
Quality of Service for Overlay Multicast in Chord
Marc Brogle, Andreas Rüttimann, Torsten Braun

Institute for Computer Science and Applied Mathematics
University of Bern, Switzerland

brogle|ruettima|braun@iam.unibe.ch

Abstract—This paper describes how Quality of Service (QoS)
support can be introduced to Overlay Multicast in a Chord
Peer-to-Peer network. We support the concept of QoS classes (to
support various hop-by-hop QoS parameters such as bandwidth
requirements) as well as node to root Round Trip Time (RTT)
constraints. Our evaluations show that we can guarantee QoS
without changing the basic properties of Chord significantly.

I. QUALITY OF SERVICE FOR CHORD MULTICAST

In order to enable QoS for Overlay Multicast, the multicast
distribution tree has to hold certain QoS path properties. The
QoS requirements/capabilities (e.g. bandwidth) of nodes have
to monotonically decrease on the paths from the root to the
leaf nodes in the tree. This is described in more detail in [1],
[2] where we also introduce the concept of QoS classes.
Using QoS classes, multiple QoS parameters can be combined
into one discrete parameter. QoS parameters, which would be
accumulated over many hops, can not be combined into a QoS
class, e.g. end-to-end delay or end-to-end jitter. We will show
a different solution for end-to-end delay QoS support.
Only a simple modification of Chord is necessary to enable
the creation of QoS aware trees. Nodes in Chord will have
to be ordered by their QoS classes. This means that on the
Chord ring, we will have clockwise monotonically decreasing
QoS classes. The higher the ID of a node the lower is the
QoS class of that node (low QoS class = low QoS). We use
a core based tree with the root of the multicast tree as the
node with the smallest Chord ID. All multicast messages will
then be routed using the forwarder driven multicast approach.
A multicast message will always be forwarded in clockwise
direction on the Chord ring. Therefore, it will always be sent
to a node having a higher ID, hence having the same or a
lower QoS class. An example with 3 QoS classes is shown

6

8

12

23
39

45

52

75

29

high
QoS
class

no
QoS
class

low
 QoS
class

Fig. 1. QoS Support for Chord Multicast

in Fig. 1. The Chord ID space is split into 3 partitions. The
partition holding the lowest IDs of Chord is reserved for nodes

that require high QoS. The next partition holds nodes with
low QoS requirements. Finally, nodes that do not require any
QoS are in the partition holding the highest part of Chord
IDs. Since the multicast root is the node with the lowest ID,
multicast data dissemination holds the QoS path properties
described before. All paths from the root to the leaf nodes have
monotonically decreasing QoS requirements. Further details
about this approach are explained in [2].
In order to support QoS using Chord, we had to make
some adjustments and enhancements of the original Chord
protocol. By default, Chord is a well functioning, structured
P2P network that is highly scalable. But, when fast changes
occur in a Chord network (e.g., multiple leaves and joins),
multicast reliability becomes a problem. Since some nodes
might not yet have updated their finger tables and successor
lists, some nodes might not be served with multicast messages.
Hence, we made optimizations for robustness and reliability:

• Improved stabilization: Modification of pointers (fingers
or successors) causes execution of stabilization directly
instead of only periodically. Hence, errors in finger and
successor tables (invalid pointers) are corrected earlier.

• Predecessor self discovery: Nodes are able to search and
find predecessors by themselves. Stabilization can now
rely on nodes having up-to-date correct predecessors.

• Self error correction: Nodes can add fingers as succes-
sors if they do not find successors (repairs a broken ring).

• Improved finger table: Fingers can change their position
in the finger table. Fingers are only deleted if their IDs
exceed the nodes’ current Chord ID + 2(fingerindex).

• No duplicate fingers: More distinct fingers allow to have
a more balanced distribution of the multicast tree.

• Backward fingers: Each node maintains a list of nodes,
that have an entry in their finger table pointing to it. This
helps to eliminate multicast errors.

• Multicast optimizations: We limited the multicast fan-
out of nodes to have an upper bound for the maximum
fan-out and to avoid that too many nodes directly connect
to the root for end-to-end delay QoS support.

• Improved Multicast routing: Multicast fan-out limita-
tions cause nodes to select receivers from their finger list
(leads to better tree distribution and decreased hop count).

We required those optimizations in order to support QoS by
having a more robust/reliable Chord version. Besides offering
QoS using the class construct as described in [1], [2], we
also wanted to support guarantees for the RTT between a

multicast receiving node and the multicast root node. Nodes
can have a certain constraint regarding this so called node to
root RTT for multicast messages. Therefore, they would only
connect to a parent node that would support those constraints.
When using Chord’s default multicast mechanism (forwarder
driven multicast), a node is not able to select its own parent
for multicast delivery that would match its node to root RTT
constraint. Therefore, supporting node to root RTT only works
with the receiver driven multicast approach, where children
can explicitly chose their multicast parents. In order to support
receiver driven multicast, nodes need to know a few nodes that
could act as their multicast parents and then select one of those
as their actual parent. This can be supported by introducing
backward fingers. A backward finger of node X points to node
Y, which has X in its finger or successor table.
To reduce the overall multicast fan-out of nodes, we limited the
maximum fan-out of a node to 7. This also helps to avoid that
all nodes try to select the root as their parent, which is often
the best candidate to fulfill node to root RTT constraints of
nodes. Therefore, a potential parent can reject a child’s request
if it exceeds a certain number of children. As a consequence,
it may take some time to find a parent that satisfies the node
to root RTT and that can still accept new children. During this
time, a node is not able to receive multicast messages.

II. EVALUATION

A. Simulation Setup and Parameters

To evaluate our approach, we implemented the optimized
Chord protocol in the OMNeT++ [3] simulator. We look
at different scenarios. First, we compare forwarder driven
multicast performance using our enhanced Chord protocol
with and without QoS class support. We are assuming to have
static hard QoS guarantees offered by the underlying network.
This can be achieved using e.g. DiffServ or QoS provided
by an approach proposed by EuQoS [4]. Then, we analyze
the receiver driven multicast approach, where we can support
also delay guarantees.
We used 13 distance matrices, which define the latencies
between each possible pair of nodes. The generation and
properties of those matrices are presented in [5].
The scenarios were evaluated using various network sizes. The
different networks had a node count from 100 to 2000 in steps
of 100. Each node step was evaluated using the 13 different
distance matrices. Additionally, we used three different ran-
dom seeds for each matrix and node count combination. Those
random seeds influence the arrival time, departure time and
other random based decisions and values. This then leads to a
total of 780 simulation runs per scenario. We removed 1% of
the outliers (0.5% of the min. and max. values each) for all
runs. We interpreted different values presented in Table I.

B. Forwarder Driven Multicast with and without QoS Support

We first compare the forwarder driven multicast approach
of our enhanced Chord protocol without QoS and with QoS
support enabled. Figure 2 presents the multicast hop count
and node to root RTT. There is not a significant difference

TABLE I
VALUES EVALUATED IN THE SIMULATION SCENARIOS

Multicast Hop Count number of hops required to reach the
root of the multicast tree.

Node to Root RTT RTT from a node to the root of the
multicast tree.

Multicast Fan-Out number of nodes that a multicast par-
ent has to serve with multicast data.

Percentage of Node to Root
QoS Fulfilled

percentage of paths that fulfill QoS
class requirements. Hence, these
paths hold the QoS path properties.

Percentage of Node to root
RTT Constraints Fulfilled

percentage of nodes for which Chord
satisfies given node to root RTT.

between the multicast hop count for Chord without QoS as
in Fig. 2(a) and for Chord with QoS enabled as shown in
Fig. 2(b). The average of hops is between 2 to 6 and the
maximum raises from 4 to 15. The node to root RTT correlates
with the multicast hop count. In Figures 2(c) and 2(d), the
average is between 50 to 150 ms. The maximum starts at 150
ms and increases up to 450 ms. As a conclusion, modifying
the ID assignment method to enable QoS does not change
Chord regarding multicast hop count and node to root RTT.
Finally, we discuss the percentage of node to root QoS fulfilled
and percentage of node to root RTT fulfilled in Fig. 3. Nodes
assign themselves a QoS class from the range 0–255. We
check how many paths from the root to all nodes hold the
previously described QoS path properties. Figure 3(a) presents
the results for normal Chord using random ID assignment, i.e.,
QoS classes are not taken into account when node IDs are
assigned. Here, only 15% to 40% of the paths hold the QoS
path properties. Since at some times only a few nodes could
remain in a Chord network, there can be moments where all
paths or no paths at all fulfill the QoS path properties. On the
other hand, with QoS enabled Chord, 100% of the paths fulfill
the QoS path properties. This is shown in Fig. 3(b).
Nodes also assign themselves a node to root RTT constraint
from the range of 100–200ms. The forwarder driven mul-
ticast approach does not offer a mechanism to fulfill those
constraints. Therefore, as shown in Figures 3(c) and 3(d),
paths from the root to leaf nodes do not always satisfy the
constraints. In small networks, the constraints are easily met,
but with larger networks and increasing hop count, the average
value goes down below 60%. There is no significant difference
between the QoS aware Chord and the Chord without any QoS
support. Since sometimes only a few nodes could remain in a
Chord network, all paths or no paths at all fulfill the node to
root RTT constraints.

C. Receiver Driven Multicast in Chord

In this section, we evaluate the receiver driven multicast
approach for Chord. Using this approach, we take not only
the QoS class mechanism into account when joining Chord,
but also the node to root RTT constraints when looking for
a multicast parent. These node to root RTT constraints of
nodes range from 100–200ms. We determined this range by
analyzing the average overall hop count (∼ 4 hops) presented

 0

 2

 4

 6

 8

 10

 12

 14

 16

 200 400 600 800 1000 1200 1400 1600 1800 2000

H
o
p
 C

o
u
n
t

Number of Nodes

(a) Average Multicast Hop Count, no QoS

 0

 2

 4

 6

 8

 10

 12

 14

 16

 200 400 600 800 1000 1200 1400 1600 1800 2000

H
o
p
 C

o
u
n
t

Number of Nodes

(b) Average Multicast Hop Count, with QoS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
 (

s
)

Number of Nodes

(c) Average Node to Root RTT, no QoS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
 (

s
)

Number of Nodes

(d) Average Node to Root RTT, with QoS

Fig. 2. Comparing Chord with and without QoS regarding Multicast Hop Count and Node to Root RTT

 0

 20

 40

 60

 80

 100

 200 400 600 800 1000 1200 1400 1600 1800 2000

%

Number of Nodes

(a) Average Percentage of Node to Root QoS Fulfilled, no QoS

 0

 20

 40

 60

 80

 100

 200 400 600 800 1000 1200 1400 1600 1800 2000

%

Number of Nodes

(b) Average Percentage of Node to Root QoS Fulfilled, with QoS

 0

 20

 40

 60

 80

 100

 200 400 600 800 1000 1200 1400 1600 1800 2000

%

Number of Nodes

(c) Average Percentage of Node to Root RTT Fulfilled, no QoS

 0

 20

 40

 60

 80

 100

 200 400 600 800 1000 1200 1400 1600 1800 2000

%

Number of Nodes

(d) Average Percentage of Node to Root RTT Fulfilled, with QoS

Fig. 3. Comparing Chord with and without QoS regarding Percentage of Node to Root QoS and Node to Root RTT Fulfilled

in Fig. 2(a) in relation to the average RTT (∼ 25ms) between
nodes resulting from the distance matrices.
Figure 4 shows the multicast hop count and node to root RTT
for receiver driven multicast in Chord. The average multicast
hop count presented in Fig. 4(a) is between 4 and 5. This is
slightly higher than for forwarder driven multicast as presented
in Figures 2(a) and 2(b). In the forwarder driven multicast
approach, the root or a node with a low ID can already
reach nodes at the upper end of the ID space via one hop.
This is due to the multicast forwarding mechanism using the
finger table to determine children nodes for a parent. But,
this is not the case for receiver driven multicast, where the
child determines and selects its parent. Here, a child node
tries to find a potential parent in its ID neighborhood, from

the range [nodeID2 , nodeID]. Therefore, the hops from one
node to another are normally smaller in terms of ID space
coverage. On the other hand, this has a positive impact on the
maximum multicast hop count value. In Figures 2(a) and 2(b)
compared to Fig. 4(a), the hop count starts at a larger value but
grows more slowly and only up to 11 hops. This means that
the receiver driven multicast approach scales better in terms
of multicast hop count than forwarder driven multicast. The
minimum multicast hop count value of 1 with 2000 nodes is
solely due to the outlier removal.
The node to root RTT results for receiver driven multicast are
shown in Fig. 4(b). The forwarder driven multicast approach
results were shown in Figures 2(c) and 2(d). Comparing them
with the receiver driven multicast approach shows that the

 0

 2

 4

 6

 8

 10

 12

 200 400 600 800 1000 1200 1400 1600 1800 2000

H
o
p
 C

o
u
n
t

Number of Nodes

(a) Average Multicast Hop Count

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
 (

s
)

Number of Nodes

(b) Average Node to Root RTT

Fig. 4. Multicast Hop Count and Node to Root RTT in Chord with Receiver Driven Multicast

 0

 1

 2

 3

 4

 5

 6

 7

 200 400 600 800 1000 1200 1400 1600 1800 2000

F
a
n
-O

u
t

Number of Nodes

(a) Average Multicast Fan-Out

 0

 20

 40

 60

 80

 100

 200 400 600 800 1000 1200 1400 1600 1800 2000

%

Number of Nodes

(b) Average Percentage of Node to Root RTT Fulfilled

Fig. 5. Multicast Fan-Out and Node to Root RTT Fulfilled in Chord with Receiver Driven Multicast

average node to root RTT starts at a higher value but grows
more slowly. It is only in the range of 70–125ms compared to
50–150ms for the forwarder driven multicast approach. Also
the maximum node to root RTT is lower and grows very
slowly. This behavior is of course due to the fact that we take
the node to root RTT constraints of nodes into account when
they look for a multicast parent. The maximum node to root
RTT value starts below the upper boundary of the constraints
range, which is between 100–200ms. With more nodes in the
network, the maximum though exceeds the upper boundary
of 200ms. But, the receiver driven multicast approach is still
more scalable in terms of node to root RTT value than the
forwarder driven multicast approach.
The multicast fan-out and percentage of node to root RTT
fulfilled for the receiver driven multicast approach of Chord
are shown in Fig. 5. The average multicast fan-out for receiver
driven multicast is almost constant at 2 as shown in Fig. 5(a).
The maximum multicast fan-out is constant at 7 for networks
with more than 400 nodes. There is no significant difference
to the behavior of the multicast fan-out for forwarder driven
multicast with and without QoS. Therefore, those results are
not presented additionally.
The percentage of node to root RTT fulfilled for receiver
driven multicast is presented in Fig. 5(b). The receiver driven
multicast approach performs much better than the forwarder
driven multicast approach presented in Figures 3(c) and 3(d).
For network sizes up to 1200 nodes, the average percentage
is above 95% for the receiver driven multicast approach. Af-
terwards, it falls down just slightly below 92% for up to 2000
nodes. This is significantly better than using the forwarder
driven multicast approach, where the average percentage falls
below 68% for 1200 nodes and below 55% for 2000 nodes.

III. CONCLUSION

In this paper, we presented mechanisms to enable Quality
of Service (QoS) support for multicast in Chord. All our opti-
mizations considered, the forwarder driven multicast approach
in Chord can provide a very well distributed multicast tree.
The modified Chord is very reliable (100% received multicast
messages). It is also very scalable by putting a multicast fan-
out limit of 7. Generally, it behaves very robust, even for
constant rejoins. The overall latencies are quite good due to a
reduced hop count caused by a well balanced tree. Multicast
trees built using the receiver driven multicast approach can
provide node to root RTT guarantees. Almost all paths fulfill
the node to root RTT constraints of nodes for small and
medium sized networks. For large networks up to 2000 nodes,
a very high percentage (92%–100%) of the paths still fulfill the
constraints. This receiver driven multicast approach also reacts
to RTT changes of nodes over time and adapts and rearranges
the multicast tree to again fulfill the constraints. Generally, the
receiver driven multicast approach performs and scales even
better than the forwarder driven multicast approach.

REFERENCES

[1] M. Brogle, D. Milic, and T. Braun, “QoS enabled multicast for structured
P2P networks,” in Workshop on P2P Multicasting, 4th IEEE Consumer
Communications and Networking Conference. IEEE, January 2007.

[2] ——, “Quality of service for peer-to-peer based networked virtual envi-
ronments,” in P2P-NVE 2008 Workshop at the 14th IEEE International
Conference on Parallel and Distributed Systems. Melbourne, Victoria,
Australia: IEEE, December 2008.

[3] Website, “OMNeT++, online: http://www.omnetpp.org,” 2009.
[4] T. Braun, M. Diaz, J. Enrquez-Gabeiras, and T. Staub, End-to-End Quality

of Service Over Heterogeneous Networks. Springer, 2008.
[5] M. Brogle, L. Bettosini, and T. Braun, “Quality of service for multicasting

in content addressable networks,” in 12th IFIP/IEEE International Con-
ference on Management of Multimedia and Mobile Networks and Services
(MMNS 09). Springer LNCS, October 2009.

