DTC requires one buffer for storing / caching TCP segments, while TSS 
needs two buffers. While DTC uses selective acknowledgments and retransmissions, TSS 
does not make use of this option and hence requires less re-sequencing buffers at the receiver. 

6. Performance Evaluation 

6.1. Simulation Scenarios and Parameters 
Both, DTC and TSS have been evaluated using simulations with Omnet++ [18]. Figure 4 
shows the simulation scenarios used for our evaluation. In the case of DTC, we have a TCP 
sender (source) and a TCP receiver (destination) implementation that exchange 500 TCP 
segments with a size of 800 bits including TCP/IP and MAC header. Ten intermediate nodes 
are interconnected in a chain of nodes. In case of TSS, we have a TSS implementation on 
each node. These are somewhat different for intermediate nodes, TCP source and TCP 
destination. However, the TCP implementation used at the source and the destination are 
identical for the DTC and TSS simulation experiments.  
We assume that we do not have any interference between the nodes, which can be achieved 
using a time division multiplexing scheme on the MAC layer. The selected wireless network 
bit rate was 19.2 kbps. The TCP acknowledgement packet size was 352 bits for DTC. For  
TSS we assume a somewhat larger MAC header that includes 32 bit MAC addresses of the 
next, the sending and the previous node. This results in a size of 416 bits for implicit 
acknowledgements. Overhearing does not really require a MAC header with these three 
addresses, but makes the implementation much simpler. The TSS modules have been 
interconnected via channels of a certain uniformly distributed bit error rate. The simulation 



experiments have been performed for packet error rates (PER) of 0, 5, 10, and 15 %. The bit 
error rate (BER) for the packet error rates can be calculated by n PERBER −−= 11 , n: bits 
per packet. The corresponding bit error rates for n = 800 are 0, 0.000064114, 0.000131697, 
and 0.000203128. In the case of TSS, we assumed that a node considered an overheard TCP 
segment as correctly received, if the TCP/IP and MAC header has been received without 
error. For each experiment we calculated the average values over 30 simulation runs.   
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Figure 4: Simulation scenarios 

6.2. Performance Results 
Figure 5 compares the total number of transmissions for TCP, DTC, and TSS. It shows that 
for no and low (0 and 5 %) packet error rates (PER), DTC and TSS have a similar number of 
total packets, while the total number of packets is somewhat lower for TSS in case of high (10 
and 15 %) packet error rates. It is obvious that for higher packet error rates, TCP without any 
support in intermediate nodes has extremely poor performance. This is in particular due to the 
very high number of end to end retransmissions, which are shown in Figure 6.  
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Figure 5: Number of TCP segment and acknowledgement transmissions for DTC and TSS 
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Figure 6: Number of end to end retransmissions for TSS, DTC, and TCP 

Figure 7 analyses the transmissions of DTC and TSS in more detail: It can be seen that the 
number of TCP data segments is always lower for TSS, while the number of 
acknowledgements is always higher. This results from the aggressive acknowledgment 
recovery scheme implemented in TSS, while DTC does not implement such a scheme. Due to 
the cumulative nature of TCP ACKs (an ACK acknowledges all segments up to the 
acknowledgment number minus one), the number TCP ACKs DTC transmits can become 
lower when packet loss occurs than in the error-free case. The dashed line shows the 
minimum number of TCP segment transmissions, assuming that each packet error can be 
recovered by a single local retransmission. This minimum number can be calculated by 

)0(
1

1
=•

−
PERforpacketsofnumber

PER
. 

The minimum number of acknowledgments is somewhat difficult to determine, since it 
depends on the acknowledgement retransmission scheme as discussed above.  
Not shown in the figures is the performance of TCP running on top of a reliable link layer 
(relTCP) which we have also simulated.  The results do not depend very much on the 
maximum number of retransmissions and buffer sizes if these are between three and five, but 
performance degrades for a buffer size of two. For a buffer size of three, at maximum three 
link layer retransmissions and 10% packet error rate, the number of end-to-end 
retransmissions for relTCP (72) is higher than for TSS but lower than for DTC. While the 
number of transmitted TCP data segments of relTCP (7397) is about the same as for DTC and 
thus higher as for TSS, the number of acknowledgements is higher (6609) than for both DTC 
and TSS since relTCP is not able to exploit the cumulative nature of TCP acknowledgements. 
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Figure 7: Transmitted TCP segments and TCP acknowledgements for DTC and TSS 

7. Conclusions 
TCP support in wireless sensor networks is desirable to allow direct communication of sensor 
nodes with other systems for various purposes such as configuration, re-programming or 
management. Recent work showed that TCP/IP can be implemented on sensor nodes with 
limited processing power and memory [4]. In this paper we show that even in scenarios with 
high error rates, TCP can be used and implemented in an energy-efficient way. This requires 
some protocol support in intermediate nodes that are able to store TCP segments for possible 
local retransmissions. Both concepts presented in this paper drastically reduce the number of 
TCP segment transmissions that are needed to transfer a certain amount of data across a 
wireless sensor network with relatively high bit / packet error rates. Both approaches have 
different requirements on TCP protocol options (selective retransmissions vs. go back n) and 
buffer requirements (1 vs. 2 packet buffers). The different types of link level support (link 
level acknowledgments vs. overhearing / implicit acknowledgements) are rather 
implementation issues and can be easily used by either mechanism. Future work might 
analyse the performance in further network scenarios, integrate scheduling mechanisms for 
sleep cycles and consider real implementation on available sensor node hardware. Further 
reduction of transmissions might be achieved by delayed acknowledgements and combining 
data and acknowledgement transmissions.  
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