Implementation of a
Distance Learning Module

Based on Emulated Routers

Florian Baumgartner, Torsten Braun, Eveline Kurt,
Marc Steinemann, Attila Weyland

Forschungsgruppe “Rechnernetze und Verteilte Systeme”
Institut fiir Informatik und Angewandte Mathematik, Universitit Bern
Neubriickstrasse 10, CH-3012 Bern
Phone: +41 31 631 8957, Fax: +41 31 631 3261
[baumgart|braun|kurtjweyland|steine]@iam.unibe.ch

Abstract. This paper presents the implementation of a tool aiming to allow
students to perform virtual experiments within a computer network course.
Students can create an arbitrary virtual IP network consisting of emulated
routers and experiment with their configuration. The web-based user inter-
face allows students to interact remotely with the emulated routers, but si-
multaneously it is very similar to commonly available configuration interfac-
es of network devices in reality. This enables students to configure routers
like in the real world but also to experiment in a much more robust and safe
environment.

1 Introduction

The Swiss Virtual Campus [1] is supporting a series of projects in order to develop
learning material for distance learning over the Internet. Within the project Virtual In-
ternet and Telecommunications Laboratory of Switzerland [2], a set of modules is cur-
rently being developed and tested that allow students to perform practical exercises re-
motely from any Internet workstation instead of being present in a laboratory room.

The different modules being developed by the various project partners can be clas-
sified as remote and virtual exercises. In the case of remote exercises, students work
with real devices that are located in a university’s laboratory room. Students control and
configure the behaviour of the devices using web technologies from any workstation
connected to the Internet. An example for such a module is the IP Security module [3],
where students have to manage IP Security tunnels between end systems across a net-
work infrastructure consisting of Ethernet repeaters and IP routers. Students performing
this exercise module need a certain knowledge and experience level since potential mis-
takes during network device configuration can cause significant error states. These
might cause that the devices will not be accessible over the Internet or in the worst case
need to be reset manually. Therefore, there is a need for students with a lower knowl-
edge level to gain the experiences they need for performing such advanced modules in
a more smooth way.

2 F. Baumgartner, T. Braun, E. Kurt, M. Steinemann, A. Weyland

For this reason, a second class of modules is required, which are called virtual modules.
In the case of virtual modules, the experimentation environment is not existing in real-
ity, but it is simulated. This allows to offer a much more safe and robust experimenta-
tion environment. Students can make errors without the need to manually reset any de-
vices. However, the simulated environment should match reality as close as possible in
order to prepare the students for later remote experiments.

In this paper we present the implementation of a virtual exercise module that shall
be used by students to make first experiences with IP router configuration. In particular,
the students shall learn how to set up network interfaces and static routing tables. Router
devices are emulated by software entities called virtual routers. We will describe related
work in Section 2 and the implementation architecture of virtual routers in Section 3.
For the creation of larger networks out of the virtual routers, we have developed a web-
based user interface that is described in Section 4. Section 5 will conclude the paper.

2 Related Work

We propose to use emulated routers for distance learning and allowing students to per-
form computer network experiments remotely and within a safe environment. Emula-
tion of routers usually requires one computer for emulating a single router [4][5]. In
contrast to that, multiple virtual routers can emulate multiple routers on a single com-
puter. Like the virtual routers, the network simulator ns [6] supports to interconnect real
networks to the simulated environment. However, due to time-consuming simulation
processing, the number of simulated routers is rather limited if experiments shall be per-
formed in real-time. The ns implementation is also rather monolithic and therefore not
very flexible. In addition, the ns user interface is not appropriate for a course in that stu-
dents shall learn how to configure routers.

The main goal of laboratory experiments with emulated routers is to provide a safe
environment, where students can prepare themselves for later experiments that are per-
formed remotely with real network devices [3]. Remote experiments are very popular
in various areas such as nano-science [7], engineering [8][9], computer networks [10]
and others.

3 Virtual Routers

3.1 Virtual Router Networks

Virtual routers are small entities (Unix user space processes) that are emulating single
IP routers [11]. Links that are normally used to connect real routers are replaced by
communication channels between these entities in order to create larger networks. Each
virtual router runs as an independent process not interfering with other virtual routers
and only exchanging packets by communication channels.

Figure 1 illustrates the interconnection of several virtual routers (VR) that are dis-
tributed to three different computers. The type of the communication channels between
the virtual routers depend on whether they run on the same or on different computers.
Virtual routers running on the same computer are interconnected by inter-process com-
munication channels, while virtual routers running on different computers are intercon-

Implementation of a Distance Learning Module Based on Emulated Routers 3

nected by channels based on UDP tunnels. Up to 64 virtual routers have been created
on a single computer for various research experiments. Virtual routers significantly re-
duce the required amount of resources for network emulation. The performance evalu-
ation and other technical details is beyond the scope of this paper and is described in
[12] and [13].

Virtual routers shall behave like real routers and therefore have to process traffic in
real time. Like normal routers they have to receive packets, process, and forward them.
Virtual routers can also be connected to real networks. This allows to route traffic gen-
erated by real end systems over a network consisting of both real and emulated subnet-
works. For the interconnection of virtual routers to real networks, so-called softlink de-
vices (Figure 2) have been implemented. A softlink device behaves like other network
devices within a computer, e.g. an Ethernet device. However, packets transmitted over
a softlink device are not transmitted over a real network but to a virtual router that is
connected to the softlink device via file system IO. In the other direction, packets from
a virtual router can be sent to the IP stack on top of the softlink device. If in scenario
depicted in Figure 2 a web server transmits a packet to a remote web client (web brows-
er), the packet is sent via the socket, TCP/IP stack, and the local softlink device (sol0).
Virtual router 1 receives the packet and forwards it via an UDP tunnel to virtual router
2. Virtual router 3 receives it via an inter-process communication channel from virtual
router 2 and forwards the packet to virtual router 4, again via an UDP tunnel. Virtual
router 4 delivers the packet to the softlink device at the receiving end system and the
web client receives the packet from the socket it is connected to.

Figure 1: Network of Virtual Routers

User Programs
VR1 Web VR2 [+ VR3 VR4 Web
"I Server Browser
5 5 R R i A
l Socket ‘ l Socket ‘ l Socket ‘ l Socket ‘ l Socket ‘ l Socket ‘
eth0 eth0 | eth0
Y OS kernel AR A

Ethernet network

Figure 2: Softlink Device

4 F. Baumgartner, T. Braun, E. Kurt, M. Steinemann, A. Weyland

3.2 Implementation Architecture

Figure 3 shows the implementation architecture of a virtual router. The lower part con-
sists of the core components required for packet forwarding and routing. IP packets are
received and transmitted via interfaces (dashed boxes). Interfaces consist of several
configurable subcomponents such as network address translators (NATSs), queuing sys-
tems (e.g., DiffServ traffic conditioners, token bucket filters, schedulers etc.), rate lim-
iters, and interconnection handlers. Interconnection handlers interconnect a virtual rout-
er with other virtual routers or softlink devices. The packets received from an interface
are processed by a programmable filter and the forwarding unit. Packets might be for-
warded to other interfaces or to higher-layer components / protocols. A virtual router
can be extended by dynamically loadable objects such as an active router extension (Py-
thon-based active router, pybar), a graphical user interface (command line interface), a
traffic monitoring component (dump), and virtual network diagnosis utilities (ping,
traceroute).

pybar gutif dump

dynamically loaded components

Rate Rate
Limiter Limiter

Forwarder

prog.

Filter

static system and abject loader

Figure 3: Virtual Router Implementation Architecture

3.3 Application Programming Interface (API)

Virtual routers provide a high degree of flexibility: interface components can be created
and modified dynamically, higher-layer objects can be loaded dynamically, filters are
programmable, and routing tables can be adapted. Virtual routers support different con-
figuration interfaces by API channels. The configuration program, e.g. a graphical user
interface, has to establish an API channel to the virtual router and can exchange config-
uration messages over this duplex channel. The communication is based on virtual rout-
er control blocks (VCRBs) and virtual router response blocks (VRRBs). A virtual router
receiving a configuration command within a VCRB, parses the control block, executes
the configuration command, and returns the configuration result via a VRRB. Note that
the configuration program and the virtual router that communicate via an API channel
can run on different computers. Currently implemented commands support adding and
deleting virtual router interfaces, retrieving interface information, changing interface
characteristics and queuing systems. In addition routing table entries, loadable objects,
filters, and protocol stacks can be added, deleted and read. Also, IP packets can be de-
livered for further processing to the virtual router.

Implementation of a Distance Learning Module Based on Emulated Routers 5

4 Web Interface for the Configuration of Virtual Networks

Virtual routers offer a platform for rapid development, prototyping and testing of new
communication subsystems but also can serve as a platform for distance learning. Vir-
tual routers not only help to keep the costs for building large experimentation networks
very low but also offer a robust environment for performing network device configura-
tion exercises. In order to be able to use virtual routers for web-based distance learning
courses, it was required to extend virtual routers by an appropriate web-based user in-
terface [14]. The goal was to offer students an environment in which they could create
or import their own network topologies, perform the required interface and routing table
configurations in order to get the network running, and to perform tests whether the
router configurations have been correct.

In this Section, we will first describe the user interface to be used for performing
configuration and evaluation experiments with virtual routers. Finally, we will describe
the implementation architecture of the required components.

4.1 User Interface

While a student uses the virtual routers for her configuration experiments, she will visit
four web pages. First, the student has to login and will then be directed to the create/
change network applet (Figure 4). If she has created a network before, the network con-
figuration will be loaded and displayed. The student can now modify an existing net-
work or create a new one. The applet allows her to create or delete new routers, to in-
terconnect the interfaces of two routers, and to delete connections between two routers.
By creating and deleting connections between the virtual routers, virtual router interfac-
es are implicitly created and removed. This step basically is equivalent to installing
wires between two real routers. After the network has been designed, the student can
allocate the required resources (virtual routers, communication channels). This causes
the applet to ask for the creation of the network consisting of virtual routers on the serv-
er computer. “Quit” causes to release the allocated resources.

After allocating the resources, the student switches to the select applet (Figure 5).
By clicking on the corresponding router symbol, she can switch to the configuration ap-
plet that allows her to enter configuration commands for the selected (virtual) router.
Otherwise, she has also the choice to return to the create/change network applet in order
to change the network configuration again.

The configuration applet (Figure 6) allows the student to enter router configuration
commands using an interface very similar to a command line interface of commercially
available routers. We have chosen a command line interface intentionally, since such
an interface is more common and usually more powerful, e.g. providing a browsable
history of executed commands and the corresponding replies. By clearly separating the
command line input from the command line history we aim to make the interface more
convenient to use. The command language is oriented to UNIX commands. Figure 6
shows an entered sequence of ifconfig and route commands with the replies from the
virtual router.

The student mainly will use ifconfig or route commands to setup the interfaces of
the router (e.g., assigning IP addresses and network masks) and to configure the static

6 F.Baumgartner, T. Braun, E. Kurt, M. Steinemann, A. Weyland

routing table of each router. After the configuration process has been finished, she
might want to test whether her network configuration is correct. This can be done using
traceroute and ping commands.

Figure 4: Create/Change Network Applet

_ changeNework | quit |

Figure 5: Select Applet

Implementation of a Distance Learning Module Based on Emulated Routers 7

route 10.1 if1 added

Enter comrmands:

select router |

Figure 6: Configuration Applet

1 if2 if2 3
10132 10.1.31
route 10.1.2.01f1 route 10.1.3.01f2
route 10.1.3.01if2 route 10.1.1.01if1
noN i
e
10121 ~ 4 10.1.1.2
\\ ///
AN //
\\ //
N 2 7
~\ yd
i1 if2
10111
route 10.1.2.01if1

route 10.1.1.0if2

Figure 7: Network Example

4.2 Configuration Example

Given the simple IP network of Figure 7, the student has first to design the network to-
pology (three routers and their interconnections) in the create/change network applet.
Then she has to trigger the allocation of the required network resources. After that she
can configure the interfaces and the routing tables of the virtual routers in the configu-
ration applet. For example, for router 1 the student has to enter the following command
sequence:

8 F. Baumgartner, T. Braun, E. Kurt, M. Steinemann, A. Weyland

i fconfigOaddi f1010. 1. 2. 1[1255. 255. 255. 0
i fconfigOadddi f2010. 1. 3. 2[255. 255. 255. 0

rout eaddd10. 1. 2.0/ 240 f1
rout efJadd10. 2. 3. 0/ 240 f 2

4.3 Implementation Architecture
This section describes the implementation architecture of the web-based virtual router

configuration interface. Figure 8 shows two computers: a client where the student has
launched a web browser and a server including a web server, a Java program called ad-
ministrator, and the virtual routers (microvar). The student navigates through dynamic
web pages generated using PHP and downloads/executes Java applets that are embed-
ded in the web pages. As described in the previous section, the student switches be-
tween applets. These applets share common data such as the network configuration.
Due to Java security restrictions, the data can not be saved on the client computer.
Therefore, they are transmitted to the administrator program which stores the data and

provides it for subsequent applets.

user's host
brow ser
applet
i
i
T
o
/o
/ !
/
/ l.‘ netw ork connections
/ f
/ I
/ [
/ l
L |
f
host / I
/]
web server Qb
% administrator microvar
w eb pages
node .
Legend: component object

Figure 8: Implementation Architecture
The Java applets on the client then open TCP connections to the administrator program
(written in Java) running on the server and exchange request / response messages. The
most important commands are for saving data to a file at the server, allocation of virtual
router resources, retrieval of virtual network topology data, and closing a session.

Implementation of a Distance Learning Module Based on Emulated Routers 9

The administrator program is the interface between the applet running on the client and
the virtual routers. It shares common data with the component for dynamic web page
creation. The administrator program receives commands from the applet and translates
it into appropriate configuration API calls to the designated virtual router. However,
there is no 1:1 relationship between commands issued by the student and commands
sent to virtual routers. As depicted in Figure 9, a command from the applet triggers a
sequence of virtual router API commands. Figure 9 shows the example of deleting a vir-
tual router interface via the configuration applet. After receiving this user command, the
administrator program causes the virtual router to disconnect the specified interface and
then to delete it.

= i

admin router

ifconfig if<number> delete
\) ifconfig if<number>disconnect

t
=

ack

I S——

if<number> deleted

Figure 9: Message Exchange between Client, Server, and Virtual Routers
5 Summary and Conclusions

This paper described the implementation of a course module for a practical exercise
course in the area of computer networks. The module is based on emulating IP networks
and allows to configure emulated routers via a web-based command line interface.
Therefore, the student desiring to perform the exercise only needs a web browser on her
client computer. With these minimal requirements, the course module can be easily ac-
cessed by all students and can be deployed with low costs.

The course module will be tested within a regular computer network laboratory
course in the near future and be improved based on the student’s feedback. Although
we explained how students can configure router interfaces and routing tables, the virtual
routers are much more powerful and can be used for more advanced student exercises.
It would also be possible to let students configure more advanced networking functions
such as traffic shaping, address translation, and IP-in-IP encapsulation. Also, the behav-
iour of TCP and Internet applications could be investigated in more detail.

The virtual routers as the basic underlying components have already been success-
fully used for research purposes, in particular for research projects in the area of Qual-

10 F. Baumgartner, T. Braun, E. Kurt, M. Steinemann, A. Weyland

ity-of-Service management and monitoring as well as active networking. Future exten-
sions will support multicast extensions and dynamic routing protocols. Also it might be
interesting to create laboratory exercises consisting of mixed networks, i.e. networks in-
cluding real and emulated routers. However, the main goal of laboratory experiments
with emulated routers is to provide a safe environment, where students can prepare for
later experiments with real network devices.

6 Acknowledgements

The work described in this paper has been partially supported by the Swiss National
Science Foundation project 2100-055789.98.

7 References

Swiss Virtual Campus, URL: http://www.swissvirtualcampus.ch

Virtual Internet and Telecommunications Laboratory of Switzerland, URL: http://www.vi-
tels.ch

M. Steinemann, T. Jampen, S. Zimmerli, T. Braun: Architectural Issues of a Remote Net-
work Laboratory, Networked Learning 2002 (NL 2002), Berlin, May 1-4, 2002

B. White, J. Lepreau, S. Guruprasad: Lowering the Barrier to Wireless and Mobile Exper-
imentation, First Workshop on Hot Topics in Networks (HotNets-I), 28-29 October 2002,
Princeton, New Jersey, USA

Yongguang Zhang and Wei Li: An Integrated Environment for Testing Mobile Ad-Hoc
Networks, Third ACM International Symposium on Mobile Ad Hoc Networking and
Computing, MobiHoc 2002, Lausanne, July 9-11, 2002

Network Simulator, URL: http://www.isi.edu/nsnam/ns/

M. Guggisberg, P. Fornaro, T. Gyalog and H. Burkhart: An Interdisciplinary Virtual Lab-
oratory on Nanoscience, Electronic Notes in Future Generation Computer Systems, Else-
vier, Vol. 1 (2001)

D. Biihler, W. Kiichlin, G. Gruhler, G. Nusser: The Virtual Automation Lab - Web-based
Teaching of Automation Engineering Concepts, 7th Annual IEEE International Confer-
ence on the Engineering of Computer Based Systems, Edinburgh, April 2000

A. Bohne, N. Faltin, B. Wagner: Self-directed Learning and Tutorial Assistance in a Re-
mote Laboratory, Interactive Computer Aided Learning Conference, September 25-27,
2002, Villach, Austria

R. Sontag: Berufsbegleitend lernen: Informations- und Kommunikationssysteme, it+ti: In-
formationstechnik und Technische Informatik, Oldenbourg Verlag, 3/2001, pp. 167

F. Baumgartner, T. Braun: Virtual Routers: A Novel Approach for QoS Performance Eval-
uation, QofIS'2000, September 25-26, 2000, Berlin, Germany

F. Baumgartner: Quality-of-Service Support by Active Networks, Ph.D. Dissertation, Uni-
versitdt Bern, February 2002

F. Baumgartner, T. Braun, B. Bhargava: Virtual Routers: A Tool for Emulating
IP Routers, 27th Annual IEEE Conference on Local Computer Networks, Tampa,
November 6-8, 2002

E. Kurt: Implementation of a Web-Based Interface for Virtual Router Configuration, Di-
ploma Thesis, Universitit Bern, May 2002

	Implementation of a Distance Learning Module Based on Emulated Routers
	1 Introduction
	2 Related Work
	3 Virtual Routers
	3.1 Virtual Router Networks
	3.2 Implementation Architecture
	3.3 Application Programming Interface (API)

	4 Web Interface for the Configuration of Virtual Networks
	4.1 User Interface
	4.2 Configuration Example
	4.3 Implementation Architecture

	5 Summary and Conclusions
	6 Acknowledgements
	7 References

