
Quality of Service for Peer-to-Peer based Networked Virtual Environments

Marc Brogle, Dragan Milić, Torsten Braun
Institute of Computer Science and Applied Mathematics

Universität Bern, Neubrückstrasse 10, 3012 Bern, Switzerland
brogle@iam.unibe.ch, milic@iam.unibe.ch, braun@iam.unibe.ch

Abstract

This paper describes how Quality of Service (QoS) en-
abled Overlay Multicast architectures using Peer-to-Peer
(P2P) networks can enhance the experience of end-users in
Networked Virtual Environments (NVE). We show how IP
Multicast, which offers an easy to use API for implementing
NVE but is not widely deployed, can be made available to
end-users by bridging it transparently with P2P networks.
We describe how different P2P and Application Level Mul-
ticast (ALM) architectures can be extended with QoS mech-
anisms using our proposed OM-QoS (Overlay Multicast
QoS) architecture. The presented approach allows users to
experience QoS for NVE such as group-based multimedia
broadcasting and distributed multiplayer games.

1 Introduction

Efficient data dissemination for Networked Virtual En-
vironments (NVE) such as group-based multimedia broad-
casting or data exchange in distributed and de-centrally-
managed multiplayer games can be realized using multi-
cast. Multicast senders transmit their data/stream only once
while the network or other participants duplicate and deliver
the data to subscribers. This allows to create efficient, scal-
able and distributed group-based NVE that require no cen-
tral management or expensive (server-based) infrastructure.
IP Multicast unfortunately has not been deployed widely
in the Internet today and is not really usable by end-users.
Multicasting can though be made available to end-users by
using Application Level Multicast (ALM) running on top
of Peer-to-Peer[6] (P2P) networks. Unfortunately, no real
standard for ALM (contrary to the IP Multicast API) ex-
ists. We present an approach to enable IP Multicast usage
for end-users by bridging IP Multicast interface with ALM
for data distribution and describe an architecture to enable
Quality of Service (QoS) in P2P/ALM networks. This al-
lows NVE to apply the easy to use IP Multicast API with
QoS mechanisms to improve the user’s experience.

The remainder of the paper is organized as follows. The
next Section describes how IP Multicast can be bridged with
ALM. Section 3 describes the basic properties of the OM-
QoS (Overlay Multicast QoS) architecture. In Section 4
we apply OM-QoS to different P2P/ALM architectures. A
short evaluation follows in Section 5. Finally, a conclusion
and outlook are given in Section 6.

2 Bridging IP Multicast and ALM

In [7] we presented how IP Multicast can be made avail-
able to end-users by using a virtual network interface and an
Application Layer Multicast (ALM). The Multicast Middle-
ware, developed for the EuQoS[5] IST project in the Euro-
pean 6th framework program, acts as an IP Multicast router
attached to a virtual network interface.

Sender Receiver

real Netw.
Interface

Application P2P / ALM

IP
UDP IGMP TCP

virtual Netw.
Interface

Application P2P / ALM

IP

UDP IGMP TCP

virtual Netw.
Interface

real Netw.-
Interface

Us
er

 S
pa

ce

Us
er

 S
pa

ce

Ke
rn

el
 S

pa
ce

Ke
rn

el
 S

pa
ce

IP Multicast (UDP) Host BounderiesP2P Data (TCP)

Figure 1. Bridging IP Multicast and ALM

Figure 1 shows how the Multicast Middleware can capture
IP Multicast packets that are routed by the operating system
through the virtual network interface (network TAP[13])
and afterwards the packets will not leave the end-system via
the network. Instead, these packets are disseminated using
a P2P/ALM infrastructure (e. g. Scribe/Pastry). IGMP mes-
sages trigger the setup of the ALM. At the receiver, the IP
Multicast traffic is injected back into the system using TAP.
This is completely transparent to applications, existing IP
Multicast enabled applications do not need to be changed.

3 OM-QoS basic principles

The basic idea of OM-QoS is to build QoS-aware multi-
cast trees as presented in [2]. Therefore the tree construc-
tion mechanisms of the investigated P2P/ALM should yield
in a multicast tree as shown in Figure 2.

path with monotonically
decreasing

QoS

Root

Leaf

Figure 2. OM-QoS Multicast Tree setup

Such a tree should hold the basic property: “All paths from
the root to the leafs have monotonically decreasing QoS.”
The QoS classes used to distinguish the different quality re-
quirements have to satisfy the following three requirements:
(1) all QoS classes have a total order relation, (2) QoS class
parameters are independent of link length and number of
hops in the network, and (3) the amount of QoS classes is
finite. An example QoS class would be the bandwidth or
jitter, but not delay, which is additive and depends on link
length and hop count. Also combinations of some param-
eters could be used, for example bandwidth and jitter to-
gether, as long as it holds the three properties described.
Most P2P networks already minimize the delay between the
participating peers. In order to fully support delay-related
QoS requirements, the end-to-end delay from the root to a
leaf over the in-between hops along the path has to be con-
sidered (sum of hop delays). We plan to support that end-to-
end delay related QoS parameter as well. It will be treated
as a (from the presented QoS class concept) independent
and separate parameter, which will be taken into account
when looking for a potential parent in the P2P network.
At the moment we only consider network provided QoS,
users get QoS guarantees provided by the underlying net-
work infrastructure. As a next step we will also look at dy-
namic environments using measurement based best-effort
QoS, where trees have to adapted periodically if QoS fails.
OM-QoS aims to be a general solution for introducing QoS
capabilities to different structured P2P/ALM architectures
and is not limited to DHT like systems. If a P2P/ALM
protocol cannot be modified to support QoS as done for
Scribe/Pastry, Bayeux/Tapestry and NICE, the layered ap-
proach (used for CAN) can be applied as a general solution.

4 Applying OM-QoS to P2P/ALM

4.1 Scribe/Pastry

Pastry[11] is a P2P routing substrate with a ring struc-
ture (one-dimensional torus). Peers chose a random (uni-
formly distributed) and unique ID when they join the P2P
network. Routing in Pastry uses Plaxton’s method[9]. Each
hop from source to destination matches one or more prefixes
of the message’s destination address. A peer has more in-
formation about ID-neighbors (matching many prefixes of
the ID left to right) than about ID-distant peers matching
less ID prefixes (left-to-right). Routing is proximity aware:
each hop from source to destination tries to minimize the
intermediate hop-delay. Therefore, the overall end-to-end
delay can be optimized up to a certain degree. Figure 3
(a) shows a simplified example of Pastry’s prefix match-
ing routing mechanism. In the example we want to route a
message from the source BCD to the destination EDE. The
source only knows the node EAA, which shares the first
prefix with the destination address EDE. The message is
forwarded (1) to this node, which forwards (2) the message
to EDC matching the next prefix of the destination address
in its own routing table. Finally, node EDC delivers (3) the
message to the destination EDE, which it knows directly. If
there is no node, with the ID of a message’s destination ad-
dress assigned, the node with the ID numerically closest to
the destination address is responsible for message message.
Scribe[4] is a core based ALM infrastructure, running on
top of Pastry. Each multicast group (called topic) has a
unique multicast group (topic ID), which has a core (root)
node for the distribution tree. This root is the node with
the Pastry ID numerically closest to the topic ID. All mul-
ticast traffic for that group is forwarded to the root node for
dissemination. Figure 3 (b) shows a simplified example of
a multicast tree construction with Scribe. A joining node
sends a join message to the topic’s root node using Pastry
routing. Nodes on intermediate hops along the path of the
join message add the previous node/hop to the list of re-
ceivers for that topic. A join message is only forwarded
further towards the root if the current intermediate hop is
not yet subscribed to that topic. When data for that topic ID
has to be disseminated, the root node forwards the message
to all its one-hop subscribed nodes. These nodes repeat the
same process, forwarding the message to their one-hop sub-
scribers. In the example node BCD wants to join topic with
ID EDE. The same intermediate hops are visited as in the
Pastry example and the multicast tree distribution tree for
this subscriber is therefore built using the reverse path of
the join message. Other joining hosts (e. g. AFB and DAB)
could send their join message via nodes that are already sub-
scribed to the topic (e. g. EDC and EAA), which then stop
forwarding the join message towards the root.

EDE

FFB

FFF

EDC

EAA

DAB

CAB

BFF

AFB

BCD

DBA

AAA

(1)

(2)

(3)

FAD

EDE

FFB

FFF

EDC

DAB

CAB

BFF

AFB

BCD

DBA

AAA

no
QoS

low
QoS

high
QoS

EAA

FAD

EDE

FFB

FFF

DAB

CAB

BFF

AFB

BCD

DBA

AAA

FAD

EDC

EAA

(a)

Pastry routing

(b)

Scribe multicasting

(c)

QoS with
Pastry / Scribe

Figure 3. Pastry / Scribe

To enable QoS for Scribe/Pastry and enforce the creation
of QoS aware multicast trees (see Section 3), the follow-
ing modifications of Pastry’s ID assignment method have
to be performed: (1) a dedicated Pastry network for each
active multicast group exists (eliminates not interested for-
warders), (2) higher QoS requirements of a peer, result in
higher Pastry IDs, and (3) all peers subscribe to the highest
possible topic ID (node with the highest QoS requirements
will be root). These three design choices ensure that all
the paths from the root to the leafs will have monotonically
decreasing QoS requirements. Figure 3 (c) shows such an
example where all paths from the root node FFF to the leafs
will on each hop either pass through hops with the same or
lower QoS requirements than on the previous hops. In this
example there are three different QoS classes, which are not
distributed evenly among the ID space. The QoS class seg-
ments have to be assigned in such a way that for each higher
QoS class at least one additional digit (from left to right)
matches the topic’s ID compared to the previous lower QoS
class. A more detailed description and evaluation of this ap-
proach has been presented in [2]. There we also showed that

basic properties of Scribe/Pastry such as the average end-to-
end path length are not changed significantly by introducing
the previously mentioned modifications, even though the ID
distribution does not follow anymore strictly a normal dis-
tribution.

4.2 Tapestry / Bayeux

Tapestry[14] is similar to Pastry as described in Section
4.1 and uses also prefix routing as described before with
randomly assigned IDs. The prefixes are matched from
right-to-left, whereas Pastry uses left-to-right prefix match-
ing. Figure 4 (a) shows a simplified example of Tapestry’s
routing mechanism, where a message is sent from node
8311 to node 4985 and on each hop one additional prefix
is matched (xxx5→ xx85→ x985→ 4985).

1385

7985
4985

8311
5695

cache
(O,S)

cache
(O,S)

N

S
cache
(O,S)

1385 7985

4985

8311

5695

2761

3511
7311

JOIN

TREE

new node 8311 joins multicast group of node 4985,
JOIN message routed to root,

which replies with a TREE message routed to joining node

routing from node 8311 to node 4985
 with prex matching

Server S advertises his Object O
on node N

(a) (b)

(c)

Figure 4. Tapestry and Bayeux

Tapestry is used for distributed data storage; an example
is shown in Figure 4 (b). A data object O stored at S is
advertised sending a publish message to N (whose ID =
hash(O)) using Tapestry’s routing. Intermediate nodes on
the path cache this advertisement. Nodes requiring the lo-

cation information of object O can find and contact N using
the hash function hash(O) but might already get an answer
from a node on the path to N caching the requested infor-
mation. Caching reduces the load on the lookup node N .
Bayeux[15] is a source-specific, explicit join multicast fa-
cility, which runs on top of Tapestry. Figure 4 (c) shows a
simplified example of Bayeux’s multicast tree creation. The
root for a multicast group advertises, using a publish mes-
sage, that it is the responsible node for this multicast group.
Joining nodes send a join message to the root. The root node
answers with a tree message. Each node on the path from
the root to the joining node (for the tree message) saves
the forwarding state < dest, nexthop >. The join mes-
sages are always delivered to the root node, which results
in higher link stress on the root compared to Pastry. The
multicast delivery path (constructed by the tree message) is
not the reverse-path of the join message (as for Scribe).
To enable QoS aware multicast tree setup with Bayeux, a
similar mechanism can be used as with Scribe. Due to the
different prefix matching order and the non-reverse setup
of the paths, the approach has to be slightly modified com-
pared to Scribe/Pastry as follows: to ensure that all paths
from the root to any group member hold the basic property
described in Section 3, higher QoS requirements of a peer
result in more digits matching the root’s ID (right to left).
We still use a dedicated P2P network per multicast group.

4.3 NICE / ZigZag

In NICE[1] multicast group members are arranged hi-
erarchically. Hosts are grouped together in clusters with a
predefined maximum cluster size. Hosts are clustered by
comparing the round-trip time (RTT). Close together hosts
(in terms of RTT) are put in the same cluster. Each cluster
has a cluster leader, which is determined by calculating the
graph-theoretical RTT center. Hosts in the same cluster are
called cluster mates. After all hosts are assigned to a cluster
and a cluster leader has been determined for each cluster,
a new round of clustering is performed among these clus-
ter leaders on a new layer. This is continued until there is
only one cluster left. The different cluster groups are there-
fore arranged in layers as shown in the example in Figure
5 (a). Cluster leaders multicast data among all their cluster
mates in all their clusters. A cluster leader, which would be
a member of a cluster in each layer, would have a very high
fan out (depending on the cluster size). Note that for n hosts
with a maximum cluster size of s, the resulting amount of
layers would be logs (n). Therefore a cluster leader could
have to serve up to s logs (n) hosts with the multicast data.
The authors of NICE therefore state that it has not been de-
signed for high bandwidth data transmission.
To reduce the high fan-out ZigZag[12] was introduced.
Cluster mates in ZigZag only receive messages from foreign

a
c

b

d
f

e
g

h

i
j

lk

b e g k

e g
Layer 0

Layer 2

NICE

3
2

4

2
2

5
5

4

1
2

23

4 5 5 3

5 5

QoS classes 1 (lowest) to 5 (highest)

QoS with
NICE / ZigZag

NICE with
 QoS

ZigZag problem
sub-path

3
2

4

2
2

5
5

4

1
2

23

4 5 5 3

5 5

delegation to cluster mate with same or next lower QoS class

QoS with
Delegate

delegate

a
c

b

d
f

e
g

h

i
j

lk

b e g k

e g

ZigZag

Layer x-2, x-3, ..., 0

Layer 1

Layer x

Layer x-1

(a)

(b)

(c)

(d)

Figure 5. NICE / ZigZag / Delegate

cluster heads, which send only to one layer below them. A
cluster leader h for a host x has in the next higher layer a
cluster mate m, which is a foreign cluster head for host x.
As Figure 5 (b) shows, the fan-out for a cluster head can
be reduced using ZigZag. A cluster leader now only has to
serve up to 2s−2 other hosts, but typically only s−1 other
hosts for a maximum cluster size s. The fan-out of a cluster
leader is now independent of the numbers of layers.
To introduce QoS to NICE, we had to take a completely
different approach, but at the end only the cluster leader de-
termining mechanism has to be modified: the cluster leader
is determined by the highest QoS class inside a cluster (and
not the graph-theoretic center). An example is shown in
Figure 5 (c). Clusters are still built using RTT measure-
ments, and we have 5 QoS classes, with QoS class 5 as the
highest one. Cluster leaders are now hosts having the high-
est QoS class in the cluster. Figure 5 (c) also shows that the
proposed modification does not work with ZigZag, because
foreign cluster heads can have lower QoS classes than some
of the hosts in the cluster to which they act as foreign head.
To reduce the fan-out with QoS support, a delegation mech-

anism (adding an additional hop) can be used: cluster lead-
ers delegate message dissemination for each of their clusters
to cluster mates with same or next lower QoS class as them-
selves. This results in a fan-out up to logs (n) for a cluster
leader (s = max. cluster size, n = amount of hosts). Figure
5 (d) shows an example with the delegation mechanism.

4.4 CAN

Content Addressable Networks (CAN)[10] use a virtual
d-dimensional Cartesian coordinate space to store key -
value pairs. The space is partitioned into n (number of
hosts) zones, which correspond to the keys. Each node is
responsible for managing one part of the coordinate space.
The coordinate space has to be rearranged if new nodes join,
existing zones have to be divided between the new and ex-
isting nodes. Changes of zones are propagated to neighbors
(adjacent zones), who update their neighbor sets. Neighbor
sets contain all information about adjacent zones for a host.
Routing is greedy using the neighbor closest to the destina-
tion as next hop. Multicast is done by sending a message to
all the neighbors of a host with duplicate suppressing.
The example in Figure 6 (a) shows a CAN with 5 nodes and
5 zones. In Figure 6 (b) routing is presented. Node 5 routes
a message to node 1, using node 6 as next hop, which uses
then its neighbor 3 to reach the destination 1. Figure 6 (c)
shows what happens when a new node joins. The new node
9 assigns itself random coordinates, which would e. g. fall
into the zone of node 5. Node 5 splits its own zone and gives
half of the space to the newly joined node. The neighbor set
of node 5 has then to be changed and node 9 builds its own
neighbor set. Nodes 5 and 9 then inform their neighbors.
Introducing QoS to CAN by mapping QoS classes to initial
coordinates does not work, because the location (zones) of
a node can change overtime (zones for nodes move). Figure
6 (d) shows an example where this approach fails. Higher
QoS classes result in higher initial coordinates. Splitting
zones can lead to have hosts with higher QoS (initial co-
ordinates) being positioned “below” hosts with lower QoS
coordinates. Node 4 (with QoS 0.4,0.4) is placed “below”
node 1 (with QoS 0.2,0.2). The property described in Sec-
tion 3 does not hold: the QoS requirements are not mono-
tonically decreasing for a message being routed from the
root (highest QoS = highest coordinates) to node 4.
To enable QoS for CAN a layered approach has been cho-
sen. An example with three QoS classes is shown in Fig-
ure 7. Each QoS class has a dedicated CAN. Hosts having
the same QoS class join the same CAN. Senders S dissemi-
nate the multicast data inside their own CAN and then send
the data to the CAN with the next lower and next higher
QoS class. Nodes receiving multicast messages from an-
other CAN disseminate them in their own CAN and send
them to the CAN with next higher or lower QoS class de-

1
(0.0-0.5,0.5-1.0)

4

3
(0.5-1.0,0.5-1.0)

1 3

6

5 4

2 8

7

1 3

6

4

3 8

7
2

(0.0-0.5,0.0-0.5) 5

(0.5-0.75,0.0-0.5)

(0.75-1.0,0.0-0.5)

sample routing from
node 5 to 1

9 5

join of new node 9 with
coordinates (0.4,0.6)

example of a CAN
 with 5 nodes

1
(0.2,0.2)

2
(0.7,0.5)

1) rst join of node 1 and
then join of node 2

1
(0.2,0.2)

2
(0.7,0.5)

3
(0.1, 0.1)

2) new node 3 joins and
old node 1 splits

1
(0.2,0.2)

2
(0.7,0.5)

3

3) new node 4 joins and
old node 3 splits

4

(0.1,0.1)

(0.4,0.4)

1
(0.2,0.2)

2
(0.7,0.5)3

4) routing from root node
 with max. QoS to node 4

4

(0.1,0.1)

(0.4,0.4)

0.7,0.8

0.7,0.7 0.8,0.7

1,10.8,0.8

0.9,0.9

monotonically decreasing
QoS not fullled for 1 to 4

problem on x-axis with nodes 1 & 4

x-axis QoS setup OK x- and y-axis QoS setup OK

(a) (b) (c)

(d)

Figure 6. CAN routing and QoS problems

pending on the initial “direction” (up or down). Delay can
be further reduced by sending messages further up/down in
the layer hierarchy instead of only to adjacent layers.

!"#!$%&'()*'+,-%%',-.$/ 0"11,$'()*'+,-%%',-.$/ ,)2$%&'()*'+,-%%',-.$/

**

Figure 7. QoS for CAN with layers

5 Evaluation

We used the freely available implementation of
Scribe/Pastry called Freepastry, for the ALM used by the
Multicast Middleware and applied also the OM-QoS archi-
tecture to the package. The Multicast Middleware runs on

various operating systems (Win32, Mac OS X, Linux). We
evaluated QoS behavior in [2], where we used the simula-
tor that comes bundled with Freepastry. There we showed
that our modification yields in 100% of the paths holding
the mentioned three basic properties, whereas the random
ID assignment of Pastry roughly lead to an average of 40%
of the paths holding those three basic properties.
Latency and bandwidth are important issues for NVE: data
in multiplayer games should be forwarded to nearby players
quickly. Multimedia applications require high bandwidth.
Our measurements performed in [3] show that the Multicast
Middleware can process data rates up to 155 Mbps (on Pen-
tium D 3GHz CPU based PCs running Linux) with an ac-
ceptable packet loss rate and no dramatic jitter increase. Re-
cent measurements showed that end-to-end delay for packet
sizes of 512 & 1024 bytes sent at rates up to 75.2Mbps were
generally below 10ms for various chain/tree topologies built
with 7 PCs (Pentium IV 3GHz running Linux) in a LAN.

6 Conclusion and Outlook

In this paper we presented how the Multicast Middle-
ware and OM-QoS can enhance the experience of end-
users in Networked Virtual Environments (NVE). Multi-
media broadcasting and distributed de-centrally managed
multiplayer games can profit using QoS enhanced IP Mul-
ticast. Our approach has been successfully implemented
and tested in the European research project EuQoS. It of-
fers high bandwidth support, intelligent delay-optimized
tree creation, low latency while processing the exchanged
data, and is completely transparent to applications. We pre-
sented different mechanisms to introduce QoS to P2P/ALM
networks. For Scribe/Pastry we apply the OM-QoS mech-
anism first presented in [2]. That idea has now been fur-
ther analyzed and extended to make it applicable for other
protocols such as Bayeux/Tapestry and NICE, which works
completely different than Scribe/Pastry. We also enhanced
OM-QoS to support almost any kind of P2P/ALM architec-
ture by introducing a layered approach (used for CAN) as a
general solution, also for unstructured P2P networks.
The different concepts presented in this paper to enable
QoS for P2P/ALM networks still need further investiga-
tion. We are implementing OM-QoS (protocol specific
and layered approach) for several P2P/ALM systems in the
OMNET++[8] simulator. Supporting QoS for CAN using
multiple dimensions could be analyzed further. End-to-end
delay guarantees will also be further examined and inte-
grated as a separate independent QoS parameter. Most in-
vestigated P2P networks optimize delay between peers and
we try to keep this property when applying OM-QoS to
those protocols. We will not only analyze OM-QoS with
network provided QoS guaranties (hard QoS) but also in dy-
namic environments using measurement based (soft) QoS.

References

[1] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scal-
able application layer multicast. In SIGCOMM02: Proceed-
ings of the 2002 conference on Applications, technologies,
architectures, and protocols for computer communications,
volume 32, pages 205–217, New York,USA, 2002. ACM.

[2] M. Brogle, D. Milic, and T. Braun. QoS enabled multicast
for structured P2P networks. In Workshop on Peer-to-Peer
Multicasting at the 4th IEEE Consumer Communications
and Networking Conference. IEEE, January 2007.

[3] M. Brogle, D. Milic, and T. Braun. Supporting IP multicast
streaming using overlay networks. In QShine: International
Conference on Heterogeneous Networking for Quality, Reli-
ability, Security and Robustness. ACM, August 2007.

[4] M. Castro, P. Druschel, A. M. Kermarrec, and A. I. T. Row-
stron. Scribe: a large-scale and decentralized application-
level multicast infrastructure. Selected Areas in Communi-
cations, IEEE Journal on, 20(8):1489–1499, 2002.

[5] EuQoS web page, avail. online: http://www.euqos.eu, 2008.
[6] K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim.

A survey and comparison of peer-to-peer overlay network
schemes. Communications Surveys & Tutorials, IEEE,
pages 72–93, 2005.

[7] D. Milic, M. Brogle, and T. Braun. Video broadcasting using
overlay multicast. In ISM ’05: Proceedings of the Seventh
IEEE International Symposium on Multimedia, pages 515–
522, Washington, DC, USA, 2005. IEEE Computer Society.

[8] OMNET++, avail. online: http://www.omnetpp.org, 2007.
[9] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing

nearby copies of replicated objects in a distributed environ
ment. In SPAA ’97: Proceedings of the ninth annual ACM
symposium on Paralle l algorithms and architectures, pages
311–320, New York, USA, 1997. ACM.

[10] S. Ratnasamy, M. Handley, R. M. Karp, and S. Shenker.
Application-level multicast using content-addressable net-
works. In NGC ’01: Proceedings of the Third International
COST264 Workshop on Networked Group Communication,
pages 14–29, London, UK, 2001. Springer-Verlag.

[11] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, de-
centralized object location, and routing for large-scale peer-
to-peer systems. In Middleware ’01: Proceedings of the
IFIP/ACM International Conference on Distributed Systems
Platforms Heidelberg, pages 329–350, London, UK, 2001.

[12] D. A. Tran, K. A. Hua, and T. Do. Zigzag: an efficient
peer-to-peer scheme for media streaming. In INFOCOM
2003. Twenty-Second Annual Joint Conference of the IEEE
Computer and Communications Societies. IEEE, volume 2,
pages 1283–1292, 2003.

[13] TUN/TAP, avail. online: http://vtun.sourceforge.net/, 2007.
[14] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry:

An infrastructure for fault-tolerant wide-area location and.
Technical report, 2001.

[15] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D.
Kubiatowicz. Bayeux: an architecture for scalable and fault-
tolerant wide-area data dissemination. In NOSSDAV ’01:
Proceedings of the 11th international workshop on Network
and operating systems support for digital audio and video,
pages 11–20, New York, USA, 2001. ACM.

