
Service-Centric Networking Extensions
Torsten Braun
Universität Bern

IAM, Neubrückstrasse 10
3012 Bern, Switzerland

+41 31 631 4994

braun@iam.unibe.ch

Andreas Mauthe
Lancaster University

InfoLab21
Lancaster, LA1 4WA, UK

+44 1524 510485

andreas@comp.lancs.ac.uk

Vasilios Siris
Athens U of Economics and Business

Department of Informatics
Patission 76, 104 34 Athens, Greece

+30 210 8203 581

vsiris@aueb.gr

ABSTRACT

This paper discusses several issues of Service-Centric Networking

(SCN) as an extension of the Information-Centric Networking

(ICN) paradigm. SCN allows extended caching, where not exactly

the same content as requested can be read from caches, but simi-

lar content can be used to produce the content requested, e.g., by

filtering or transcoding. We discuss the issue of naming and rout-

ing for general dynamic services for both tightly coupled and

decoupled ICN approaches. Challenges and solutions for service

management are identified, in particular for composed services,

which allow distributed in-network processing of service requests.

We introduce the term Software-Defined Service-Centric Net-

working as an extension of Software-Defined Networking. A

prototype implementation for SCN proofs its validity and feasibil-

ity and underlines its potential benefits.

Categories and Subject Descriptors

C.2.1 Network Architecture and Design C.2.2 Network Protocols

C.2.6 Internetworking

General Terms

Management, Performance, Design, Reliability, Experimentation.

Keywords

Future Internet, Information-Centric Networking, Services

1. INTRODUCTION
Information-Centric Networking (ICN, [11]) such as Content-

Centric Networking (CCN, [4]) has been discussed intensively as

a novel paradigm for the Future Internet. ICN has strong focus on

supporting efficient content transfer in the Internet by using novel

addressing and forwarding schemes. We argue that such novel

paradigm must also consider how to support services in general,

where service requests are issued by (mobile) users and trigger

processing in service elements as well as responses to those re-

quests. In particular, with the recent advent and growth of cloud

computing it is necessary to support dynamic services in any Fu-

ture Internet paradigm. We propose the paradigm of Service-

Centric Networking (SCN), which makes use of and extends ICN

forwarding concepts. We argue that extended caching mecha-

nisms are needed for multimedia services and we discuss the re-

quirements for management of services in a SCN environment.

Further issues that need special attention are naming and routing

as well as service management. Finally, we discuss possible im-

plementation architectures for the service-centric networking

approach.

1.1 Service-Centric Networking
SCN proposes to extend ICN by effectively supporting service

requests in addition to content requests. Service and content re-

quests are handled in a similar manner, i.e., a service or content

lookup is integrated with packet forwarding to a certain degree.

The idea is to avoid the traditional strong separation of service

lookup/discovery and subsequently forwarding service requests to

a specific server that has been identified a priori. With SCN a

service user just sends a service request with an identifier describ-

ing the service in the address of the packet to the network. The

service request will then be delivered to an entity that is able to

optimally serve the service request.

Services are software elements located throughout the networked

infrastructure and are hosted on dedicated hardware placed along-

side the routing infrastructure. They are provided by active com-

ponents, called service elements. This reflects the increasing im-

portance of cloud computing but it has an even wider scope. We

propose to have processing entities inside the network to efficient-

ly support advanced services in the Internet. Figure 1 shows a

service-centric network architecture with SCN routers (squares)

and service elements (circles). Service elements are providing the

service and can be hosted by an SCN router, by servers co-located

to SCN routers, or by end systems attached to the network.

Figure 1: Service-Centric Network Architecture

1.2 Target Services
The services within an SCN can be of different types, depending

on their scope and level within the system architecture. This paper

is motivated by services related to multimedia distribution. How-

ever, this does not restrict the generality of the basic principle.

Other services can be grouped as follows:

Infrastructure services provide service users with computing,

storage, and/or communication resources to deploy and run own

software and services. The concepts described as Infrastructure /

Platform as a Service in cloud computing belong to this category

[5]. DC-ICN proposes using ICN in data centres [16].

Client-oriented services provide application level services. Re-

quests sent to servers are served directly with an immediate, sin-

gle response. Web services and Software as a Service as defined

in the cloud computing terminology are such examples. Services

are deployed by service providers such as network operators,

third-party providers, or end users.

Continuous content retrieval and streaming services are used

to optimise content distribution. Here, a single request triggers

continuous subsequent content transmission such as stored/live

audio/video streaming. This also includes the use of in-network

services such as transcoding, mixing, filtering, etc. Filtering and

aggregation services deployed inside the network can reduce data

traffic for continuous sensor data streams.

Event services are based on the detection of unusual events such

as exceeding sensor data thresholds or exceeding stock exchange

prices. In case of exceeding threshold, an Interest message can

describe the interest of a user in becoming notified.

SCN aims to optimize the performance (in particular delay) of

future network applications and services and utilize network re-

sources more efficiently, e.g., by reservation of resources and

deployment of services close to (mobile) users. This might be

important in a mobile network environment with an increasing

number of context-dependent (e.g., location) and personalized

services. However, SCN leaves open several research issues.

These are discussed in the following sections.

After discussing related work to SCN in Section 2, we introduce

the concept of extended caching, which is enabled by SCN, in

Section 3. Service naming and routing are discussed in Section 4.

Service management, i.e. creation, adaptation, and termination of

distributed in-network services, is considered in Section 5. Sec-

tion 6 describes a general SCN implementation architecture as

well as a prototype implementation used for preliminary SCN

evaluations. Section 7 concludes the paper.

2. RELATED WORK

2.1 Web Services
Web Services provide programming interfaces, which are ac-

cessed via the HyperText Transfer Protocol (HTTP) and executed

on a remote system hosting the requested services. Web Services

are described using the Web Services Description Language. In

addition to in-bound services, out-bound services allow the ser-

vice to send the first message to a client. Web Services focus on

providing operations using Simple Object Access Protocol

(SOAP) as a protocol for exchanging structured information.

SOAP relies on the eXtensible Markup Language for its message

format, and usually relies on other application layer protocols

such as Remote Procedure Call and HTTP for message negotia-

tion and transmission. Representational State Transfer (REST) is

a style of software architecture for web services based on HTTP.

In contrast to SOAP, no additional server-side operations are in-

troduced, but only HTTP methods (e.g., POST, GET, PUT or

DELETE) are used. REST is completely stateless at the server

and supports caching. Certain multimedia services are rather dif-

ficult to be implemented inside the network using REST.

2.2 Content Distribution Networks
The Internet nowadays relies on the usage of caching mechanisms

or content distribution servers. Content Distribution Networks

(CDNs) support several well-known services on the Internet. Us-

ers connect their end systems to residential gateways or directly to

Internet Service Provider routers, relying on pre-existing configu-

rations that allow access to static content available on caching

servers or CDNs. As an alternative solution, peer-to-peer overlays

are also becoming more widely available. However, these net-

works are particularly inefficient in situations, where content

sharing nodes are isolated from each other. In a future Internet

user experience could strongly benefit from changes in the para-

digm of content distribution. Such changes could include caching

contents closer to end users; dynamic content interactively or

automatically adapted according to the needs of users and termi-

nal nodes (not only considering the network structure); content

aware routers and optimized routing paths (according to band-

width, latency, etc.).

2.3 Active Networking
Active and programmable networks have been devised to provide

means of flexible and dynamic data path processing capabilities

that allow network und user side services inside the network [19].

The processing capabilities of active networking nodes can pro-

vide low-level packet processing and per user or application pro-

cessing of data streams. Research in active networks has resulted

in the (further) development of areas such as active node plat-

forms [19][20], service composition models [21], mobile coding

techniques [22], execution environments [23], etc.

To be able to provide such functionality network nodes (such as

switches and routers) have to provide an advanced execution en-

vironment to turn network nodes in to active programmable ele-

ments. With the so-called programmable switch programs are

downloaded without changing the packet format. Hence, the net-

work providers can maintain control of the network operation by

only allowing specific programs to be executed. A more radical

concept is a capsule approach where “active” programs are part of

individual packet and flows. These programs are then executed in

the appropriate network elements along the data path.

Active networking has never been widely deployed. One major

reason for that were security concerns and possibly extensive

resource consumption dependent on program functionality.

2.4 Information-Centric Networking
Different ICN proposals involve a different degree of coupling

between name resolution and routing/forwarding. At one extreme,

the same nodes perform both functions in a tightly coupled man-

ner. This is the approach followed by CCN/NDN [4]: Receivers

express their request for content using Interest packets. Interest

packets are routed based on the name of the requested content,

using longest prefix matching, either to the node that contains a

data packet with the requested name or to an intermediate node

that has cached the requested content. Once the data packet is

found, it is returned to the requester following the reverse path of

the Interest packet.

At the other extreme, name resolution and routing/forwarding are

implemented in different nodes and/or different modules (decou-

pled approach). This is the approach followed by architectures

such as PSIRP/PURSUIT’s PSI (Publish-Subscribe Internet) [7]

and 4ward/SAIL’s NetInf architecture [11][8]. NetInf uses a two-

phase name resolution approach based on registration of network

locators at a name resolution service [6]. The name resolution

system is independent of the routing/forwarding network that

transports content from the publisher to the subscriber.

In PURSUIT/PSIRP, publishers advertise the content objects

(publications) that they make available. A publication belongs to

a particular named scope. Receivers can subscribe to content ob-

jects. Publications and subscriptions are matched by a rendezvous

system. The subscription request specifies the scope identifier and

the rendezvous identifier that together name the desired content

object. PURSUIT enforces uniform naming by unique scope and

rendezvous IDs (SID, RID). RIDs are application dependent iden-

tifiers unique within the scope of an SID.

Proposals such as DONA [9] and COMET [10] investigate over-

lay solutions running on top of an IP infrastructure, hence use IP

routing and forwarding functionality inherently. Juno [12] is a

content-centric middleware based on self-certifying content iden-

tifiers. It includes a content discovery service, by which content is

resolved similarly as in NetInf and DONA.

2.5 Service-Centric Networking
In recent years, a few approaches targeting service support by the

network infrastructure have been published.

SCAFFOLD [14] (Service-Centric Architecture For Flexible Ob-

ject Localization and Distribution) is an architecture that provides

a flow-based anycast service with possibly moving service in-

stances. SCAFFOLD aims to manage on system churn, i.e., some

change of physical system or network resources, e.g., from fail-

ures, planned maintenance, load balancing, workload migration,

or physical mobility. SCAFFOLD depends on underlying virtual-

ized and programmable network elements to support transparent

migration of objects, services, or virtual machines across physical

resources. SCAFFOLD directly addresses distributed or replicated

objects or services, rather than hosts.

SERVAL [13] is a service access layer above an unmodified net-

work layer enabling applications to communicate directly on ser-

vice names. SERVAL separates service ID, flow ID (socket), and

network address (interface). Service IDs consist of 256 bits to be

administered by a central authority. All IDs are visible to service

routers. Forwarding is based on rules defined in tables. Possible

actions are forwarding, demultiplexing, delaying, dropping if

packets. SERVAL provides an anycast service for service routing

with late binding of connections and services. Multi-path commu-

nication can be used for striping of connections/flows.

3. EXTENDED CACHING FOR

CONTINUOUS CONTENT RETRIEVAL

AND STREAMING
Like content delivery networks, a major motivation for introduc-

ing ICN [4] has been the reduction of traffic and delays by ex-

ploiting caching. In contrast to CDNs, ICN combines location-

independent content lookup with forwarding/routing and router

(in-network) caches. Not only server caches as in CDN can be

used: A user request for accessing content could be served by an

ICN router cache instead of a server cache. Caching with services

is more difficult and possibly somewhat less likely to occur, since

service requests may be individual and context-dependent. Never-

theless, we think that in particular (personalized) multimedia

streaming applications can significantly benefit from services

deployed inside the network, in particular from so-called extend-

ed caching. The underlying principle of extended caching is that

of “content as an object”, i.e., a content object is not identical

with a specific copy but is a representation of a content element

that can exist in different formats, copies and at different loca-

tions. Aligned with the idea of ICN it is assumed that the user is

not interested in the exact copy of the content object but the con-

tent itself. In addition to this, the user is ultimately agnostic as far

as delivery is concerned (which leads to delivery-centric content

networking [17]). To optimise delivery with respect to network

and device conditions the notion of content centricity and delivery

centricity can, therefore, be extended to also provide adapted

content according to device, network and user context.

Traditional caching is based on repeatedly requesting identical

content and serving such requests from a cache. Extended caching

does not necessarily deliver the original content, but the content

might just be similar to the original one. As example, requests can

be served by taking content objects from the cache, transcoding,

filtering, aggregating or extracting the content to be delivered to

the requesting users. In both cases, traditional and extended cach-

ing, cached objects are (re-)presented in the cache. Though, in

extended caching, not only the exact copy of the object (i.e., the

content object) can be delivered if requested, but it is also suffi-

cient that if the content is available in a specific form to use this

to generate the desired format.

Extended caching could be applied for streaming services, when

segments of a requested video stream are available in the cache,

but the request demands a different encoding than what is in the

cache. The request can then be served after transcoding the avail-

able cached content into the requested format. Services that can

benefit from extended caching are streaming applications tailored

to certain device capabilities, interconnectivity conditions or user

context information (e.g., location of a user close to multimedia

output devices), news streams composed of contents elements

based on personal interests and preferences, on-line games with

real-time audio/video etc. As an example, different users might

request a streamed video tailored to their viewing device capabili-

ties. The request might meet a service element, where parts of the

requested stream are stored, but not in the same format as request-

ed. If the service element provides some transcoding facilities, the

request can be served without forwarding it to the original server.

A similar example is a situation where the requesting device is

connected via a path with impaired conditions such as higher

delay or loss or limited bandwidth. Redundant encoding schemes

or multi-path transmission might provide the required robustness.

This again can be implemented by supporting encoding and

transmission services inside the network.

Caching can be implemented in a passive or active way. In case

of passive caching, content forwarded along a path of routers can

be cached in the router memories. In case of active caching, con-

tent can be proactively placed at routers (or attached servers) to

better support the target users and to increase quality of availabil-

ity (QoA) [18]. This placement has a geographical as well as a

temporal aspect. Similarly as content, also service entities have to

be placed within the network, cf. Section 5.1.

4. SERVICE NAMING AND ROUTING
SCN proposes to use both service and content names as identifiers

for Future Internet routing. This creates several challenges to be

investigated as discussed in the following subsections.

4.1 Service Naming
A first issue to be considered is name resolution for services. Dif-

ferent services should be distinguishable by different names. Iden-

tical services or service classes should have identical names to

support location-based services close to a user. Several mecha-

nisms for uniform content naming exist such as the Digital Object

Identifiers for digitally available scientific articles or magnet links

as used in peer-to-peer networks, which are built by hashing the

content. While a completely flat name space does not guarantee

uniform naming, hierarchical approaches similar to domain names

require strong coordination similar to the domain name system

(DNS), which is also not desirable for content producers. There-

fore, schemes combining both approaches by splitting the content

name into two parts <content_owner, content_name> might be an

interesting alternative. This allows both uniform naming as well

as flexible naming of contents. This could also work for naming

of services, although it might be possible that users do not care

about or do not know the service provider in advance. Therefore,

wild cards, e.g., <*, service_name>, should be supported. Hierar-

chical service names could then guarantee uniformity of service

names.

4.2 Service Name Resolution
Content / service names can either be directly used for routing

(tightly coupled approach), e.g., as proposed in CCN, or the con-

tent / service name can be mapped to a locator identifier (e.g.,

using a hash function), which is then used for routing messages to

the content / service source (decoupled approach). In case of a

decoupled approach similar content / service names may be

mapped to completely different locators, which would result in

providing similar services at rather different locations in the net-

work. This adds certain flexibility in selecting service entities for

a requested service name.

Tightly coupled approaches only scale, if names can be aggregat-

ed. In that case, classes of services should have common prefixes

to allow aggregation of services but also to simplify searching.

This can be achieved by classification of services and building a

hierarchy of services as proposed in [1]. The service name could

then be built as a concatenation of service categories. A single-

level web service directory is available at [2]. This would also

allow having different service providers for the same service

name. On the other hand, it requires strong coordination of the

naming hierarchy, similar as for the domain name system (DNS).

Another option in tightly-coupled approaches such as CCN is to

use an overlay of service nodes. Service nodes are interconnected

by normal CCN routers. This can be achieved by adding a prefix

to the service name containing the name of the service node that

will next process the service request. In such an approach there

are two types of nodes: normal CCN routers and service (SCN)

nodes that do more processing of service requests than CCN rout-

ers do. This can be regarded as creating CCN tunnels between

SCN nodes.

When implementing SCN above an ICN architecture that decou-

ples name resolution and data transport (decoupled approach),

advanced and more complex processing of service requests can be

performed by rendezvous nodes. Implementing SCN over a de-

coupled approach such as PURSUIT has benefits such as separate

control of the route for data transfer, different routes for control

and data packets and more effective many-to-one communication.

A decoupled approach has the advantage of incremental deploy-

ment in the Internet, but adds additional delay due to the two

consecutive phases name resolution and routing.

In certain special cases, in particular when hashing is used for

mapping names to locators, similar content or services, e.g., dif-

ferent versions, will be mapped to different locators. Thus, service

requests might be forwarded along a completely different path,

which can reduce benefits obtained from extended caching. This

might also be an issue for video retrieval, when two files

/owner/video_name.mpeg and /owner/video_name.avi are

mapped to different locators. A user might first request the MPEG

file and a second user, which is close to the first user, might then

request the AVI file. While for two-phase name resolution, the

two requests (including name resolution and forwarding of con-

tent/service requests) might travel along two different paths, in

case of single phase name resolution, there is a high chance that

the requests from both users travel along the same path. The re-

quest of the second user for the AVI file can then be served by a

router that already has cached the MPEG file by transcoding the

MPEG file into AVI format.

4.3 Service Parameter and Type Support
In addition to the service name, service parameters must be de-

scribed for certain service requests. On the one hand, some ser-

vices will require support for different input or output formats and

hence will need only a limited, fixed set of parameters. As an

example, different streaming services might exist for different

screen sizes or different encoding formats. On the other hand

there are services that need to support different numbers and types

of parameters; e.g., a location-based service to find the best hotel

could consider different combinations of parameters such as price,

current distance to querying user, category etc. These examples

show that routing a service request might not only depend on the

service name but also on additional parameters describing the

service request.

For a decoupled approach such as PURSUIT, rich service de-

scriptions can be supported in PURSUIT rendezvous nodes,

which are responsible for mapping service requests to service

publishers. An appropriate forwarding path can then be set up

between publisher and subscriber.

For coupled approaches such as CCN, we see two options for

describing service parameters, either as an extension of the ser-

vice name or as additional information in the body of the service

request message.

1. Coding service parameters or parameter types as part of the

service name require very efficient coding. A possible solu-

tion are type representations as in ASN.1 Basic Encoding

Rules, but use short encodings for frequently used types,

e.g., based on Huffman or arithmetic encoding. If types and

parameters should be part of the service name, the encoding

must be mapped to ASCII characters, e.g., using base64 en-

coding. This is mainly appropriate for services with a rela-

tively limited, well defined and static set of parameters.

2. In cases where a service requires a parameter list that is ar-

bitrarily long and nested and might need dynamic parame-

ters, it makes hardly sense to put anything else than the ser-

vice name into the address of the service request. Parameter

values and types should then rather be described in the body

of a service request message, e.g., using XML. If parameter

values or types need to be analysed for routing a service re-

quest, this would then require analysing the message body.

Alternatively, if multiple services exist under the same

name, but analysing different parameter sets and types and

analysis of the message body is not feasible in routers, the

SCN network should forward service requests to all poten-

tially relevant service entities and let these finally check

whether they can support the service request or not. Also,

initially a “plain” service request might be forwarded in the

network and through a handshake process the actual param-

eterisation is then negotiated.

4.4 Service Routing
By using name-based addresses CCN [4] routing can be consid-

ered a superset of IP routing. If a routing entry in the Forwarding

Information Base (FIB) is present, e.g., for “/content-

provider/path-name”, there is a high chance but no 100 % reliabil-

ity that the requested content will be reached via the interface

specified in the routing table. This means that a content/service

request (also known as Interest message) should be forwarded

along multiple paths to increase the probability to find content. If

no matching FIB entries for a requested content object can be

found, then an Interest message might have to be flooded or dis-

tributed via several paths. Forwarding Interests over multiple

paths can also be used to find the closest copy of the content ob-

ject stored in a cache. Strategies to forward Interest messages are

left open [4], but it has been proposed to populate FIBs by an-

nouncements of available content. Such announcements can avoid

extensive flooding. Similar mechanisms, i.e., announcement of

available services could be used by SCN. SCN service routing

should make use of the significant amount of work on service

discovery that has been developed in peer-to-peer and mobile ad-

hoc networks. Techniques such as Distributed Hash Tables

(DHT), random walks to avoid flooding, extended ring search,

Bloom filters can be considered.

Routing metrics are another issue related to service routing. It

might be reasonable to consider performance issues in addition to

address information when deciding along which path a service

request message should be forwarded. This is the case, when mul-

tiple service elements exist for the same service, possibly provid-

ed by different service providers. Another potential use case for

multiple service elements is automatic load balancing.

Routing metrics can be supported by adding more columns for

each address entry into the routing table. As example, a routing

table column entry could contain the estimated response time for

a service, i.e., the time between forwarding a service request

packet and receiving the service response. Round-trip time meas-

urements and exponential averaging techniques could be applied.

The routing entry with the best value (e.g., lowest measured re-

sponse time) can be used to forward a service request. However, it

must be ensured that metrics for alternative routes are refreshed

periodically, e.g., by periodically using alternative routes for ser-

vice requests, or by generating explicit probing messages. Anoth-

er option is probabilistic routing by defining a probability func-

tion dependent on the measured metric values. This approach can

also nicely be applied to load balancing. Overloaded service ele-

ments with increased response time will then be less likely select-

ed. SoCCeR [15] adds a control layer on top of CCN for the ma-

nipulation of the underlying CCN Forwarding Information Base.

Routing of Interests is performed based on the measured load and

expected delay based on ants mechanisms. SOCCER adds over-

head by exchange of ants in addition to Interests and Data.

For decoupled ICN approaches, routing of search or subscription

information for name resolution is decoupled from data transfer.

DHTs can be used to find responsible rendezvous nodes for (SID,

RID) pairs in PURSUIT. After finding (or even selecting from

multiple options) a rendezvous node responsible for a service

identified by a (SID, RID) pair, a router between the service pro-

vider (publisher) and service user (subscriber) can be set up. cf.

Section 5.2. While metrics for routing can be determined in

straight-forward way for coupled approaches like CCN, due to the

decoupling of forwarding and name resolution this is rather an

open issue for decoupled approaches. Metrics should be deter-

mined based on round-trip times during the data forwarding

phase, but should be considered for name resolution when deter-

mining appropriate service entities.

5. SERVICE MANAGEMENT AND

DELIVERY

5.1 Service Management
A major issue of SCN is where and when to deploy which ser-

vices in the network. Supporting multimedia streams by servers at

the edge of a network only is not most efficient. Even for person-

alized streams, extended in-network caching and transcoding

should be utilized to provide a better service. In addition to de-

ployment, services need to be adapted and removed when not

needed anymore. Deployment, adaptation, and termination of

services should be considered as parts of service management.

Service deployment can either be triggered by users, network

operators or agents in network elements when through specific

user content, user service, or content service interaction it is dis-

covered that a service deployment for a specific case is beneficial

for performance. This requires a measurement infrastructure to

detect which data flows between service providers and service

consumers exist. This knowledge can then be taken as input by a

decision making entity to decide when and where to dynamically

deploy new service elements. In addition to the temporal deploy-

ment decision of a new service element, the decision where to

deploy is also important. For example, a transcoding service

might be best deployed at a forking point where different net-

works (and specifically network types) converge. There are cer-

tain criteria and parameters that have to be taken into account.

Service deployment must consider the hardware capabilities re-

quired to perform expensive calculations in order to implement

the service. Service elements might also have to access remote

data. The overhead for accessing remote data can be reduced by

an appropriate choice for the location of the service element to be

deployed. Optimal service deployment is challenging. Algorithms

based on heuristics might be needed.

Since several parameters such as usage patterns, mobility of users,

and network conditions are highly dynamic, parameters and loca-

tion of service elements need to adapt to current conditions. This

might result in modified/adapted functionality of service elements

or in migration of service elements. Service adaptation again

requires monitoring tools to record traffic and service usage. Ad-

aptation of services should be supported by self-adaptive service

elements. However, self-adaptivity of services might be limited

and for significant modifications, e.g., replacement of service

elements, operator-assisted adaptation might be needed.

Services can have different lifetimes depending on their purpose,

task and goals. Certain services can be permanently installed and

make up part of the “service fabric”. Others will only be required

at a certain point in time to serve a specific service request. Ser-

vices can also be required at a specific location for a predefined

duration and then they should be removed. Hence, instantiated

services should be removed when not needed anymore, e.g., in

case the service task has been fulfilled or of detected low service

usage (service termination).

An appropriate service management framework possibly based on

policies and autonomic network management mechanisms must

be identified. The framework must comprise mechanisms for

monitoring, resource optimization, decision support, and control.

Service management in tightly coupled approaches such as CCN

includes deployment of services at service entities such as routers

or attached servers. Routing tables must be adapted accordingly.

Service management using a decoupled approach such as PUR-

SUIT requires announcement and termination of services at ren-

dezvous nodes. Adaptation is a special case of terminating the

previous service and announcing the adapted service.

5.2 Service Delivery
In coupled approaches as CCN, service delivery is based on the

proposed Interest/Data message exchange, which requires having

one Interest message for each Data message. Another option is to

have a value, e.g., N, in each interest message indicating after

how many Data messages an Interest can be discarded in a router.

This would replace subsequent transmission of N Interest messag-

es. Alternatively, it might also make sense to use Interest/Data

message exchange only for service discovery and establish a fixed

path between client and service, e.g., using OpenFlow. The path is

then determined by the path taken by Interest/Date messages. This

makes in particular sense for stateful services. In decoupled ap-

proaches service/data delivery is independent of name resolution.

After name resolution any kind of data path can be selected or

established for data/service delivery. This could be even multi-

path or multicast communications.

5.3 Software-Defined Service-Centric

Networking
Consider that an extended service and object name in SCN can

define multiple functions to be performed on multiple objects

involving multiple service nodes. Then, a service requested by a

user can be composed out of a set of basic services already de-

ployed inside the network. Hence, a service request can be seen as

a service “program”, which defines service composition involving

objects or methods from different servers. Indeed, this promotes

the service-centric and location-independent trend: the service

program does not indicate the specific servers that need to be

involved, but rather only the service(s) the requester is interested

in. It is up to the network to identify the specific servers that will

provide the service. This might have similarities with active net-

works, but it is based on ideas such as location-independence of

service and data and routing based on names and addresses.

A service mapper has to react on a service request for the com-

posed service, identify the necessary basic services, call these by

issuing single service requests, and combine the results into a

single response for the composed service request. Service nodes

with mapping functions should run at strategic points inside the

network so that other basic services are reachable with low over-

head in terms of delay and bandwidth usage. Otherwise, if the

client knows the decomposition of a service, a list of services to

be combined in a chain can be provided by the client by making

use of a SCN routing header. To support service composition, a

service program can be routed between service nodes using CCN

named-based routing. Between two service nodes there can be

normal CCN forwarding/routing nodes that forward based on

names. Once the service program reaches a service node, the ac-

tions in the service program can involve sending the service re-

quest to a specific service node; the latter can be achieved by

adding the specific service node address (locator). The next ser-

vice node that follows can depend on the results of functions that

are executed in the current node.

Service composition can be supported by software development

tools such as G-Streamer [3], which is an open source multimedia

framework for developing audio/video applications out of a set of

already existing basic components. Service composition can be

supported by in-network service nodes that receive composite

service descriptions and break down / map the composite service

descriptions into service components or basic service elements.

As example, a multi-party conference service can be broken down

into basic service elements such as encoding a participant’s audio,

transcoding it into a common encoding, mixing the single partici-

pant’s audio streams, and transcoding the mixed audio stream to

the encoding that can be decoded by each single participant. In

addition to the multi-party conference service, possible other ap-

plications benefitting from service composition are distributed

services such as top headline news from major news sites or dis-

tributed search. These example services involve functions from

possibly multiple servers. However, the fact that the service is

implemented by multiple servers is not exposed to the requester

or indicated in the request itself, which is location independent.

It should also be emphasized that here is a certain analogy be-

tween the above software-defined view of SCN and Software-

Defined Networking such as OpenFlow. OpenFlow separates

control from forwarding functionality of a node. Forwarding

nodes expose an API for controlling its operation. In a similar

way, a service-centric networking architecture can be seen to

provide an API to service developers (distributed application de-

velopers) to define services (which can involve combinations of

multiple functions on multiple objects). Thus, the SCN approach

can be considered and called Software-Defined Service-Centric

Networking (SDSN). Similarly as SDN, SDSN can provide API

to service developers (distributed application developers) to de-

fine services (which can involve combination of multiple func-

tions on multiple objects). SDSN acts on the service level and

programs the whole network to provide a service, whereas Open-

Flow acts on the network level and controls operation of a for-

warding node.

6. SCN PROTOTYPE IMPLEMENTATION
There are a variety of alternatives to implement Service-Centric

Networking. Service elements could be implemented inside rout-

ers, similar to concepts proposed by Active Networking. Due to

the risks and concerns about Active Networking we rather see

more promising options by deploying execution environments co-

located with routers alongside the delivery network. This is in line

with emerging cloud computing environments and data centres

that are directly connected to routers or deployed somewhere else

in the network. However, in contrast to cloud services, other SCN

target services might be more dynamically located throughout the

SCN infrastructure. It is also possible to have service elements

deployed in end systems, i.e., servers of service providers or even

end user devices.

6.1 Example: Image Conversion Service
As an example for demonstrating the benefits of SCN we take a

still image conversion service. This service can be deployed at a

CCN router. Assuming that a still image is available from a pub-

lisher as bit map (BMP) or JPEG file, a user might request a JPEG

encoded file of the still image. If a CCN router in between the

user and the publisher has already stored the bit map file in its

content store (cache) or in its file repository, the bit map file can

be converted into a JPEG file by the CCN router and delivered to

the user. This saves bandwidth between the CCN router and the

publisher, who might also have stored the JPEG file of the still

image. However, this comes at the cost of additional processing in

the CCN router for the image conversion. This adds additional

delay, which might be higher than the end-to-end delay between

user and publisher.

6.2 SCN Implementation
As a proof of concept, we implemented the still image conversion

service on top of CCNx [24]. This allows several options for the

implementation. One option would have been to extend the CCNx

daemon called ccnd, which runs in Linux user space. This would

allow implementing a conversion service transparent to the user.

In this case, ccnd could intercept requests for a bit map file, con-

vert the bit map file into a JPEG file and return the JPEG file to

the user. This approach would require modifications of ccnd.

Moreover, ccnd would have to decide whether and from which

source file the conversion should be done. Due to these draw-

backs we decided not to follow the above approach. Instead we

implemented the image conversion service as a separate applica-

tion running on a CCN router. In this case, the image conversion

service provided has to be addressed explicitly by the user. As

example, if a user wants to use the service an Interest message as

request has to be sent to the CCN network:

/unibe.ch/sc/JPEG/publisher.org/image.BMP

The request asks a CCNx conversion service provided by Univer-

sity of Bern (unibe.ch) to retrieve the original image with the

name /publisher.org/image.BMP, convert it into a JPEG

file and return it to the user. This approach does not require

changes to ccnd. The user can completely control which file

should be converted into which format. The service is addressed

explicitly. The prototype implementation has been built by using

the CCNx repository at the publisher side and the ccngetfile pro-

gram at the user side. These programs are provided by the CCNx

implementation.

6.3 Service Usage Example
Figure 2 shows one example for service processing with the im-

age conversion service. Other modes are possible as well.

1. User1 at client1 issues a request for a bit map file from the

publisher.

2. The request, i.e. Interest message, will arrive at the ccnd of

the CCN router (ccndr).

3. The Interest message is forwarded by ccndr to ccndp, the

ccnd of the publisher.

4. The bit map file will be read.

5. The bit map file arrives at the ccnd of the publisher’s server.

6. The bit map file is sent in data messages to the ccnd of the

CCN router.

7. The bit map file is sent back to ccnd1, the ccnd of client 1.

8. The bit map file is delivered to user1

9. User2 issues a service request to convert the bit map file of

the publisher into a JPEG file.

10. The service request is forwarded by ccnd2, the ccnd of cli-

ent 2, to the CCN router.

11. ccndr, the ccnd running at the CCN forwards the service re-

quest to the service entity running on the CCN router.

12. The conversion service requests the bit map file as input for

the conversion.

13. ccndr has the bit map file in its content store / cache and can

deliver it to the conversion service for conversion into

JPEG.

14. The JPEG file is delivered by the service entity to ccndr,

15. ccndr returns the JPEG file to ccnd2.

16. The JPEG file is delivered to user2.

17. User1 issues the same request as user2 before.

18. The service request arrives at ccndr and can be served from

the content store / cache.

19. ccndr delivers the JPEG file to ccnd1.

20. The JPEG file is delivered to user1.

Figure 2: Service processing with Service-Centric Networking

6.4 Experimental Evaluation
The evaluation has been performed using 4 computers according

to the example scenario depicted in Figure 2.

 First, we measured the time for the delivery of a bit map file

from the publisher to user 1. This corresponds to steps 1-8.

The time for the delivery of the 36 MB bit map file was 186

s. This time is needed for forwarding the Interest and Data

messages between the involved CCN daemons ccnd1,

ccndr, ccndp.

 Next, we measured the time for handling the service request

of user2. This includes steps 9-16 and lasted 31 s. This

mainly includes time for converting the bit map file into a

JPEG file (6 MB) by the CCN router as well as forwarding

Interests and Data between ccnd2 and ccndr.

 Finally, we measured the time for the service request issued

by user1. The service data is already in the CCN router’s

content store and the request can be completed after 4 s.

In the example used for performance evaluation, the amount of

data exchanged over the network could be decreased significantly

compared to a scenario without SCN support, where both clients

would have requested a bit map file first and then converted it

locally. Client 1 could have requested the bit map file from the

publisher over two hops. Client 2 could then be served by the

CCN router, but the full 36 MB file would have to be transferred

between CCN router and client2. In the service-centric network-

ing case, the 36 MB file was only transferred over one link, in-

stead of three links in a pure CCN scenario without SCN support.

However, the bandwidth savings come at the cost for additional

delay caused by the conversion service. In our example the delay

is rather significant due to the complexity of the service and the

user space Java implementation of the service, which has not been

optimized for performance. More appropriate programming lan-

guages, runtime environments, and better integration of service

implementations and ICN routers can reduce this drawback.

7. CONCLUSIONS
This paper discussed certain issues of Service-Centric Networking

such as naming and routing as well as management of services in

more detail. In particular, it discussed differences of SCN when

using tightly coupled or decoupled ICN approaches. As a proof-

of-concept we have implemented a still image conversion service,

which can significantly reduce network bandwidth.

8. REFERENCES
[1] K. Arabshian, H. Schulzrinne: An Ontology-based Hierar-

chical Peer-to-Peer Global Service Discovery System, Jour-

nal of Ubiquitous Computing and Intelligence, 2007

[2] http://www.programmableweb.com/apis/directory, accessed

November 28, 2012

[3] http://www.gstreamer.net, accessed November 28, 2012

[4] V. Jacobson, D. K. Smetters, J. D. Thornton, M. Plass, N.

Briggs, R. Braynard: Networking named content. Communi-

cations of the ACM, vol. 55, no. 1, 2012

[5] J. Walz, D. Grier:Time to Push the Cloud, IT Professional ,

vol.12, no.5, 2010

[6] B. Ahlgren, Ch. Dannewitz, C. Imbrenda, D. Kutscher, B.

Ohlman: A Survey of Information-Centric Networking,

2011, Dagstuhl Seminar Proceedings

[7] N. Fotiou, P. Nikander, D. Trossen, and G. Polyzos. Devel-

oping information networking further: From PSIRP to PUR-

SUIT, 7th ICST Int'l Conf. on Broadband Commun., Net-

works, and Systems, 2010.

[8] B. Ahlgren: Content, Connectivity, and Cloud: Ingredients

for the Network of the Future,IEEE Communications Maga-

zine, vol. 49, no. 7, pp. 62–70, July 2011.

[9] B. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker, I. Stoica:

A data-oriented (and beyond) network architecture,”ACM

SIGCOMM Computer Communication Review, vol. 37, no.

4, 2007.

[10] W. Koong Chai et al.: CURLING: Content-Ubiquitous Reso-

lution and Delivery Infrastructure for Next-Generation Ser-

vices, IEEE Communications Magazine, vol. 49, no. 3,

2011

[11] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, B.

Ohlman: A survey of information-centric networking, IEEE

Communications Magazine, vol.50, no.7, 2012

[12] G. Tyson, N. Sastry, I. Rimac, R. Cuevas, A. Mauthe: A

survey of mobility in information-centric networks: chal-

lenges and research directions, 1st ACM workshop on

Emerging Name-Oriented Mobile Networking Design - Ar-

chitecture, Algorithms, and Applications, 2012

[13] E. Nordström, D. Shue, P. Gopalan, R. Kiefer, M. Arye, S.

Ko, J. Rexford, M. J. Freedman: Serval: An End-Host Stack

for Service-Centric Networking, 9th USENIX Symposium on

Networked Systems Design and Implementation, 2012

[14] M. J. Freedman, M. Arye, P. Gopalan, S. Y. Ko, E.

Nordström, J. Rexford, D. Shue: Service-Centric Network-

ing with SCAFFOLD, Princeton University, Computer Sci-

ence, Technical Report TR-885-10, 2010.

[15] S. Shanbhag, N. Schwan, I. Rimac, M. Varvello: SoCCeR:

services over content-centric routing, ACM SIGCOMM ICN

workshop, 2011

[16] B. Jun Ko, V. Pappas, R. Raghavendra, Y. Song, R. B. Dil-

maghani, K.W. Lee, D. Verma: An Information-Centric Ar-

chitecture for Data Center Networks, ACM SIGCOMM ICN

workshop, 2012

[17] G. Tyson, A. Mauthe, S. Kaune, P. Grace, A. Taweel and Th.

Plagemann. Juno: A Middleware Platform for Supporting

Delivery-Centric Applications. ACM Transactions on Inter-

net Technology, 2012

[18] G. On, J. Schmitt, R. Steinmetz: Quality of Availability:

Replica Placement for Widely Distributed Systems, in pro-

ceedings of the 11th international conference on Quality of

service, IWQoS 2003

[19] M. Sifalakis, A. Mauthe, D. Hutchison: SAND: A Scalable,

Distributed and Dynamic Active Network Directory Service,

Proceedings of 7th Annual International Working Conference

on Active and Programmable Networks, 2005

[20] Merugu, S., Bhattacharjee, S., Zegura, E., Calvert, K., Bow-

man: A Node OS for Active Networks, IEEE INFOCOMM,

2000.

[21] S. Schmid, J. Finney, A. Scott, W. Shepherd: Component-

based Active Network Architecture, IEEE Symposium on

Computers and Communications, July 2001.

[22] D. Wetherall, J. Guttag, T.Tennenhouse: ANTS: A toolkit

for building and dynamically deploying network protocols,

IEEE Openarch, April 1998.

[23] M. Hicks, P. Kaddar, J. Moore, C. Gunter, S. Nettles: PLAN:

A Packet Language for Active Networks, In Proceedings of

the 3rd ACM SIGPLAN International Conference on Func-

tional Programming, pages 86-93, 1998.

[24] E. Cheriki: Design and Implementation of a Conversion

Service for Content Centric Networks, Master thesis, FH

Bern, 2012

