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Abstract

This paper describes the architecture and implementa-
tion of a hybrid ns2 based network simulator. The system
uses a generic xml description for the simulation jobs and
uses the Java Messaging System to communicate with com-
ponents like a graphical front-end or a toolkit for a visual-
ization of the results. The hybrid simulator is an extension
of standardns2 , which supports the representation of au-
tonomous systems by delay and loss models and provides
a more complex node behavior by adding support for for-
warding or processing delays withinns2 nodes. An xml
scheme has been developed to describe autonomous sys-
tems.

1 Introduction

In traditional packet-based simulators the ”world” is
modelled in terms of nodes and links with individual capac-
ities and delay characteristics. When simulating whole In-
ternet domains this approach quickly becomes problematic,
due to the sheer amount of events to be processed. A mul-
titude of approaches to this scalability problem have been
proposed, each with slightly different application ranges
[7, 4, 5] [3] [1].

The hybrid simulation module presented in this pa-
per combines packet-based simulation of ns2 with analyti-
cal models by using a hot-plug mechanism, which makes
single ns2 nodes behave like whole networks (e.g. au-
tonomous systems). This abstraction allows the user to
simulate large topologies in a fraction of the time a full
scale packet-based simulation would take. Suggested ap-
plication areas for the hybrid simulator include end-to-end
QoS evaluation of single flows – simulated using traditional
packet-based models – over a complex backbone network,
or the effect of changes in a backbone network (e.g. ad-
dition/removal of links, capacity changes, big changes of
network load due to new SLAs, etc.) on flows traversing
the domain.

Since the models represent a situation in the real world,
measurements from the network are needed to configure

them. For traffic load models, these measurements consist
of the loads on the inbound links of a domain and their
distribution to the outbound links. Furthermore, knowledge
of inter-domain topology, inter-domain link capacities and
SLSs is required for realistic network modeling.

Since real world data of that kind is not easy to obtain,
the approach is evaluated by simulating networks and train-
ing the models based on the simulated data. The advantage
of this approach is that the results of a modeled network
can easily be compared with the node by node simulation.
Even if this approach does not require any real world data,
it requires a more real world alike behavior of the simu-
lator. Therefore, besides the hot-plug mechanism for do-
main models, ns2 was further extended to provide support
for packet forwarding and processing delays on a per node
level. By this we try to model a real network more real-
istically than this can be done with standard ns2. With the
developed extension ns2 nodes cause packet forwarding de-
lays similar to those caused by the packet processing of real
IP routers. Using the same mechanism even the behavior
of whole network domains can be scalably simulated, using
so called multi-domain models [2].

The paper is structured as follows. Section 2 describes
the general concept of multi-domain models and gives a
short impression of their xml representation. In Section 3
the extensions of thens2 network simulator are presented.
A set of short evaluations show the impact of forwarding
delays and how measurement data can be used to obtain a
model for a node or a set of nodes. Section 4 focuses on the
embedding of the hybridns2 simulator in the InterMON
framework and describes the automatic processing of sim-
ulation jobs.

2 Multi-Domain Models

2.1 Concept

The extension to ns2 mentioned above may be used to
simulate the behavior of a huge network inside a single
simulator node. To this end we have developed an ana-
lytical model capable of simulating scenarios with several
ISP networks in a scalable way.
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Figure 1. Example of a multi-domain model

This model is based on the assumption that, at a given
time, the Internet can be divided into areas where conges-
tion is negligible, interconnected by bottleneck links. We
treat congestion free areas as black boxes, which we call
domain models. Modelling congestion free areas has the
advantage that we can neglect packet losses and excessive
queuing in large parts of the network and restrict the model
to quasi-static delay behavior. Apart from its scalability
advantage this approach may be useful to model network
areas of which we do not know the exact topology. Do-
main models use empirical cumulative distribution func-
tions (ECDFs) to simulate the delays of packets crossing
the domain. The distribution may vary depending on the
ingress and egress nodes on which the packet enters and
leaves the domain, respectively.

The bottleneck links between two domains of a simula-
tion scenario are represented byinter-domain link models.
Here, packet loss and the effects of queuing on delay are
simulated. The basic parameters of an inter-domain link
model are similar to those of an ns-2 link. In fact, ns-2
links can be used for this purpose. However, it may be more
efficient to combine several domain and inter-domain link
models to form a so calledmulti-domain model. Unlike ns-
2 multi-domain models are not event-driven, but use a sys-
tem similar to fluid flow simulation. Packet arrival events
are converted into a scalar rate estimate for every path go-
ing across the model. Additionally, highly scalabletraffic
generatorsmodel traffic aggregates (e.g. 1000 VoIP flows)
to populate the multi-domain model with traffic. They take
the form of a function that yields the load generated by
the traffic aggregate given a (monotonously rising) point in
time. Fig. 1 gives an example of how these models may be
combined to make a multi-domain model.

To make the concept of multi-domain models work we
need a way to model the behavior of inter-domain links
in a not event-driven fashion. A well-known approach to
this problem are analytical queuing models, which take the
offered load and calculate the packet loss ratio and the de-
lay distribution from it. A simple example is the M/D/1/K
queue: it models a standard router queue with queue capac-
ity K − 1, deterministic service time and a poisson arrival

<imonmodel family="hybrid">
<modinfo>

. . . Generic Intermon model header. . .
</modinfo>
<model category="multi">

<border>
. . . Configuration of interface to ns-2 . . .

</border>
<submodels>

. . . Paths to the submodels’ XMLs. . .
</submodels>
<topology>

. . . Connections between submodels. . .
</topology>
<routing>

. . . Routing paths through the model. . .
</routing>

</model>
</imonmodel>

Figure 2. Structure of master configuration
file

process. Preliminary evaluation has shown that the choice
of arrival process is the critical element when building an
inter-domain link model.

In the Intermon context it is particularly useful to par-
tition the network into autonomous systems (⇒ domain
models) and their inter-connecting links (⇒ inter-domain
link models). This partitioning seems reasonable since au-
tonomous systems are usually controlled. For example,
internal routes can be changed to distribute traffic load,
and ingress routers might police flows to prevent conges-
tion inside the AS. Moreover, the bandwidths inside an AS
network are usually bigger than the bandwidths of inter-
domain links.

2.2 NS-2 Integration

On the ns-2 level a multi-domain model can be attached
to a node by loading the respective module and pointing it
to its master configuration file. This file is in XML format
and contains the configuration for the module’s interface
to ns-2, its internal topology and routing. Furthermore,
it contains paths to the XML descriptions of all required
domain, inter-domain link, and traffic generator models.
Fig. 2 shows the basic structure of this file.



3 Simulator Extension

For the integration intons2 the node has to be slightly
modified, as can be seen in Figure 3 (taken from [6]). The
typical ns2 node consists of an address classifier, a port
classifier and a set of agents. The address classifier routes
incoming packets either directly to outgoing links or to
a port classifier forwarding the packets to an appropriate
agent.

External Predictor Modules

To delay and discard packets, an additional component,
the Delay and Loss Predictor (DePred, LoPred) was im-
plemented and put before the address classifier. Therefore
incoming packets are first processed by the predictor mod-
ule, which decides how long the packet has to be delayed,
or whether the packet has to be dropped.

The module itself is not part of thens2 node. The node
only provides an interface to the external module and takes
care of delaying or dropping the packet. Apart from some
functions allowing the dynamic loading and unloading, the
initialization and configuration of the module, a predic-
tor module only has to provide a single function which is
called for each arriving packet. Depending on the return
value, the module interface either discards or delays the
packet. With each call of the predictor function, the predic-
tor gets information about the packet itself, the previously
passed and the nextns2 node, and the simulation time.
Any type of metering has to be done by the predictor itself.
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Figure 3. Extension of the ns2 network simu-
lator with an interface for external delay and
loss predictor modules and an internal mod-
ule for standard distributions

Internal Predictor Modules

While the external modules are perfectly suited to model
the behavior of complex domains, the module interface can
be used to attach different module implementations also.
However, since a lot of simulation do not require complex

delay patterns, an additional, simple delay module was di-
rectly build into the node extension itself. The internal
module provides a set of simple distributions which can
be used to generate delay patterns for packets passing that
node. In general the same functionality could also be pro-
vided with external modules, but would increase the over-
head. The different types of distributions and how they can
be used from within ns2 is discussed in the next section.

3.1 Standard Distributions

Packet forwarding delays can be simply switched on and
configured from within any ns2 script. Currently three dif-
ferent distributions are implemented. The syntax for acti-
vating packet forwarding delays and for a configuration of
the distributions is:

$dm dist gamma<shape> <offset> <scale>
$dm dist gauss<offset> <scale>
$dm dist empiric<filename>

The $dm is the TCL reference to the delay module.
The gamma andgauss commands activate an accordingly
shaped packet forwarding delay distribution. The<offset>
and<scale> parameters allow to guarantee minimum de-
lays or to scale the distributions. The gamma distribution
has an additional parameter<shape>.

While the gauss distribution was mainly implemented
as the classical example of a probability distribution, the
gamma distribution was chosen because of some measure-
ment results. The delays between several hosts in the
SWITCH network were measured and analyzed. The mea-
surements were performed were only very little congestion
had to be expected and showed gamma like distributions.
Therefore the gamma distribution has been implemented
as a close approximation to that behavior.

In contrast to the gamma and gauss distribution the em-
piric distribution expects a filename as an argument. The
file has to contain sample delays. After the simulation has
started the node will delay packets according to the distri-
bution given in the file.

Figure 4 shows typical gamma and gauss distributions
which can be used as delay pattern for the internal delay
module. Figure 4(a) shows the gamma distribution with
different shapes, while Figure 4(b) shows the gaussian sam-
ple distribution. The lower graph also shows the impact of
the <offset> and<scale> parameter on the delay distri-
bution. The effect of the parameters on the gamma distri-
bution are similar.

Using this built-in distributions to generate packet for-
warding delays allows to model simple node behavior. Es-
pecially it is suited to produce more complex delay patterns
in ns2 simulations.
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Figure 4. Standard distributions with various
shapes resp. offset and scale parameters

As shown in Figure 5(a)ns2 generates, without the im-
pact of protocol dynamics, only static delays. Of course,
TCP behavior or load changes will result in changing queue
lengths and therefore produce a variation of packet delay.
However, one of the assumptions of the InterMON project
are no packet losses and therefore no congestion for high
priority service classes within an AS. Therefore queuing
delays can not be used as the only cause of packet delay in
our simulations.

In contrast to the standardns2 simulator, Figure 5(b)
shows the delays resulting in a chain of routers with each
router causing gamma distributed forwarding delays. The
graph clearly demonstrates the convolution of the delay dis-
tributions with each hop.

3.2 Training models with Simulation Data

Even if the standard distributions provide a simple
model for a router’s forwarding delay, the main focus is not

 0  2  4  6  8  10  12  14

one hop
two hops

three hops
four hops

 [f
re

qu
en

cy
]

 16 [ms]

(a) typical delay distribution ofns2

[f
re

qu
en

cy
]

 0  2  4  6  8  10  12  14  16

one node
two nodes

three nodes
four nodes

 [ms]

(b) delay distribution with forwarding delays

Figure 5. Typical ns2 delays in a static simu-
lation and packet delays with the ns2 exten-
sion

so much on providing a realistic model but simply on pro-
viding a more complex delay behavior, which is necessary
to evaluate the training of models with simulation data.

As was shown in Figure 5 thens2 link delays have al-
ways the exact same value, which does not allow to cause
any typical delay distributions for certain nodes or node
clusters.

In our experiment a row of six nodes was set up (see left
hand diagram in Figure 6). All links between the nodes had
the same bandwidth except the one in the middle which has
only half the bandwidth and causes packets to be queued
and therefore delayed. Each node was configured to cause
gamma distributed forwarding delays.

A single CBR traffic source sends packets and fills the
bottleneck completely. The simulation was started and the
packet delays between the nodesA,B andA,C was mea-
sured. Figure 7(a) shows the distribution of the measured
delays.
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Figure 6. A chain of six ns2 nodes with a
central bottleneck and a similar setup using
a domain model

While the delays betweenA and B show the gamma
distribution caused by the first node, the delays after the
bottleneck are caused by several reasons:

• multiple gamma distributed forwarding delays in the
nodes, causing a convolution of the distributions,
which alters the shape towards a normal distribution.

• the bottleneck with its queue and the token bucket fil-
ter. The queue of packets is responsible for causing
the large increase of packet delays, while the token
bucket filter modifying the shape.

In the second step we took one of the domain models de-
scribed in section 2 and trained it the delay and loss mea-
surements betweenA and C. Then, as shown in Figure
6 the four intermediate nodes in the simulation were re-
placed with a single node using the domain model for delay
and loss prediction. After that the intermediate node causes
packet delays and losses according to the training data.

Figure 7(b)) shows the result, which matches the results
from the previous simulation quite accurately.

4 Processing Simulation Jobs

In this section we describe the mechanisms and formats
used to process end to represent simulation jobs.

4.1 Job Description

When the user decides to start a simulation the chosen
topology and any changes and additions made to it are writ-
ten into an XML file to be sent to the simulation manager.
Fig. 8 shows the structure of this file. At the top of the
file is the BGP topology that was chosen by the user in the
graphical user interface. It consists of a list of autonomous
systems with their IDs, and possibly IP prefixes, border
routers, and recently received BGP path updates. This part
is the same for all Intermon simulators.

The<changes> section is the second part of a simula-
tion request and contains a simulator dependent list of ac-
tions, which are usually actions initiated through the user’s
GUI, like changing the capacity of a link. Action may
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Figure 7. Packet delays by simulation (top)
and using a trained domain model (bottom)

also be generated automatically, however. This may serve
to supply additional information about the topology to the
simulation manager. In the ns-2 hybrid interface, the user
can perform the following actions:

• Add a traffic generator to the scenario

• Specifiy transition points between ns-2 and the multi-
domain model

• Select the delay behavior for an autonomous system

• Set the capacity of a link

After the changes section an additional
<parameters> section allows the user to supply
general instructions and parameters to the simulator. In
the ns-2 hybrid interface the user can choose the data to be
returned by the simulator by parameter (delay, packet loss,
jitter) and endpoints.



<simrequest>
<BGPTopologyTree>

. . . BGP topology from topology
detection tool. . .
<AS>

. . . AS description, possibly including
recent BGP path updates. . .

</AS>
. . .
<Link>

. . . Inter-AS link description
</Link>
. . .

</BGPTopologyTree>
<changes>

. . . Simulator dependent changes/additions
to the scenario. . .
<action type="set link capacity"

src="1111" dst="2222">
1M
. . . Example action changing the link
capacity between ASs 1111 and 2222. . .

</action>
</changes>
<params>

. . . General paramenters for the chosen
simulator. . .

</params>
</simrequest>

Figure 8. Structure of a simulation request

4.2 Toolmanager and Toolchain

All the components and modules of the InterMON sys-
tem communicate using the Java Messaging System. Also,
the simulators have an JMS fontend to receive simulation
jobs and to return the results. Since network simulations
require a lot of computing power and also produce a lot of
data scalability was a central aspect during the design and
the implementation of the architecture. The system sup-
ports the processing of simulation requests in parallel and
supports multiprocessor computers as well as clusters.

NS2 Toolmanager

scheduler

demultiplexor

Xml parsing

Creation of Simulator 
Configuration

Multiplexor

parsing of tracefiles

store results in data
repository

generate XML reply

Simulator

Figure 9. Simulation queue

As can be seen in Figure 9, on top of the toolchain re-
sides thens2 toolmanager, which is written in Java and
takes care of receiving the simulations job descriptions and
which returns the replies. When a simulation job is re-
ceived, thetoolmanagerautomatically returns a short mes-
sage, signaling the global controller and the graphical user
interface that the job was received and will be processed.

After that the job is forwarded to thescheduler. The
schedulerstores the job, initiates the job processing and
waits for the next job. After this initiation, the scheduler
does not have to wait until the job is finished, but is im-
mediately ready to receive the next job. The scheduler also
decides on which computer/processor the particular job is
processed and therefore can provide a proper and flexible
load balancing.

The processing of the job mainly consists of parsing the
xml simulation job description and the creation of the con-
figuration files for the hybridns2 simulator. This is done
by thedemultiplexorcomponent. After the simulation has



been finished, themultiplexor components takes care of
processing the simulator tracefiles, stores the results in a
data repository and produces a message telling the graph-
ical user interface by which URL the results can be ob-
tained.

The data repository is necessary, since the results pro-
duced by the simulation may consist of a large amount of
data. Due to performance reasons the results are therefore
stored on an ftp/web server and merely the URL of the re-
sult file is returned to the graphical user interface.

4.3 Processing the Results

The InterMON system includes a module which uses
Visual Data Mining techniques to render the results of the
simulation. To provide support for different simulators,
VDM system does not depend on a specific data format,
but requires each simulator to provide an import filter for
this simulator’s data.

The VDM toolkit is attached to the graphical user inter-
face and receives the simulation result message. It extracts
the URL from the simulator reply message, downloads the
data from the URL and pipes them through the import filter.

The hybrid simulator returns a single data format which
simply lists events between two points A and B in the sim-
ulated network. Such an event typically represents a packet
passing one of this points. Each event is recorded with the
specific simulation. In addition packet losses between the
nodes are also recorded.

This allows the VDM system to calculate the delay be-
tween specific points within a topology as well as packet
losses, packet and data rate. A single simulation job may
contain any number of point pairs. Furthermore a granular-
ity can be specified, which causes the simulator toolchain
not to list single events in the output data, but to aggregate
events. The adjustable granularity allows to provide better
performance for large simulations and further improves the
scalability.

5 Summary and Outlook

The paper presents the concept of flexible domain mod-
els allowing to represent autonomous systems as a single
black box model and their integration into a packet based
simulation scenario. The simulations are based onns2
, which has been extended by a flexible plugin mecha-
nisms allowing to bind external domain models on specific
nodes. These nodes then provide the behavior of a whole
autonomous system. The models also include internal traf-
fic sources and sinks which allows to internally model huge
numbers of VoIP or HTTP streams.

Besides the integration of domain models inns2 the
simulator was also extended to support forwarding delays.

A small set of standard delay distributions have been im-
plemented and can be used to provide a more complex and
more realistic delay behavior. A set of simple tests showed
the impact of the additional packet delay mechanism and
how simulation data can be used to create models for a set
of nodes within a simulation and compares the results of
the original simulation with the model supported one.

Future work will focus on a more detailed evaluation of
the implemented system. Results obtained with the hybrid
ns2 will be compared with other simulators, implemented
within the InterMON project.
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