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Abstract

Discrete event simulation of computer networks has signif-
icant scalability issues, which makes simulating large scale
networks problematic. We propose to extend the approach
by combining it with analytical models for network clouds,
which are much more efficient, if less accurate, than node-
by-node models. Thus, simulation scenarios containing
several ISP networks become feasible. We introduce a set
of suitable analytical network cloud models and also de-
scribe how these models can be implemented in the ns-2
simulator using a hot-plug mechanism.

1 Introduction

In traditional packet-based simulators the “world” is mod-
eled in terms of nodes and links with individual capacities
and delay characteristics. When simulating whole Internet
domains this approach quickly becomes problematic, due
to the sheer amount of events to be processed. A multi-
tude of approaches to this scalability problem have been
proposed, each with slightly different application ranges.
Parallel simulation ([CM81], [ARF99]) is probably the
most prominent one, but there are also the approaches of
fluid flow simulation ([YG99], [LGK+99], [LFG+01]),
time stepped hybrid simulation [GGT00] and packet trains
[AD96], amongst others.

A simplified view of the network can significantly re-
duce the complexity of large scale simulations, but one
must give great care to not oversimplify things. Here we
propose a model, which we hope will result in far more ef-
ficient simulations than traditional approaches but should
still give a good approximation of real network behavior.

In our modeling view the network is divided into do-
mains and inter-domain links. For each domain, the set of
edge nodes and their links to other domains are known, but
the topology inside domains is of no concern (i.e. we have a
so called black box model). The connections between such
domains are modeled by inter-domain link models, which
implement properties like link capacity, queuing behavior
or Service Level Specifications (SLSs). Figure 1 gives a
graphical rendering of this modeling view.

Domain and inter-domain link models implement differ-
ent aspects of network behavior. On one hand, domains are
concerned with load distribution, i.e. they model the depen-
dencies between load on the inbound link to the resulting
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Inter−domain Links

Border Routers

Figure 1: The basic modeling view

load on the outbound links. Inter-domain link models on
the other hand model the effects these resulting network
loads between domains, which are packet loss due to link
overload and SLSs enforcement, amongst others. Further
components of this model system are the application traffic
models concerned with traffic load. They serve to scal-
ably simulate large aggregates of application traffic (VoIP,
Video, HTTP, etc.) and their specific properties. More-
over, if these models are derived from network measure-
ments their future properties can be predicted by applying
statistical means like ARIMA models.

This structure was based on the assumption that conges-
tion is unlikely to occur inside ISP networks since they are
usually controlled by a central entity, which can, for ex-
ample, change the routing to distribute traffic if there is a
danger of congestion. In reality this assumption does not
generally hold of course, but we expect it to be an accept-
able approximation.

Since the models described here represent a situation in
the real world, measurements from the network are needed
to configure them. For traffic load models, these measure-
ments consist of the loads on the inbound links of a domain
and their distribution to the outbound links. Furthermore,
knowledge of inter-domain topology, inter-domain link ca-
pacities and SLSs is required for realistic network model-
ing.

The remainder of the paper is organized as follows: In
Sections 2 and 3 we describe the models for domains and
inter-domain links, respectively, and Section 4 shows how
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to combine them to analytical multi-domain models. The
integration of these models intons2 is explained in Sec-
tion 5. Some preliminary evaluation results are shown in
Section 6. Finally, Section 7 concludes the paper.

2 Domain Model

There are two main aspects to the proposed domain model.
One is the traffic matrix describing the dependencies of the
load parameters ofinboundandoutboundlinks, which is
described in the following section. The other aspect is the
continuous adaption of this matrix based on measurements
done on the live network. It is covered in Section 2.3.

As mentioned above the purpose of the domain model is
to describe the distribution of traffic flowing into a domain
to other domains. We will investigate the scenario where
we know two things: the loads on the outbound links at
a given time and the origin of these loads by share of the
inbound links.

2.1 Transit Matrix

As mentioned above, we need information about “traffic
forking” — the distribution of traffic from an inbound link
to the outbound links. Gathering this information from the
ingress nodes is not easy in all cases because this might
require knowledge of intra-domain topology and routing.
It is often easier to determine how much of the load on an
outbound link comes from a specific inbound link. As a
result we get the outbound loadsOt = (O1,t, . . . , Om,t) at
time t and the relative contributionsσji of inbound linkj
to the load on outbound linki, for every pair(i, j). Thus,
the load going from inbound linkj to the outbound linki
is given byσjiOi,t. Earlier, we stated the assumption that
there is only negligible congestion, and therefore packet
loss, in a single network domain. We can therefore state
that “inbound load = outbound load”, or more formally¿

m∑
i=1

Oi,t =
n∑

j=1

Ij,t (1)

With this result it follows that the load on a given inbound
link j is

Ij,t =
m∑

i=1

σji ·Oi,t (2)

so the whole system can be written as I1,t

...
In,t

 =

 σ11 · · · σ1m

...
...

...
σn1 · · · σnm


 O1,t

...
Om,t

 (3)

The sum of elements of the matrix’ column vectors is 1.

In a simulation scenario the given values are usually the
inbound loads. What we would like to have is a so called
transit matrixT , so we can write

Ot =

 τ11 · · · τ1n

...
...

...
τm1 · · · τmn

 · It + εt (4)

whereεt is the error term. A way to convert the original
result to the transit matrix notation is necessary to accom-
modate for that. As seen in Equation (2) the inbound load
Ij,t is the total ofm terms of the formσjiOi,t, for some
j. The elementsτij of the transit matrix can thus be calcu-
lated by

τij =
σjiOi,t∑m

k=1 σjkOk,t
(5)

or, if It is known, by

τij =
σjiOi,t

Ij,t
(6)

given thatIt 6= 0. Otherwise, we can assumeτij = 0.
Again, the resulting transit matrix has the property that the
element sum of the column vectors equals 1.

2.2 SLSs and Traffic Classes

The transit matrix model discussed above only considers
one load parameter per inbound or outbound link. How-
ever, there often are several load parameters for various
traffic classes defined in service level agreements. Based
on the assumption of a “well-behaving network domain”
(see Equation (1)) these traffic classes can be considered
as independent traffic aggregates. This allows us to de-
scribe multiple traffic classes by using one transit matrix
per traffic class and domain. Instead of a single transit ma-
trix T the domain model then consists of a set of matri-
cesT1, . . . , TC whereC is the number of separate traffic
classes.

2.3 Matrix Adaption

Network domains have constantly changing characteris-
tics. Accordingly, a domain’s traffic matrix also changes
over time. While the calculation of transit matrices already
requires a time series of outbound load vectors and distri-
bution matrices, modeling the changes of domain behavior
requires a time series of traffic matrices.

From a time series of outbound load vectorsOt and dis-
tribution matricesDt (t = 0, . . .) we thus have to calculate
a time series of transit matricesTu (u = 0, . . .). Let s
be the number of observations required to get a good esti-
mate of the momentary transit matrix of a domain. Then
the calculation of matrixTu is based onOv andDv where
v = u · s, . . . , u · (s + 1)− 1. I.e. we makes-sized groups
of outbound load vectors and distribution matrices and cal-
culate a transit matrix from each.
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Figure 2: General Domain Delay Model

Based on this time series of transit matrices we can use
several prediction mechanisms like moving average and
autoregressive models. However, one problem still re-
mains: The predicted matrices should have the same prop-
erties as “real” transit matrices, such as the ones discussed
above. Predicting each matrix element in isolation cannot
guarantee this. This problem has not been resolved yet and
will be a focus of further research.

2.4 Domain Delay

A well-known way of looking at end-to-end delay is to di-
vide it into link, processing and queuing delay. These ef-
fects appear in both, domains and inter-domain links. It is
a viable approach to build their delay models by deciding
whether and how to model these elements of delay.

When looking at the case of a path going through a
domain it appears clear that all three effects are strongly
dependent on the number of hops inside the domain in-
volved. The following formula describes a very general
model based on this assumption:

Delay =
m∑

j=1

lj + pj + qj

Here,lj are the link delays,pj the processing delays and
qj the queuing delays of hopj. Figure 2 shows this graph-
ically for the casem = 3.

The link delayslj are probably not equal to each other
but all of them are constant. We can therefore replace these
terms in the formula by the constantL. Processing de-
lays on the other hand are not constant and often depend
on small timing variations inside the routers. Experiments
performed in our testbed have shown that processing de-
lays are approximately poisson distributed.

Because we assume that network domains are well-
behaving and congestion only occurs in inter-domain links,
queuing delays can only be caused by the burstiness of traf-
fic, which gets smaller the more “backbone characteristics”
the domain has. Traffic in backbone domains tends to be
smooth because of the great number of microflows it con-
sists of. During validation we will try to show that queuing
delays inside domains are really negligible or at least de-
scribable by simple means. If the above proves true the

domains delay model can be reduced to the simpler for-
mula

Delay = L +
m∑

j=1

pj

whereL is constant andpj are poisson distributed random
variables.

It is important to note that the black box domain model
does not allow to store delay characteristics per node in the
domain. Each path between two edge nodes must have an
own model, include hop count as well as link delay and
processing delay characteristics. The adequate model for a
path can then be selected by looking at routing information.

3 Inter-Domain Link Model

When choosing an analytical model for inter-domain links,
possible alternatives are the traditional queuing theory ap-
proach or a fluid simulation approach. While the former
may become difficult to calculate in the case of compli-
cated SLSs, the latter may be expected to perform better in
such situations but also to yield inferior exactitude.

3.1 Fluid Approach

Unlike domain models the inter-domain link model has
only one load source, which can usually be described with
a single scalarIt. If multiple traffic classes have to be dis-
tinguished — in DiffServ environments for example — this
parameter becomesIt = (I1,t, . . . , IC,t), whereC is the
number of different traffic classes. The vector elements
each describe the bandwidth used by the traffic aggregate
of a single traffic class. Models of multiple levels of com-
plexity can be defined based on this input parameter and
additional knowledge, such as priorities of traffic classes.

3.1.1 Traffic Class Model Tree

Interrelations between traffic classes can take various
forms. Expedited Forwarding for example has absolute pri-
ority over other traffic classes, as long as the used capacity
remains below a previously fixed value. A more complex
example is Assured Forwarding with its three subclasses
called dropping precedences, which influence themselves
while the whole of them influences other traffic aggregates.

I1,t // µ1

��@
@@

@@
@

I2,t // µ2 // µ4 // µ5 // Ot

I3,t // µ3

77ooooooooooo

Figure 3: Example of a Model Hierarchy

Using a model hierarchy these interrelations can easily
be modelled. The leaves of this hierarchy tree model the
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behavior of single traffic classes. Nodes higher in the hi-
erarchy model the interrelations between multiple traffic
aggregates below them. Figure 3 shows an example with
three leaf nodes and one intermediate node, and of course
one root node. In algebraic form the model would read

Ot = µ(It) = µ5(µ4(µ1(I1,t), µ2(I2,t)), µ3(I3,t))

Below a few functions useful to construct such model
hierarchies will be defined. In order to make the functions
freely combinable they all have to be of a certain algebraic
form, which is

µ(B, ~P , ~M, ~A). (7)

ParameterB is the maximum available bandwidth,~P is a
vector of parameters specific toµ, ~M is a vector ofn sub-
models and~A is a vector of argument vectors for these sub-
models. The elements of~A again have the form(~P , ~M, ~A),
although with other vector sizes. The inbound bandwidths
Ii,t are considered as constant functions in this context.
Furthermore, the following function will help readability:

m(b, µ,~a) = min(b, µ(b,~a)) (8)

which according to the above algebraic form can also be
written as

M(B, (b1, . . . , bn), ~M, ~A) =

 m(bi, µi, ~ai)
...

m(bn, µn, ~an)


if and only if B ≥

∑n
i=1 bi holds.

Fixed Bandwidth Shares The simplest useful function
is the one modeling fixed bandwidth shares. Incoming
bandwidth from the models in~M is simply truncated to
a maximum bandwidthB according to bandwidth shares
in ~P = (s1, . . . , sn). We get thefixed sharefunction

F (B, ~P , ~M, ~A) =

 m(s1B,µ1, ~a1)
...

m(snB,µn, ~an)

 (9)

Priority Multi-Queue Multi-queue systems often im-
plement a system of fixed priorities where queues with
small priorities only can send if all queues with higher pri-
ority are empty. This property can be modelled by the func-
tion

P (B, (), ~M, ~A) =

 m(β(1), µ1, ~a1)
...

m(β(n), µn, ~an)

 (10)

The nameP stands for the priority-dependent behavior of
the function. The helper functionβ yields the bandwidth
available toµi and is defined as

β(i) =
{

B i = 1
B −

∑i−1
j=1 Pi otherwise

(11)

Dropping Precedences Assured Forwarding (AF) de-
fines three dropping precedences—low, medium and
high—which cannot be modelled with the functions above.
AF packets are normally marked with low dropping prece-
dence when they are sent and only change that status to a
higher dropping precedence if they are detected to be “out
of profile” by a router on their path. Then, in case of con-
gestion, routers drop packets with higher dropping prece-
dence first. The following function models a generalized
variant of this approach with an arbitrary number of drop-
ping precedences:

D(B, (b1, . . . , bn−1), ~M, ~A) =

 D1

...
Dn


Note the parametersb1, . . . , bn−1: In contrast to the band-
width share parameters above they stand for absolute band-
widths. Additionally we assumeb1 ≤ B. Again, we need
helper functions to describe the elements of the result vec-
tor. First, functionr calculates the amount of bandwidth
of a given dropping precedence that has to be retagged to a
higher dropping precedence:

h(i) =
{

max(µ1(b1, ~a1)− b1, 0) i = 1
max(µi(bi, ~ai) + h(i− 1)− bi, 0) i > 1

(12)
Using this function we can see how much bandwidth re-
mains for a given dropping precedence by

r(i) =

 m(b1, µ1, ~a1) i = 1
µn(∞, ~an) + h(n− 1) i = n
m(bi, µi, ~ai) + h(i− 1) otherwise

(13)

so we can finally write

Di =
{

min(r(1), B) i = 1
min(r(i), B −

∑i−1
j=1 Dj) otherwise

(14)

Fair Queueing Fair Queueing and Weighted Fair Queue-
ing are popular approaches to manage QoS. Our proposed
system should therefore provide a rendering of their be-
havior, or rather just of Weighted Fair Queueing since it is
a generalization of Fair Queueing. The parameter vector
has again the form~P = (s1, . . . , sn) here. If not all of the
submodels completely use up their bandwidth share, the
remaining bandwidth can be used by the other submodels,
according to their share. The calculation of the resulting
bandwidth shares is best done algorithmically. We need
the following definition:

α(i, b) =
{

1, µi(b, ~ai) ≥ b
0, otherwise

(15)

To begin letι = {1, . . . , n}, W = 1 andb1 = . . . = bn =
0. The sum of the unused bandwidths of the single flows is
calculated by

U =
∑
i∈ι

α(i,
si

W
B + bi)(

si

W
B + bi − µi(

si

W
B + bi, ~ai))
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Then, for everyi ∈ ι, reassign

bi =
{

si

W B + bi, α(i, si

W B + bi) = 1
µi( si

W B + bi, ~ai), otherwise

In the next round only the “unsatisfied” models participate.
We reassign

ι = {i : i ∈ ι ∧ α(i,
si

W
B + bi) = 1}

The sum of weights must also be adjusted, thus we reassign

W =
∑
i∈ι

si

From here go to the calculation ofU until ι is the empty
set. The variablesbi then contain the bandwidths assigned
to the modelsµi. The complete model is then given by

W (B, ~P , ~M, ~A) =

 b1

...
bn

 (16)

An Example An example should help clarifying the use
of the above system: Consider an inter-domain link with
the queueing system shown in Figure 4.

EF

))SSSSSSSSSSS

It

??�����
//

��?
??

??
AF // WFQ // PRIO // Ot

BE

<<yyyyy

Figure 4: Inter-Domain Link Example

Let the total link bandwidth be 100Mbit/s and the band-
widths for the AF dropping precedences be 40Mbit/s,
8Mbit/s and 2Mbit/s, for low, medium and high dropping
precedence, respectively. Further, let the WFQ weights be
0.5 for both inputs and 25Mbit/s be the maximum band-
width allowed for EF traffic. Using the prototypical func-
tions from above we get

M(X, (25), (I1,t), ())

for the EF queue and

D(X, (40, 8, 2), (I2,t, I3,t, I4,t), ())

for the AF queue (X will be replaced by the function higher
in the hierarchy). The Best Effort queue simply uses as
much bandwidth as it can get, so we can directly takeI5,t

as a model for it. Combining these we get

W (X, (0.5, 0.5), (D, I5,t), ~AW )

for the WFQ queue with

~AW = (((40, 8, 2), (I2,t, I3,t, I4,t), ())︸ ︷︷ ︸
D

, ()︸︷︷︸
I5,t

)

Using a P function to combine these, we get the final
model

Ot = P (100, (), (M,W ), (((25), (I1,t), ())︸ ︷︷ ︸
M

, ~AW ))

3.2 Queuing Theory Approach

Traditionally, analytical network models have been based
on the queuing theory originating from operations research
and the like. Although creating such a model for a given
system is often non-trivial, the results are both accurate and
efficient. On the other hand, larger systems become very
complicated to model.
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Figure 5: Birth and Death Process

In the simple case of one queue per inter-domain link we
can use a classic M/M/1/K queue, that is, a queue with ex-
ponentially distributed inter-arrival timeτ and service time
s, a single “processing station” (the physical link) and a
system capacityK. The arrival and service rates are given
by λ = 1/E(τ) andµ = 1/E(s), respectively. This sys-
tem is a birth and death process as shown in Figure 5. For
a birth and death process of this kind the probabilitypi of
the system to be in statei is given by

pi =

{
1−λ/µ

1−(λ/µ)K+1 , i = 0
(λ/µ)ip0, i > 0

(17)

if λ 6= µ, and

p0 = p1 = . . . = pK =
1

K + 1
(18)

if λ = µ. Because here we are only concerned with the
changes to the traffic load caused by the queueing system,
there is now a very simple way to simulate the dropping be-
havior. Arriving packets will only be dropped if the queue
is full, which is the case with probabilitypK . It is there-
fore sufficient to randomly drop an adequate fraction of the
arriving packets, or in the case of a input load parameterIt

to write
Ot = (1− pK)It (19)

Assured Forwarding As mentioned above Assured For-
warding defines three dropping precedences. The differ-
ences in behavior towards these precedences are usually
implemented by beginning to drop packets at different fill
levels of the queue. This can again be modelled by a birth
and death process, although a more complicated one (see
Figure 6). The arrival rateλ consist of three ratesλl, λm

andλh, for low, medium and high dropping precedence,
respectively, withλ = λl + λm + λh. The system capacity
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Figure 6: AF Birth and Death Process

is againK. Medium packets can only be queued if the sys-
tem contains less thanm packets, and high packets only if
it contains less thanh. The system state probabilities for
i > 0 are

pi =



(
λ
µ

)i

p0, 0 < i ≤ h(
λ−λh

µ

)i−h

ph, h < i ≤ m(
λl

µ

)i−m

pm, m < i ≤ K

State0 consequently occurs with probability

p0 = 1−

[
h∑

i=1

(
λ

µ

)i

p0+(
λ

µ

)h m∑
i=h+1

(
λ− λh

µ

)i−h

p0 +

(
λ

µ

)h (
λ− λh

µ

)m−h K∑
i=m+1

(
λl

µ

)i−m

p0

]

After some transformations and using the terms

A =
(

1− λ

µ

)
, B =

(
1− λ− λh

µ

)
, C =

(
1− λl

µ

)
we can write

p0 = ABC/

[
1−

(
λ

µ

)h+1

BC−

(
λ

µ

)h (
λ− λh

µ

)m−h+1

AC −(
λ

µ

)h (
λ− λh

µ

)m−h (
λl

µ

)K−m+1

AB

]

Analogous to the simple queue above the output loads
are then calculated using

Oh,t = Ih,t ·
h−1∑
i=0

pi (20)

Om,t = Im,t ·
m−1∑
i=0

pi (21)

Ol,t = Il,t · (1− pK) (22)

Note that the probabilities used also change for everyt.
Due to the rather heavy calculations involved the above
model is not suited to very small sampling intervals.

Schedulers Queuing systems with multiple queues and
a single outgoing interface need one or more schedulers
to decide which queue is allowed to send when the inter-
face is done sending a packet. Some of the most frequently
used schedulers are the Weighted Fair Queuing and Prior-
ity schedulers.

To model WFQ we can almost immediately use the Fair
Queuing approach from Section 3.1.1. Instead of nesting
functions to determine the output loads of submodels we
can directly use the service ratessiµ (i = 1, . . . , n), and
instead of the output bandwidthB we use a known service
rate µ. Going through the algorithm yields the adjusted
service rates for the queues. By recalculating the models
with these rates we get the final outbound loads for every
queue.

Priority schedulers can be modeled with a slightly mod-
ified version of the approach in Section 3.1.1. The system
consists ofn queues with arrival ratesλ1, . . . , λn and ser-
vice ratesν1, . . . , νn. The service ratesν1, . . . , νn−1 are
fixed and have the property

n∑
i=1

νi ≤ µ

whereµ is the service rate of the priority scheduler itself.
νn is given by

νn = 1−
n∑

i=1

νi

The output loads of the queues1, . . . , n − 1 does not
change. That of queuen is obtained by evaluation it with
service rateνn.

3.3 Inter-Domain Delay

Inter-domain delays are mainly due to a fixed link delayL
and a queuing delayQ. An analytical model is a natural
approach to the latter. In the trivial case, a single Best-
Effort queue, an M/M/1/K queue, can be used, with arrival
and service rates derived from the average observed packet
sizeS, the input loadI and the output bandwidthB of the
link. The system capacityK (i.e. the queue length plus
one) can be set to a typical value if it is not known a priori.

Calculating the delay distribution for an M/M/1/K queue
is rather easy: Letλ = I/S and µ = B/S be the ar-
rival and service rates. The system state probabilities are
computed ananlogously to Section 3.2. When the system
holdsi packets, an arriving packet experiences a delay of
i/µ. The delay distribution of the whole inter-domain link
is thus

6



(
p0 p1 · · · pK

L 1/µ + L · · · K/µ + L

)
(23)

3.3.1 Service Differentiation

While the above model is simple an efficient it is not suited
to areas where the routers differentiate between classes
of packets. Well known examples are the Expedited and
Assured Forwarding services and schedulers like Round
Robin, Weighted Fair Queuing and Priority Scheduling. In
the paragraphs below we develop analytical delay models
for some of these. Note that Expedited Forwarding is triv-
ial to model using a queuing model as above, with fixed
service rate.

Assured Forwarding The three dropping precedence
levels defined by Assured Forwarding do not allow us to
use the simple M/M/1/K queue from above. Nevertheless,
by using the model defined in Section 3.2, a similar method
is possible. Again, the variablesp1, . . . , pK designate the
probaility that the system containsi packets at a given point
in time, e.g. at the arrival of a new packet. Since calculat-
ing these probabilities is significantly more complex than
in the M/M/1/K case we do not repeat the equations here.
L andµ take the same roles as above, so the result is again
the discrete distribution shown above, although with other
probability values.

Priority Scheduler When multiple queues are combined
using a priority scheduler the delay behavior of packets in
low priority queues is strongly altered. To model this we
define the following model:

A set of M/M/1/K queuesQ1, . . . , Qn with arrival rates
λi and service ratesµi is combined with a priority sched-
uler with service rateµ = µ1 + . . .+µn. The service rates
of the queues are controlled using a token bucket with a
bucket size of one packet. The delays for packets inQ1 are
the same as in a single M/M/1/K queue. Packets in lower
priority queues get the same queuing delayplus a delay
when waiting for higher priority packets to leave the sys-
tem. A packet in queuei must wait for a packet in queue
j < i if and only if Qj has a packet to send (probability
1 − p0, wherep0 comes from the occupation distribution
of Qj) and is allowed to send by its token bucket, which is
true inµi/µ cases.

The random variabless1, . . . , sn give the number of
packets a queue can send at a given moment

si =
{

1, with probability(1− pi,0)µi

µ

0, otherwise

Let now
Si =

∑
j=1

isj .

The delay of a packet entering queuei is consequently the
queuing delay plusSi/µ.

4 Multi-Domain Model

All the models defined so far can be used as single enti-
ties in a simulator. Routing of traffic along the domains
and inter-domain links is straightforward in this case: The
routing information used to connect the model topology
can directly be used by the simulator to determine the path
a packet will take. This information may be derived from
the BGP tables of the network to be simulated, for exam-
ple.

It may be more efficient to combine these models into
a single entity from the simulator’s point of view, how-
ever. Such a multi-domain model cannot use the simula-
tor’s routing capabilities and therefore needs knowledge
about the routing inside the modelled network area. It
appears reasonable to assume that the number of connec-
tions from and to the multi-domain model is “small”, i.e.
the complexity of storing all possible paths is manageable.
Given n links to the “outside” the system would have to
storen(n − 1)/2 paths. These paths are uniquely iden-
tified by the affected egress links of the first to the second
last domain. This approach is also applicable to the models
concerned with delay, jitter, etc. A multi-domain model is
thus defined by the definitions of the included domain and
inter-domain link models and a table of paths between all
links connected to the “outside” of the model.

4.1 Multi-Domain Delay

In accordance with the general modeling view, the delay
model divides into a model for intra-domain delay and a
model for inter-domain delay. The delay caused by a do-
main or inter-domain link is not exactly the same for each
of a series of consecutive packets of a flow. In fact, the
delays of a series of packets can be more adequately mod-
eled with probability distributions, rather than with a single
value like mean delay. This is also the case for delay vari-
ations and the variations in packet interarrival times. As
a consequence it is a promising approach to study the de-
lay behavior of a packet stream of packets going through
a series of network domains by adding the delay random
variables of the domains and inter-domain links the stream
goes through. Let the random variable of delay along a
pathP be

DP =
n∑

i=1

DP
i +

n−2∑
i=1

DI
i

whereDD
i andDI

i are the random delays caused by the
n domains andn − 2 inter-domain links along the path.
The mean end-to-end delay of the path is then E(DP ) and
jitter is the mean interarrival time of two packets, given
the distribution ofDP . It can be calculated by taking the
difference of two random variablesd1, d2 ∼ DP .

Jitter= E
(√

(d2 − d1)2)
)
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5 Simulator Integration

Having described the mathematical approaches for the de-
lay and loss models, the following section focuses on the
integration of these models in thens2 network simulator.

5.1 Thens2 Network Simulator

The network simulatorns2 [ns202a] is a frequently used
tool for the evaluation of new protocols and concepts. It
follows a packet based, discrete event approach and sup-
ports a broad range of network protocols. However, even
if ns2 supports most protocols used in the Internet, it uses
a more abstract, graph-oriented view of the network topol-
ogy and does not model the behavior of real network de-
vices. Inns2 typical router functionalities like decreas-
ing a packet’s time-to-live value, or traffic conditioning are
handled byns2 links and not, as might be expected, by the
nodes. In generalns2 nodes only perform routing and are
used to attach agents like traffic sources and sinks. They do
not cause any packet processing delays like normal routers
do. Following the more abstract topology view ofns2 ,
we will present an extension, which not only allows single
nodes to represent more realistic routers, but also allows
them to represent complete router networks.

5.2 Modeling Domains

Using delay and loss models for network domains allows to
simulate networks without exact knowledge of the network
topology and without the need to simulate each single node
within an network. Figure 7 shows how the use of domain
models can simplify a network topology. Each network
within the three domains can be replaced by a single node,
providing the modeled behavior of the full network.

Figure 7: Reducing a network node topology to a topology
of domains

This requires the node to not only simulate the routing
of the replaced network, but also the delay and packet loss
behavior. Therefore thens2 nodes have to be extended to
take care of delaying or dropping packets passing the node,
similar to the network the node is replacing. Of course, the
delay of a specific packet passing the node or the decision
whether or not to drop the packet will only be statistically
correct. A modeled domain will, on a packet level, usually
not provide the exact same behavior as the simulation of
this network.

While the left-hand topology of Figure 7 contains two
types of links, intra-domain and inter-domain, in the re-
duced topology only the inter-domain links are simulated
within ns2 . The intra-domain links are part of the model.
In Section 5.4 the architecture will be extended to allow
the modeling of a set of domains as well as the integration
of non-packet-based traffic models. However, forns2 it
makes no difference whether a node is only a single node
or represents a single or a set of modeled domains.

5.3 Integration into ns2

For the integration intons2 the node has to be slightly
modified, as can be seen in Figure 8 (taken from [ns202b]).
The typicalns2 node consists of an address classifier, a
port classifier and a set of agents. The address classifier
routes incoming packets either directly to outgoing links or
to a port classifier forwarding the packets to an appropriate
agent.

To delay and discard packets, an additional component,
the Delay and Loss Predictor (DePred, LoPred) was im-
plemented and put before the address classifier. Therefore
incoming packets are first processed by the predictor mod-
ule, which decides how long the packet has to be delayed,
or whether the packet has to be dropped.

Interface
Module

Module
Link

AgentA
dd

re
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ss
if
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Link
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ie
r
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rt

Agent

Predictor

Figure 8: Integrating the Delay and Loss Predictor module
into thens2 node.

The module itself is not part of thens2 node. The node
only provides an interface to the external module and takes
care of delaying or dropping the packet. Apart from some
functions allowing the dynamic loading and unloading, the
initialization and configuration of the module, a predic-
tor module only has to provide a single function which
is called for each arriving packet. Depending on the re-
turn value, the module interface either discards or delays
the packet. With each call of the predictor function, the
predictor gets information about the packet itself, the pre-
viously passed and the nextns2 node, and the simulation
time. Any type of metering has to be done by the predictor
itself.

For thens2 user the access to the modules is very sim-
ple. The only difference to standardns2 is that nodes now
can be extended with domain modules. Table 1 shows a
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Table 1:ns2 code, initializing a module, attaching it to a
node and configuring the module with a configuration file

set ns [new Simulator]
set n0 [$ns node]
set c0 [new ISPmodule]
$n0 attach-isp-module $c0
$c0 config load ”module.config”

Table 2: Full source code for a simple predictor module

#include ”ispsample.h”

ISP MODULE INIT(ISP sample)

ISP sample::ISPsample(Node *n) : ISPmodule(n)
{ return;}

double ISPsample::processpacket(Node *prev,
Node *next, double time, struct ISPpinfo *p)
{ return 0.1;}

script, which instantiates a simulator, creates a node and a
module reference, and attaches the module to the node. Fi-
nally, the module is configured by loading a configuration
file.

Table 2 shows the C++ source code of a minimal do-
main module causing each packet, entering the node to
be delayed by 0.1 seconds. Theprocess packet( . . .)
function is called for each arriving packet, and returns the
time the packet has to be delayed. A negative value would
cause the node to drop the packet. The parametersNode
*next , Node *prev allow taking into account from
where the packet was received and to which next node it
will be forwarded. Thestruct ISP pinfo contains
information about the packet itself, like source and destina-
tion addresses, protocol and Differentiated Services Code
Points.

5.4 Multi Domain Models

As an extension to the concept, it is not only possible to
model a single domain, but also a set of domains within a
single node. While the inter-domain links between single
domain modules are provided byns2 on a per-packet ba-
sis, intra-domain links of multi-domain modules are pro-
vided by the module itself. This allows to model intra-
domain links in multi-domain modules using the various
approaches shown in Section 3.

Furthermore, the domain models may also include non-
packet-based traffic sources modeling video or http traffic.

Figure 9: Integrating the Delay and Loss Predictor module
into thens2 node.

Of course the integration of such traffic sources is limited
to the module itself. Since modules most probably will not
work on a per-packet basis, these traffic sources so far only
may be used within the Predictor module itself.

6 Evaluation

For a preliminary evaluation of the concept, the delay char-
acteristics between the network of the University of Bern
and the ETH Z̈urich have been investigated. In a first step
the delay between two hosts in the networks was measured.
Both networks are connected by the Swiss scientific net-
work SWITCH [swi03], the distance between the measure-
ment hosts was nine hops. The measurements were done
by simply sending a series of echo requests through the net-
work. Based on these measurements, an empiric distribu-
tion was computed and used to configure a delay predictor
for ns2 . For the simulation the simplens2 network in
Figure 10 with only three nodes was set up. While the two
outer nodes act as source and sink, the central node has the
predictor module attached.

Predictor Module
ns2 node 

empirical

ns2 node 
SinkSource

distribution

DePred

ns2 node 

Figure 10: Thens2 setup to simulate the delay of a single
Internet Service Provider.

Figure 11 shows a comparison between the measured de-
lays and the delays in the simulation. Both graphs show al-
most exactly the same delay behavior for the measurement
and the simulation.

7 Conclusion

In this paper we presented a scalable approach to simu-
lating large scale inter-domain networks. This scalability
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Figure 11: Delay histograms based on measurements (up-
per graph) and on simulation (lower graph).

is achieved by replacing node-per-node simulation of net-
work domains by analytical models for domains and inter-
domain links. These models are configured by measur-
ing the characteristics of a live network and can then pre-
dict delay and dropping behavior of this network. In the
very large scale, we also combined these models represent
multi-domain networks. We also presented the integration
of these models intons2 , which is done by extending
ns2 with a hot-plug mechanism to dynamically load mod-
els into nodes. Some preliminary evaluation has also been
done, comparing the measured delay between two real net-
work nodes to the results of the corresponding delay model
in ns2 .
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