

1

Efficient Authentication and Authorization of Mobile Users Based
on Peer-to-Peer Network Mechanisms

Torsten Braun
University of Bern, Neubrückstrasse 10, CH-3012 Bern, braun@iam.unibe.ch

Hahnsang Kim
INRIA, 2004 route des Lucioles, B.P. 93, F-06902 Sophia Antipolis, Hahnsang.Kim@sophia.inria.fr

Abstract
This paper presents a peer-to-peer based authentication and
authorization infrastructure to minimize authentication
delays when mobile users roam across different wireless
networks. The basic idea is to avoid exchanging security
information between networks visited by a roaming user
and the user’s home authentication, authorization, and
accounting (AAA) server that is typically located in the
home network possibly far away from the visited network.
Instead, authentication and authorization of a roaming user
shall be supported by an AAA server in the visited network.
We propose that the AAA server that is responsible for
authentication and authorization in a newly visited network
locates the AAA server in the previously visited network
and retrieves the required security information from that
AAA server. The AAA servers can be organized in a peer-
to-peer manner and peer-to-peer mechanisms can be
applied for searching and transferring security information
between them. We propose several mechanisms for quickly
locating the previously responsible AAA server in order to
decrease authentication delays. The performance of these
mechanisms is evaluated by simulations. Real performance
measurements show the rather low performance overhead
of application level forwarding used in peer-to-peer
networks.

1 Introduction

Efficient authentication, authorization and accounting
(AAA, [3], [11]) for roaming users in mobile wireless
environments is a demanding challenge. In particular,
authentication and authorization need to be performed in
real-time in order to provide seamless access to roaming
users in wireless networks. Accounting issues are not as
time-critical as authentication and authorization and
therefore accounting is not investigated by this paper.

Usually, information for verifying the identity of a user is
stored at an AAA server in the user’s home network
(AAAH). The AAAH stores all information about the user
such as subscribed services, security information etc. In a
typical AAA scenario, a user visiting a foreign network
may contact the foreign AAA agent (AAAF) and ask for
granting access to network resources (service request). The
AAAF is the local AAA entity in the visited foreign
network that needs to check whether the user is authorized
to access the local network. To validate the service request,
the AAAF takes over the role of an AAA client and sends
an authentication request to the AAAH. The AAAF is able

to identify the AAAH based on the user identification and
home realm information provided by the mobile user to the
AAAF in the service request. The AAAH has to answer
incoming authentication requests and may deliver challenge
information back to the AAAF. Then, the AAAF challenges
the user and will receive a user authentication response
from it. The AAAF forwards the authentication response to
the AAAH and the AAAH will evaluate it. In case of a
successful authentication, the AAAH will notify the AAAF
about that and the AAAF may grant resource access by the
user.

An important problem of this procedure is the significant
delay, when users are roaming rather far away from the
AAAH. The authentication and authorization procedure
should be repeated when a user enters a new network and
needs to be re-authenticated. The message exchange
overhead between visited network (user and AAAF) and
the home network (AAAH) may be substantial and the
message exchange delay might exceed acceptable delays of
real-time applications or even the duration when a user is
visiting a network. In the latter case, a user might have
already left the visited network before access to it has been
granted. For example, typical round trip times measured
using ping between Europe and the US west coast over
lightly loaded research networks are in the range of 200 ms.
Message exchange for authentication and authorization
often requires several round trip times.

A solution to this problem might be the introduction of
AAA brokers, to which an AAAH can delegate the
authentication decision. These AAA brokers are closer to
the roaming user and can therefore reduce the delay of the
authentication message exchange. However, this requires
that the AAA brokers have enough knowledge to perform
the authentication and authorization process. Of course, the
AAAH should not give symmetric long-term passwords to
the AAA broker for authenticating a user, but similar as in
cellular networks such as GSM or UMTS, the AAAH can
pre-compute authentication data such as [random number
(nonce), corresponding authentication result] and deliver
these so-called authentication vectors to the AAA broker
[1]. Alternatively, short-term keys or one-time passwords
can also be used for authentication. In general, we call the
security information that needs to be transferred from
AAAH to the AAA broker “security context” hereafter.
Note that we focus on user authentication but not on device
authentication in this paper.

The security context allows an AAA broker to perform a
decision on behalf of the AAAH whether a user’s request
for getting resource access can be permitted or not. Since

2

the AAA broker owns and controls the security context we
call this entity security context controller (SCC) hereafter.
Frequently, those security context controllers not only take
over AAA broker functions but also might serve as AAAH
for users belonging to their own domain. In the following,
we therefore assume that SCCs include both AAA brokers
and AAAH entities. Security context information is
therefore exchanged between SCCs only. If a security
context includes authentication vectors or one-time
passwords, a SCC must keep track which authentication
vectors or one-time passwords have already been used.

The SCC should be selected such that it covers a certain
area, where a user is expected to roam. When the user
moves to another network, re-authentication can be
performed between the user and the (close) SCC. SCCs can
be organized hierarchically (cf. Figure 1): The SCCs are
interconnected by the network operator and form a tree.
SCCs on a lower level cover small areas but are close to the
users. SCCs on a higher level control larger areas but are
farther away from the users. On the other hand, an SCC on
a higher level covers a rather large area and increases the
probability that it can serve a roaming user for a rather long
time. This avoids the case that new security contexts need
to be requested from the AAAH. Previous work [2] has
calculated the optimal location of such a SCC in a
hierarchically organized network in order to minimize the
authentication delay for roaming users.

AAAH

SCC on
higher level

SCC on
lower level

Areas controlled by SCC
Figure 1: SCC Hierarchy

In [2] it has been assumed that in case a user leaves the
area, for which a SCC is responsible, a new SCC must be
determined by the AAAH and the security contexts need to
be transferred to the newly selected SCC from the AAAH.
In this paper, we propose an extension of the concept that
allows security context transfer between SCCs without the
involvement of the AAAH. This leads to decreasing the
authentication delay and in particular avoids the transfer of
security contexts from an AAAH that may be far away
from the SCCs. It also allows to move the SCCs (AAA
broker functionality) even closer to the user, because we
can afford to change AAA brokers more frequently due to
the fact that security contexts do not need to be retrieved
from the (far away) AAAH. In particular, we make use of
concepts that have been used in peer-to-peer (P2P)
networks. Mechanisms for efficient searches and data
replication have been developed by several peer-to-peer
networks and those concepts can help to solve the problems
addressed above.

In Section 2 we present traditional architectures and
procedures for mobile user authentication. Section 3

presents our novel authentication architecture based on a
peer-to-peer network established between authentication
entities. Section 4 presents performance measurements of
application level forwarding as used in peer-to-peer
networks and performance evaluations based on a
simulation of the authentication architecture. Section 5
concludes the paper and gives some examples for other
applications that can take advantage of the P2P search
mechanisms discussed in this paper.

2 Authentication and Authorization
Architecture for Mobile Networks

Figure 2 shows the message flow for the authentication of a
mobile user using SCCs. The service request by the user is
received by an AAA client (AAAF), which forwards an
authentication request to the next SCC. The SCC requests
the security context from the corresponding AAAH and
challenges the user with authentication information via the
AAAF. The SCC compares the authentication response
with an expected response derived from the authentication
information and gives the result to the AAAF. The
specification of a concrete protocol is beyond the scope of
the paper. We rather focus on the general principles for an
architecture supporting mobile user authentication.
However, we believe that the Diameter protocol [4], which
is based on peer-to-peer paradigms, provides a good basis,
because it is very flexible and allows being adapted rather
easily. Protocol issues of security context transfer have
been discussed in [8] and [9].

AAA Client (AAAF) AAAHMobile Node

Serv ice Request

Security Context
Response

User Authentication
Challenge

User Authentication
Response

Authentication Request

SCC

Security Context Request

Authentication Challenge

Authentication Response

Authentication Reply

User Authentication Reply

Figure 2 : Authentication Message Exchange

Figure 3 shows the interconnection of the authentication
entities. Users connect their end systems to a wireless
network and send a service request to the visited wireless
network, e.g. wireless network 1. The AAA client that is
responsible for wireless network 1 takes the user’s service
request and sends an authentication request towards the
AAAH of the user. The request includes the AAAH as a
destination address, but it will be intercepted by SCC 1,
which may ask the AAAH to transfer the security context to
itself. Note that such a security context transfer is already
performed in today’s cellular networks between different
providers that have established roaming agreements. For

3

authentication, SCC 1 may challenge the user using a
random number (nonce) and compare the response with the
pre-computed authentication values stored in its security
context. Next, the user may move from wireless network 1
to wireless network 2. Again, the responsible AAA client
will receive the service request and forward the
authentication request towards the AAAH. SCC 1 still
controls the security context for the user and will be able to
challenge the user without any interaction with the AAAH.

Security Context Controllers

AAA Clients

End Sy stem

Wireless
Network 1

AAAH

SCC 1
SCC 2

Wireless
Network 3

Wireless
Network 2

Figure 3: Authentication Architecture

Next, the user moves to wireless network 3. SCC 2 will
intercept the authentication request from the AAA client of
wireless network 3 and detect that no security context for
that user is locally available. To get the security context,
SCC 2 has two options: The first (and traditional one) is to
request the security context from the user’s AAAH. Again,
this may add significant delay to the authentication and
authorization process. The other option is to search among
other SCCs, whether they store a valid security context of
the user. For example, SCC 2 may detect that SCC 1 stores
such a security context. In that case, the security context
can be transferred quickly from SCC 1 to SCC 2 and the
authentication process can proceed without contacting the
AAAH.

3 Peer-to-Peer Network Technology for
Security Context Transfer

3.1 Motivation

To support fast security context transfer we propose to
make use of peer-to-peer mechanisms for several reasons:

• P2P networks have been invented in order to
efficiently search resources such as audio files.
Instead of exchanging audio files, we propose to
use P2P mechanisms for locating and transferring
security contexts between SCCs. As in other P2P
networks, the peer nodes store (key, value) pairs.
In our case, the key is a unique identifier for a user
and its security context. The value is the current
node storing the security context for this user.

• P2P networks support replication and caching. The
transfer of security contexts from an AAAH to an
SCC can be considered as creating a replicate of
the user’s security context at the SCC. One has to
make sure that authentication vectors are not used
multiple times but only once for authentication.

Security contexts for a single user with different
valid authentication vectors can exist at various
SCCs simultaneously.

• P2P networks are able to organize themselves and
adapt to changing network conditions. This allows
that SCCs discover each other and set up a robust
network in order to exchange authentication
messages. Such a network should also tolerate
node failures and to allow adding new nodes
dynamically.

• P2P networks can be used to realize closed user
groups. In particular, the set of SCCs need to
communicate in a secure manner preferably using
strong authentication and encryption mechanisms
for security context transfer.

3.2 Peer-to-Peer Based Authentication
Architecture

We propose to organize the SCCs in a peer-to-peer
network. SCCs could detect each other using P2P
mechanisms such as limited broadcast searches or via
bootstrap nodes as required for Gnutella [7]. The result of
the detection phase should be a mesh of SCC nodes with
P2P links between the nodes. Preferably, nodes that are
within the same administrative domain or sub-domain and
that are geographically close establish links to each other.
We also assume that the SCCs can establish secure links to
each other based on standard authentication and encryption
mechanisms such as IP Security [10]. The SCCs build some
kind of secure P2P network and can be assumed to trust
each other as it is the case in today’s cellular networks.

Each node might be responsible for managing and storing
the security contexts of a set of nodes assigned to it. In this
case, it acts as an AAAH, e.g. the node indicated by a circle
in Figure 4 might be the AAAH for the roaming user
represented by the mobile end system.

Security
Context

Controller

SCC 1

SCC 2

SCC 3

AAAHSCCx

SCCy

Figure 4 : P2P Organization of Security Context Controllers

In Figure 4, we assume that our user is at first in the area
managed by SCC1. SCC1 will request the security context
from AAAH. During the security context transfer from
AAAH via SCCx to SCC1, pointers to the current security
context held at SCC1 will be stored along the forwarding
path, i.e. at AAAH and SCCx. After receiving the security

4

context, SCC1 will broadcast the presence of the security
context to its neighbours. This broadcast message should
contain the following information: user_ID, timestamp,
SCC_ID, TTL. In order to limit the broadcast traffic we
propose to limit the broadcast range, e.g. to two hops.
Limiting the broadcast range can easily be achieved by the
TTL (Time To Live) value. Each forwarding hop needs to
decrement the TTL value and is not allowed to forward
messages with TTL=0. The timestamp can be used to detect
multiple receptions of a single message. Received messages
should be stored in a cache with a lifetime that is
sufficiently large to detect duplicated messages, e.g. a few
seconds. Broadcasting the presence of security contexts
should be repeated after a certain time interval (broadcast
interval). Simultaneously, broadcast receivers should delete
received broadcasts after another interval (broadcast
expiration interval) that is a multiple of the broadcast
interval in order to tolerate broadcast message loss. This
mechanism ensures that only current pointer information (a
pointer to the SCC that has been used most recently by the
user) is kept at the neighbour nodes and it avoids that
outdated information is stored at some SCC. SCC1 should
also periodically inform AAAH about that it is still
controlling the user’s security context (update interval).
This update refreshes the pointer information along the path
between the current SCC (SCC1) and AAAH, e.g. at SCCx.
Since it might happen that multiple SCCs are controlling a
security context of a particular user, a timestamp with the
last authentication time for the user should be added. If a
SCC along the path towards the AAAH receives updates
from different SCCs, only the update with the most recent
authentication time should be forwarded to the AAAH.
Again, the pointer information expires at the nodes along
this path after an interval that is a multiple of the update
interval (update expiration interval). When the user now
moves to an area controlled by SCC2, SCC2 should already
know that SCC1 was the previous SCC controlling the
security context. Instead of requesting the security context
from AAAH, the security context can be requested from
SCC1. Only in the case that the security context can not be
used any more for authentication, e.g. if all authentication
vectors have been used, the new SCC should request a new
security context from the AAAH.

In our architecture, the security context does not need to be
transferred completely from the previous SCC to the new
SCC. The previous SCC might send only a part of it to the
new SCC and keep some authentication vectors. Only the
SCC possessing an authentication vector is allowed to use it
for authentication. By transferring an authentication vector
to another SCC, the sending SCC forwards the right to use
the authentication vector to the receiving SCC. Transferring
only a part of the authentication vectors might be helpful
for situations where the previous SCC might be contacted
again by the respective user after the security context
transfer has been completed. This might happen if the user
moves back again to the area controlled by the previous
SCC. Another reason might be that some pointer
information to the current SCC has not been updated
properly. In that case, there might be some pointer
information still pointing to the previous SCC but not to the
new SCC. In this case, we can avoid redirection and
support authentication by those kept authentication vectors.

Therefore, SCC1 should keep these authentication vectors
and store that it has transferred the security context to SCCs
for a longer time interval (larger than the update expiration
interval and the broadcast expiration interval), because it
might happen that other nodes do not become notified about
the security context transfer to SCC2. Then, these nodes
might answer a request message with a pointer to SCC1.
SCC1 should in that case either use his stored and unused
authentication vectors or redirect to SCC2.

After the security context transfer, SCC2 informs the
AAAH that it is now controlling the user’s security context.
If the information travels along the path SCC1 – AAAH, all
other pointer information to this security context is updated.
For example, SCCx replaces the pointer information to the
user’s security context and points to SCC2 instead of
SCC1. The information might alternatively travel from
SCC2 via SCCy (but not via SCCx) to the AAAH. In that
case, SCCx might still include some pointer information to
SCC1. If it should happen that due to that pointer
information another security context transfer request
reaches SCC1, it still can support such a request and
transfer some unused authentication vectors that have been
kept before and that have not been transferred to SCC2.
Also the user might travel back to an area controlled by
SCC1 after some time. In that case, the kept and unused
authentication vectors can be used to support a quick
authentication without security context transfer from SCC2
to SCC1.

It may also happen that the user moves to an area with an
SCC that did not receive a broadcast message from the
previously responsible SCC. This might happen if the user
switched off his end system after leaving the previous
network and switches it on in a network that is far away
from the previous one. In that case, the responsible SCCs
are far away from each other and do not receive broadcasts
from each other. The same happens if the user stays within
the same geographical area but moves to another network
provider. For example, the user might first be connected to
a WLAN, but might then move out of the WLAN range and
connect to a cellular network. This will result in a network
provider change and possibly the newly responsible SCC is
not in the close neighbourhood of the previous SCC. It
might also be the case that the user moves very quickly to
an area that is out of the broadcast range.

If the broadcast mechanism is not successful, the new SCC
does not know the previous SCC. In such a case, it has to
forward a security context request towards the AAAH. If
the request passes a node with some pointer information,
that node might return the pointer information to the
requesting SCC. For example, we assume in Figure 4 that
our user disconnects from SCC1, switches its device off,
moves to SCC3, and re-connects to the new network. We
also assume that broadcasts are only sent to direct
neighbours. In this case, SCC3 does not know the previous
SCC and forwards the request via SCCy towards AAAH.
At SCCx the request meets security context pointer
information describing that SCC1 is the current SCC. SCCx
returns this information to SCC3. SCC3 contacts SCC1 in
order to retrieve the security context from SCC1 and
becomes the newly controlling SCC of the user. It should
then also notify AAAH about the security context transfer.

5

By analysing this notification message, SCCy and SCCx
will then have pointer information for the user’s security
context. The pointer points to SCC3 then.

Note that the mechanism described in this section only
makes sense, if the AAAH is far away from the previous
and the new SCC as well as the SCC with the pointer
information (SCCx in the example above) and if these three
SCCs are rather close to each other. Otherwise, it would be
more efficient to directly request a new security context
from AAAH. The SCC with pointer information should
estimate and decide which of these two alternatives is
better. This may be performed based on hop count
information. A simple decision could be based on the
evaluation of the estimated distances between the different
nodes. If the distance of the deciding node to the AAAH is
larger than the sum of the two distances from the deciding
node to the new and previous SCC respectively, the node
should decide to redirect the service context request to the
previous SCC.

The proposed mechanism is very similar to mechanisms
proposed in peer-to-peer networks. In such systems key-
value pairs are stored at those nodes with IDs that are
resulting by applying a hash function to the key. Each key
has a root node and that root node may be responsible for
storing a certain set of keys. One example is the Oceanstore
[6] peer-to-peer file system. Each file has a unique ID and
that ID is mapped to the node ID of the file’s root node.
The root node then holds an entry pointing to the node
storing that file and nodes requesting the file may easily
contact the root node in order to learn which node is storing
the file by applying the hash function to the unique file ID.

4 Performance Evaluation

4.1 Application Level Forwarding Performance

In our investigations we assumed that application level
message forwarding between SCCs does not add significant
delay compared to IP level forwarding, if both application
and network level forwarding use approximately the same
paths. In this section we investigate the impact of
application level message forwarding compared to IP level
forwarding and the experiments discussed below will
confirm our assumption. Propagation delays will more and
more dominate communication delays in the future while
the processing of messages will take less and less time with
increasing processing power in intermediate and end
systems.

For our measurements we used ten Linux PCs in a common
LAN at INRIA Sophia Antipolis (France) and one Linux
PC located at University of Bern (Switzerland). Both
organizations are connected to their national research and
education networks (RENATER and SWITCH), which are
interconnected via the multi-gigabit pan-European data
communications network GÉANT. Figure 5 shows the
message round trip times of the performed experiments. In
the first experiment (2 local hosts), TCP messages have
been exchanged between two hosts of the same LAN (0.2
ms). Forwarding TCP messages between two hosts via
eight intermediate hosts (10 local hosts) increases the round

trip time to 3.6 ms. The round trip time on ICMP level
(ping) between one host at Sophia Antipolis and one host at
Bern via twelve routers in between (1 local, 1 far host
(ping)) increases the delay to 30.2 ms. The round trip time
on application level between the two hosts (1 local, 1 far
host) is the same. In the last experiment, the TCP messages
have been first transmitted from a host at Sophia Antipolis
via eight hosts at Sophia Antipolis, before the message is
transmitted to the host at Bern (9 local hosts, 1 far host).
The response is returned along the reverse path. The delay
of eight intermediate hosts adds very little delay (< 4 ms)
compared to the IP level forwarding delay of approximately
30 ms. The results show that application level forwarding
overhead is very low and that the delay added by the
network is dominant.

0 . 2
3 . 6

3 0 . 2 3 0 . 2
3 4

0

10

2 0

3 0

4 0

2 local host s 10 local host s 1 local, 1 f ar host (pin g) 1 local, 1 f ar host 9 local host s, 1 f ar host

net wor k conf i gur at i on of exper i ments

 r ound t r i p t i me (ms)

Figure 5: Application Level Forwarding Delay

4.2 Performance of P2P Based Authentication

For the evaluation of the P2P based authentication
mechanism, we now assume to have a large grid (1000 x
1000) of 1 million SCC nodes. Each node has coordinates
(x, y) with x, y ∈ [0…999] indicating its location in the
grid. Each node has four neighbours and we assume that
node (500, 500) is the AAAH for the user’s service context.
This structure is very similar to the CAN [5] peer-to-peer
network, where each node has also four direct neighbours.

In case a mobile user changes the network and the
broadcast mechanism does not help to resolve the previous
SCC, we have to search for the previous SCC by
transmitting a security context request message towards the
AAAH (see Figure 6). If the request meets on its path
towards the AAAH a node knowing the previous SCC, it
can return an answer to the new SCC. Otherwise the request
arrives at the AAAH, the AAAH transfers a new security
context to the new SCC, and the old security context will
automatically expire.

In the following evaluation we assume that the costs for
retrieving the security context from the AAAH are equal to
2 * N, with N = number of hops between new SCC and
AAAH. The costs for retrieving the security context from
the previous SCC are equal to 2 * (N’ + d) with N’ =
number of hops between the new SCC and a node with
pointer information to find the previous SCC and d = the
number of hops between the old and the new SCC.

In the evaluation we selected arbitrary pairs of SCC nodes,
i.e. a new SCC and a previous SCC. The path from the SCC
nodes to the AAAH is selected according to three different
forwarding strategies:

6

a) Adapt x coordinate first (x first)

b) Random forwarding (random)

c) Anchor based random forwarding (anchor)

With all strategies message forwarding makes always
progress towards the AAAH (see Figure 6). With the x first
approach, the message is forwarded such that a node with
the same x coordinate as the destination is reached as fast as
possible. This mechanism should allow that the search
message finds some pointer information at the nodes with
the same x coordinates as the AAAH. The forwarding
decision is done in a deterministic way. However, if the
new and old SCC differ in the y coordinate and differ both
significantly from the x coordinate of the AAAH, it takes
rather long until a search message can meet some pointer
information.

Random forwarding makes random decisions whether to
make progress in x or in y direction. A new SCC having
completely different y coordinates than the previous SCC
might quickly find the pointer information set along the
path from the previous SCC and the AAAH. On the other
hand, two nodes close to each other may establish two
completely different paths to the AAAH.

Anchor based random forwarding visits always some
anchor nodes. Anchor nodes might be nodes with special
coordinates, e.g. x/y coordinates which are multiples of 5 as
depicted in Figure 6. The path from a SCC to the AAAH
should always visit one of the next anchor nodes towards
AAAH. The path between anchor points is random. If a
message has reached an anchor node, there are up to three
candidates for selecting the next anchor point. Also this
selection is random. For our evaluation we used two levels
of anchor points: The lower level includes anchor points
with x and y coordinates that can be divided by 10. The
higher level includes anchor points with x and y coordinates
that can be divided by 100. A message is always forwarded
to the next higher level anchor point. On the path towards
that higher level anchor point, low level anchor points must
be visited.

AAAH

prev ious SCC

new SCC

x

y

x f irst

random

anchor

anchor node

Figure 6: Grid-like organization of SCC nodes

In Figure 6, the top left node has coordinates (0, 0), the
previous SCC has coordinates (9, 8) and the new SCC has
coordinates (8, 9). The two SCCs are two hops away from
each other. (2, 1) are coordinates of the AAAH. The

distance from the SCCs to the AAAH is therefore 9 – 2 + 8
– 1 = 8 – 2 + 9 – 1 = 14 respectively. Using random
forwarding, at node (6, 4) the security context request from
the new SCC meets a node with pointer information for the
user’s security context. The distance between this node and
the new SCC is 8 - 6 + 9 – 4 = 7. The costs for retrieving a
security context from AAAH are 2 * 14 = 28. The costs for
retrieving the security context from the previous SCC are 2
* 7 + 2 * 2 = 18. Retrieving the security context from the
previous SCC is 35 % less costly than retrieving the
security context from AAAH.

The number of nodes that must be traversed before meeting
a node with a pointer to the security context information
depends on the distance between new and previous SCC.
Figure 7 shows the relative costs for retrieving security
context information for random SCC pairs by applying the
three algorithms mentioned above in comparison to
retrieving the security context from AAAH. The relative
costs can be calculated by (N’ + d) / N. The distance
between previous and new SCC is given by the number of
hops. For all simulations, we have chosen the AAAH in the
middle of a 1000 x 1000 grid of nodes, i.e. at coordinates
(500, 500). For small distances between previous and new
SCC, the algorithms with random forwarding perform
better than the deterministic algorithm (“x first”). We also
see that the anchor based random forwarding performs
always better than any other algorithm even for large
distances such as 100 hops between old and new SCC. The
purely random based mechanism performs well for small
distances, but for large distance values this algorithm
performs worse than the deterministic one. One should take
into mind that in the case of a roaming user, the probability
that two SCCs are far away from each other is rather low,
since those SCCs usually cover very large geographic areas.
Also different networks operated by different providers in
the same country are probably not too far away from each
other in the peer-to-peer network. Even if two SCCs are
less than 10 hops away from each other, a performance gain
of more than 4 can be achieved compared to the traditional
case when the security context is retrieved from the AAAH.
For large distances, the mechanism does not perform worse
than the traditional one.

A further improvement of the concept is the instantiation of
several SCCs that are responsible for the security context of
a particular user. In this case, the authentication vectors
might be distributed over these multiple SCCs. The
probability that a security context transfer request meets a
node with pointer information to one of these SCCs
increases with the number of SCCs. In our evaluation we
put 1, 10, 20, 40, and 80 SCCs that all have the same
distance to the new SCC and that have a security context
for the roaming user. Figure 8 shows significant
performance gains by distributing a security context to a
rather low number of SCCs, but we see that distributing the
security contexts to more SCCs has certain limitations.

Finally, we analyse the required cache memory in the SCCs
to support our mechanism. If we again assume a grid of
1000 * 1000 nodes, the average number of intermediate
nodes between any 2 nodes of the grid is 667. The number
667 can be calculated by selecting any possible
combination of node pairs in a 1000 * 1000 grid and

7

calculating the average distance over all combinations.
Assuming randomly roaming users, 667 nodes (from 1
million nodes) have to store pointers to a user’s current
SCC. Assuming 109 users, user IDs and SCC addresses of
128 bits length each, this requires 2 * 128 bits * 667 * 109 =
19.4 TB memory in total and 19.4 MB memory at each
SCC in average.

0

0.2

0.4

0.6

0.8

1

1.2

1 101

distance between old and new SCC

x first

anchor

random

0 100

Figure 7: Relative Costs of Security Context Transfer based on P2P

techniques compared to traditional approach

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 20 40 60 80 100 120

dist ance bet ween new SCC and previous SCCs

1 SCC

5 SCCs
10 SCCs
20 SCCs
40 SCCs
80 SCCs

Figure 8: Relative Costs of Security Context Transfer with several

previous SCCs and using anchor forwarding compared to traditional
approach

5 Conclusions and Outlook

We have presented an architecture for mobile user
authentication and authorization based on a peer-to-peer
organization of AAA entities. The architecture is based on
security context transfer between the previous and the new
security context controller. We have analysed different
algorithms to find the previous security context controller
efficiently in order to minimize the delay for the
authentication process. An algorithm based on anchor
points and randomly choosing those anchor points as well
as randomly walking between the anchor points has
achieved the best performance.

The three presented algorithms, and in particular, the
anchor based random forwarding algorithm can also be
used to solve other problems than presented in this paper.

• One potential application is mobility management
by a peer-to-peer network. A mobile end system
might connect to a foreign network and to close
peers responsible for this foreign network. Then it
transmits its new location via the intermediate
peers towards a root peer that keeps track of its
location. Other peers that desire to determine the
mobile node’s position also transmit search
request messages towards the root peer and might
meet a peer along the path that already knows its
position.

• Another application is the organization of source-
specific multicast trees for P2P based multicast. In
this case, new group members need to send join
messages towards the multicast source. In order to
join the multicast tree, it might be sufficient if the
join message meets an already existing branch of
the tree. We expect that the search mechanisms
based on random decisions will meet the multicast
tree earlier.

6 References

[1] H. Kim, H. Afifi: Improving Mobile Authentication
with New AAA Protocols, IEEE International
Conference on Communications (ICC) 2003,
Anchorage, USA, May 2003

[2] H. Kim, W. Ben-Ameur, H. Afifi: Toward Efficient
Mobile Authentication in Wireless Inter-Domain,
3rd Workshop on Applications and Services in
Wireless Networks (ASWN), Bern, Switzerland,
July 2003

[3] C. Rensing, Hasan, M. Karsten, B. Stiller: AAA: A
Survey and a Policy-Based Architecture and
Framework, IEEE Network, November/December
2002, pp. 22-27

[4] P. Calhoun, J. Loughney, E. Guttman, G. Zorn, J.
Arkko: Diameter Base Protocol, RFC 3588,
September 2003

[5] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S.
Shenker: A Scalable Content Addressable Network,
ACM SIGCOMM 2001

[6] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H.
Weatherspoon, J. Kubiatowicz: Maintenance-Free
Global Data Storage, IEEE Internet Computing,
September/October 2001, pp. 40-49

[7] M. Ripeanu, A. Iamnitchi, P. Foster: Mapping the
Gnutella network, IEEE Internet Computing,
Volume: 6 , Issue: 1 , Jan.-Feb. 2002, pp. 50 – 57

[8] M. Georgiades, N. Akhtar, C. Ploitis, R. Tafaziolli:
AAA Context Transfer for Seamless and Secure
Multimedia Services over All-IP Infrastructures, 5th
European Wireless Conference (EW'04), Barcelona,
February 24-27, 2004

8

[9] H. Wang, A. Prasad: Security Context Transfer in
Vertical Handover, 14th IEEE 2003 International
Symposium on Personal, Indoor, and Mobile Radio
Communication Processing, Beijing, September 7-
10, 2003

[10] William Stallings: IP Security, Internet Protocol
Journal, Vol. 3, No. 1, March 2000, pp. 11-26

[11] D. Mitton, M. St.Johns, S. Barkley, D. Nelson, B.
Patil, M. Stevens, B. Wolff: Authentication,
Authorization, and Accounting: Protocol,
Evaluation, RFC 3127, June 2001

