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ABSTRACT 

This paper discusses several issues of Service-Centric Networking 

(SCN) as an extension of the Information-Centric Networking 

(ICN) paradigm. SCN allows extended caching, where not exactly 

the same content as requested can be read from caches, but simi-

lar content can be used to produce the content requested, e.g., by 

filtering or transcoding. We discuss the issue of naming and rout-

ing for general dynamic services for both tightly coupled and 

decoupled ICN approaches. Challenges and solutions for service 

management are identified, in particular for composed services, 

which allow distributed in-network processing of service requests. 

We introduce the term Software-Defined Service-Centric Net-

working as an extension of Software-Defined Networking. A 

prototype implementation for SCN proofs its validity and feasibil-

ity and underlines its potential benefits.  

Categories and Subject Descriptors 

C.2.1 Network Architecture and Design C.2.2 Network Protocols 

C.2.6 Internetworking 

General Terms 

Management, Performance, Design, Reliability, Experimentation. 

Keywords 

Future Internet, Information-Centric Networking, Services 

1. INTRODUCTION 
Information-Centric Networking (ICN, [11]) such as Content-

Centric Networking (CCN, [4]) has been discussed intensively as 

a novel paradigm for the Future Internet. ICN has strong focus on 

supporting efficient content transfer in the Internet by using novel 

addressing and forwarding schemes. We argue that such novel 

paradigm must also consider how to support services in general, 

where service requests are issued by (mobile) users and trigger 

processing in service elements as well as responses to those re-

quests. In particular, with the recent advent and growth of cloud 

computing it is necessary to support dynamic services in any Fu-

ture Internet paradigm. We propose the paradigm of Service-

Centric Networking (SCN), which makes use of and extends ICN 

forwarding concepts. We argue that extended caching mecha-

nisms are needed for multimedia services and we discuss the re-

quirements for management of services in a SCN environment. 

Further issues that need special attention are naming and routing 

as well as service management. Finally, we discuss possible im-

plementation architectures for the service-centric networking 

approach.  

1.1 Service-Centric Networking 
SCN proposes to extend ICN by effectively supporting service 

requests in addition to content requests. Service and content re-

quests are handled in a similar manner, i.e., a service or content 

lookup is integrated with packet forwarding to a certain degree. 

The idea is to avoid the traditional strong separation of service 

lookup/discovery and subsequently forwarding service requests to 

a specific server that has been identified a priori. With SCN a 

service user just sends a service request with an identifier describ-

ing the service in the address of the packet to the network. The 

service request will then be delivered to an entity that is able to 

optimally serve the service request. 

Services are software elements located throughout the networked 

infrastructure and are hosted on dedicated hardware placed along-

side the routing infrastructure. They are provided by active com-

ponents, called service elements. This reflects the increasing im-

portance of cloud computing but it has an even wider scope. We 

propose to have processing entities inside the network to efficient-

ly support advanced services in the Internet. Figure 1 shows a 

service-centric network architecture with SCN routers (squares) 

and service elements (circles). Service elements are providing the 

service and can be hosted by an SCN router, by servers co-located 

to SCN routers, or by end systems attached to the network.  

 

Figure 1: Service-Centric Network Architecture 

1.2 Target Services 
The services within an SCN can be of different types, depending 

on their scope and level within the system architecture. This paper 

is motivated by services related to multimedia distribution. How-

 



ever, this does not restrict the generality of the basic principle. 

Other services can be grouped as follows: 

Infrastructure services provide service users with computing, 

storage, and/or communication resources to deploy and run own 

software and services. The concepts described as Infrastructure / 

Platform as a Service in cloud computing belong to this category 

[5]. DC-ICN proposes using ICN in data centres [16].  

Client-oriented services provide application level services. Re-

quests sent to servers are served directly with an immediate, sin-

gle response. Web services and Software as a Service as defined 

in the cloud computing terminology are such examples. Services 

are deployed by service providers such as network operators, 

third-party providers, or end users. 

Continuous content retrieval and streaming services are used 

to optimise content distribution. Here, a single request triggers 

continuous subsequent content transmission such as stored/live 

audio/video streaming. This also includes the use of in-network 

services such as transcoding, mixing, filtering, etc. Filtering and 

aggregation services deployed inside the network can reduce data 

traffic for continuous sensor data streams. 

Event services are based on the detection of unusual events such 

as exceeding sensor data thresholds or exceeding stock exchange 

prices. In case of exceeding threshold, an Interest message can 

describe the interest of a user in becoming notified.  

SCN aims to optimize the performance (in particular delay) of 

future network applications and services and utilize network re-

sources more efficiently, e.g., by reservation of resources and 

deployment of services close to (mobile) users. This might be 

important in a mobile network environment with an increasing 

number of context-dependent (e.g., location) and personalized 

services. However, SCN leaves open several research issues. 

These are discussed in the following sections. 

After discussing related work to SCN in Section 2, we introduce 

the concept of extended caching, which is enabled by SCN, in 

Section 3. Service naming and routing are discussed in Section 4. 

Service management, i.e. creation, adaptation, and termination of 

distributed in-network services, is considered in Section 5. Sec-

tion 6 describes a general SCN implementation architecture as 

well as a prototype implementation used for preliminary SCN 

evaluations. Section 7 concludes the paper.  

2. RELATED WORK 

2.1 Web Services 
Web Services provide programming interfaces, which are ac-

cessed via the HyperText Transfer Protocol (HTTP) and executed 

on a remote system hosting the requested services. Web Services 

are described using the Web Services Description Language. In 

addition to in-bound services, out-bound services allow the ser-

vice to send the first message to a client. Web Services focus on 

providing operations using Simple Object Access Protocol 

(SOAP) as a protocol for exchanging structured information. 

SOAP relies on the eXtensible Markup Language for its message 

format, and usually relies on other application layer protocols 

such as Remote Procedure Call and HTTP for message negotia-

tion and transmission. Representational State Transfer (REST) is 

a style of software architecture for web services based on HTTP. 

In contrast to SOAP, no additional server-side operations are in-

troduced, but only HTTP methods (e.g., POST, GET, PUT or 

DELETE) are used. REST is completely stateless at the server 

and supports caching. Certain multimedia services are rather dif-

ficult to be implemented inside the network using REST. 

2.2 Content Distribution Networks 
The Internet nowadays relies on the usage of caching mechanisms 

or content distribution servers. Content Distribution Networks 

(CDNs) support several well-known services on the Internet. Us-

ers connect their end systems to residential gateways or directly to 

Internet Service Provider routers, relying on pre-existing configu-

rations that allow access to static content available on caching 

servers or CDNs. As an alternative solution, peer-to-peer overlays 

are also becoming more widely available. However, these net-

works are particularly inefficient in situations, where content 

sharing nodes are isolated from each other. In a future Internet 

user experience could strongly benefit from changes in the para-

digm of content distribution. Such changes could include caching 

contents closer to end users; dynamic content interactively or 

automatically adapted according to the needs of users and termi-

nal nodes (not only considering the network structure); content 

aware routers and optimized routing paths (according to band-

width, latency, etc.).  

2.3 Active Networking 
Active and programmable networks have been devised to provide 

means of flexible and dynamic data path processing capabilities 

that allow network und user side services inside the network [19]. 

The processing capabilities of active networking nodes can pro-

vide low-level packet processing and per user or application pro-

cessing of data streams. Research in active networks has resulted 

in the (further) development of areas such as active node plat-

forms [19][20], service composition models [21], mobile coding 

techniques [22], execution environments [23], etc.   

To be able to provide such functionality network nodes (such as 

switches and routers) have to provide an advanced execution en-

vironment to turn network nodes in to active programmable ele-

ments. With the so-called programmable switch programs are 

downloaded without changing the packet format. Hence, the net-

work providers can maintain control of the network operation by 

only allowing specific programs to be executed. A more radical 

concept is a capsule approach where “active” programs are part of 

individual packet and flows. These programs are then executed in 

the appropriate network elements along the data path.  

Active networking has never been widely deployed. One major 

reason for that were security concerns and possibly extensive 

resource consumption dependent on program functionality. 

2.4 Information-Centric Networking 
Different ICN proposals involve a different degree of coupling 

between name resolution and routing/forwarding. At one extreme, 

the same nodes perform both functions in a tightly coupled man-

ner. This is the approach followed by CCN/NDN [4]: Receivers 

express their request for content using Interest packets. Interest 

packets are routed based on the name of the requested content, 

using longest prefix matching, either to the node that contains a 

data packet with the requested name or to an intermediate node 

that has cached the requested content. Once the data packet is 

found, it is returned to the requester following the reverse path of 

the Interest packet.  



At the other extreme, name resolution and routing/forwarding are 

implemented in different nodes and/or different modules (decou-

pled approach). This is the approach followed by architectures 

such as PSIRP/PURSUIT’s PSI (Publish-Subscribe Internet) [7] 

and 4ward/SAIL’s NetInf architecture [11][8]. NetInf uses a two-

phase name resolution approach based on registration of network 

locators at a name resolution service [6]. The name resolution 

system is independent of the routing/forwarding network that 

transports content from the publisher to the subscriber.  

In PURSUIT/PSIRP, publishers advertise the content objects 

(publications) that they make available. A publication belongs to 

a particular named scope. Receivers can subscribe to content ob-

jects. Publications and subscriptions are matched by a rendezvous 

system. The subscription request specifies the scope identifier and 

the rendezvous identifier that together name the desired content 

object. PURSUIT enforces uniform naming by unique scope and 

rendezvous IDs (SID, RID). RIDs are application dependent iden-

tifiers unique within the scope of an SID. 

Proposals such as DONA [9] and COMET [10] investigate over-

lay solutions running on top of an IP infrastructure, hence use IP 

routing and forwarding functionality inherently. Juno [12] is a 

content-centric middleware based on self-certifying content iden-

tifiers. It includes a content discovery service, by which content is 

resolved similarly as in NetInf and DONA.  

2.5 Service-Centric Networking 
In recent years, a few approaches targeting service support by the 

network infrastructure have been published.  

SCAFFOLD [14] (Service-Centric Architecture For Flexible Ob-

ject Localization and Distribution) is an architecture that provides 

a flow-based anycast service with possibly moving service in-

stances. SCAFFOLD aims to manage on system churn, i.e., some 

change of physical system or network resources, e.g., from fail-

ures, planned maintenance, load balancing, workload migration, 

or physical mobility. SCAFFOLD depends on underlying virtual-

ized and programmable network elements to support transparent 

migration of objects, services, or virtual machines across physical 

resources. SCAFFOLD directly addresses distributed or replicated 

objects or services, rather than hosts. 

SERVAL [13] is a service access layer above an unmodified net-

work layer enabling applications to communicate directly on ser-

vice names. SERVAL separates service ID, flow ID (socket), and 

network address (interface). Service IDs consist of 256 bits to be 

administered by a central authority. All IDs are visible to service 

routers. Forwarding is based on rules defined in tables. Possible 

actions are forwarding, demultiplexing, delaying, dropping if 

packets. SERVAL provides an anycast service for service routing 

with late binding of connections and services. Multi-path commu-

nication can be used for striping of connections/flows.  

3. EXTENDED CACHING FOR  

CONTINUOUS CONTENT RETRIEVAL 

AND STREAMING 
Like content delivery networks, a major motivation for introduc-

ing ICN [4] has been the reduction of traffic and delays by ex-

ploiting caching. In contrast to CDNs, ICN combines location-

independent content lookup with forwarding/routing and router 

(in-network) caches. Not only server caches as in CDN can be 

used: A user request for accessing content could be served by an 

ICN router cache instead of a server cache. Caching with services 

is more difficult and possibly somewhat less likely to occur, since 

service requests may be individual and context-dependent. Never-

theless, we think that in particular (personalized) multimedia 

streaming applications can significantly benefit from services 

deployed inside the network, in particular from so-called extend-

ed caching. The underlying principle of extended caching is that 

of “content as an object”, i.e., a content object is not identical 

with a specific copy but is a representation of a content element 

that can exist in different formats, copies and at different loca-

tions. Aligned with the idea of ICN it is assumed that the user is 

not interested in the exact copy of the content object but the con-

tent itself. In addition to this, the user is ultimately agnostic as far 

as delivery is concerned (which leads to delivery-centric content 

networking [17]). To optimise delivery with respect to network 

and device conditions the notion of content centricity and delivery 

centricity can, therefore, be extended to also provide adapted 

content according to device, network and user context.  

Traditional caching is based on repeatedly requesting identical 

content and serving such requests from a cache. Extended caching 

does not necessarily deliver the original content, but the content 

might just be similar to the original one. As example, requests can 

be served by taking content objects from the cache, transcoding, 

filtering, aggregating or extracting the content to be delivered to 

the requesting users. In both cases, traditional and extended cach-

ing, cached objects are (re-)presented in the cache. Though, in 

extended caching, not only the exact copy of the object (i.e., the 

content object) can be delivered if requested, but it is also suffi-

cient that if the content is available in a specific form to use this 

to generate the desired format.  

Extended caching could be applied for streaming services, when 

segments of a requested video stream are available in the cache, 

but the request demands a different encoding than what is in the 

cache. The request can then be served after transcoding the avail-

able cached content into the requested format. Services that can 

benefit from extended caching are streaming applications tailored 

to certain device capabilities, interconnectivity conditions or user 

context information (e.g., location of a user close to multimedia 

output devices), news streams composed of contents elements 

based on personal interests and preferences, on-line games with 

real-time audio/video etc. As an example, different users might 

request a streamed video tailored to their viewing device capabili-

ties. The request might meet a service element, where parts of the 

requested stream are stored, but not in the same format as request-

ed. If the service element provides some transcoding facilities, the 

request can be served without forwarding it to the original server. 

A similar example is a situation where the requesting device is 

connected via a path with impaired conditions such as higher 

delay or loss or limited bandwidth. Redundant encoding schemes 

or multi-path transmission might provide the required robustness. 

This again can be implemented by supporting encoding and 

transmission services inside the network.  

Caching can be implemented in a passive or active way.  In case 

of passive caching, content forwarded along a path of routers can 

be cached in the router memories. In case of active caching, con-

tent can be proactively placed at routers (or attached servers) to 

better support the target users and to increase quality of availabil-

ity (QoA) [18]. This placement has a geographical as well as a 

temporal aspect. Similarly as content, also service entities have to 

be placed within the network, cf. Section 5.1.   



4. SERVICE NAMING AND ROUTING  
SCN proposes to use both service and content names as identifiers 

for Future Internet routing. This creates several challenges to be 

investigated as discussed in the following subsections. 

4.1  Service Naming  
A first issue to be considered is name resolution for services. Dif-

ferent services should be distinguishable by different names. Iden-

tical services or service classes should have identical names to 

support location-based services close to a user. Several mecha-

nisms for uniform content naming exist such as the Digital Object 

Identifiers for digitally available scientific articles or magnet links 

as used in peer-to-peer networks, which are built by hashing the 

content.  While a completely flat name space does not guarantee 

uniform naming, hierarchical approaches similar to domain names 

require strong coordination similar to the domain name system 

(DNS), which is also not desirable for content producers. There-

fore, schemes combining both approaches by splitting the content 

name into two parts <content_owner, content_name> might be an 

interesting alternative. This allows both uniform naming as well 

as flexible naming of contents. This could also work for naming 

of services, although it might be possible that users do not care 

about or do not know the service provider in advance. Therefore, 

wild cards, e.g., <*, service_name>, should be supported. Hierar-

chical service names could then guarantee uniformity of service 

names.  

4.2 Service Name Resolution 
Content / service names can either be directly used for routing 

(tightly coupled approach), e.g., as proposed in CCN, or the con-

tent / service name can be mapped to a locator identifier (e.g., 

using a hash function), which is then used for routing messages to 

the content / service source (decoupled approach). In case of a 

decoupled approach similar content / service names may be 

mapped to completely different locators, which would result in 

providing similar services at rather different locations in the net-

work. This adds certain flexibility in selecting service entities for 

a requested service name.  

Tightly coupled approaches only scale, if names can be aggregat-

ed. In that case, classes of services should have common prefixes 

to allow aggregation of services but also to simplify searching. 

This can be achieved by classification of services and building a 

hierarchy of services as proposed in [1]. The service name could 

then be built as a concatenation of service categories. A single-

level web service directory is available at [2]. This would also 

allow having different service providers for the same service 

name. On the other hand, it requires strong coordination of the 

naming hierarchy, similar as for the domain name system (DNS).  

Another option in tightly-coupled approaches such as CCN is to 

use an overlay of service nodes. Service nodes are interconnected 

by normal CCN routers. This can be achieved by adding a prefix 

to the service name containing the name of the service node that 

will next process the service request. In such an approach there 

are two types of nodes: normal CCN routers and service (SCN) 

nodes that do more processing of service requests than CCN rout-

ers do. This can be regarded as creating CCN tunnels between 

SCN nodes.  

When implementing SCN above an ICN architecture that decou-

ples name resolution and data transport (decoupled approach), 

advanced and more complex processing of service requests can be 

performed by rendezvous nodes. Implementing SCN over a de-

coupled approach such as PURSUIT has benefits such as separate 

control of the route for data transfer, different routes for control 

and data packets and more effective many-to-one communication.  

A decoupled approach has the advantage of incremental deploy-

ment in the Internet, but adds additional delay due to the two 

consecutive phases name resolution and routing.  

In certain special cases, in particular when hashing is used for 

mapping names to locators, similar content or services, e.g., dif-

ferent versions, will be mapped to different locators. Thus, service 

requests might be forwarded along a completely different path, 

which can reduce benefits obtained from extended caching. This 

might also be an issue for video retrieval, when two files 

/owner/video_name.mpeg and /owner/video_name.avi are 

mapped to different locators. A user might first request the MPEG 

file and a second user, which is close to the first user, might then 

request the AVI file. While for two-phase name resolution, the 

two requests (including name resolution and forwarding of con-

tent/service requests) might travel along two different paths, in 

case of single phase name resolution, there is a high chance that 

the requests from both users travel along the same path. The re-

quest of the second user for the AVI file can then be served by a 

router that already has cached the MPEG file by transcoding the 

MPEG file into AVI format.  

4.3 Service Parameter and Type Support 
In addition to the service name, service parameters must be de-

scribed for certain service requests. On the one hand, some ser-

vices will require support for different input or output formats and 

hence will need only a limited, fixed set of parameters. As an 

example, different streaming services might exist for different 

screen sizes or different encoding formats. On the other hand 

there are services that need to support different numbers and types 

of parameters; e.g., a location-based service to find the best hotel 

could consider different combinations of parameters such as price, 

current distance to querying user, category etc. These examples 

show that routing a service request might not only depend on the 

service name but also on additional parameters describing the 

service request. 

For a decoupled approach such as PURSUIT, rich service de-

scriptions can be supported in PURSUIT rendezvous nodes, 

which are responsible for mapping service requests to service 

publishers. An appropriate forwarding path can then be set up 

between publisher and subscriber. 

For coupled approaches such as CCN, we see two options for 

describing service parameters, either as an extension of the ser-

vice name or as additional information in the body of the service 

request message. 

1. Coding service parameters or parameter types as part of the 

service name require very efficient coding. A possible solu-

tion are type representations as in ASN.1 Basic Encoding 

Rules, but use short encodings for frequently used types, 

e.g., based on Huffman or arithmetic encoding. If types and 

parameters should be part of the service name, the encoding 

must be mapped to ASCII characters, e.g., using base64 en-

coding. This is mainly appropriate for services with a rela-

tively limited, well defined and static set of parameters.  

2. In cases where a service requires a parameter list that is ar-

bitrarily long and nested and might need dynamic parame-



ters, it makes hardly sense to put anything else than the ser-

vice name into the address of the service request. Parameter 

values and types should then rather be described in the body 

of a service request message, e.g., using XML. If parameter 

values or types need to be analysed for routing a service re-

quest, this would then require analysing the message body. 

Alternatively, if multiple services exist under the same 

name, but analysing different parameter sets and types and 

analysis of the message body is not feasible in routers, the 

SCN network should forward service requests to all poten-

tially relevant service entities and let these finally check 

whether they can support the service request or not. Also, 

initially a “plain” service request might be forwarded in the 

network and through a handshake process the actual param-

eterisation is then negotiated.  

4.4 Service Routing 
By using name-based addresses CCN [4] routing can be consid-

ered a superset of IP routing. If a routing entry in the Forwarding 

Information Base (FIB) is present, e.g., for “/content-

provider/path-name”, there is a high chance but no 100 % reliabil-

ity that the requested content will be reached via the interface 

specified in the routing table. This means that a content/service 

request (also known as Interest message) should be forwarded 

along multiple paths to increase the probability to find content. If 

no matching FIB entries for a requested content object can be 

found, then an Interest message might have to be flooded or dis-

tributed via several paths. Forwarding Interests over multiple 

paths can also be used to find the closest copy of the content ob-

ject stored in a cache. Strategies to forward Interest messages are 

left open [4], but it has been proposed to populate FIBs by an-

nouncements of available content. Such announcements can avoid 

extensive flooding. Similar mechanisms, i.e., announcement of 

available services could be used by SCN. SCN service routing 

should make use of the significant amount of work on service 

discovery that has been developed in peer-to-peer and mobile ad-

hoc networks. Techniques such as Distributed Hash Tables 

(DHT), random walks to avoid flooding, extended ring search, 

Bloom filters can be considered.  

Routing metrics are another issue related to service routing. It 

might be reasonable to consider performance issues in addition to 

address information when deciding along which path a service 

request message should be forwarded. This is the case, when mul-

tiple service elements exist for the same service, possibly provid-

ed by different service providers. Another potential use case for 

multiple service elements is automatic load balancing.  

Routing metrics can be supported by adding more columns for 

each address entry into the routing table. As example, a routing 

table column entry could contain the estimated response time for 

a service, i.e., the time between forwarding a service request 

packet and receiving the service response. Round-trip time meas-

urements and exponential averaging techniques could be applied. 

The routing entry with the best value (e.g., lowest measured re-

sponse time) can be used to forward a service request. However, it 

must be ensured that metrics for alternative routes are refreshed 

periodically, e.g., by periodically using alternative routes for ser-

vice requests, or by generating explicit probing messages. Anoth-

er option is probabilistic routing by defining a probability func-

tion dependent on the measured metric values.  This approach can 

also nicely be applied to load balancing. Overloaded service ele-

ments with increased response time will then be less likely select-

ed. SoCCeR [15] adds a control layer on top of CCN for the ma-

nipulation of the underlying CCN Forwarding Information Base. 

Routing of Interests is performed based on the measured load and 

expected delay based on ants mechanisms. SOCCER adds over-

head by exchange of ants in addition to Interests and Data.  

For decoupled ICN approaches, routing of search or subscription 

information for name resolution is decoupled from data transfer. 

DHTs can be used to find responsible rendezvous nodes for (SID, 

RID) pairs in PURSUIT. After finding (or even selecting from 

multiple options) a rendezvous node responsible for a service 

identified by a (SID, RID) pair, a router between the service pro-

vider (publisher) and service user (subscriber) can be set up. cf. 

Section 5.2. While metrics for routing can be determined in 

straight-forward way for coupled approaches like CCN, due to the 

decoupling of forwarding and name resolution this is rather an 

open issue for decoupled approaches. Metrics should be deter-

mined based on round-trip times during the data forwarding 

phase, but should be considered for name resolution when deter-

mining appropriate service entities. 

5. SERVICE MANAGEMENT AND  

DELIVERY 

5.1 Service Management 
A major issue of SCN is where and when to deploy which ser-

vices in the network. Supporting multimedia streams by servers at 

the edge of a network only is not most efficient. Even for person-

alized streams, extended in-network caching and transcoding 

should be utilized to provide a better service. In addition to de-

ployment, services need to be adapted and removed when not 

needed anymore. Deployment, adaptation, and termination of 

services should be considered as parts of service management.  

Service deployment can either be triggered by users, network 

operators or agents in network elements when through specific 

user content, user service, or content service interaction it is dis-

covered that a service deployment for a specific case is beneficial 

for performance. This requires a measurement infrastructure to 

detect which data flows between service providers and service 

consumers exist. This knowledge can then be taken as input by a 

decision making entity to decide when and where to dynamically 

deploy new service elements. In addition to the temporal deploy-

ment decision of a new service element, the decision where to 

deploy is also important. For example, a transcoding service 

might be best deployed at a forking point where different net-

works (and specifically network types) converge. There are cer-

tain criteria and parameters that have to be taken into account. 

Service deployment must consider the hardware capabilities re-

quired to perform expensive calculations in order to implement 

the service. Service elements might also have to access remote 

data. The overhead for accessing remote data can be reduced by 

an appropriate choice for the location of the service element to be 

deployed. Optimal service deployment is challenging. Algorithms 

based on heuristics might be needed.  

Since several parameters such as usage patterns, mobility of users, 

and network conditions are highly dynamic, parameters and loca-

tion of service elements need to adapt to current conditions. This 

might result in modified/adapted functionality of service elements 

or in migration of service elements. Service adaptation again 

requires monitoring tools to record traffic and service usage. Ad-



aptation of services should be supported by self-adaptive service 

elements. However, self-adaptivity of services might be limited 

and for significant modifications, e.g., replacement of service 

elements, operator-assisted adaptation might be needed.  

Services can have different lifetimes depending on their purpose, 

task and goals. Certain services can be permanently installed and 

make up part of the “service fabric”. Others will only be required 

at a certain point in time to serve a specific service request. Ser-

vices can also be required at a specific location for a predefined 

duration and then they should be removed. Hence, instantiated 

services should be removed when not needed anymore, e.g., in 

case the service task has been fulfilled or of detected low service 

usage (service termination).  

An appropriate service management framework possibly based on 

policies and autonomic network management mechanisms must 

be identified.  The framework must comprise mechanisms for 

monitoring, resource optimization, decision support, and control. 

Service management in tightly coupled approaches such as CCN 

includes deployment of services at service entities such as routers 

or attached servers. Routing tables must be adapted accordingly. 

Service management using a decoupled approach such as PUR-

SUIT requires announcement and termination of services at ren-

dezvous nodes. Adaptation is a special case of terminating the 

previous service and announcing the adapted service. 

5.2 Service Delivery 
In coupled approaches as CCN, service delivery is based on the 

proposed Interest/Data message exchange, which requires having 

one Interest message for each Data message. Another option is to 

have a value, e.g., N, in each interest message indicating after 

how many Data messages an Interest can be discarded in a router. 

This would replace subsequent transmission of N Interest messag-

es.  Alternatively, it might also make sense to use Interest/Data 

message exchange only for service discovery and establish a fixed 

path between client and service, e.g., using OpenFlow. The path is 

then determined by the path taken by Interest/Date messages. This 

makes in particular sense for stateful services. In decoupled ap-

proaches service/data delivery is independent of name resolution. 

After name resolution any kind of data path can be selected or 

established for data/service delivery. This could be even multi-

path or multicast communications.  

5.3 Software-Defined Service-Centric  

Networking  
Consider that an extended service and object name in SCN can 

define multiple functions to be performed on multiple objects 

involving multiple service nodes. Then, a service requested by a 

user can be composed out of a set of basic services already de-

ployed inside the network. Hence, a service request can be seen as 

a service “program”, which defines service composition involving 

objects or methods from different servers. Indeed, this promotes 

the service-centric and location-independent trend: the service 

program does not indicate the specific servers that need to be 

involved, but rather only the service(s) the requester is interested 

in. It is up to the network to identify the specific servers that will 

provide the service. This might have similarities with active net-

works, but it is based on ideas such as location-independence of 

service and data and routing based on names and addresses. 

A service mapper has to react on a service request for the com-

posed service, identify the necessary basic services, call these by 

issuing single service requests, and combine the results into a 

single response for the composed service request. Service nodes 

with mapping functions should run at strategic points inside the 

network so that other basic services are reachable with low over-

head in terms of delay and bandwidth usage. Otherwise, if the 

client knows the decomposition of a service, a list of services to 

be combined in a chain can be provided by the client by making 

use of a SCN routing header. To support service composition, a 

service program can be routed between service nodes using CCN 

named-based routing. Between two service nodes there can be 

normal CCN forwarding/routing nodes that forward based on 

names. Once the service program reaches a service node, the ac-

tions in the service program can involve sending the service re-

quest to a specific service node; the latter can be achieved by 

adding the specific service node address (locator). The next ser-

vice node that follows can depend on the results of functions that 

are executed in the current node. 

Service composition can be supported by software development 

tools such as G-Streamer [3], which is an open source multimedia 

framework for developing audio/video applications out of a set of 

already existing basic components. Service composition can be 

supported by in-network service nodes that receive composite 

service descriptions and break down / map the composite service 

descriptions into service components or basic service elements. 

As example, a multi-party conference service can be broken down 

into basic service elements such as encoding a participant’s audio, 

transcoding it into a common encoding, mixing the single partici-

pant’s audio streams, and transcoding the mixed audio stream to 

the encoding that can be decoded by each single participant. In 

addition to the multi-party conference service, possible other ap-

plications benefitting from service composition are distributed 

services such as top headline news from major news sites or dis-

tributed search. These example services involve functions from 

possibly multiple servers. However, the fact that the service is 

implemented by multiple servers is not exposed to the requester 

or indicated in the request itself, which is location independent. 

It should also be emphasized that here is a certain analogy be-

tween the above software-defined view of SCN and Software-

Defined Networking such as OpenFlow. OpenFlow separates 

control from forwarding functionality of a node. Forwarding 

nodes expose an API for controlling its operation. In a similar 

way, a service-centric networking architecture can be seen to 

provide an API to service developers (distributed application de-

velopers) to define services (which can involve combinations of 

multiple functions on multiple objects). Thus, the SCN approach 

can be considered and called Software-Defined Service-Centric 

Networking (SDSN). Similarly as SDN, SDSN can provide API 

to service developers (distributed application developers) to de-

fine services (which can involve combination of multiple func-

tions on multiple objects). SDSN acts on the service level and 

programs the whole network to provide a service, whereas Open-

Flow acts on the network level and controls operation of a for-

warding node. 

6. SCN PROTOTYPE IMPLEMENTATION 
There are a variety of alternatives to implement Service-Centric 

Networking. Service elements could be implemented inside rout-

ers, similar to concepts proposed by Active Networking. Due to 



the risks and concerns about Active Networking we rather see 

more promising options by deploying execution environments co-

located with routers alongside the delivery network. This is in line 

with emerging cloud computing environments and data centres 

that are directly connected to routers or deployed somewhere else 

in the network. However, in contrast to cloud services, other SCN 

target services might be more dynamically located throughout the 

SCN infrastructure. It is also possible to have service elements 

deployed in end systems, i.e., servers of service providers or even 

end user devices.  

6.1 Example: Image Conversion Service 
As an example for demonstrating the benefits of SCN we take a 

still image conversion service. This service can be deployed at a 

CCN router. Assuming that a still image is available from a pub-

lisher as bit map (BMP) or JPEG file, a user might request a JPEG 

encoded file of the still image. If a CCN router in between the 

user and the publisher has already stored the bit map file in its 

content store (cache) or in its file repository, the bit map file can 

be converted into a JPEG file by the CCN router and delivered to 

the user. This saves bandwidth between the CCN router and the 

publisher, who might also have stored the JPEG file of the still 

image. However, this comes at the cost of additional processing in 

the CCN router for the image conversion. This adds additional 

delay, which might be higher than the end-to-end delay between 

user and publisher.  

6.2 SCN Implementation  
As a proof of concept, we implemented the still image conversion 

service on top of CCNx [24]. This allows several options for the 

implementation. One option would have been to extend the CCNx 

daemon called ccnd, which runs in Linux user space. This would 

allow implementing a conversion service transparent to the user. 

In this case, ccnd could intercept requests for a bit map file, con-

vert the bit map file into a JPEG file and return the JPEG file to 

the user. This approach would require modifications of ccnd. 

Moreover, ccnd would have to decide whether and from which 

source file the conversion should be done. Due to these draw-

backs we decided not to follow the above approach. Instead we 

implemented the image conversion service as a separate applica-

tion running on a CCN router. In this case, the image conversion 

service provided has to be addressed explicitly by the user. As 

example, if a user wants to use the service an Interest message as 

request has to be sent to the CCN network:  

/unibe.ch/sc/JPEG/publisher.org/image.BMP 

The request asks a CCNx conversion service provided by Univer-

sity of Bern (unibe.ch) to retrieve the original image with the 

name /publisher.org/image.BMP, convert it into a JPEG 

file and return it to the user. This approach does not require 

changes to ccnd. The user can completely control which file 

should be converted into which format. The service is addressed 

explicitly. The prototype implementation has been built by using 

the CCNx repository at the publisher side and the ccngetfile pro-

gram at the user side. These programs are provided by the CCNx 

implementation.  

6.3 Service Usage Example 
Figure 2 shows one example for service processing with the im-

age conversion service. Other modes are possible as well.  

1. User1 at client1 issues a request for a bit map file from the 

publisher.  

2. The request, i.e. Interest message, will arrive at the ccnd of 

the CCN router (ccndr).  

3. The Interest message is forwarded by ccndr to ccndp, the 

ccnd of the publisher. 

4. The bit map file will be read. 

5. The bit map file arrives at the ccnd of the publisher’s server.   

6. The bit map file is sent in data messages to the ccnd of the 

CCN router.  

7. The bit map file is sent back to ccnd1, the ccnd of client 1.  

8. The bit map file is delivered to user1 

9. User2 issues a service request to convert the bit map file of 

the publisher into a JPEG file. 

10. The service request is forwarded by ccnd2, the ccnd of cli-

ent 2, to the CCN router.  

11. ccndr, the ccnd running at the CCN forwards the service re-

quest to the service entity running on the CCN router.  

12. The conversion service requests the bit map file as input for 

the conversion.  

13. ccndr has the bit map file in its content store / cache and can 

deliver it to the conversion service for conversion into  

JPEG. 

14. The JPEG file is delivered by the service entity to ccndr, 

15. ccndr returns the JPEG file to ccnd2. 

16. The JPEG file is delivered to user2. 

17. User1 issues the same request as user2 before.  

18. The service request arrives at ccndr and can be served from 

the content store / cache.  

19. ccndr delivers the JPEG file to ccnd1. 

20. The JPEG file is delivered to user1.  

 

Figure 2: Service processing with Service-Centric Networking 

6.4 Experimental Evaluation  
The evaluation has been performed using 4 computers according 

to the example scenario depicted in Figure 2.  

 First, we measured the time for the delivery of a bit map file 

from the publisher to user 1. This corresponds to steps 1-8. 

The time for the delivery of the 36 MB bit map file was 186 

s. This time is needed for forwarding the Interest and Data 

messages between the involved CCN daemons ccnd1, 

ccndr, ccndp.  

 Next, we measured the time for handling the service request 

of user2. This includes steps 9-16 and lasted 31 s. This 

mainly includes time for converting the bit map file into a 



JPEG file (6 MB) by the CCN router as well as forwarding 

Interests and Data between ccnd2 and ccndr.  

 Finally, we measured the time for the service request issued 

by user1. The service data is already in the CCN router’s 

content store and the request can be completed after 4 s.  

In the example used for performance evaluation, the amount of 

data exchanged over the network could be decreased significantly 

compared to a scenario without SCN support, where both clients 

would have requested a bit map file first and then converted it 

locally. Client 1 could have requested the bit map file from the 

publisher over two hops. Client 2 could then be served by the 

CCN router, but the full 36 MB file would have to be transferred 

between CCN router and client2. In the service-centric network-

ing case, the 36 MB file was only transferred over one link, in-

stead of three links in a pure CCN scenario without SCN support. 

However, the bandwidth savings come at the cost for additional 

delay caused by the conversion service. In our example the delay 

is rather significant due to the complexity of the service and the 

user space Java implementation of the service, which has not been 

optimized for performance. More appropriate programming lan-

guages, runtime environments, and better integration of service 

implementations and ICN routers can reduce this drawback.  

7. CONCLUSIONS 
This paper discussed certain issues of Service-Centric Networking 

such as naming and routing as well as management of services in 

more detail. In particular, it discussed differences of SCN when 

using tightly coupled or decoupled ICN approaches. As a proof-

of-concept we have implemented a still image conversion service, 

which can significantly reduce network bandwidth.  
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