
Electronic Communications of the EASST
Volume 37 (2011)

Workshops der wissenschaftlichen Konferenz
Kommunikation in verteilten Systemen 2011

(WowKiVS 2011)

Towards Virtual Mobility Support in a Federated Testbed for Wireless
Sensor Networks

Torsten Braun, Geoff Coulson and Thomas Staub

12 pages

Guest Editors: Horst Hellbrück, Norbert Luttenberger, Volker Turau
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Towards Virtual Mobility Support in a Federated Testbed for
Wireless Sensor Networks

Torsten Braun1, Geoff Coulson2 and Thomas Staub1

1 Institute of Computer Science and Applied Mathematics
University of Bern

Neubrückstrasse 10, CH-3012 Bern, Switzerland
braun|staub@iam.unibe.ch

2 School of Computing and Communications
Lancaster University

Lancaster LA1 4WA, England
geoff@comp.lancs.ac.uk

Abstract: We present a design that accommodates ‘virtual mobility’ in a wireless
sensor network testbed. Virtually-mobile nodes can be physical, simulated or em-
ulated, and virtual mobility for all three types is treated uniformly by embedding
the nodes in a virtual space. In operation, the traffic of virtually-mobile nodes is in-
tercepted and redirected to a mobility model from where it is selectively forwarded
to other nodes that are virtually in range. We present a distributed implementation
architecture that potentially allows the simulation/emulation of large-scale wireless
sensor networks with large numbers of virtually-mobile nodes.

Keywords: Mobility, testbed, wireless sensor networks, emulation, simulation

1 Introduction

Research on wireless sensor networks (WSNs) has grown rapidly in recent years, and large-
scale experimental deployments of WSNs are now becoming widespread [DHK+09]. This rapid
growth has led to a strong emerging requirement for flexible experimentation facilities to support
the design and evaluation of new protocols and mechanisms for WSNs. To this end, a number
of testbeds for WSNs have been built, among them WISEBED (www.wisebed-eu) [CKM+09]
which forms the background of this paper. WISEBED is an extremely flexible federated testbed
that supports experimentation at all levels from applications down to low-level communications.
It addresses the need for flexibility through the concept of virtual testbeds, in which physical,
simulated, and emulated testbed elements can be freely mixed.

In WISEBED virtual mobility has been identified as an area that needs further development.
In response, we present a design for virtual mobility that can be implemented in WISEBED and
potentially in other testbed environments. The remainder of the paper is structured as follows.
Section 2 surveys related work and in Section 3 we discuss the concept of virtual mobility in
detail and consider general issues in the design space of virtual mobility infrastructure. In Sec-
tion 4 we describe our design of a virtual mobility infrastructure. Finally, in Section 5 we offer
our conclusions and discuss future work.

1 / 12 Volume 37 (2011)



Towards Virtual Mobility Support in a Federated Testbed for Wireless Sensor Networks

2 Related Work

Various attempts have been made to integrate virtual mobility into testbeds, although to our
knowledge these have all been targeted at wireless networks in general rather than WSNs in
particular. In addition, current efforts typically do not support a scalable federated testbed en-
vironment nor the co-existence of virtual and physical mobility. The approach in [ESHF04]
integrates virtual mobility with real network stacks and operating systems by virtualizing host
connectivity via the MobiEmu 802.11b network emulator [ZL02]. One drawback of MobiEmu
is that it does not model errors: i.e. communication is either possible without errors or not
at all. JiST/MobNet [KBHS07] provides a Java framework for the simulation, emulation and
real-world testing of wireless ad hoc networks as an wireless extension of the Java in Simula-
tion Time (JiST) simulator. As communication software is not usually written in Java, it cannot
be tested directly. The Emulab [WLS+02] testbed, which was originally developed for wired
networks, has been extended to wireless networks [WLG02] by means of an IEEE 802.11a/b/g
testbed. However, besides its lack of mobility support, Emulab suffers from limited repeatability
due to interference from other networks in a shared office building. The ns-3 network simula-
tor [LWD+09] allows the integration of virtualized nodes running native applications and pro-
tocol stacks under the Linux operating system. Virtualized nodes in ns-3 are connected through
a TUN/TAP kernel device and a proxy node to the simulation. However, there is no support to
modify (wireless) device parameters of the simulation directly and dynamically by the virtual-
ized nodes. In order to cope with the problem of simulator overload during network emulation,
a central synchronizer has been proposed in [WSHW08] to control the time flow of virtual
hosts using an adapted scheduler for XEN, keeping them synchronized using the OMNeT++
network simulator [Var01]. Another approach is emulation based on hardware channel simula-
tors [JS03, BJSS09, WVBC09, SBBD03]. The main advantage of such approaches is repeatabil-
ity of experiments in combination with realistic media access control (MAC) and physical layers.
The main drawbacks are the high costs and the limited number of supported nodes.

In our own related work, VirtualMesh [SGB11] provides instruments to test real communi-
cation software in a controlled environment. VirtualMesh intercepts and redirects real traffic
generated by real nodes to an OMNeT++ simulation model, which then calculates packet trans-
mission according to the virtual network topology, propagation model, background interference
and current node positions. Only the MAC and physical layers are simulated; the other layers
remain unchanged and work as in a real testbed of embedded Linux nodes. VirtualMesh has
proven to be scalable, to have minimal influence on throughput and to introduce only negligi-
ble delays (less than 0.4 ms per hop). However, this work does not support specifically WSN
environments, federated testbeds, or the co-existence of virtual and physical mobility.

3 Virtual Testbeds and Virtual Mobility

3.1 Virtual Testbeds

WISEBED’s ‘virtual testbed’ (henceforth VTB) concept offers the abstraction of a dedicated,
private WSN testbed in which some of the ‘primary testbed elements’ (see below) are physically
real, some are simulated and others are emulated [CKM+09]. The user designs a VTB in such

Proc. WowKiVS 2011 2 / 12



ECEASST

a way that its mix of physical, simulated, and emulated elements is appropriate to their goals.
They then instantiate their VTB in the federated WISEBED environment, deploy their software
onto it, and observe the behaviour and outputs of their experiment as if it were running on a local
physical testbed. The full list of ‘primary testbed elements’ that can be virtualised in a VTB
is as follows: sensors (e.g., temperature devices); sensor input (i.e., what the sensors observe,
such as the current temperature); nodes (the microcontroller + memory + radio device to which
sensor devices are attached); power to nodes; connectivity (which is a function of node location
and radio characteristics); and, finally, mobility of nodes. To date, WISEBED has explored
virtualisation of all of these elements with the exception of virtual mobility.

So-called virtual links are an important element in the underpinning of the VTB concept,
which we also use in our virtual mobility design. Virtual links are used to define potential con-
nectivity between pairs of nodes that are virtually close but physically distant (e.g. located at
different sites in the WISEBED federation). Specifying a virtual link represents the possibility
of 1-hop unidirectional communication between two nodes in the VTB. The specification of a
virtual link includes its radio characteristics such as the packet error rate [BCD+10]. Within
individual nodes (be they physical, simulated or emulated), WISEBED’s driver stacking frame-
work [BCF+10] is used to engineer the end points of virtual links. This framework is used to
deploy ‘pseudo’ radio drivers that appear to software on the node as ‘real’ radio drivers; however
these pseudo-drivers transparently divert (selected) outgoing packets to the virtual link machin-
ery, and insert incoming packets arriving from the virtual link machinery.

3.2 Virtual Mobility

In the context of a VTB we define virtual mobility as follows: a VTB features virtual mobility if,
during the course of a user’s experiment on the VTB, the positions of nodes (be they physical,
simulated, or emulated), as initially specified in the VTB description, change. To support virtual
mobility in VTBs, we propose the following basic concept: Where we have a VTB featuring
virtual mobility, all communication between virtually mobile nodes and other nodes (whether
virtually mobile or fixed) is channelled through a virtual mobility interpreter (VMI) that main-
tains a list of the current (virtual) locations of all the nodes involved. All packets sent from nodes
are channeled to the VMI using components from the virtual link machinery mentioned above.
When the VMI receives a packet it pushes it through a radio channel model, and thereby discov-
ers a virtual area within which the packet can be heard. The VMI then pushes the radio packet to
all nodes within this virtual area. Again, this pushing is done through the virtual link machinery.
Drilling down into this basic design it is clear that there are many issues arising:

1. How do we specify virtual mobility? One option is to use WISEBED’s XML-based
WiseML language, which has most of the required descriptive capability. But there are
other options such as the ‘BonnMotion format’ [AEGS10] (http://www.cs.uni-bonn.de/IV/
BonnMotion) which specifies a plain text file in which every line describes the motion of
one host1. Another option would be to employ vector-based descriptions of mobility –
these would not need to rely on interpolation between successive discrete instances of

1 In this format, a line consists of one or more (t,x,y) triplets of real numbers, such as t1 x1 y1 t2 x2 y2 t3
x3 y3 t4 x4 y4 ...; the meaning being that the given node will get to location (xk,yk) at time tk.

3 / 12 Volume 37 (2011)



Towards Virtual Mobility Support in a Federated Testbed for Wireless Sensor Networks

time. And a more left-field option would be to adopt a virtual time concept as proposed
by [WSHW08]. A related design dimension is whether a mobility specification is fixed or
changeable:

(a) The mobility of a node may be predefined prior to an experiment, e.g., as part of the
experiment initialization using, e.g., the BonnMotion format.

(b) Or, mobility may be dynamically calculated during the simulation by the supervising
VMI or the node itself.

2. How does the system control virtual mobility? The obvious approach is to let a control-
ling entity such as the VMI specify the nodes’ mobility. We call this a controlled mobility
specification, since a controlling entity rather than the individual node itself determines
its mobility specification. Another possibility is autonomous mobility whereby individ-
ual nodes determine their own virtual mobility – e.g. according to private scripts owned
by each node. In this case, the individual nodes would need to continually update the
VMI with their current position. The option of autonomous mobility would also facilitate
the modelling of adaptive mobility – or at least it would delegate to individual nodes the
problem of how to adapt mobility.

3. How could the VMI concept be realised? One possible approach would be to use a spe-
cialised hardware-based engine to model high resolution, high throughput radio channels.
However, this approach is likely to be expensive and to not scale very well. Another ap-
proach, which we currently favour, is to use a simulator engine such as OMNeT++ as
the basis of the VMI. As mentioned in Section 2, experience has indicated that real-time
throughput can be achieved with this simulator at a reasonable scale [SGB11]. Further-
more, it is obvious that scaling could be further enhanced through distribution—especially
given that WISEBED is already a federated architecture. For example, we could have one
OMNeT++-based VMI instance at each physical testbed site (they could be time synchro-
nised using NTP or PTP) or assign VMIs to sub-areas of the virtual space. This raises
further questions of how to optimally place VMIs within the physical infrastructure under-
lying the VTB to maximise scalability. It would clearly be important in a distributed VMI
implementation to minimise communication latency between VMI instances.

4. Can virtual mobility co-exist with physical mobility? Ideally, any physically mobile nodes
in a VTB environment should work consistently with virtual mobility elsewhere in the
VTB – so that, for example, if two physical nodes are within range of each other, and one
moves physically and the other virtually, but in the same direction and at the same speed,
the (virtual) distance and therefore (virtual) connectivity between the two stays the same.
A related issue is: when we have virtual mobility in a VTB do we force all communication
through the VMI - or can we leave some nodes in the VTB to communicate using their
native mechanisms (such as physical radios, virtual links) outside of the VMI context
– e.g. if some nodes are out of communication range of anything that might move. But
given that nodes are moving how does the system knows which areas of the VTB are ‘safe’
from virtual mobility? This can be deduced in fixed and deterministic mobility scenarios,
but presumably not when nodes can autonomously virtually move.

Proc. WowKiVS 2011 4 / 12



ECEASST

4 Implementation Approach for the Virtual Mobility Concept

Having considered the issues above we now present the design of an infrastructure to support
virtual mobility in a WISEBED VTB environment. The main elements in our design are as
follows (see Figure 1):

• A set of nodes (physical, emulated or simulated) that comprise the VTB.

• A virtual space, divided into sub-spaces, in which nodes live and in which virtual mobility
takes place.

• A distributed set of VMIs, each of which is associated with a sub-space of virtual space.

• A distributed set of portal server agents (PSAs). A PSA runs on the portal server of
each physical testbed site.2 Simulator servers that host simulated nodes will also have an
associated PSA.

• An initiator that is responsible for initialising the system.

We proceed by first considering a ‘basic case’ design and then, in the following section, con-
sidering complicating factors and extensions.

4.1 Basic Case

4.1.1 Preamble

Each virtually-mobile node has a dynamically-varying coordinate attribute (x,y,z), which places
it somewhere in virtual space. The virtual space is divided up between VMIs in such a way that
the sub-spaces associated with each VMI slightly overlap such that each VMI can see nodes just
over the ‘border’. We refer to these overlapping areas as interference areas; and to the other
areas, where no overlaps exist, as core areas. The extent of the interference areas is determined
such that packet transmissions from nodes within an interference area might affect nodes in the
neighbour sub-spaces, while transmissions originating from a core area will definitely not affect
any neighbour sub-space.

The motivation for this interference/core distinction is to handle cases where packets travel
over borders, and the VMIs on each side of the border need to be aware of all in-range nodes so
that they can factor them into their modelling of radio interference.

At any given time, we will say that nodes within a VMI’s core area are supervised by that
VMI. Where a node is in an interference area, we say that the node is supervised by one and
only one of the VMIs participating in the interference area, and is additionally co-supervised by
the others. We will also say that each node is managed by some specific PSA at the physical
implementation level. The ‘supervised by’ and ‘co-supervised’ mappings might change as the
node virtually moves; but the ‘managed by’ mapping will be invariant as it is part of the physical
infrastructure (barring physical mobility).

2 In the WISEBED federated architecture a portal server is a gateway interconnecting a testbed site to the Internet.

5 / 12 Volume 37 (2011)



Towards Virtual Mobility Support in a Federated Testbed for Wireless Sensor Networks

Portal Server 1 Portal Server 2

sn01 sn02 sn03 sn04 sn05 sn06 sn07

VMI 1 VMI 2
Virtual Space

Sub-space 1 Sub-space 2

in
te

rfe
re

nc
e 

ar
ea

sn01

sn02

sn03

sn04

sn05

sn06

sn07

VMI-T (topology)

VMI-SN (supervised nodes)

PSA-MN (managed nodes)

core area core area

VMI-T VMI-T
VMI-SN VMI-SN

VMI-T VMI-T

PSA-MNPSA-MN

Figure 1: General architecture showing the main components with two PSAs and two VMIs

4.1.2 Data Structures

The design incorporates the following data structures.

• Each VMI has a supervised node table (VMI-SN) that maps the nodes it is supervising to
the node’s current coordinate attribute value and to its managing PSA.

• Each VMI has a VMI topology table (VMI-T) that maps each VMI to coordinates in the
virtual space. This table is the same for each VMI. Each PSA also has a copy of this table.

• Each PSA has a managed node table (PSA-MN) that maps its managed nodes to a VMI.

The VMIs are interconnected using an overlay network which is structured according to the
relative positions of the VMIs’ sub-spaces. For the construction of the overlay network we em-
ploy Voronoi diagrams, which map each point in virtual space to the closest Voronoi site (i.e.
the point’s associated VMI). The Delaunay triangulation corresponding to the Voronoi diagram
defines the VMI overlay network (see Figure 2). This ensures low latency connectivity between
neighbouring VMIs because neighbouring VMIs are directly interconnected in the overlay topol-
ogy (this is advantageous since neighbouring VMIs communicate frequently with each other).

4.1.3 Initialization

Initialization of a virtual-mobility enabled VTB is performed by the initiator, which sets up the
experiment by defining the virtual sub-spaces and their associated VMIs. The overlay network

Proc. WowKiVS 2011 6 / 12



ECEASST

1 2

3

4

5

6

7

8

9

10

subspace 1 subspace 2

subspace 3

subspace 4
subspace 5

subspace 6

subspace 7

subspace 8

subspace 9

subspace 10

VMI

Figure 2: VMI overlay network based on Delaunay triangulation and a Voronoi diagram

discussed above is used to disseminate information about the virtual positions of the VMIs so
that they can initialize their VMI-T tables3. The PSAs initialize their copies of the VMI-T table
by contacting one or more VMIs.

At the beginning of an experiment the nodes and their managing PSAs have to be defined.
Moreover, mobility information must be provided, which is stored in the VMI-SN tables (in
addition, a backup copy is kept at the managing PSA in order to be able to recover from VMI
failures). In case of pre-defined mobility (see Section 3) this mobility information includes full
trajectories of the nodes from which VMIs can initialize their VMI-SN tables. In the case of
dynamically-calculated mobility, it contains mobility-model dependent parameters based (e.g.
these parameters would relate to the OMNeT++ framework assuming our mobility model builds
on the VirtualMesh approach discussed in Section 2).

4.1.4 Virtual Mobility Management

To keep the PSA-MN and VMI-SN tables up to date, dynamic information such as the nodes’
supervising VMIs is disseminated by flooding or by direct communication between a VMI and
the PSAs that manage its supervised nodes.

To support virtual mobility across sub-spaces, a handover mechanism between VMIs has to
be implemented. Handovers are triggered by the previously-supervising VMI as soon as a node
is deemed sufficiently close to a neighbouring sub-space. In the pre-defined mobility case a VMI
should have enough knowledge (current position, speed, direction, and future mobility pattern)
to determine the best time for triggering a handover. To minimize the number of handovers, it is
not necessary to trigger a handover as soon as a node is is seen to be approaching a neighbour
VMI. It is also foreseen that VMIs can keep track of nodes that have recently left the interference
area and are in a core area of a neighbouring VMI. In case of a handover, the VMI-SN tables of
the VMIs involved in the handover will change. Moreover, the new supervising VMI will inform

3 This information can also regularly disseminated throughout the overlay network as in link-state routing protocols.
Note, however, that topology information only needs to be updated if the virtual position of VMIs can change, as
discussed in Section 4.2.3.

7 / 12 Volume 37 (2011)



Towards Virtual Mobility Support in a Federated Testbed for Wireless Sensor Networks

the corresponding PSA about that change. The mobility information of a node is also forwarded
to the new VMI accordingly.

4.1.5 Packet Processing

Having sketched how virtual mobility works, we are now in a position to describe in detail what
happens when a virtually-mobile node sends a packet:

1. The packet is intercepted by the WISEBED’s driver stacking framework on the sending
node and forwarded to the node’s PSA.

2. The PSA looks up the sending node’s currently supervising VMI.

3. The PSA forwards the packet to the supervising VMI.

4. The supervising VMI determines all neighbouring sub-spaces affected by the packet trans-
mission (this is done using a rough model that over-estimates packet propagation) and for-
wards a copy of the packet to the asociated VMIs4, together with all relevant transmission
parameters such as the position of the transmitting node and the transmission power used.

5. All the VMIs involved push the packet through their radio models (e.g. as provided by
OMNeT++) ; as a result, they determine the actual, accurate, spatial extent to which the
packet should propagate.

6. All the VMIs consult their VMI-SN tables to determine the set of supervised (but not co-
supervised) nodes that currently lie within this extent and thus the PSAs that are managing
each of these nodes.

7. All the VMIs that supervise receiving nodes forward packets to the PSAs managing those
nodes.

8. The receiving PSAs forward the packet to the respective receiver nodes.

We now exemplify this protocol with specific reference to Figure 3. Note that nodes sn03 and
sn06 are in the interference areas of their respective sub-spaces: sn03 is supervised by VMI 1
and co-supervised by VMI 2; whereas sn06 is supervised by VMI 2 and co-supervised by VMI
1 (the step numbers in the below correspond to those above).

1. Node sn03 sends a packet which is intercepted and transferred to PSA 1

2. PSA 1 consults its VMI-T table to determine sn03’s supervising VMI (i.e. VMI 1).

3. PSA 1 forwards the packet to VMI 1.

4 This requires that neighbour VMIs can communicate with a rather short delay. Alternatively, the PSA could send
packets to all VMIs that might be affected by the upcoming transmission, e.g., send the packets to all neighbours
of the supervising VMI. This information is available at the PSAs’ copy of the VMI-T table. However, processing
such a transmission would require the neighbour VMI to know exactly the transmitting node’s position. This can
be achieved by frequently exchanging node position information between VMIs, in particular about nodes in their
common interference area.

Proc. WowKiVS 2011 8 / 12



ECEASST

PSA 1 PSA 2

sn01 sn02 sn03 sn04 sn05 sn06 sn07

Sub-space 1 supervised by VMI 1

in
te

rfe
re

nc
e 

ar
ea

sn01

sn03

sn04

sn05

sn06

sn07

Sub-space 2 supervised by VMI 2

in
te

rfe
re

nc
e 

ar
ea

sn03

sn06

sn02

VMI 1 VMI 2

1

3

6

5

core area core area

VMI-T
2

4

5

7

66

7

88

Figure 3: Example packet flow: sn03 sends to sn04 and sn06

4. VMI 1 forwards the packet to VMI 2, since sn03 is in their common interference area.

5. The propagation of the packet is modelled by both VMIs using their configured propaga-
tion model and taking interference into account.

6. As a result, VMI 1 determines that the packet should be received by sn04 and, in parallel,
VMI 2 determines that the packet should be received by sn06.

7. VMI 1 forwards the packet to PSA 2 (destination: sn04); and VMI 2 forwards the packet
to PSA 2 (destination: sn06)

8. PSA 2 forwards the packets to sn04 and sn06 respectively.

4.2 Discussion of More Complex Cases and Further Extensions

4.2.1 Autonomously Mobile Nodes

In the basic design discussed above, we assumed that virtual mobility was controlled by a mo-
bility model at the VMI or another controlling entity. We now briefly consider the case in which
each node autonomously determines its mobility, meaning that nodes must proactively inform
PSAs / VMIs about their virtual positions.

In this case, each node knows its virtual position and can pass this information to the man-
aging PSA with each packet transmission. The PSA can then directly forward the packet to all

9 / 12 Volume 37 (2011)



Towards Virtual Mobility Support in a Federated Testbed for Wireless Sensor Networks

relevant VMIs, i.e., to the supervising VMI as well as to the neighbour VMIs. Basically, this
uses the alternative direct packet forwarding from the PSA to potentially affected VMIs that was
discussed in step 4 above. Furthermore, we have to ensure that an autonomously mobile node
periodically updates its position via the PSA to its supervising VMI in order to support correct
processing of received transmissions.

4.2.2 Accommodating Physical Mobility

Physical mobility5 can be accommodated by applying a design similar to that discussed in Sec-
tion 4.2.1, in which autonomous nodes (including physically mobile ones) repeatedly report
their positions to PSAs and VMIs. In this case, the reporting process would have to apply a
mapping from physical floor coordinates to the virtual space’s coordinate system. This map-
ping, which would be established statically at the start of the experiment, would correspond to
exactly where in the virtual space the floor space (and thus the limits of the node’s mobility) was
supposed to be located. When a physically-mobile node sends a message, it would be handled
by the usual PSA/VMI machinery and would therefore have exactly the same semantics as the
virtually-mobile case. The same would apply for the case of a physically-mobile node receiv-
ing packets from virtually-mobile nodes. The same would even apply for one physically-mobile
node communicating with another physically-mobile node.

4.2.3 Adaptation of Sub-Spaces

Until now we have assumed a fixed partitioning of the virtual space into sub-spaces. A further
extension is to let the VMIs self-organize and adapt the sizes of their virtual sub-spaces. This
might be useful for automatic load balancing. Before starting the experiment, the initiator would
do the initial definition of the VMIs’ virtual positions. Afterwards, the overlay network and the
respective Voronoi diagram would be adaptive in order to support load balancing. For example,
a VMI might move closer to another VMI in order to cover more nodes. Another criterion
for VMI movement might be to reduce node handovers. Frequent handovers might occur if
a densely-populated area with high node mobility is divided by a sub-space border. In any
case, node movement should not violate the planar graph characteristic. Information about the
virtual positions of the VMIs as well as their number of supervised nodes would be regularly
disseminated throughout the overlay network as in link-state routing protocols.

5 Conclusions and Next Steps

We have presented an architecture for adding virtual mobility to a federated testbed for wireless
sensor networks. Our concept adds virtual mobility by embedding physical, emulated and simu-
lated nodes in a common virtual space in a completely uniform manner. The traffic generated by
nodes is intercepted and redirected to a mobility model (VMI) responsible for managing a virtual
space. Our concept provides unlimited mobility of all types of nodes within the virtual space.

5 This might take the form of attaching a physical sensor node to some sort of robotic device or even to an unmanned
aerial vehicle that could move around a floor or in a 3-dimensional space. Such devices could also host an out-of-band
wireless network that could communicate with the management backbone network used for the rest of the system.

Proc. WowKiVS 2011 10 / 12



ECEASST

The proposed distributed concept also allows arbitrary scalability. The next steps are the con-
crete implementation of the virtual mobility design by making use of existing implementations
such as VirtualMesh as a basis for the VMI implementation, and WISEBED’s virtual links.

Acknowledgements: The authors would like to acknowledge the support of the EC in funding
this research under the Framework Programme 7. We would like specifically to thank COST
Action IC 0906 for providing funding under the STSM scheme.

Bibliography

[AEGS10] N. Aschenbruck, R. Ernst, E. Gerhards-Padilla, M. Schwamborn. BonnMotion: a
mobility scenario generation and analysis tool. In SIMUTools ’10: Proceedings of
the 3rd International ICST Conference on Simulation Tools and Techniques. Pp. 1–
10. ICST (Institute for Computer Sciences, Social-Informatics and Telecommuni-
cations Engineering), ICST, Brussels, Belgium, Belgium, 2010.

[BCD+10] T. Baumgartner, I. Chatzigiannakis, M. Danckwardt, C. Koninis, A. Kroller, G. My-
lonas, D. Pfisterer, B. Porter. Virtualising Testbeds to Support Large-Scale Recon-
figurable Experimental Facilities. In in Proceedings of the 7th European Confer-
ence on Wireless Sensor Networks (EWSN 2010), eds. J. Sa Silva and B. Krishna-
machari and F. Boavida (LNCS 5970). 2010.

[BCF+10] T. Baumgartner, I. Chatzigiannakis, S. Fekete, C. Koninis, A. Kröller, A. Pyrge-
lis. Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks.
In Silva et al. (eds.), Wireless Sensor Networks. Lecture Notes in Computer Sci-
ence 5970, pp. 162–177. Springer Berlin / Heidelberg, 2010.

[BJSS09] K. Borries, G. Judd, D. Stancil, P. Steenkiste. FPGA-Based Channel Simulator
for a Wireless Network Emulator. In IEEE 67th Vehicular Technology Conference
(VTC2009-Spring). Barcelona, Catalunya, Spain, April 2009.

[CKM+09] I. Chatzigiannakis, C. Koninis, G. Mylonas, S. Fischer, D. Pfisterer. WISEBED:
an Open Large-Scale Wireless Sensor Network Testbed. In Proceedings of the 1st
International Conference on Sensor Networks Applications, Experimentation and
Logistics. Sept. 2009.

[DHK+09] D. Dudek, C. Haas, A. Kuntz, M. Zitterbart, D. Krüger, P. Rothenpieler, D. Pfis-
terer, S. Fischer. A Wireless Sensor Network For Border Surveillance (Demo). In
Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems.
ACM, Berkeley, CA, Nov. 2009.

[ESHF04] M. Engel, M. Smith, S. Hanemann, B. Freisleben. Wireless ad-hoc network emula-
tion using microkernel-based virtual Linux systems. In 5th EUROSIM Congress on
Modeling and Simulation. Pp. 198–203. Cite Descartes, Marne la Vallee, France,
September 6-10 2004.

11 / 12 Volume 37 (2011)



Towards Virtual Mobility Support in a Federated Testbed for Wireless Sensor Networks

[JS03] G. Judd, P. Steenkiste. Repeatable and Realistic Wireless Experimentation through
Physical Emulation. In 2nd Workshop on Hot Topics in Networks (Hot-Nets II).
Boston, MA, USA, November 2003.

[KBHS07] T. Krop, M. Bredel, M. Hollick, R. Steinmetz. JiST/MobNet: combined simulation,
emulation, and real-world testbed for ad hoc networks. In WinTECH ’07. Pp. 27–
34. ACM, New York, NY, USA, 2007.

[LWD+09] M. Lacage, M. Weigle, C. Dowell, G. Carneiro, G. Riley, T. Henderson, J. Pelkey.
The Network Simulator ns-3. http://www.nsnam.org/, 2009.

[SBBD03] S. Sanghani, T. Brown, S. Bhandare, S. Doshi. EWANT: the emulated wireless ad
hoc network testbed. Volume 3, pp. 1844 –1849 vol.3. mar. 2003.

[SGB11] T. Staub, R. Gantenbein, T. Braun. VirtualMesh: An Emulation Framework for
Wireless Mesh and Ad-Hoc Networks in OMNeT++. SIMULATION: Transactions
of the Society for Modeling and Simulation International 87(1-2):66–81, January
2011.

[Var01] A. Varga. The OMNeT++ Discrete Event Simulation System. In European Simula-
tion Multiconference (ESM’2001). Prague, Czech Republic, June 6-9 2001.

[WLG02] B. White, J. Lepreau, S. Guruprasad. Lowering the Barrier to Wireless and Mo-
bile Experimentation. In First Workshop on Hot Topics in Networks (HotNets-I).
Princeton, New Jersey, USA, October 28-29 2002.

[WLS+02] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler,
C. Barb, A. Joglekar. An Integrated Experimental Environment for Distributed Sys-
tems and Networks. In Fifth Symposium on Operating Systems Design and Imple-
mentation. Pp. 255–270. Boston, MA, USA, December 2002.

[WSHW08] E. Weingärtner, F. Schmidt, T. Heer, K. Wehrle. Synchronized network emulation:
matching prototypes with complex simulations. SIGMETRICS Perform. Eval. Rev.
36(2):58–63, 2008.

[WVBC09] B. Walker, I. D. Vo, M. Beecher, C. Clancy. A demonstration of the meshtest wire-
less testbed. Testbeds and Research Infrastructures for the Development of Net-
works & Communities, International Conference on 0:1, 2009.

[ZL02] Y. Zhang, W. Li. An integrated environment for testing mobile ad-hoc networks.
In 3rd ACM international symposium on Mobile ad hoc networking & computing
(MobiHoc ’02). Pp. 104–111. ACM, New York, NY, USA, 2002.

Proc. WowKiVS 2011 12 / 12


	Introduction
	Related Work
	Virtual Testbeds and Virtual Mobility
	Virtual Testbeds
	Virtual Mobility

	Implementation Approach for the Virtual Mobility Concept
	Basic Case
	Preamble
	Data Structures
	Initialization
	Virtual Mobility Management
	Packet Processing

	Discussion of More Complex Cases and Further Extensions
	Autonomously Mobile Nodes
	Accommodating Physical Mobility
	Adaptation of Sub-Spaces


	Conclusions and Next Steps

