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Abstract—We have developed the Multicast Middleware, a
bridge between IP Multicast and a self-organizing Overlay Multi-
cast infrastructure, in order to make IP Multicast available to the
end user. We compare the performance of native IP Multicast and
IP Multicast tunneled through a P2P Overlay Multicast network
using the Multicast Middleware. We show that the achievable
throughput can be quite high when using Overlay Multicast for
data transport together with the IP Multicast API and that the
latency introduced by processing (en- and decapsulation) and
tunneling the captured packets can be negligible.

Index Terms—Multicasting, Overlay Multicast, IP Multicast,
Performance, Overlay Networks

I. INTRODUCTION

IP Multicast [1], [2] is an efficient way to disseminate data
from a sender to multiple receivers concurrently. Unfortu-
nately, I[P Multicast has not been widely deployed in the Inter-
net today, although several applications exist (such as Video
Lan Client [3] for video broadcasting) that can use IP Multicast
to transmit and receive data. To overcome this limitation and
offer multicast services to end users in the future Internet,
Overlay Multicast, also called Application Layer Multicast
[4]-[6], which runs on-top of Peer-to-Peer (P2P) [7] Networks,
has been introduced. Therefore, Overlay Multicast can be
used as an efficient data dissemination scheme/mechanism
for live video broadcasting, IPTV, multiplayer games, and
other scenarios. Unfortunately, Overlay Multicast is not a
standardized protocol, such as IP Multicast. Hence, different
Overlay Multicast protocols exist.

In order to offer multicasting to end users, we developed the
Multicast Middleware, which combines the IP Multicast API
with a self-organizing Overlay Multicast network. We have
chosen to use the Scribe [8], [9] Overlay Multicast facility,
which runs on top of the the Distributed Hash Table (DHT)
P2P Pastry [10], [11]. Pastry is a simple P2P routing substrate
using a ring structure (one-dimensional torus), where routing
is performed using Plaxton’s method [12]. When peers join
the network, they chose a random (uniformly distributed) and
unique ID. On each hop from source to destination, one
or more prefixes of the message’s destination address are
matched, while trying to minimize intermediate hop-delay.

Peers know more peers in their ID neighborhood than peers
further away on the ring. Scribe is a core based Overlay
Multicast infrastructure, where multicast groups are called
topics (topic IDs are from the same space as Pastry IDs) and
the root for a topic is the Pastry peer numerically closest to the
topic ID. Scribe builds multicast trees using Pastry’s routing
mechanism to discover a path to the corresponding root peer
that is responsible for the topic. The reverse of this path is the
dissemination path for the multicast messages.

Scribe/Pastry scales well for a large number of participants
and multicast groups. A Java implementation in the form
of Freepastry [13] exists, which we used in our Multicast
Middleware prototype to build and manage the Overlay Multi-
cast structure. For the actual multicast message dissemination,
we used a self-developed and highly optimized protocol and
mechanisms to efficiently replicate and forward the data, and
therefore supporting high bandwidth scenarios. The Multicast
Middleware is not limited to use Scribe/Pastry, but could also
be adapted to use other P2P Overlay Multicast systems, such
as multicasting extensions for Chord [14], [15], Bayeux [16]
running on-top of Tapestry [17], and many others.

In this paper, we describe and discuss measurements to com-
pare the performance of native IP Multicast and IP Multicast
tunneled through Overlay Multicast. We used the SmartBits
[18] “Portable High-density Network Performance Analysis
System” to generate and capture the traffic for comparing
latency and packet loss. Our measurements focus on the
achievable throughput and the latency on end systems with
acceptable packet loss for high-bandwidth scenarios, such as
video broadcasting or IPTV, and for real-time and interactive
applications, such as VoIP and multiplayer games.

The goal of this work is to answer the following question: is
using IP Multicast tunneled through overlay networks a viable
alternative to native IP Multicast? We investigate this in terms
of additional jitter and delay introduced by using an overlay
network. In this comparison, we also consider the impact of
the packet size on the results. Compared to our previous work
[19], we used Smartbits [18] to generate/capture the multicast
traffic. This allows precise delay measurements using variable
packet size, which was impossible in [19].
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The remainder of the paper is structured as follows. The next
Section describes the Multicast Middleware in more detail.
Section III gives a short overview of the test scenarios and the
different topologies used for the measurements. An evaluation
of the measurement results is given in Section IV. Section V
finally concludes this paper and gives an outlook to further
possible analysis.

II. MULTICAST MIDDLEWARE

We developed the Multicast Middleware in the scope of the
European Sixth Framework Program Project EuQoS [20], [21].
The Multicast Middleware [19], [22] enables IP Multicast for
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Fig. 1. Packet Flow between Applications and the Multicast Middleware
end users, by offering the IP Multicast API and by tunneling
multicast data through an Overlay Multicast facility. The
process is completely transparent to applications. Figure 1
shows how applications send and receive IP Multicast traffic.
A virtual network interface TAP [23] captures/injects these
IP Multicast packets at end systems. It then passes/receives
IP Multicast data to/from the Multicast Middleware, which
disseminates the packets among the group subscribers using
a Peer-to-Peer (P2P) overlay network. Furthermore, users can
define Quality of Service (QoS) requirements for the different
IP Multicast groups they are interested in. QoS reservations
are performed in the underlying QoS-enabled network and the
Overlay Multicast distribution tree in the P2P network is set
up as described in [19].

We only use Scribe/Pastry to create the overlay structure
through which captured IP Multicast data is transmitted among
the receivers using our own P2P Overlay Multicast data
transport protocol, which is optimized for high-bandwidth
and low-latency scenarios. Typically, P2P Overlay Multicast
protocol implementations (e.g. Freepastry) are not optimized
for this purpose. The P2P Overlay Multicast infrastructure or
strategy to build the overlay used by the Multicast Middleware
can though be easily exchanged with other implementations
and protocols.

III. EXPERIMENTATION AND MEASUREMENT SCENARIOS

A. Topologies used for Measurements

We have conducted performance measurements with several
chain and tree topologies. In this paper we will look at a

chain topology consisting of four hosts and a tree topology
with the maximum tree depth of four. Each host has an out-
degree of one in the chain scenario, so no IP Multicast packets
need to be duplicated but just need to be forwarded. In the
tree scenario, three hosts have to duplicate the data, and
therefore having an out-degree of two. The remaining four
hosts in the tree scenario have an out-degree of one. The tree
scenario represents a small sub-tree of a big overlay scenario,
where typically the out-degree of hosts is between O to 2.
We used traffic characteristics reflecting a constantly sending
source at various fixed rates (1.0, 5.0, 10.0, 24.8, 49.6, 75.2
and 84.8 Mbps) with packet payload sizes of 32, 512 and
1024 bytes. The traffic was generated and measured using the
SmartBits, which allows more accurate measurements than
a software based solution running on a Linux machine as
performed in earlier measurements. The Linux routers in-
between were running no background processes, their full
system performance was available for IP Multicast routing in
the native IP Multicast measurements, and for the Multicast
Middleware packet capturing/processing and overlay network
forwarding in the Overlay Multicast measurements.

The different topologies used for the performance measure-
ments are depicted in Figures 2 and 3. The chain topology
in Figure 2 consists of the Smartbits (traffic generation and
capture) and four PCs acting as Linux multicast routers

connected in a chain.

in 192.168.3.2 in 192.168.4.2
out 192.168.3.1
P3 P4
out 192.168.4.1 out 192.168.5.1
Smartbits
in 192.168.6.2 in 192.168.5.2
in 192.168.7.2 P6 P5

out 192.168.7.1 out 192.168.6.1

Fig. 2.

The Chain Topology used for the Measurements

The tree topology in Figure 3 consists of the Smartbits
(traffic generation and capture) and seven PCs acting as Linux
multicast routers. They are connected such that the longest
branch of the tree consists also of four PCs, but the branching
nodes have to additionally duplicate the packets and send them
to two receivers.

We wanted to accurately measure and compare the latency
introduced by processing and tunneling the IP Multicast data
through Overlay Multicast and also wanted to determine the
maximum achievable throughput, the packet loss and delays
using the Multicast Middleware in different topologies. Unfor-
tunately, there are no such large pure IP Multicast networks
available in the Internet to support these high-bandwidth
measurements. Additionally, the measurements to determine
the introduced delay as described above would not be possible
in the Internet. Therefore, we also could not use the PlanetLab
environment, which would introduce additional overhead and
delays through the virtual machines used on PlanetLab nodes.
Hence, we performed the measurements locally in a fully
controllable laboratory environment.
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Fig. 3. The Tree Topology used for the Measurements

The computers acting as routers in the test environment had
an Intel Pentium IV 3.0 GHz CPU with 1 MB Cache, two
times 512 MB Take M5 DDR 400 CL 2.5 RAM, P4S800-
MX mainboards with BIOS rev. 0501, one SiS 900/7016
100 Mbps onboard network adapter, two Realtek RTL-8169
Gigabit LAN network cards, and one Hitachi Deskstar 7K80
80GB HDS728080PLAT20 hard drive. The operating system
used was Fedora Core 5 with Linux kernel 2.6.20-1.2307. To
configure IP Multicast routing on Linux, we used SMCRoute
[24] version 0.92. SMCRoute is a combination of a daemon
and command line tool, which allows to setup static IP
Multicast routes for the different network interfaces of the
Linux routers. It is similar to mrouted [25], with the difference
that it supports static instead of dynamic multicast routes,
which is what we needed for our experiment setup, since we
wanted to maintain static multicast routes.

Previous measurements [19] using two and five host chain
scenarios showed that the Multicast Middleware running on
a similar hardware is able to process roughly 100 Mbps
of total network traffic (incoming, duplicating and outgoing)
without any packet drops. Those previous measurements were
performed using the Multi-Generator (MGEN) [26] software
to generate and capture the traffic rather then using the more
sophisticated traffic measurement system SmartBits used for
the measurements presented in this paper. In those previ-
ous measurements, we used a single Dual-Core Pentium D
3.2 GHz CPU system for generating, capturing and forwarding
the data. Since two different hosts were used to generate and

capture the traffic, delay measurements as presented in this
paper were not possible. This is due to the fact that it is
very hard to synchronize the clock accurately between two
independent systems. Using SmartBits allows us to perform
delay specific measurements and also allows us to accurately
generate traffic with smaller packet sizes at high bandwidth,
which would not be possible with software based systems.

B. Performed Measurements

We defined three different packet payloads in order to
analyze the differences between native IP Multicast and our
Overlay Multicast solution. For each of the different packet
payloads, we performed the measurements with five different
network load values. The nature of the Smartbits API restricted
us to use the inter-packet gap instead of directly the bandwidth
as a parameter. The different payload sizes, packet inter-arrival
delay, resulting bandwidth and number of packets being sent
are shown in Table I. The row labeled Payload denotes the
actual payload size in a data packet, whereas values in the
row Data show the overall packet size (including IP header).
The Packet gap value is the time in microseconds between
the moment a packet has been completely sent and when the
next packet starts being sent. The number of packets sent in
a scenario is shown in the # packet row. The total number of
packets that the Smartbits can process is limited. Due to this
limitation, we did not send more than 130000 packets in any of
the scenarios. Therefore, the last two scenarios with a payload
of 32 bytes had a runtime of less than half as long as the other
scenarios. The combination of Data and Packet gap defines the
desired bandwidth for the scenarios. We used different payload
sizes of 32, 512 and 1024 bytes with bandwidth values of 1.0,
5.0, 10.0, 24.8, 49.6, 75.2 and 84.8 Mbps. A smaller packet
size resulted in more packets being sent and processed. This
allows us to determine the limit of successfully processable
packets for the different topologies. For the payload size of
32 bytes, we limited the bandwidth to 49.6 Mbps.

TABLE 1
TRAFFIC CHARACTERISTICS SCENARIOS

No. | Payload Data| Bandw.| Packet gap| # packets
(bytes) | (bytes) | (Mbps) (bit time)

1 32 79 1.0 61000 8000
2 32 79 5.0 11600 40000
3 32 79 10.0 5500 80000
4 32 79 24.8 1720 130000
5 32 79 49.6 485 130000
6 512 559 1.0 430000 1200
7 512 559 24.8 12500 28000
8 512 559 49.6 4000 56000
9 512 559 75.2 1100 85000
10 512 559 84.8 450 95000
11 1024 1071 1.0 830000 600
12 1024 1071 24.8 24000 15000
13 1024 1071 49.6 7700 29000
14 1024 1071 75.2 2250 44000
15 1024 1071 84.8 960 50000
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Fig. 4. Measurement Results for Native IP Multicast using Chain and Tree Topologies

IV. EVALUATION
A. Native IP Multicast

The measurements with the chain topology in Figure 4(a)
show a very small packet loss below 0.2%. Most of the packets
are lost in case of a packet payload of 32 bytes and higher
bandwidth values. There is a high loss for high packet rates
(small packet payload and high bandwidth). For a payload
of 1024 bytes, the packet loss rate starts just below 0.2% and
then falls down towards 0% for higher bandwidth values. This
is due to the fact, that for low bandwidth values, only a few
hundred packets are being sent and a single dropped packet
has a significant impact on the percentage value, whereas for
higher bandwidth values, many thousand packets are being
sent, therefore reducing the impact of a single dropped packet
on the percentage value.

The latencies for the chain topology are shown in Fig. 4(b).
The network load has almost no influence on the latency, with
negligible differences. It seems that SMCRoute is buffering
packets before forwarding packets to a host. Therefore, the
delay increases as the payload size increases.

For the tree topology, we captured the data on the different
lengths of the tree. The packet losses for P1, P4, P6 and P7
(leaf hosts) were equal and therefore we only show the packet
loss for P6 in Fig. 4(c). Compared to the chain topology,
packet loss does not change significantly, although for config-
urations with higher payload, the packet loss increases a little.
The drop rate behavior for low bandwidth values and for a
payload of 1024 bytes is as described in the chain topology.
The latency has a different behavior in the tree topology as
shown in Fig. 4(d). It seems that SMCRoute does not buffer
packets when it has to duplicate and forward them to multiple
hosts. Hence, the average delay is now similar for different

payload values. In the chain topology, the delay varied de-
pending on the payload size due to the impact of buffering
performed by SMCRoute. We also have two configurations
(traffic characteristics 5 and 10) with larger jitter than the
average. It is clearly visible that the delay values measured
have a much higher variance for those two configurations. For
such configurations with a small payload and a high network
load, the jitter seems to increase. This behavior is caused by
the small inter-packet gap, and the amount of packets sent to
the computers, as with this configuration, the kernel cannot
transfer the packets quickly enough, so they get queued.

B. IP Multicast Tunneled through an Overlay Network

Our measurements show that the Multicast Middleware
generally handles packet sizes of 512 and 1024 bytes very
well, while the smaller packet size of 32 bytes together with
high bandwidth lead to a high packet drop rate. Figure 5(a)
shows that packet loss in the chain topology for 1024 bytes
packet payload is between 0% and 0.04%. Packet drops occur
when the Multicast Middleware has to process many packets
in a short time, as it is the case for 32 bytes packet payload
with more than 10 Mbps and 512 bytes packet payload with
75.2 Mbps. Therefore, the Multicast Middleware seems to be
able to process around 18000 incoming packets per second
in the chain scenario before it starts to drop packets. The
Multicast Middleware has to process two packet streams in
the chain topology, the incoming and the outgoing stream.
The latency measurements for the chain topology using Over-
lay Multicast are presented in Figure 5(b). The delays are
acceptable (meaning below 10 ms) for bandwidth values of
10 Mbps and below and a payload of 32 bytes. For 512
and 1024 bytes payloads, the latencies are acceptable for all
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Fig. 5.

bandwidth values used for the measurements. The latencies
between 1 to 10 Mbps are decreasing for increasing band-
width. This is due to the multi-threaded design of the Multicast
Middleware. Each overlay connection in the Multicast Middle-
ware is handled by a separate thread (light-weight process).
This thread reads data from a ring buffer and waits on a
conditional variable if the buffer is empty. At high packet rates,
this thread never waits. At low packet rates though, the thread
waits after transmitting each packet. Waking up this thread
produces additional latency in packet transmission. Therefore,
scenarios 1 to 3 result in higher latency for lower packet rates.
The total number of waiting states per second is lower when
the packet size is being increased. Therefore, the impact of
multithreading issues on the overall latency is reduced. This
explains the smaller additional latency values in scenarios 6
to 8 and 11 to 13.

The results obtained from the presented measurements in
the chain topology using a packet payload of 1024 bytes
correspond to the previously determined bandwidth limit of
100 Mbps in [19] with acceptable packet loss.

The tree topology packet loss results presented in Fig. 5(c)
show that packet loss is at an unacceptable level for 10 Mbps
and more with 32 bytes packet payload, above 24.6 Mbps
for 512 bytes packet payload and more than 49.6 Mbps for
1024 bytes packet payload. In the tree topology, the Multicast
Middleware seems to be able to process at least 9000 incoming
packets per second, before it starts to drop packets. In the tree
topology, the Multicast Middleware has to process three packet
streams, one incoming, and two outgoing.

The latency measurements presented in Fig. 5(d) lead us to
the same conclusion. The tree topology measurements show
acceptable delays (below 10 ms) for bandwidth values below
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Measurement Results for IP Multicast Tunneled through Overlay Multicast using Chain and Tree Topologies

10 Mbps for 32 bytes payload packets, below 24.8 Mbps for
512 bytes packet payload and below 75.2 Mbps for a payload
of 1024 bytes. Our measurements show that the Multicast
Middleware can process incoming packet flows in the chain
topology up to 75.2 or 84.8 Mbps with a payload of 512 or
1024 bytes, respectively.

The limit is above 10 Mbps in the chain topology for packet
payloads of 32 bytes. For the tree topology, incoming flows
up to 10 Mbps for 32 bytes payload and up to 24.8 Mbps for
a payload of 512 bytes can be processed, while for a packet
payload of 1024 bytes, incoming flows up to 49.6 Mbps can be
handled. These results show that the Multicast Middleware can
be used for high-bandwidth scenarios and that processing the
packets introduces acceptable additional delays. The Overlay
Multicast latency measurements that were still acceptable are
an order of a magnitude higher than with native IP Multicast.
But average delays around 0.7 ms are still acceptable for the
four hop chain scenario. In the tree topology, the average still
usable delays are around 3 ms, which is still acceptable.

C. Comparison between Native IP Multicast and IP Multicast
Tunneled through an Overlay Network

The loss rate in the chain topology does not behave very
differently between native IP Multicast and IP Multicast tun-
neled through an overlay network for a packet payload size of
1024 bytes. Also, for a packet payload size of 512 bytes, the
values are in the same area for the different bandwidth values
up to 75.2 Mbps. Above this bandwidth, the Overlay Multicast
scheme starts to have high losses. For the small packet payload
of 32 bytes, both scenarios behave quite similar up to a
bandwidth of 10 Mbps, then the native IP Multicast scenario
gets only slightly worse with raising bandwidth, whereas the



Overlay Multicast scenario has high losses with bandwidth
values above 10 Mbps. Delays in the Overlay Multicast
scenarios are much higher than for native IP Multicast, due
to capturing, processing, replication and injection of packets
using the Multicast Middleware and the overlay network. But
we can see that this approach is valid because the introduced
delay for most of the bandwidth and packet size scenarios is
tolerable as described in Section IV-B.

In the tree scenarios, Overlay Multicast compared to native IP
Multicast behaves almost the same, having the bandwidth limit
for Overlay Multicast below 24.8 Mbps for packet payload
size of 32 bytes and below 75.2 Mbps for payload sizes of
512 and 1024 bytes. The impact of capturing, processing,
replication and injection packets by the Multicast Middleware
on the delays in the tree scenarios is the same as for the
chain scenario. Compared to native IP Multicast, the delays
are higher, but behave less steady and raise if the bandwidth
is augmented but are still tolerable as described before for
many packet payload size and bandwidth combinations.

V. CONCLUSION

In this paper we compared native IP Multicast and Overlay
Multicast (also called Application Layer Multicast) regarding
performance. Our Overlay Multicast solution, called Multicast
Middleware, is able to bridge IP Multicast with Overlay Mul-
ticast. It allows to efficiently disseminate multimedia data for
video broadcasting, IPTV, VoIP and multiplayer games. The IP
Multicast traffic was generated and measured using a network
performance analysis system called Smartbits. Compared to
previous measurements, we were now able to make more
accurate and delay-related measurements. We concentrated
our measurements on local networks to analyze the maxi-
mum throughput and the delays introduced by processing the
packets, which would not have been possible in a distributed
network over the Internet on a larger scale. We performed
the measurements in different topologies (chain and tree)
with variable network load and payload. The results of the
measurements show that the Multicast Middleware can process
around 18000 incoming packets per second in the chain
topology and at least 9000 incoming packets per second in the
tree topology before it starts to drop packets at a significant
level. Incoming streams up to 75.2 Mbps with a packet payload
size of 1024 bytes can be supported in the chain topology,
whereas at least incoming streams with 49.6 Mbps can be
supported in the tree topology with the same payload.
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