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Abstract— In this paper we present a concept for providing
QoS to multicast in structured P2P networks. We show on the
example of Scribe / Pastry how to enforce QoS aware tree
construction in a structured P2P network. We achieve this by
modifying the ID assignment method of Pastry based on the QoS
requirements of peers. As a result, the multicast tree holds the
QoS (bandwidth) requirements on each of its end-to-end paths.
We have evaluated the proposed concept by comparing default
random Pastry ID assignment with our proposed method. The
results of the evaluation show that using our method all end-
to-end paths in the multicast tree fullfill the bandwidth QoS
requirements, which is usually not the case for default Pastry.

I. INTRODUCTION

In this paper we present a concept to enable Quality of
Service (QoS) for multicast in the structured Peer-to-Peer
(P2P) network Pastry [1] and the Application Level Multicast
(ALM) infrastructure Scribe [2] running on-top of Pastry.
This is achieved by replacing the random ID assignment of
Pastry with a QoS requirements aware mechanism. We use
this concept to enable QoS for IP Multicast over ALM in the
European project called EuQoS [3], which aims to support
end-to-end QoS over heterogeneous networks. EuQoS only
supports unicast QoS between end-systems on the network
level.
The remainder of the paper is structured as follows: In Section
II we motivate the need for QoS enabled multicast Overlay
Networks. In the same Section we present the use of such
a network to provide QoS enabled IP Multicast services to
end-systems in the EuQoS project. In Section III we present
the ALM infrastructure Scribe and the P2P routing substrate
Pastry. We present our proposal for modifying the Scribe /
Pastry ID assignment to enforce the construction of QoS aware
multicast trees in Section IV. We evaluate the QoS improve-
ments by comparing default Scribe / Pastry ID assignment
with our modifications in Section V. An outlook of future
considerations and improvements can be found in Section VI.
Finally, Section VII concludes this paper.

II. MOTIVATION

Since IP Multicast is not widely deployed in the Internet,
current solutions rely on ALM and Overlay Networks using
unicast to provide multicast services. To make the use of ALM
transparent to applications within the EuQoS [3] project, we
provide an IP Multicast service to end-system applications
by capturing the outgoing IP Multicast traffic from hosts and

routing it using an ALM Overlay Network.
The goal of the EuQoS (End-to-end QoS support over het-
erogeneous networks) project is to resolve the required design
issues presently associated with the delivery of end to end QoS
service across heterogeneous networks. EuQoS only supports
QoS for unicast connections between end-points. More details
about the EuQoS architecture are found in [4].
The IP Multicast service, which is missing in the Internet
today, is provided in the EuQoS project by the so called
Multicast Middleware [5] feature. It also provides QoS guar-
antees for IP Multicast traffic by applying QoS mechanisms
on the unicast links in the Overlay Network through which the
multicast data is tunneled. The Multicast Middleware feature
achieves this by capturing IP Multicast traffic on end-systems
using a virtual network interface [6]. The captured IP Multicast
packets are tunneled using a P2P Overlay Network based on
Scribe / Pastry. The details of capturing and tunneling of IP
Multicast data using the Multicast Middleware is shown in
Fig. 1.
To satisfy the QoS requirements, our Multicast Middleware
uses the EuQoS System to setup network level QoS for
the unicast links of the Overlay Network. Since the QoS
requirements of the end-systems within one IP Multicast group
can be heterogeneous, it is necessary that the multicast tree is
built in such way that the QoS requirements and capabilities
of end-systems are considered.
In Section IV we describe the properties of a QoS aware
multicast tree and how such trees can be constructed using
Scribe / Pastry. The Multicast Middleware uses Pastry [1] as a

Fig. 1. EuQoS Multicast Middleware on end-systems



P2P routing substrate and Scribe [2] to handle multicast group
management and data dissemination. Freepastry [7], an open
source Java implementation of Scribe / Pastry, is used as the
base implementation for the EuQoS Multicast Middleware. We
use our modification presented in this paper to ensure that the
construction of multicast trees in Scribe / Pastry is QoS aware.
In the Multicast Middleware we create one dedicated Pastry
network for each active IP Multicast group. This ensures
that only end-systems, which are interested in receiving the
multicast data of certain a group, are used to forward the
traffic. This is also necessary to ensure fair charging.

III. FUNCTIONAL OVERVIEW OF SCRIBE / PASTRY

Different P2P (P2P) architectures [1], [8]–[11] and ALM
(ALM) systems [2], [12]–[17] have been presented over the
past years. Also mechanisms on how to support QoS for
specific P2P networks have been proposed in [18]–[21].
Pastry [1], [22] is a scalable distributed object location and
routing substrate for P2P applications. In Pastry peers become
a randomly chosen ID assigned when they join the P2P
network. To route a message to a certain Peer, Pastry uses
an efficient routing algorithm, which scales logarithmically
with the number of peers in the P2P network. Pastry is self-
organizing and completely decentralized. It also takes peer
proximity information (in terms of end-to-end delay) into
account to minimize the distance messages are traveling.
Scribe [2], [23] is an ALM infrastructure, which builds on top
of Pastry. It supports large groups, is fault-tolerant and decen-
tralized. Scribe only provides best-effort reliability guarantees.
It balances the load on nodes to reduce delays and lower the
link stress.

A. Pastry

Pastry is a P2P location and routing substrate. Each peer is
identified by a 128 bit long ID. This ID is randomly chosen
when joining a Pastry network. The choice of IDs is uniformly
distributed. As a consequence, the choice of the ID neither
takes locality nor QoS requirements into account.
Each Pastry peer has a routing table with the size of (2b −
1)∗�log2bN�+ l entries. The routing tables are organized into
�log2bN� rows with each 2b − 1 entries. The entries of row n
of a peer’s routing table point to other peers, which share the
same first n digits of their ID with the peer itself, but the digit
at position n+1 has one of the 2b−1 possible values different
from the digit at position n + 1 of the peer’s ID. Each entry
in the routing table consists of the destination’s ID and its
corresponding IP address. Additionally, each peer maintains a
list of numerically closest peers (IDs and IP addresses) with
l/2 entries for the larger and l/2 entries for the lower IDs.
The locality is taken into account by choosing the closest
peer (in terms the network latency) among candidates for an
entry in the routing table. A message is routed to the closest
neighbor found in the peer’s routing table whose ID matches
the messages destination ID prefix.
Routing uses less than �log2bN� steps on average, where N is
the amount of peers in the pastry Network and b is typically a

parameter with the value 4. Pastry guarantees eventual delivery
of a message unless l/2 or more peers with an adjacent ID
fail at the same time, with l, an even number parameter, being
typically 16. Fig. 2 shows a simplified example of how Pastry
routing works. A message with the key e8cd is routed from
a peer with ID 3d1f to the peer e8ca, which is numerically
closest to the message’s key. On each hop from the source peer
to the destination peer the message is sent to a peer whose ID
matches more digits of the message key prefix as it did match
on the hop before. For the first routing hop starting from peer
3d1f the message is sent to peer e2ce, which shares the first
digit e of the message key. On the second hop, the message
is routed to the peer with ID e831, which shares the first two
digits e8. Finally it is sent to peer e8ca, which is the peer
closest to the message key and shares the first three digits e8c
of the key.

Fig. 2. Routing a message from peer 3d1f with key e8cd

B. Scribe

Scribe [2] is a scalable ALM infrastructure, which runs on
top of Pastry. Any Scribe node can join any multicast group (or
topic in Scribe’s terminology) at any time. For each topic, one
node is designated to disseminate the topic’s data in the Pastry
network. This node, which is the root of the topic distribution
tree, has the ID numerically closest to the topic’s ID.
Scribe offers best-effort delivery of the multicast data without
guaranteeing that the order of the packets is maintained.
The multicast or topic tree is built using a scheme similar
to reverse-path-forwarding. A Scribe node, subscribing to a
certain topic, sends a join message for this topic-ID. This
message is routed using Pastry’s routing mechanism towards
the topic’s root. The next node to which the join message is
routed to remembers that the node sending the join message is
interested in data for this topic. If this intermediate node called



a forwarder has not already joined this topic, it will itself send
a join message to the same topic. This process is repeated until
a node is reached that has already joined the topic or the root
for the topic has been reached. The data dissemination within
a topic is done from the root node of the topic towards the
leave nodes by following all reverse-paths to the leaves. A
side effect of this approach is that Scribe nodes forwarding
messages for a certain topic are not necessarily subscribed to
this topic.

IV. MAKING SCRIBE / PASTRY QOS AWARE

In this paper, we only consider QoS classes, which have the
following properties:

• There is a total order relation for all QoS classes.
• All parameters of the QoS classes are independent of link

length and the number of hops in the network.
• The number of QoS classes is finite.

In other words, we require that the QoS classes can be ordered
and that they are independent of path length. For example such
QoS classes can contain parameters such as bandwidth, jitter
and maximum packet loss, but all the possible QoS classes
must be comparable. Also note that in general there is no
total order for a combination of such parameters and that the
QoS parameter for maximum delay is not supported by this
proposal.
To provide QoS guarantees such as bandwidth or jitter in a
multicast tree the structure of the tree has to be as follows:

• The root of the multicast tree must be the node with
the highest QoS requirement. In the implementation of
Pastry we used for the evaluation (see Section V) we can
explicitly assign an ID to a new Pastry peer.

• Each child node can only have a smaller or equal QoS
requirement than its parent node.

In other words, each end-to-end path from the root to a
leaf node in the multicast tree has to have a monotonically
decreasing QoS requirement. Fig. 3 shows an example of such
a multicast tree holding the second property described above.
The path indicated as well as all other end-to-end paths of
this multicast tree hold this property: the QoS requirements
(denoted by the thickness of the lines) are the same or
decreasing when following the intermediate hops from the root
node to a leaf node.
If we analyze Scribe’s multicast tree construction, we can see

that the constructed multicast tree does not necessarily hold
this property. The reason for this is that the end-to-end path
from a leaf to the root is more or less randomly chosen, due to
random positioning of Pastry peers. Our evaluation in Section
V shows that with Pastry’s default peer ID assignment, less
than 40% of all end-to-end paths hold the above described
property for randomly assigned QoS requirements. Because
Pastry’s default ID assignment does not take QoS requirements
of peers into account, the multicast trees constructed by Scribe
are only by chance holding the described property. It is
sufficient that only one link in an end-to-end path does not
hold the described property to disable the holding of QoS

monotonically
decreasing

QoS requirements
Root

Leaf

Fig. 3. Example of a multicast tree with monotonically decreasing QoS
requirements from root to leaf nodes. Thickness of the lines represents the
degree of the QoS requirement in terms of required bandwidth (thicker line
= higher bandwidth requirement).

guarantees for all nodes in the multicast tree below this link.
To enforce the construction of a QoS aware multicast tree
using Scribe we propose the following:

• For each multicast group exists a dedicated Pastry P2P
network. The reason for this is to have only peers
interested in receiving the multicast data as potential
forwarders.

• In this Pastry network exists only one topic. This topic’s
ID is the highest possible topic ID.

• Since the the QoS requirements of a peer can be higher
than its QoS capabilities, we choose the QoS class, which
corresponds to the minimum of both.

• The ID space is partitioned into segments (see Fig. 4):
one segment for each QoS class (we consider best-effort
also to be a QoS class). The order of segments depends on
the order of the QoS classes. The best-effort QoS class
is located in the lowest segment and the highest QoS
class is located in the highest segment. The assignment
of IDs to joining peers depends on their QoS requirement
/ capabilities. The peer ID is randomly chosen within the
corresponding segment of the ID space for the peer’s QoS
requirements / capabilities.

There are different possibilities on how large the segments
should be, they do not necessarily have to be all of the same
size and can for example decrease in size towards the root’s
ID. The partitioning strategy has an impact on the construction
of the multicast trees and therefore on how well and evenly the
overall traffic load will be distributed among the participating
peers.
As shown in Section III the routing path from a peer with a
lower ID to a peer with a higher ID always contains peers
with increasing IDs. Because the root node of the multicast
tree has the highest possible Pastry ID, we enforce that the
routing always uses peers with increasing Pastry IDs for the
hops on its path from leaf nodes towards the root node.



By assigning peer IDs proportional to the peer’s QoS require-
ment, we enforce a construction of Scribe multicast trees,
which hold the decreasing QoS requirement property for each
end-to-end path from the root to the leaves. For each node
that is passed through on the path from the root node to a
leave node, the QoS requirement of the intermediate node is
the same or lower than of its parent node.

Fig. 4. QoS aware distribution of peer IDs for Pastry

V. EVALUATION

We evaluate the properties of the multicast trees created
by Scribe / Pastry using our modification ID assignment by
comparing it to the default (random) ID assignment of Pastry.
For our evaluation we generated network topologies using
the BRITE [24] network topology generator. We varied the
number of hosts between 100 and 800 in steps of 100. For each
number of hosts we generated 40 topologies. Each topology
was generated using Waxman’s model [25] with the following
parameters: the surface of the simulated area is 5000 × 5000
meters, host placement is random, growth type is incremental,
α = 0.15, β = 0.2 and the number of neighboring hosts (m)
is 2. Each such network topology is converted to a distance
matrix by finding the optimal route (optimizing the number
of hops) for each host pair and calculating the round trip
time for that route. Additionally we assigned to each host a
random QoS requirement (a value between 0 and 255). The
generated distance matrix and the QoS requirement are then
used to construct a multicast tree using Scribe / Pastry with our
proposed ID assignment method and with the default (random)
ID assignment method. The construction of the multicast tree
is performed using the “BasicNetworkSimulator” provided by
Freepastry [7].

For each generated multicast tree we evaluated whether the
QoS requirement property holds for all end-to-end paths from
the root to each node. If at least one hop on the path does not
hold this property, we would not be able to guarantee the QoS
requirement for that peer and all other nodes below this one
in the multicast tree.
To verify our proposal, we compare for how many percent of
the end-to-end paths the QoS property holds for the random
and our ID assignment method. To see if our proposal produces
longer end-to-end paths, we also compare the average and
maximal path length for both ID assignment methods.
As we can see in Fig. 5 our modification of the ID assignment
always performs better in respect of building QoS aware
multicast trees than the random ID assignment of Pastry. As
expected, the property described above holds for every end-
to-end path in the multicast tree created by Scribe when using
our method for assigning IDs.
Fig. 6 shows that the maximum and average path lengths
(in terms of hop counts in the Pastry P2P network) for the
two methods do not significantly differ, meaning that our
modification of the ID assignment method is not worse than
the random ID assignment of Pastry regarding average end-
to-end path lengths in multicast trees.
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Fig. 5. End-to-end paths comparison regarding QoS satisfaction
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VI. OUTLOOK

The ID-assignment presented in this paper is a part of the
OM-QoS concept. OM-QoS aims to be a general method
to enable QoS for multicast in structured P2P networks like
CAN [9], Chord [10], Pastry, and similar P2P architectures.
However OM-QoS is not necessarily applicable to any kind
of structured P2P networks. Therefore we have to define
appropriate requirements for P2P architectures.
Predictions of the peer life time and of the failure probability
can be taken into account to build QoS aware multicast
trees. Reputation concepts like Eigentrust [26], PACE [27] and
others like [28], [29] have to be considered as an additional
service for OM-QoS. Mechanisms for rewarding forwarding
peers and charging issues have to be examined as well.

VII. CONCLUSION

In this paper we presented a concept to enable QoS multicast
for structured P2P networks and applied it to Scribe / Pastry.
Our evaluation showed that by using a QoS requirements
aware ID assignment method, we can ensure that multicast
trees built by Scribe hold the QoS requirements (for example
bandwidth, jitter or maximum loss) on all end-to-end paths.
The simulations showed that the default ID assignment method
of Pastry resulted in an average of 30-40% of the end-to-
end paths holding bandwidth QoS requirements. With our
modification of the ID assignment we were able to construct
multicast trees where every end-to-end path holds the band-
width QoS requirement.
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