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ABSTRACT
In this paper we present our solution for providing IP Mul-
ticast on end systems in the Internet. The goal of the pro-
posed solution is not to replace IP Multicast, but to provide
an IP Multicast interface to applications on end systems in
the current Internet environment, where IP Multicast is not
available. Our solution, called Multicast Middleware, is a
software, which is based on using Application Level Multi-
cast (ALM) for transporting IP Multicast traffic. The use
of the Multicast Middleware is transparent for applications
on end systems, since our Multicast Middleware uses a vir-
tual network interface to intercept native IP Multicast com-
munication. In this paper we also present a performance
evaluation of our Multicast Middleware. The results of this
evaluation show that our Multicast Middleware is able to
provide high bandwidth throughput to applications. This
makes our Multicast Middleware a viable solution for sup-
porting multimedia streaming services, etc.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications;
C.2.5 [Local and Wide-Area Networks]: Internet

General Terms
Performance

Keywords
transparent overlay multicast, performance, peer-to-peer,
multimedia streaming

1. INTRODUCTION
The multicast communication paradigm represents a com-

munication where a small group of senders (usually one) is
sending information to a large group of receivers. In the In-
ternet this has been realized in the form of IP Multicast [8].
IP Multicast has been proposed and specified almost two
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decades ago. Unfortunately, even today IP Multicast has
not been widely deployed in networks of commercial Inter-
net service providers (ISP). Some reasons for this are:

• IP Multicast must be supported by all routers on the
path from source to destination.

• Additional inter-ISP coordination is required (policy
issues of inter-domain routing).

• IP Multicast routing can be very resource intensive.

As a transition between the Internet without IP Multicast
and its full availability to the end-user, the MBONE [9] ap-
proach has been proposed. In MBONE, the Internet is con-
sidered as a set of isolated IP Multicast enabled islands.
These “islands” are interconnected by an overlay network
of tunnels. The overlay network is used to tunnel the IP
Multicast traffic between the MBONE islands over parts of
the Internet that support only unicast traffic. MBONE tun-
nels are implemented using the loose source routing (LSRR
IP option) or by encapsulating IP Multicast packets in uni-
cast packets. The drawback of this approach is that tunnels
have to be set up manually. As a consequence the tun-
nel end-points must be permanently available and require
fixed IP addresses. This prohibits most Internet end-users
from using the MBONE, since usually the end-users are not
permanently (e.g. modem users) and do not have fixed IP
addresses assigned.
Although IP Multicast is not widely available, there exist
numerous applications using it. The MBONE video confer-
encing tools for example include among others vat (visual
audio tool), nv (Network video tool), vic (video conferenc-
ing tool), etc. The Access Grid Project, for example, offers
the Multicast Application Sharing Tool (MAST). Microsoft
research developed the advanced collaboration and interac-
tive distance learning software called ConferenceXP. This
software also uses IP Multicast to achieve an efficient com-
munication between the collaborating parties. The video
lan client (VLC) is an IP Multicast enabled video broad-
casting and video playback tool, which we also used to test
and evaluate our Multicast Middleware.
Since MBONE was not able to provide multicast commu-
nication to the Internet end-users, numerous solutions were
proposed to address this problem. The rising popularity
of Peer-to-Peer (P2P) networks lead to a revival of mul-
ticast in the form of Application Level Multicast (ALM)
[2,3,6,14,20,23–25]. ALM mechanisms use similar methods
as IP Multicast for data dissemination, but move the replica-
tion of multicast data from routers to the end systems. The
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Figure 1: IP Multicast with data replication in the routers vs. Application Level Multicast

advantage of this approach is that ALM mechanisms do not
require multicast support by the routers. On the other hand,
the replication of data only on end systems is not as efficient
as the replication in the routers. For example, the right side
in Fig. 1 shows a typical ALM scenario, which uses only
unicast communication between the end systems to enable
multicast services. In comparison to IP multicast (presented
on the left side in Fig. 1), there is some redundancy of the
data that is sent over the physical links. The reason for this
is that the replication of data is only done on end systems
and not on routers. Although ALM mechanisms can never
achieve the efficiency of IP Multicast regarding the usage of
network resources, it is still much more efficient than unicast
communication between the sender and all receivers.
The advantages of ALM mechanisms are, that they are de-
signed to be self-organizing and fault-tolerant, which make
them easier to deploy than the MBONE. This makes ALM
mechanisms better candidates for deploying multicast ser-
vices to end-users. The drawback of using ALM mechanisms
is that the used protocols and APIs are not standardized,
which makes application development dependent on specific
ALM protocols. Another drawback is that existing IP Mul-
ticast enabled applications would have to be adapted to the
specific API of ALM protocols. An overview and classifica-
tion of peer-to-peer content distribution technologies can be
found in [1].
To use the best of both worlds our solution uses an ALM for
transporting multicast traffic over the Internet. At the same
time it offers a standard IP Multicast interface to applica-
tions on end systems. This solution is based on a so-called

Multicast Middleware. The Multicast Middleware enables
the transparent use of ALM mechanisms for all IP Multi-
cast enabled applications on end systems.
This is achieved by a virtual network interface intercept-
ing and forwarding multicast packets to the Multicast Mid-
dleware. This mechanism can be used for high bandwidth
and real time multimedia streaming as presented in [15],
where we mainly described how the Multicast Middleware
can be used for video streaming, but without using an elabo-
rate P2P / ALM infrastructure and not having implemented
Quality of Service (QoS) mechanisms. In this paper we
investigate performance enhancements regarding multiple
hops in an overlay network, discuss the usage of a widely
used P2P / ALM infrastructure called Scribe / Pastry and
briefly show how the different QoS mechanisms can be ap-
plied.
The remainder of the paper is organized as follows: In the
next Section we describe communication obstacles in the
Internet. Section 3 contains a description of our proposed
Multicast Middleware. In Section 4 we present the perfor-
mance evaluation results. In the last section we summarize
results and give an overview of future work.

2. COMMUNICATION OBSTACLES IN THE
INTERNET

Besides the lack of global IP Multicast support, there are
further limiting factors for the communication in the In-
ternet. The most severe are the existence of Firewalls and
Network address translators (NATs).



Firewalls are network devices that filter portions of network
traffic based on protocol header information and/or the data
payload of IP packets. They are used to protect network
devices within a private network from intrusions from the
Internet. Firewalls normally limit the ability of hosts in the
Internet to connect to hosts behind them. In some networks,
they are also used to prevent communication of hosts behind
the firewall with hosts in the Internet.
Such installations are used as a preventive measure against
Trojan horses, Internet worms, etc. This also limits the use
of P2P applications on hosts behind firewalls, since these
applications assume universal connectivity between hosts.
The address space of the IP protocol version 4 is limited to
232 addresses. In addition there are IP address ranges that
cannot be used for end host addresses such as the address
ranges reserved for private use, the IP Multicast address
range, the network addresses, and the broadcast addresses.
To overcome this limitation, NATs were introduced. NATs
are network devices, which allow a whole private network
to appear as one IP address on the Internet. The drawback
of using NATs is that the peer-to-peer communication is af-
fected, since the end systems behind a NAT are not able to
accept any incoming connections. There are several propos-
als for solving this problem such as UPNP [22]. Nevertheless
no universal solution for this problem is available currently.
Another issue with NATs is that the idea of IP address-
ing, where each host has a unique address, is violated. The
hosts behind a NAT usually have an IP address from a
range of IP addresses are reserved for private use (10.0.0.0/8,
192.168.0.0/16 or 172.16.0.0/20), which means that there
are potentially many hosts with the same IP address. This
aspect of NATs also subverts different P2P node ID gener-
ation schemes, which assume that every host has a unique
IP address.
All communication obstacles presented in this section also
apply to IP Multicast. For an in-depth analysis of connec-
tivity restrictions for overlay networks see [13].

3. MULTICAST MIDDLEWARE

3.1 Concept
We have developed the so-called Multicast Middleware

[15], which provides an IP Multicast interface to applica-
tions on the end system and at the same time uses an ALM
for transporting multicast traffic. This unique feature al-
lows the users of end systems in the Internet to benefit from
easy deployment of P2P based ALM mechanisms and still
use existing IP Multicast enabled applications. To provide
a platform independent solution, we have implemented our
Multicast Middleware in Java.
The Multicast Middleware has been developed in the con-
text of the European Framework Program 6 project called
EuQoS [10]. The aim of the EuQoS is to enable Quality of
Service (QoS) for end systems in heterogeneous networks.
The task of the Multicast Middleware is to simplify the QoS
provision for IP Multicast by mapping the multicast com-
munication to unicast.
The most important feature of the Multicast Middleware
is a transparent provision of an IP Multicast interface for
end system applications. This is achieved by using a vir-
tual network interface (e.g. TAP [21]) to communicate with
the operating system on end systems. The virtual network
interface is a special network device driver, which unlike a

usual network device driver does not link to physical hard-
ware such as an Ethernet card, but forwards the traffic to
a user-space process. In our case this user space process is
the Multicast Middleware. For the applications this virtual
network interface acts like a “real” network interface. Data
forwarding to the Multicast Middleware and processing is
completely transparent to the operating system as well as to
the involved applications. The Multicast Middleware uses
the TAP mechanism to mimic an IP Multicast router at-
tached to an Ethernet network, primarily by implementing
the Internet Group Management Protocol (IGMP) [5, 11].
By setting appropriate routing table entries for IP multi-
cast addresses, those packets are directed to the virtual net-
work interface instead of the real physical network interface.
All IP Multicast traffic will be redirected to the Multicast
Middleware entity running on the end system. By doing
so the Multicast Middleware is aware of every IP Multicast
group, to which the end system is subscribed to. Appli-
cations on an end system with a running Multicast Mid-
dleware use the standard IP Multicast group management
system calls. These calls are translated by the operating
system into IGMP messages. The operating system commu-
nicates with our Multicast Middleware through the virtual
network interface and views it as an IP Multicast router.
Every IP Multicast packet leaving the end system is routed
to our Multicast Middleware through the virtual network
interface. Furthermore the Multicast Middleware is able to
send IP Multicast traffic back to the end system through
the same virtual network interface. The Multicast Middle-
ware also participates in a P2P ALM mechanism. This ALM
mechanism is used to transport the captured multicast traf-
fic between the end systems. The described packet flow is
depicted in Fig. 2.
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Figure 2: Packet flow between Applications and the
Multicast Middleware

Each network interface requires at least one valid unicast IP
address assigned to it. This is also the case for virtual net-
work interfaces such as TAP. Since we assume that some of
the end systems are behind a NAT, we have decided to as-
sign a unique IP address from an IP address range reserved
for private use (172.16.0.0/20) to the TAP device on each
end system. The allocation of those IP addresses is done
in a distributed manner. This avoids address clashes and
ensures full time availability of the IP allocation service.
Our Multicast Middleware is not limited to use a specific



ALM. We are able to use any ALM as long as it provides
standard multicast operations (joining and leaving a multi-
cast group, receiving and sending multicast traffic).
Currently we are using Scribe [18] / Pastry [17] as ALM.
Pastry is a decentralized, self-organizing and fault-tolerant
overlay network. Scribe is a generic, scalable and efficient
ALM running on-top of Pastry.

3.2 Scribe / Pastry
Pastry uses prefix matching routing [16] for delivering

messages. Each host assigns itself a randomly chosen ID
from a predefined ID space (typically a 128 bit value) when
it joins the Pastry network. The IDs are equally distributed
over the whole available ID space.
A simplified example is shown in Fig. 3. As we can see Pas-
try routing tries on each hop between source and destination
to match one or more prefixes of the message’s destination
address. If no Pastry peer has been found at the destina-
tion address, the peer with the numerically closest ID to the
destination address is responsible of handling the message.
Scribe builds on top of Pastry’s routing and uses reverse-
path forwarding trees to multicast messages. Each multicast
group is represented by a topic ID. The host numerically
closest to the topic ID becomes the root of the multicast
distribution tree. All multicast messages are directly sent
to this root node, which then multicasts the messages to all
group members. To join a certain topic, a Scribe node sends
a join message through the Pastry network.
As shown in Fig. 3, the message is routed to the root node
through prefix matching. Each Scribe node visited on the
path also joins the same topic and remembers, which di-
rect child nodes have subscribed to this specific topic ID.
If a node already has joined the same topic ID earlier, no
additional join message will be sent towards the root node.
Finally, when messages have to be multicast to all group
members subscribed to a specific topic ID, the root node
sends the message to its direct children, which then relay it
to their direct children respectively. This is repeated until
such a node has no more direct children to be served with
the multicast message for the specific topic ID.
In our Multicast Middleware implementation we use one
dedicated Scribe / Pastry overlay network per active IP Mul-
ticast group.
We also use one dedicated Pastry network to store the man-
agement information about active groups and free addresses
from a private IP address range to be used by the virtual
network interfaces.

3.3 Implementation
We have decided to use an open-source implementation of

the Scribe / Pastry protocol called Freepastry [12]. Freepas-
try relies on Java object serialization, which is not optimal
for transporting data over the Internet. The reason for this
is that each time a Pastry message is de-serialized a new
instance of a Java object is created. If we would be us-
ing Pastry messages to transport the IP Multicast packets,
each time one packet is received from the Pastry network at
least one Java object would be created. Due to automatic
garbage collection mechanism in the Java virtual machine,
these new objects would be de-allocated only when the heap
of the Java virtual machine is full. Since the code execution
of the Java virtual machine is paused during garbage col-
lection, the packet delivery would be suspended and this
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Figure 3: Simplified example of Pastry routing

would lead to increased packet delays or packet drops. We
have therefore decided to use Scribe / Pastry only to con-
struct the topology of the overlay network. For transport-
ing IP Multicast traffic, we use an overlay network with the
same topology, but using our own high performance opti-
mized P2P protocol instead of the Java object serialization
as used in Scribe / Pastry. This high performance optimized
P2P is based only on copying buffers without generating any
Java objects. Such a design allows us to provide high perfor-
mance multicast data transfer between end systems in the
Internet, which is crucial for multimedia applications such
as video streaming, video conferencing, etc.
The Multicast Middleware also supports QoS for IP Multi-
cast. To be able to provide QoS for ALM it is important
that the construction of the overlay network is QoS-aware.
In order to support QoS, we need a method for construct-
ing QoS aware multicast trees. To achieve this we have
proposed and implemented modifications of Scribe / Pastry,
which are further described in [4]. These modifications allow
the construction of QoS aware overlay networks. Using our
modifications and extensions of Scribe / Pastry we are now
able to enforce building multicast trees that take the QoS
requirements and capabilities of peers into account. Our ex-
tended Scribe / Pastry implementation has been integrated
into the Multicast Middleware.
For providing QoS guarantees for the P2P links, our Mul-
ticast Middleware relies either on using QoS offered by the
transport network (as provided by EuQoS) or using a best-
effort based on measurements and/or predictions [19]). In
order to build the Multicast tree to support these QoS mech-
anisms, the construction of the Multicast tree has to take
the QoS capabilities and requirements into account [4].



4. PERFORMANCE EVALUATION

4.1 Measurement Scenarios
Usually P2P network implementations like Scribe / Pastry

based on Java or other high level programming languages are
not very appropriate for high-bandwidth streaming. This is
i.a. due to the fact that object serialization is used for send-
ing P2P messages through the overlay network. The object
serialization implies usually a performance penalty due to
the overhead of (de-)serializing objects. To overcome this
problem we are using a custom binary signaling protocol
and avoid creating new objects in most cases. This makes
our Multicast Middleware usable for high bandwidth and
real-time critical environments.
To construct an overlay network, we use the mechanisms of
Scribe / Pastry. For the actual data transmission we are us-
ing our optimized messaging protocol, which has been thor-
oughly optimized for high bandwidth data dissemination
scenarios. Our evaluation has shown that by using our opti-
mized communication protocol performance improvements
by one magnitude compared to the default P2P message
protocol of Scribe / Pastry can be achieved.
Therefore, our performance evaluation is focusing on deter-
mining the maximum achievable bandwidth that can be pro-
cessed between two peers. Furthermore we will also evaluate
the performance of an example path from sender to receiver
in an overlay network.
Since we use a Scribe / Pastry overlay network structure,
which is know to scale very well with an increasing number
of peers and group members [7,17], we do not evaluate how
well the overlay network performs in these terms. Due to
limited bandwidth in distributed testbed environments such
as Planetlab or the EuQoS testbed, it is not feasible to per-
form distributed high-performance measurements.
In order to evaluate the maximum bandwidth, which an
instance of the Multicast Middleware can process, and to
investigate the impact of forwarding IP Multicast traffic
through an ALM, we have performed a series of tests with
two different scenarios, which are shown in Fig. 4.
The first scenario is a P2P network consisting of only two
end systems. To avoid the interference of packet generation
to the performance of the Multicast Middleware, we gener-
ated the traffic on separate host and forwarded it through
a gigabit Ethernet to the first peer. In the first peer, we
used an Ethernet bridge functionality of the Linux kernel to
interconnect the Ethernet interface with the virtual network
interface. For the same reasons we built a similar scenario
for capturing the traffic. The goal of this setup is to deter-
mine the maximum throughput of the best case in the P2P
network, where IP Multicast traffic is tunneled directly from
a sender to a receiver.
To determine the effect of chaining multiple peers to forward
the traffic, we have designed a second scenario. In that sce-
nario, we have tunneled the IP Multicast traffic through five
peers in a chain. This simulates an example of a path taken
on one branch of the multicast tree in an overlay network.
The first and the last peer in this chain were to connected
to a traffic generator respectively capture point in the same
manner as in the first scenario.
We used the MGEN traffic-generating tool to generate and
capture the IP Multicast traffic. For each scenario we gen-
erated 24 flows with different sending rates ranging from 11
to 241 Mbps in steps of 10 Mbps. Each flow was sent for
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Figure 4: Scenarios for the Multicast Middleware
performance evaluation

120 seconds. The payload of each packet consisted of 1024
bytes. The hosts used for both scenarios were identical in
terms of hard- and software. Each of them had a Pentium D
3 GHz CPU with 1 GB of memory. The operating system
installed was Fedora Core 5 Linux with kernel version 2.6.17.
All hosts were interconnected via a gigabit Ethernet.

4.2 Measurement Results
Fig. 5 shows the captured bandwidth compared to the

generated bandwidth for both scenarios.
The packet loss for the different transmission rates in both
scenarios is shown in Fig. 6. The reason for packet loss is
due to the incapability of at least one peer to process traffic
at the given rate, which happens when the maximum pro-
cessing capacity of an end system at a given time is reached.
The packet loss for a bandwidth up to 100 Mbps is negligi-
ble for both scenarios. For transmission rates of more than
100 Mbps packet loss increases significantly. As shown in
Fig. 6, the packet loss is less than 4% for a bandwidth up to
155 Mbps. Therefore, our Multicast Middleware should be
able to support multimedia streaming up to 155 Mbps with
acceptable packet loss.
Both figures show that there is no significant difference be-
tween the packet losses for both scenarios, which indicates
that the impact of delivering the IP Multicast traffic through
multiple peers is minimal. Fig. 5 also shows that the maxi-
mum bandwidth that an instance of a Multicast Middleware
can deliver is 210 Mbps.
We also determine the jitter for both scenarios. Our results
show that the jitter increases with the number of peers in-
volved in transporting the IP Multicast traffic. For the first
scenario the maximum jitter was below 15ms for a band-
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width up to 155 Mbps. For the second scenario the maxi-
mum jitter went up to 150ms, due to a few outliers. The
mean delay was much lower.
For future evaluation we will compare native IP Multicast
performance versus overlay multicast performance (using
the Multicast Middleware) in simple, locally restricted but
high-performance network environments and scenarios.
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5. SUMMARY AND CONCLUSION
In this paper we have presented our solution named Mul-

ticast Middleware to provide IP Multicast on end systems
over the Internet using ALM. We have described how a vir-
tual network interface can be used to provide a transparent
IP Multicast interface for applications on end systems. Fur-
thermore we have sketched how our Multicast Middleware is
used in the European FP6 EuQoS project to provide QoS for
IP Multicast. Our performance evaluation of the Multicast
Middleware implementation has shown that the Multicast
Middleware can process up to 155 Mbps with an accept-
able packet loss rate or any dramatic increase of the jitter.
These results qualify our Multicast Middleware as a solution
for multimedia streaming applications.
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