
Development of a Virtual Computer Architecture Course
Silvia Bechter, Torsten Braun, Günther Stattenberger

Institut für Informatik und Angewandte Mathematik, Universität Bern
Email: [bechter|braun|stattenb]@iam.unibe.ch, URL: www.iam.unibe.ch/~rvs

Keywords: Distance Learning, Computer Architecture, Practical Exercises, Simulation

1. INTRODUCTION

Virtual exercises and lectures are being developed to assist or replace many traditional
lectures. A lot of them are rather straight-forward, e.g. develop multimedia content, or add on-
line tests and quizzes to a web page of a lecture. However, there are several types of courses it
is rather difficult to develop a virtual course for. Examples are practical exercises, where
students have to work with special equipment within a laboratory room. Several efforts to
replace laboratory exercises by virtual ones have been started. For example, within the Swiss
Virtual Campus programs, the projects Nanoworld [5] and Vitels [6] are developing courses
allowing students to perform practical exercises virtually and / or remotely from any
workstation. In both projects, significant technical efforts are required to build a secure and
reliable infrastructure supporting users in performing virtual and remote experiments. In this
paper we describe another virtual exercise. In contrast to the courses mentioned above, no
externally funded project has been set up for its development. Moreover, we did not have the
explicit goal to develop a virtual course. The virtual course just evolved by changes to a
traditional course that have been necessary due to several financial and organisational
constraints. The result of the different actions finally was a course that can completely be
performed remotely using a web-browser.

2. TRADITIONAL COMPUTER ARCHITECTURE COURSE

Three years ago the traditional course of our predecessors consisted of a series of lectures
supplemented by theoretical and practical programming exercises. The course itself introduces
the basic concepts of computer architecture. The assembler programming language is a
primary subject of the course and therefore programming exercises are required.
The Motorola 68000 processor family has a rather clean machine programming concept (e.g.
linear addressing) compared to other CPUs. The practical exercises were therefore based on
programming a M68k micro-computer module (see [7] for a similar module). Since the main
purpose of these modules was the use in education, they had very limited video support and
I/O facilities. Only ten stand-alone systems were available within a special room without
network connection for data transfer to other computers. For saving their individual data, flash
memory cards have been handed out to the students. When we were taking over the course,
the number of students was growing significantly to nearly 100 due to the increasing number
of computer science beginners. Since the students could only perform the exercises at such a
system in the particular laboratory, about ten students had to share a single machine.
Consequently during working hours the exercise room was always overcrowded and a lot of
the students had to perform the exercises in the evening or early morning.
The students had to deliver a program listing to the tutors, who, based on the listing, decided
whether the program fulfilled the required functionality or not. Of course, this was not an easy
task. Another problem was the age of the used hardware equipment. Hardware failures
(micro-computer and memory card) became more frequent, but no replacement could be
purchased from the manufacturer. One solution to the problem would have been to buy a
sufficient number of new micro-computer systems, but neither rooms nor fundings were
available. In addition, we did not want to change the processor platform since the lectures and

the lecture material is based on the Motorola 68k microprocessor family. Other directions
resulting in the development of virtual exercises were required.

3. VIRTUAL COMPUTER ARCHITECTURE COURSE

First, we enabled students to participate in lectures and exercise lessons virtually by providing
the available teaching material (lecture slides and exercise sheets) on the web. In addition,
students were able to submit the solutions via email to the tutors and access web pages
containing information about their successful exercise participation. Although the first step
was rather simple to achieve, it had several advantages: Students were able to easily keep
track with lecture slide changes. Many students, in particular those with computer science as a
minor subject, could not regularly attend the course due to lectures of their major subject that
took place at the same time. Also, temporarily absent students, e.g. due to military or
professional reasons, could further participate in the course. The major challenge, however,
have been the laboratory exercises.

3.1 Simulation
A first observation was, that many of the practical exercises can be performed using a
microprocessor simulation and assembler tool running on a Solaris workstation or on a
Windows PC which is a significant relief to the students. Workstations or PCs provide a more
convenient user interface than micro-computer systems. Using a high-end graphical text editor
is much more comfortable than the simple line-based editor provided by micro-computer
systems. Even more important for beginners is that runtime programming errors, which occur
frequently in assembler programming, do not cause the whole computer to freeze and – as a
result – loose all unsaved data, but the simulation framework provides better ways to recover
from errors. Also several graphical debugging, tracing and monitoring tools are available to
the students.

Figure 1 : M68k simulator and assembler tool
For our purpose, we selected the BSVC [1] microprocessor simulation framework developed
at North Carolina State University. Originally written for UNIX, it has been ported to
Windows. It includes a M68k simulator/assembler and provides a graphical user interface.

The availability of a simulator tool allows the students to perform many of the assembler
programming exercises either on their private PC at home or at one of the numerous Solaris
workstations at our institute (cf. Figure 1). The tutors are able to check the correctness of the
exercises / programs by running the code on the simulator. This is a major improvement
compared to the prior situation when the correctness of the source code had to be verified
manually.

3.2 Cross Assembling
Nevertheless, the use of a simulation tool was not an optimal solution. Students should also
have a real computer system that is able to run the developed assembler code. In addition,
several exercises addressing the topic of input and output could not be performed with the
simulator due to the lack of certain input/output functionalities. Therefore, we decided to
identify a micro-computer system appropriate for running M68k code. Fortunately, some
personal digital assistants (PDA) such as the Palm Top family have an M68k processor. Not
wanting to miss the advantages of developing at a workstation we needed a cross-assembling
software for the M68k. Such an assembler code development framework is called Pila [2].

Figure 2 : Web Interface of the Cross-Assembler
As a speciality of the graphical PalmOS operating system the students have not only to
provide assembler source code but also a resource file specifying the graphical resources of
the program in a human-readable text format. In order to create the PalmOS binary file, the
resource file has to be compiled first before assembling the source file. The cross-assembler
combines the resources and the machine code into a single file - the Palm executable. One
problem of Pila is, that it is available for both Windows and Linux but does not run on Solaris.
Therefore, Pila allows to develop assembler programs on private student PCs running Linux
or Windows but does not allow to do the same on the institute's student workstations. Since
we have to assume that a student has only access to the Solaris student workstations another
solution had to be found. That solution is based on a Linux server that acts as an assembling
machine producing machine code for the PDA. A student has to provide an assembler file plus
a resource file. The Linux server running the assembler environment then generates the
executable file to be downloaded to the PDA. For that purpose, a cgi script has been

developed that compiles the resource file, assembles the assembler file and generates the
binary program file. The student accesses a web page [3] and has to enter the resource file and
the assembler file (see Figure 2). By pressing a compile button, the web server runs the CGI
script and generates the binary executable file. This file can then be downloaded to the local
computer of the student. It can then be transferred to the PDA using available synchronisation
programs (Figure 3). The web-based and therefore platform-independent solution avoids that
students have to install the assembler programming environment on their own PCs.

1. upload of assembler
and resource files

2. download of binary file 3. PDA
synchronization
and program
execution on a
(emulated) PDA

Figure 3 : Assembler Code Development Steps

3.3 PDA Hardware and Emulator
In order to allow the students to run their developed programs we have bought a set of PDAs.
Students can borrow these but also use an own PDA if available. However, the last step, i.e.
running the program on a PDA can be performed completely virtual as well. For this purpose,
one can use the Palm OS Emulator [4] that is available for many platforms such as Windows,
MacOS, Linux, and Solaris. Alternatively, a student can use the available system on the
student workstations. Once a correct program has been developed, students can email the
source file to the tutors for evaluation / correction.

4. CONCLUSIONS AND OUTLOOK

This paper described the motivation and realisation of an virtual exercise for a computer
architecture lecture. A student can perform assembler programming exercises without having
a corresponding micro-computer system and without installing an assembler programming
environment on her/his local computer. This enables students to attend to the complete course
virtually although we keep the traditional lectures and theoretical exercise lessons. We
consider our developments rather as a complementary service to increase the flexibility of the
students.

5. REFERENCES
[1] BSVC, www.redlinelabs.com/bsvc/
[2] Pilot Development Tools and Articles, www.massena.com/darrin/pilot/tanda.htm
[3] Übungen Rechnerarchitektur, titan.cnds.unibe.ch/~ra/cgi-bin/ra.cgi
[4] Palm OS Emulator (POSE): www.palmos.com/dev/tech/tools/emulator
[5] Nanoworld: www.nano-world.org
[6] VITELS: www.vitels.ch
[7] L.J.Electronics http://www.ljgroup.com/lj_tech/us/Sec_2/ET_D3/ljs_8_5.html

http://www.redlinelabs.com/bsvc/
http://www.massena.com/darrin/pilot/tanda.htm
http://titan.cnds.unibe.ch/~ra/cgi-bin/ra.cgi
http://www.palmos.com/dev/tech/tools/emulator
http://www.nano-world.org/
http://www.vitels.ch/
http://www.ljgroup.com/lj_tech/us/Sec_2/ET_D3/ljs_8_5.html

	Introduction
	Traditional Computer Architecture Course
	Virtual Computer Architecture Course
	Simulation
	Cross Assembling
	PDA Hardware and Emulator

	Conclusions and Outlook
	References

