
VAT4Net - a Visualization and Animation Tool for Network Simulations

Torsten Braun, Jana Krähenbühl, and Thomas Staub
Institute of Computer Science and Applied Mathematics, University of Bern, Neubrückstrasse 10, CH-3012 Bern

{braun, kraehen, staub}@iam.unibe.ch

 Keywords: Discrete event simulation, simulation
software, computer networks, communication systems,
distance learning

Abstract
 The paper describes the design, implementation, and
evaluation of VAT4NET, a visualization and animation tool
for network simulations. It has primarily been designed for
simulation experiments performed in a distance learning
environment. It supports visualization and animation of
trace data obtained from network simulators, e.g., ns-2.
Users can view via web browsers results from simulations
that have been performed and pre-processed on remote
systems. The architecture allows user-specific pre-
processing of simulation data.

1. INTRODUCTION
 Simulation of networks and protocols is an important
subject of university teaching on computer networks.
Students need to learn how protocols can be tested and
evaluated using simulation techniques. As more and more
distance learning systems include remote laboratories,
simulation and visualization tools should be able to be
integrated into such learning environments. Unfortunately,
many simulation and visualization tools such as ns-2 [14]
[16] [17] and the Network Animator (NAM) [5] [15] are
very platform dependent. Therefore, those tools are rather
difficult to use in a web-based e-learning environment,
where students should access remote experimental facilities
with web browsers only. Installation of specific software on
a student’s computer must be avoided. Our main goal was to
use a visualization tool for an e-learning environment,
where students could access remotely to a course
infrastructure.
 We have designed and implemented the Visualization
and Animation Tool for Network Simulations (VAT4Net) to
support the analysis step in a network simulation process.
VAT4NET enables users to visualize trace files from
network simulation experiments. While animating a
simulation experiment, special events and features can be
visualized. For example, users can detect bottlenecks,
packet drops, congestion, network structure, movement
behavior of wireless nodes, etc.. Another focus of VAT4Net
is processing of statistical data and its graphical
representation, e.g., end-to-end delay, packet loss rate and

other Quality of Service characteristics to support
quantitative experiments for learning and research purposes.

2. ARCHITECTURE

2.1. Design and Implementation Choices
 The basic data for all visualization and animation
processes is provided by trace files generated from a
simulation run in ns-2. The current version of VAT4Net
focuses on trace files in NAM trace format, but can be
extended easily for other simulation trace file formats as
produced by other simulation tools such as Omnet++ [13].
 Certain processes are necessary in VAT4Net to animate
and visualize the simulated scenario. When analyzing a
trace file for the first time the preprocessor handles the file
in an initialization process. As soon as the preprocessed
trace file is available, the animation, analysis, and plug-in
control engine is executed.
 VAT4Net combines two different architectures - the
client-server and the stand-alone design (Figure 1). Trace
files can be stored locally or remote. If the trace file exists
on the local computer, VAT4Net is running as stand-alone
software. All processes, threads and operations are
performed on the local computer system. On the other hand,
when selecting a trace file from a remote server, the
VAT4Net client first tries to connect to the VAT4Net server
on the remote computer. Then, the preprocessing and
statistics calculation tasks are performed on the remote
computer and only the results of the remote operations are
submitted to the client over the network.
 VAT4Net has been implemented in Java. It is available
as a Java Applet for the web-based infrastructure and as
stand-alone software. When viewing a web page containing
a VAT4NET Java applet, the Java-enabled browser
downloads the applet’s byte-code to the client system and
executes it by the Java Virtual Machine (JVM) [6]. In
general, some functions are restricted while the JVM is
running the applet, e.g., file access, network connection
establishment, reading system properties. However, it is
possible to sign the applet with a digital security certificate
and to enable the required functions. In stand-alone mode
VAT4Net is started from a Java Archive (JAR) file [6] and
interprets the compiled source code in the JVM. In this case
there are fewer restrictions as with applets.

Figure 1. VAT4Net System Architecture.

2.2. Preprocessing Trace Files
 Event-based network simulations such as ns-2 generate
trace files containing events in a certain format, e.g. NAM
format. Events of a single packet are not grouped together,
but are distributed over the trace file together with events of
other packets.
 The upper part of Figure 2 shows a small part of a trace
file as a result of an ns-2 simulation. Mixing the various
events makes the animation of packets rather difficult. For
the animation of a packet on a link the hop (line 587) and
receive event (line 618) or a drop event should be known.
Therefore, it is important to be aware of line 618 when
starting to animate the event in line 587. This requires pre-
parsing the file. In certain cases, the complete trace file must
be considered for animating a packet.
 A look-ahead mechanism within the trace file instead of
pre-processing has been proposed by [7]. A look-ahead
implementation was not applicable to VAT4Net because of
excessive memory consumption of the Java application
when holding large parts of the trace file in the heap.
 The main idea of our approach of pre-processing trace
files is to sort events matching to a packet. In case of the
example, matching events are at positions 585-587, and 618.
 A new trace file format has been adapted from the
NAM trace file format. An example of the pre-processing
output format is given in the lower part of Figure 2, which
represents a single line of the output file. This line provides
all information required for animating a packet. No further
look-ahead operations are required.

2.3. Loading Data
 When VAT4Net runs as a stand-alone system on a local
computer, the data required for animation and visualization
operations is loaded by a separate thread from the newly
generated or already existing VAT4Net trace file by

accessing the local file system. The fact that each line marks
one animation event allows performing read operations line
by line. The read operation is used for handling either
animation or statistics data.
 For the distributed version with a remote data source,
VAT4NET has to be divided into a client and a server part.
The VAT4Net server delivers parsed trace files to the client
to animate and visualize them. If necessary the trace file will
be pre-processed (by plug-ins, see Section 3.2) first on the
server and transported to the client afterwards. Plug-ins are
located at the server, because they typically process trace
files. The client part is responsible for receiving data from
the server and its delivery to the VAT4Net client
application, which shows the resulting data as animation,
visualization and plug-in-defined view in the Graphical User
Interface (GUI, see Section 3.1). The connection between
the client and the server is achieved by a TCP connection
and SSH (secure shell) port forwarding.

Figure 2. VAT4Net Preprocessor

 SSH enables to connect to a server, which is behind a
firewall, and which requires authentication and
authorization. The example in Figure 3 depicts the details of
the connection establishment from a client to a server. First,
the client connects via SSH to the SSH Daemon (sshd) on a
remote machine behind the firewall authenticating the client
user. Second, a local port forwarding is installed from
localhost:8001 to 10.1.1.x:8001, on the computer, where the
VAT4Net server application is running. Finally, the client
socket will be connected to the start point localhost:8001.
The server socket is listening on 10.1.1.x:8001 when the

server has been started. When the client submits data, it will
be automatically transported via localhost:8001 through the
SSH tunnel to 10.1.1.x:8001 and vice versa. As soon as the
client and the server have successfully established a
connection, the server can start data transmission. Without
any further command the server will only deliver trace lines
to the client. A possible request from the client is to receive
special plug-in data objects from the server. The delivery of
the trace file is halted and the plug-in data is served. When
the data has been received by the client, the delivery of the
trace file data can be resumed.

Figure 3. VAT4Net Connection Setup with SSH Port Forwarding.

3. ANIMATION, VISUALIZATION AND ANALYSIS

3.1. The Graphical User Interface (GUI)
 The VAT4Net GUI (main frame) is divided into five
parts (Figure 4). It is running in stand-alone or applet mode.
The main menu contains all important commands for the
whole application. The control panel gives access to all
commands concerning animation. The animation process is
displayed in the animation panel. The element info panel
displays properties of nodes and links in a tree based view.
All plug-in or statistics related views are shown in the
statistics and plug-in panel.
 Figure 5 shows the VAT4Net control panel, which
enables to access all required functions provided by
VAT4Net. The animation engine visualizes and animates
the network topology with all its elements and events
occurring in the simulation. Wired nodes, links, queues and
wireless network grids are static elements, while wireless
nodes and packets are moving objects.
 After a part of the trace file is available in the buffer,
either from a local or a remote source, VAT4NET will
consume it and the animation can be initialized and started.

The time controller acts as a supervisor on the animation. It
further acts as a timer for the animation and invokes at the
right time the necessary methods such as parsing new lines
from the buffer, updating and drawing simulation elements
and events. Figure 6 shows how VAT4NET processes trace
files. The VAT4Net Parser converts trace lines read from
the buffer into elements and events to be animated.
 The network element is the main element in the
animation process. It is aware of all other elements and
events in the animation. It controls all updating and drawing
calls. A node is a basic structure of ns-2 and stands for
entities like routers, terminals, servers or mobile devices.
The node types are not distinguishable from each other in
the simulation. Therefore, they have the same shape in the
animation, but they can get different colors.
 Wired nodes are connected through links to each other.
Placing wired network nodes over the animation panel is
done in the initialization process of the network animation.
In contrast to wireless networks, there is no location
information available in the resulting trace files from almost
all wired network simulations. In a first approach, the graph
drawing algorithm of NAM was implemented in VAT4Net.
The resulting networks drawn by this algorithm were rather

unstructured. When displaying more than ten wired nodes,
the resulting graph has a lot of overlapping nodes and links
(Figure 7). While the algorithm from NAM tries to place the
nodes randomly over the animation panel without evaluating
the network structure, the newly chosen algorithm
implements the spring model, where the calculation is based
on forces between nodes. The new algorithm is a
modification of the spring-embedder model of Eades [8][9].

It distributes the vertices evenly in the frame, minimizes
edge crossings, makes edge lengths uniform, and reflects
inherent symmetry, Compared to the old algorithm the new
one consumes less memory, is significant faster and gives
useful results of node placing (Figure 8). Wireless nodes are
not affected by the node placing problem. Their position
information is available from the trace file (Figure 9).

Figure 4. VAT4Net GUI.

Figure 5. VAT4Net Menu and Animation Control.

Figure 6. VAT4Net Animation Engine Workflow.

Figure 7. Node Placement by NAM.

Figure 8. Node Placement by Spring-based Algorithm.

3.2. Plug-ins
 The analysis and add-on engine has been implemented
to support modular implementation of plug-ins. Those plug-
ins are implemented as modular packages with predefined
interfaces to the VAT4Net application. This allows easy
enhancements of new functionalities required by users. The
plug-ins are responsible for all actions and functions in
addition to the animation of network simulations.

Figure 9. Wireless Network in VAT4Net.

 Primarily this part is able to process statistical data,
e.g., end-to-end delay, packet loss rate and other Quality of
Service characteristics. It is also possible to add further
functionalities, e.g., a file downloader for remote trace files,
a file uploader, a trace file generator.
 The data flow in case of plug-ins is shown in Figure 10.
First, the user has to select a plug-in from the plug-in menu.
The plug-in and the corresponding plug-in menu are
activated (step 1). As soon as the plug-in is activated, the
user has to apply settings required by the plug-in and to
select the preferred action the plug-in provides (step 2).
Then, the plug-in starts processing and delivers the data to
the user. If the application runs as a stand-alone system the
plug-in process is executed on the local computer.
Otherwise, if VAT4Net is running in client/server mode, the
plug-in calculation process is executed on the server. For
statistics plug-ins the VAT4Net trace file is in most cases

the data source for calculating and preparing the output (step
3). As soon as the calculation and preparation process has
been completed, the plug-in delivers the results to the
VAT4Net application (step 4). The data is visualized in the

statistics and plug-in panel or the action can be completed
by the user, e.g., saving the trace file on the local computer
(step 5).

Figure 10. VAT4Net Plug-in Architecture

Figure 11. VAT4Net Delay Plug-in.

 An example for a plug-in is the delay plug-in, which
calculates the end-to-end delay between two selected nodes.

After loading a trace file into the animation engine, this
trace file is also available for the delay plug-in. The user
selects two nodes in the animation panel, for which he
prefers to calculate the end-to-end delay. The plug-in
calculates the statistical values and delivers it to the
statistics and plug-in panel (Figure 11). The data is then
shown in a chart with the simulation time as x-coordinate
and the delay as y-coordinate. The chart is drawn with the
help of the additional framework JFreeChart [10].

4. PERFORMANCE EVALUATION
 Loading a trace file completely requires a lot of
memory depending on the duration and level of detail of the
chosen simulation. Therefore, instead of loading all trace
files at once, trace files are “streamed” by buffering
currently required data and releasing old data.
 To test the effects of the buffer size on the whole
animation process the occurrence of delays were measured.
If the time used to calculate and to redraw one animation
step is larger than the specified period of time, the step is
considered as delayed. The tests have been executed on an
Intel Pentium M 1.6 GHz, 512 MB RAM with a test
VAT4Net trace file of 69 MB and 172’018 lines. The
simulation has been performed with 16 wired nodes and the
animation rate has been 10 frames per second.
 The resulting delays of each test are shown in Figure
12. On the y-axis the number of delays (animation steps)
occurring at an animation of a simulation is counted. The
test scenario with a time step of 1 second (upper line) shows
that large time steps cause a high amount of delays. For
large time steps there is a lot of simulated data to be
processed between two steps, independent of the size of the

buffer. Large time steps require more computation time than
smaller steps. Otherwise when doing small animation steps
(0.5 seconds – middle line, 0.1 seconds – lower line), the
buffer size has an impact on the delay. The animation is
better for fewer delays of the animation process. Therefore,
a buffer size of 37’000 KB would be the best for the test
scenario.

5. VIRTUAL NETWORK SIMULATION
 This section shows how VAT4NET and ns-2 have been
integrated into a distance learning environment [2] allowing
students to perform simulations and to visualize the
simulation results remotely.
 We provide a fully web accessible laboratory for
network simulations including reservation system,
laboratory portal server and laboratory computers. A
reservation system [3] allows students the reservation of
required (virtual) hardware in advance. The laboratory
portal protects the laboratory equipment from unauthorized
access via the Internet. The laboratory is based on a system,
where multiple entities of an operating system can be run
(host virtualization by User-Mode Linux). Each of these
entities acts as a laboratory seat used by one user, who has
reserved a time-slot in advance. This facilitates a completely
separated, stand-alone working environment for each user
with the possibility to resume work in a later time-slot or all
to reset the laboratory to initial state.
Figure 13 shows the access to the simulation and
visualization platform. Different clients (students, 1) want to
work on their simulation experiments. After the clients have
gained access rights to the Laboratory Portal Server (2),
they are able to start with their work on the laboratory. The
laboratory is running on the test-bed computer (3), which
provides laboratory seats implemented by Use Mode Linux
(UML, 4). UML allows multiple sand-boxed virtual
instances of Linux to run as a stand-alone application on the
Linux host system. When accessing the hands-on session for
the first time, a standard predefined image of an UML entity
is loaded and the client gets a blank and clean laboratory
seat.
 To allow resuming of laboratory work from earlier
sessions, a so-called Copy-On-Write (COW) file is stored
for each user. The COW file contains all changes performed
by the user, such as newly generated files, system settings
and changes to software. The COW file and the write
protected pre-defined UML image form the current state of
one user’s laboratory work. Each user can reset the own
laboratory seat to a previously stored state.
 To access the laboratory, the user logs into a Laboratory
Portal Server (Figure 14, 1), where he is forwarded to the
command line interface of the assigned UML entity and

logged in as root by automatic SSH key exchange. The
Mindterm SSH applet [11] implementing SSH protocols in
Java is used to connect the user with the laboratory seat. It
provides the command line of the UML entity to which the
user is assigned. The login process to the laboratory portal is
accomplished by the Mindterm applet and the fact that the
whole system works with single sign-on enabled by the so-
called Authentication and Authorization Infrastructure [1]
based on Shibboleth / SAML [4] protocols.

Figure 12. VAT4Net - Delay Dependent on Buffer Size [KB].

Figure 13. Integration of ns-2 and VAT4NET into Distance
Learning Environment

Time step = 1s

Time step = 0.5s

Time step = 0.1s

Figure 14. Interaction with Simulation Platform for Distance Learning.

6. SUMMARY
 VAT4Net is a new animation platform for network
simulators such as ns-2. Although it currently supports ns-2
only, other simulators can easily be supported due to the
modular architecture by adapting the trace file pre-
processor. An appropriate node placing algorithm has been
designed and implemented as well. Implementing an
efficient memory management has been one of the main
challenges. This could be solved by a streaming solution.
The solution allows supporting large trace files (up to 100
MB). The limit is mainly set by transmission delay limits.
The implementation supports two modes, a stand-alone and
a distributed mode. For the latter, VAT4Net has been split
into a client and a server part. The architecture based on
plug-ins allows changing the required functionality in a
convenient manner. VAT4Net is available under GPL [18].

7. REFERENCES
[1] M. Steinemann, Ch. Graf, T. Braun, M. Sutter: Realization of a

Vision: Authentication and Authorization Infrastructure for the Swiss
Higher Education Community, Educause 2003 , November 7, 2003

[2] T. Braun, M. Steinemann: The Virtual Internet and
Telecommunications Laboratory of Switzerland, ACM SIGCOMM
2003 Workshop on Networking Education , Karlsruhe, Germany,
August 25 - 29, 2003, pp. 2-3

[3] S. Zimmerli, M. Steinemann, T. Braun: Resource management portal
for laboratories using real devices on the Internet, ACM SIGCOMM
Computer Communication Review , Vol. 33, July, 2003, pp. 145-151

[4] Shibboleth - an Internet2 middleware project,
http://shibboleth.internet2.edu

[5] D. Estrin, M. Handley, J. Heidemann, S. McCanne, Y. Xu, and H.
Yu, “Network visualization with the VINT network animator nam,”
University of Southern California, Tech. Rep. 99-703, 1999.

[6] Java – Sun Developer Network, http://java.sun.com
[7] B. Scheuermann, H. Fuessler, M. Transier, M. Busse, M. Mauve,

andW. Effelsberg, “Huginn: a 3d visualizer for wireless ns-2 traces,”
in MSWiM ’05, 8th ACM International symposium on Modeling,
analysis and simulation of wireless and mobile systems. New York,
NY, USA: ACM Press, 2005, pp. 143–150.

[8] Eades, P., 1984. A Heuristic for Graph Drawing Congressus
Numerantium, vol. 42, pp. 149-160.

[9] T. M. J. Fruchterman and E. M. Reingold, “Graph drawing by force-
directed placement,” Software - Practice and Experience, vol. 21, no.
11, pp. 1129–1164, 1991.

[10] “JFreeChart - a free java chart library,” http://www.jfree.org/.
[11] “Mindterm Java Applet,” http://www.appgate.com/mindterm.
[12] K. Fall, “Network emulation in the VINT/NS simulator,” Proceedings

of the fourth IEEE Symposium on Computers and Communications,
1999.

[13] A. Varga, “The OMNeT++ discrete event simulation system,” in
European Simulation Multiconference (ESM’2001), June 2001.

[14] “ns-2,” http://www.isi.edu/nsnam/ns/index.html.
[15] “VINT - virtual internetwork testbed project,”

http://www.isi.edu/nsnam/vint/index.html.
[16] K. Fall and K. Varadhan, “The ns manual (formerly ns notes and

documentation,” VINT - Virtual InterNetwork Testbed Project, 2002.
[17] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, P.

Huang, S. McCanne, K. Varadhan, Y. Xu, and H. Yu, “Advances in
network simulation,” Computer, vol. 33, no. 5, pp. 59–67, 2000.

[18] “VAT4Net - Visualization and Animation Tool for Network
Simulations”, http://vat4net.sourceforge.net.

