
SECURE REMOTE MANAGEMENT AND
SOFTWARE DISTRIBUTION FOR WIRELESS

MESH NETWORKS

Computer Science Project

presented by

Daniel Balsiger and Michael Lustenberger
September 2007

Head:
Prof. Dr. Torsten Braun

Assisted by:
Thomas Staub

Computer Networks and Distributed Systems (RVS)
Institute of Computer Science and Applied Mathematics (IAM)

University of Bern

Tutorial for Secure Remote Management of
Wireless Mesh Networks

Daniel Balsiger <dbalsige@iamexwi.unibe.ch>,
Micheal Lustenberger <lustenbe@iamexwi.unibe.ch>

September 10, 2007

Contents
1 Getting started with the management console 2

1.1 Hardware requirements . 2
1.2 Booting the LiveCD for the first time 2
1.3 Creating a new configuration . 2
1.4 Booting the LiveCD with an existing configuration 4
1.5 Changing an existing configuration 4

2 Deploying the configured network 6
2.1 Generating node images for a given configuration 6
2.2 Checklist . 6
2.3 Node configuration . 6
2.4 Cfengine mechanism . 6
2.5 Timed Netconfig Update via Cfengine 7
2.6 Upgrading node images with cfengine 8

3 The LiveCD development mode 8
3.1 Booting into development mode . 8
3.2 Chrooting into the development environment 9
3.3 Working in the development environment 9
3.4 Sanity check for newly built libraries and binaries 9
3.5 Installing the new compiled software 10

1

1 Getting started with the management console

1.1 Hardware requirements
For using the LiveCD you need an i386 compatible machine with an ATAPI CDROM
reader. The LiveCD kernel supports the eight first ATAPI devices /dev/hda until
/dev/hdh. Serial ATA devices are not supported at all. Further you need an USB
storage device with at least 40 MB free space to store configuration parameters. If you
want to use the development mode, a free hard disk partition of at least 1 GB size is
needed.

1.2 Booting the LiveCD for the first time
If you boot the LiveCD for the first time, plug the storage device into a free USB port,
put the LiveCD in the CDROM tray and switch the machine on. Maybe you have
to configure it to boot from CDROM in the BIOS. The LiveCD uses the GRUB boot
loader. If you hit ESC at the boot prompt, you see the GRUB menu and you can choose
between development and management mode. If you want to use the development
mode, see the corresponding section. By default the LiveCD will boot into manage-
ment mode. If no existing configurations are found on the storage device, which should
be the case, the LiveCD will ask you to enter some important configuration parameters
on the console:

• The hostname for this LiveCD.

• The domain name for all LiveCDs and nodes in the network.

• The root password for this LiveCD.

• The web interface password for the network (Username is admin).

After you provided these values, the LiveCD will try to get an IPv4 address, a default
routing entry and name service settings from a DHCP daemon. If no DHCP offer is
received, you have to configure these settings by hand with the tool ip, and the file
/etc/resolv.conf. LiveCD boot scripts start services like NTP, SSH and HTTP.
Time is an important factor in the internal cfengine implementation. Adjust the system
time either with the date command or via NTP, configured in /etc/ntpd.conf. Now
you can connect with your web browser to the web interface on the LiveCD by using
the URL:

• http://<IP address of the LiveCD>

Once connected, you will be redirected to the SSL port 443. If warnings about the
self signed certificate show up, you can safely ignore them. Use the web interface
password, which you provided just before, to log into the web interface (Username is
admin).

1.3 Creating a new configuration
Once logged in to the web interface, you should see something like the following fig-
ure. If you didn’t plug the USB storage device yet, you have to do it now, because
configurations are stored on it. Now you can create a new configuration by providing a
name for it and pressing the Create button.

2

For setting up the freshly created configuration, you need to provide some informa-
tion on the evolving network. Some important questions you should ask yourself:

• How many nodes and LiveCDs do I want?

• How does the network topology look like?

• Do I really not want to set a default route?

• Do I have access to external NTP, DNS and DHCP services?

You should enter the requested values in the web interface. See the following figure:

Use the checkbox, if this LiveCD is member of the network. In most cases you can
safely check it. This has the effect in using the same domain name and web password
as this LiveCD. The domain name is very important and used by cfengine to resolve
hosts by their keys. Cfengine will not work with different domain names in our setup.
For the same reason, you should give each node and LiveCD a unique hostname. If this
LiveCD is member of the network, it makes sense to take its root password, resulting
in all systems having the same root password. Admin passwords are only used for the
nodes as the SSH daemon on a normal denies root logins by default. The Join network
is an IP network, with a wireless ESSID, which will be searched by new nodes to con-
nect to existing nodes. When you have provided all the necessary information a new
Create configuration button appears, and the configuration gets created and loaded into
the web interface. (For storing the values permanently on the USB storage device read
[1.5]). See this picture:

3

1.4 Booting the LiveCD with an existing configuration
Boot the management mode in the same way as described above. If you already have
existing configurations on your USB storage device, the LiveCD detects them at boot
time. It shows all existing configurations on the console, and you have to choose one
of them. Because more than one LiveCD can be member of a configuration, you have
to decide which LiveCD this one has to be. After this selection, all configuration
parameters are loaded from the USB storage device, and the LiveCD is configured
accordingly. You can directly connect with your web browser to the web interface.
The chosen configuration is already loaded into the web interface and can be adapted
to your needs.

1.5 Changing an existing configuration
Each configuration has some parameters like hostnames, domain name, join network,
which cannot be changed anymore. For changing all other network related parameters
a configuration has to be loaded into the web interface first. After having created a
new configuration or loaded an existing one, the web interface should look like in the
following figure:

You see the configuration, that is actually loaded. This setup page is where you can
save or discard the changes you made. Whereas Save means to write the values to the
USB storage device. For making changes you need editing each node’s configuration.
Click on the Nodes icon in the upper left corner. You should see a node summary sim-
ilar to this:

4

You can modify each node’s configuration by clicking the Change button behind the
node.

Here you can change parameters, like default route, DNS and NTP servers, IP ad-
dresses and wireless parameters for the selected node. After you are happy with your
configuration you can double-check it by clicking the Networks icon, which shows a
summary on all IP networks in your configuration. See this figure:

For storing your changes permanently, you probably already guess it, you have to save
them on the setup page.

5

2 Deploying the configured network

2.1 Generating node images for a given configuration

If your network configuration is complete, you have to save it. Now the web interface
looks like this figure:

Here you can create node images for a given configuration. Hit the button to create
the node images in the selected directory. This can take quite a while, depending on
how many nodes are part of the configuration. By default the images get created in the
directory /root/generated on the LiveCD. You can get them with the sftp command
to a system with a flash writer. Please read the file INSTALL in the directory where you
generated the images. This file contains instructions how to install the images on the
nodes.

2.2 Checklist

If all nodes have their image, you may want to check, if everything went right. First of
all, power up all nodes and check if they are booting. If they have booted successfully,
you may want to login as root to check if passwords match. You may also want to
verify whether every node has the right hostname. As mentioned above, system time
is critical, check it on every node and set it on all nodes to the same time if necessary,
if possible via NTP. Rebooting the node will save the current system time. If pass-
words, hostnames and system time on each node are correct, you can do individual
node configuration. From now on you should not need to open the nodes ever again
(see [2.6]).

2.3 Node configuration

Each node has a configuration image which holds all configuration files. These files
are restored on each boot of the node. Which files are treated as configuration files is
defined in /etc/configfiles. You can use /etc/init.d/rc.config to show, load
or save configurations. If you want to make changes permanently on a node, this is the
only way to do it right.

2.4 Cfengine mechanism

Cfengine is used for the internal configuration and upgrade (see [2.6]) mechanism. This
tutorial can and will not explain cfengine in detail, it is too complex to be covered here.
If you need more information read the documentation at http://cfengine.org. The
following paragraphs illustrate how it is used in this context.

Cfengine is started by default. This tool permits to propagate the configuration of
the participating nodes (including LiveCDs) throughout the network, no matter whether

6

routing is enabled or not, the only precondition is, that every node is somehow con-
nected to the IP-net, obviously.

The communication allways takes place between two neighbours, where one neigh-
bour in the role of the client, checks for newer files on the server, and fetches them if
necessary. Every node is client and server at the same time, so that the design of the
cfengine-network is completely decentral. As mentioned above [2.2] time is essential
because it is the criterion whether a change in the configuration is to be performed
(because it is newer) or not. Cfengine will even fail if the difference is to big.

For the communication to work, two requirements have to be fulfilled. First every
node must be resolvable, that means that every participant must know the IP-address
to the hostname it wants to connect, and second it must have the key of the target node
and vice versa the server has to identify the connecting host by this two requirements.

So if you have to use a communication channel on which the addresses are orga-
nized dynamically via DHCP and you do not want to set all up by hand, you have to
make a static setup first (e.g. completely unrelated on the network layer), and only
then set the devices to dhcp and try a timed netconfig update [2.5] as described below.
It would also have been possible to implement an dynamical setup by figuring out the
actual IP via ARP requests, then all the MAC addresses would have to be known on
every host, but DHCP was not considered a primary goal.

The graphical user interface via web server can not yet be used to do everything, for
it lacks an interface to the cfengine related directories and files. These are the follow-
ing: /var/cfengine/exchangefiles stores all files that are exchanged (and therefore
seen by the connecting clients), /var/cfengine/exchangefiles/network.in is an
exception. It contains files that just came in and are to be copied to /etc/network.test
but are ignored by the clients. /etc/network.*/, /etc/conf.d/network.conf and
/etc/{resolv.conf,ntpd.conf,hosts*} are written and used by cfengine [2.5].

On every run cfengine tries to update (/var/cfengine/inputs/update.conf)
itself first. Therefore it calculates its peers based on the files in /etc/network.d/
(which can take some time) and gets its configuration files if necessary. After that
it reads its configuration (/var/cfengine/inputs/cfagent.conf) and performs the
configuration tasks.

To see what exactly is performed, the client can be started by the following shell
command:

root@meshnode:/# cfagent -vq

Cfagent should not have more then two processes running at the same time, or
something went wrong. The server is called cfservd, normally with two processes
running. The initscript /etc/init.d/rc.cfengine controls a crond and the cfservd.
In this implementation not cfexecd but cron is used to start the cfagent. This makes
it possible to run an agent, and only one, every two minutes. So it is predictable how
many times an agent is run, and therefore it has fixed rounds.

2.5 Timed Netconfig Update via Cfengine
The current configuration of the network interfaces, the routing tables, name and time-
servers of all hosts in the mesh are kept in /etc/network.d. In /etc/network.test
is the temporary setup. From these two directories all the necessary files are gener-
ated. The relevant files for the procedure are in /var/cfengine. Most important are
bin/nettest.sh which checks whether a timed netconfig update is to be performed
and modules/module:netstuff with the whole logic.

7

Changing the network topology of the mesh can be done from every point in the
network. The configuration will first be propagated over the current network.

Therefore the configuration is copied to a place where it can be seen by its peers:
/var/cfengine/exchangefiles/network.test/. The clients copy the files in this
directory to /etc/network.test. If a file is newer than a file called update this means
that a timed netconfig update is to be performed.

If there are nodes to be set up by DHCP, then first the IPs are collected and the
mechanism is delayed as long as there are dynamical addresses in the setup. In the next
round the information should be available and is treated as a static address.

During the next round every node that is affected, tries to perform the changes on
the specific interfaces. As soon as this is done a file called $HOSTNAME.conf.up is
touched which is committed to the directory for the peers to see. Because now all the
nodes should be up with the new network configuration, the files get propagated back
over the new topology.

As soon as you have such a file from each host you see that the new setup works. If
you touch the previously mentioned file update – and it therefore becomes the newest
in the directory – before 10 (default) rounds are over the new temporary setup becomes
the permanent one, otherwise every node falls back to the previous setup. The number
of turns to wait can be to small for a deep tree, so it can be set to a higher value by
writing a bigger number into the file sleepcycles.

The actual work of setting up the interfaces etc. is done through the initscripts.
If you are absolutely sure that a certain configuration will work anyway, by touch-

ing the file update just after the actual changes makes a change to be permanent right
away, undermining the timed netconfig update.

2.6 Upgrading node images with cfengine
It is possible to upgrade a node safely without ever touching it physically. You just
have to give one participant in the network the kernel- and/or initramfs-image and the
checksum files.

Upgrading works conceptually a bit like timed netconfig update [2.5]. The files
bin/{nodetest.sh,updatetest.sh} in /var/cfengine/ first check whether a new
system version is available, then verify the type of host, so that no update is performed
on a LiveCD. On a regular node the system files get copied to /var/lib/update/.
Then /sbin/update through modules/module:update tries to perform the update.

If successful the files are made available to the peers, otherwise the node falls back
to the previous system.

The directories for the exchange with the peers are exchangefiles/hostconfig/
(out) and hostconfig/ (in).

The update is done through the initscript mechanism /etc/init.d/rc.update.
If you want to know how this grub magic works, take a look at grub/menu.lst on

both partitions of the image (you will have to mount the partitions first).

3 The LiveCD development mode

3.1 Booting into development mode
As mentioned above [1.1], if you want to use the development mode of the LiveCD,
you need a free hard disk (PATA) partition of at least 1 GB size. Boot from the LiveCD

8

as you would for management mode. Press ESC after having powered on the ma-
chine. Choose development mode from the GRUB menu and press Enter. Now you
are asked where your development device is. You can skip this question by append-
ing device=(your devel partition) to the kernel command line. You are further
asked, whether you wish to make a filesystem on the development device. If you use
the partition for the first time you should answer yes. Otherwise, if you have an already
initialized partition you should reply with no. Development filesystem creation can
take up a long time, because the whole development tree has to be unpacked on the
development partition mounted at /mnt/devel-device. Further, you have to provide
a hostname for the development system. IP address, default route and DNS servers are
setup automatically via DHCP.

3.2 Chrooting into the development environment
If you log in on the LiveCD via the console or an ssh client the file /etc/motd is
displayed to you. This file shows commands for getting a properly configured devel-
opment environment. Important is the use of the screen program. If you are familiar
with screen, this should be no problem for you. The screen program is used to detach
and reattach terminals to different physical devices. So you can log out while the build
process continues. Take a look at the manual (man screen). As the whole develop-
ment system is accessible only via the single chrooted shell, be careful to use the right
chrooted shell. Only with this clean tool-chain you can build new software for the node
image, because you have to rely on the same environment as the other software of the
node was build with.

3.3 Working in the development environment
You are now in the chrooted development environment. In this environment all the soft-
ware for the node image was built. To see which commands were used to compile a cor-
responding package, you can read the script /root/scripts/build-all.sh. There
are pre-configured kernel sources in /usr/src/linux-2.6.14.6-grsec. The C com-
piler spec files in the development environment were altered for taking the options
-pie and -fstack-protector-all by default. If you wish to change this behavior,
for compiling new kernels for example, use something like make CC="gcc -no-pie
-fno-stack-protector-all" or your kernel build will fail. Other things to mention
are the lack of NLS and large-file support in the image. When compiling and con-
figuring packages a --disable-largefile and a --disable-nls can be very use-
ful. Nevertheless not all packages understand these configure features. Have a look at
/root/scripts/build-all.sh for further tricks on how compiling packages. If you
ever need to rebuild the tool-chain, /root/devel/toolchain/build-toolchain.sh
(outside chroot) is a good place to start, read the Hardened LinuxFromScratch book for
further information or write a mail to the authors. Explaining how a tool-chain gets
properly built, is too much for this document.

3.4 Sanity check for newly built libraries and binaries
Because the node kernel disallows text relocation for binaries and libraries and all
node software has to be completely position independent, it has to be compiled with
-pie. To prove binaries and libraries you can run two checks on them in the chrooted
environment, the first is:

9

/tools/bin/readelf -a <file> | grep -e BIND -e RELRO -e PAX

which should provide the following output:

GNU_RELRO 0x09936c 0x0009a36c 0x0009a36c 0x00c80 0x00c80 R 0x20
PAX_FLAGS 0x000000 0x00000000 0x00000000 0x00000 0x00000 0x4
0x00000018 (BIND_NOW)

The second test to perform which should give no output is:

/tools/bin/readelf -a <file> | grep -e TEXTREL

If the binaries fulfill these two tests, they will probably run without a problem on the
node image. If they don’t pass the tests, they won’t run either. Because there’s little
space in the node image it is highly recommended to strip binaries with:

/tools/bin/strip --strip-all <file>

and libraries with:

/tools/bin/strip --strip-debug <file>

3.5 Installing the new compiled software
If you have built new software for the image, you have to copy the resulting files like
binaries, libraries and configuration files to /root/nodeimage outside the chroot jail.
From this directory tree the node images are generated. You can of course copy the
newly compiled software directly to the node and declare them in /etc/configfiles
for being saved. Remember to adjust the size of the configuration file to be created.
This method is not the recommended way, but can be timesaving for small programs
and testing purpose.

10

Secure Remote Management and Software
Distribution for Wireless Mesh Networks

Thomas Staub, Daniel Balsiger, Michael Lustenberger and Torsten Braun
Institute of Computer Science and Applied Mathematics

Neubrückstrasse 10
CH-3012 Bern

Switzerland
{staub|balsiger|lustenbe|braun}@iam.unibe.ch

Abstract— Wireless mesh networks (WMN) are usually spread
over large physical areas. They can include node locations that
are difficult to reach, e.g., roof tops. Physical access to certain
nodes can even be unfeasible depending on bureaucratic or
technical problems. During the life time of a WMN it is necessary
to process reconfigurations and software updates. Configuration
errors and faulty software updates may then destroy the access to
individual nodes. Costly on-site reconfiguration is required. We
propose a secure management architecture for WMNs handling
configuration errors as well as faulty software updates and
avoiding on-site repairs. The architecture is tailored to productive
and extensive testbed networks, in which reconfiguration is even
more frequent. It is a fully distributed management solution
and provides fallback solutions for configuration errors, and
kernel panics. The paper presents our architecture and its
implementation including the Linux image, the development
system and the management console.

I. INTRODUCTION

Wireless mesh networks (WMN) are evolving to an im-
portant access technology for broadband services. There are
multiple deployments of WMN related to research, e.g. MIT
Roofnet [1], [2], Orbit project [3], Microsoft Research [4],
[5]. Furthermore, there are multiple cities which are currently
deploying metropolitan area networks [6]. All these deploy-
ments cover geographically large areas. One can imagine that
WMNs are deployed in hostile environments such as forests,
deserts, or arctic regions. After deployment not all nodes may
be physically accessible or the access may be very complicated
and therefore costly.

Reconfiguration and software updates are necessary during
the lifetime of any WMN. The reconfiguration and update
process is a possible point of failure of the network. The net-
work may be disconnected because of wrong configuration or
faulty software updates. The change of radio communication
parameters can affect the physical topology of the network as
well as cut off nodes from the network. Without an automated
reconfiguration, which supports the user in case of defective
configuration or errors, physical access to individual nodes
may be required.

As experimental research becomes more and more crucial
in the design of wireless networks, safe reconfiguration and
update of the extend testbed networks are important and time-
saving issues. UCSB’s ATMA [7] provides a management
framework for experimental wireless networks. It is based on

an additional WMN deployed beside the experimental net-
work. We think that reconfiguration and updates are essential
for both productive and experimental environments. Therefore,
we prefer a solution that works the same way in both scenarios.

We provide an architecture that offers secure and safe
reconfiguration and update of the WMN without the need of
additional infrastructure, e.g. wired or wireless back-haul net-
works. Our architecture guarantees availability of the network
despite of configuration errors and faulty software updates. It
further provides the possibility to test configurations that are
automatically reverted after a certain amount of time, in case
of errors.

The paper is organized as follows. In Section II, our
architecture with its basic concepts is presented. The following
sections show our implementation. Section III describes our
used hardware platform. In Section IV, our embedded Linux
image is presented. Section V discusses the configuration and
update mechanisms. We conclude with Section VI.

II. ARCHITECTURE

Fig. 1. Example of a WMN: One node is temporally unavailable, e.g., lack
of power. Another node is added to the network for the first time. Multiple
nodes provide management functionalities for the network.

The target scenario for our architecture is a reconfigurable
WMN (see Fig. 1). The WMN consists of multiple wireless

mesh nodes. It is not guaranteed that every node is always
reachable. Nodes could be unavailable, e.g. when they have
been switched off by users or by loss of power. Attention
has been given to these nodes during reconfiguration in our
architecture.

For the management of the network either distinct manage-
ment nodes or ordinary mesh nodes can be used. Management
nodes are usually equipped with better hardware than the nor-
mal mesh nodes and can provide further features. Monitoring
of the network as well as the configuration of all network
parameters is the primary task of the management nodes.
Their functionalities can be accessed via a web interface. They
could further provide tools, e.g., node image generators or a
complete development environment.

A. Distribution of Configurations and Software Updates

Our architecture disseminates network and node config-
urations as well as software updates in a distributed way
as shown in Fig. 2. Each node is periodically asking its
neighbors for newer configurations and software. If updates are
available, the node downloads them to its exchange storage.
Neighbors of this node will download the updates from there.
The downloaded configuration and software updates will be
activated after a predefined time.

Nodes that have been down during the distribution of the
updates will get the configurations and software updates from
their neighbors as soon as they are up again. If critical
parameters like wireless communication channel or band have
been changed and the awaken node has no connection to any of
its former neighbors, it will fall back to its initial configuration
and will try to join the network as a brand new node (see
Section II-B).

In order to guarantee the connectivity of the network after
a reconfiguration, fall back solutions and checks are intended.
For example if the transmission power of the wireless radio
is reduced, the connectivity of the network is tested. If there
is any topology change, the transmission power is stepwise
increased until the original connectivity is reached again. Other
disruptive changes like wireless channel are also considered in
our architecture.

If the user wishes to test a certain configuration, we in-
troduce a temporary update feature in our architecture. The
user generates and deploys a test configuration. He further
defines a validity time for the new configuration. All nodes
backup their configuration, before loading the new one. After
the configuration has been fully distributed and set up in the
network, a timer on each node is started. The user has now
the possibility to check his test configuration. If it satisfies his
needs, he can confirm it by sending a confirmation message
to each node. The confirmation message stops the timer at the
nodes. If the configuration is erroneous or the user did not
confirm it, the old configuration will be loaded at the nodes.
The network will operate in its last state again.

Our architecture provides a safe way to upgrade the node’s
operating system. The update images are first checked for
integrity by the help of hashes and checksums. The updated

kernel and filesystem are put in the update storage of the
nodes. The system is now instructed to load the operating
system only once from the update storage. On the next reboot
it would load again from the default storage. If the software
update succeeds and the node is up with the new operating
system, the update can be made permanent by copying the
updates to the default storage. If there occurs any problem
while booting the new operating system, e.g., a kernel panic,
the system will be automatically rebooted and load the old
operating system from the default storage.

(a) Nodes periodically check for updates. A new configuration is
injected at a management node (M) or a normal node.

(b) First nodes (A, B) get the update from node M.

(c) Next nodes (C, D) get the update from node A and B.

Fig. 2. Distribution of node configuration and software updates.

There exist separated images for configuration of an indi-
vidual nodes, its state (e.g. its log files), and the operating

system. This permits the exchange of the operating system
without loosing the node’s configuration and state. Further-
more, configuration switches do not destroy the state of the
node.

B. Integration of a New Node into the Network

New nodes should be easily integrated into the WMN.
Figure 3 depicts the addition of a new non configured node
to the network. A standard image has been loaded to the new
node. Furthermore, the node has received a unique host name,
its public/private key pair as well as the public keys of the
other network nodes. The keys are essential to guarantee that
only authorized nodes can connect to the network.

(a) New node searches for networks and known peers.

(b) New node sets temporary network parameters and tries to
get its configuration from the neighbors. After the new node has
received its configuration, it is fully integrated in the network.

(c) If no configuration for the new node exists, the node
announces its state to a management node. The user has to
generate a new configuration. The new node is integrated in
the network after having received the generated configuration.

Fig. 3. Integration of a new node into an existing network.

A new node joins the network by first scanning for active
communication channels. On the found channels it searches for
IP networks, assigns itself an unused IP address and tries to

load configurations from its neighbors. The node authenticates
its communication peers with the help of the public keys in its
storage. The same is done by the network nodes. They only
provide configurations and software updates to known nodes.
Therefore, the public key of the new node has to be distributed
to all network nodes before the node can join the network.
We encourage to use a pool of key pairs when setting up a
network. All public keys are then loaded on all nodes at setup
time. If there are no key pairs left in the pool for a new node,
the additional public key of the new node has to be loaded on
all network nodes by the distribution mechanism described in
Section II-A. As the image for a new node is usually created at
the management node, the distribution of an additional key is
invoked automatically if necessary. The configuration of the
new node can be already distributed in the network. In this
case, the new node simply loads its configuration from one
of its neighbors and is then fully integrated in the network. If
there is no configuration available, the node signals its lack of
configuration to any management node found in the network.
The user is then prompted to generate a configuration at the
management node.

III. HARDWARE

For our wireless mesh network we use the Wireless Router
Application Platform (WRAP) from PCEngines [8]. Our nodes
are WRAP2.C and its RoHS (EU restriction of the use
of certain hazardous substances in electrical and electronic
equipment) compliant successor board WRAP2.E. It is an
embedded board with 233 MHz AMD Geode SC1100 CPU,
128MB RAM, Compact Flash card slot, one Ethernet port,
two miniPCI sockets and one serial port. We have preferred
WRAP to any Linksys Router based solution with OpenWrt
[9] because of its ability to carry two wireless miniPCI cards.
This enables multi-radio/multi-channel communication. Our
nodes are equipped with two Atheros 802.11a/b/g miniPCI
cards. We have further added a 3V Lithium coin cell as battery
backup for the real time clock of the node.

IV. EMBEDDED LINUX IMAGE FOR WIRELESS MESH
NODES

Existing solutions (like OpenWrt [9]) do not meet all our
requirements or are tailored for other hardware than the WRAP
platform we use. Our intention is to provide a node image,
which is as small as possible while providing maximum
functionality. We have achieved this by using special software
written for embedded systems. Our selection includes busybox
[10] as a replacement of common UNIX utilities and uClibc
[11] as small C library. Busybox is a well-known tool for
small or embedded devices. It combines tiny versions of many
common UNIX utilities (e.g. ls, dmesg, top, date) into a single
small executable with a size of only 712 KB in our case.

By the help of busybox and uClibc we provide a platform
where standard software could be used, e.g., bash, openssh
or openssl. This makes the image easily extensible and cus-
tomizable. We further provide a development system, on which
newly required software can be compiled and installed to

the node image. With an existing solution, adding such new
functionality can be very difficult. The result is an all-purpose
image which looks nearly like a standard Linux system. Our
image includes the following security features that are also
described in Hardened Linux From Scratch (HLFS) book [12]:

• Position Independent Executable (PIE) [13]
• PaX [14]
• Grsecurity [15]
• Stack Smashing Protector (SSP) [16]
A Position-Independent-Executable (PIE) [13] is an exe-

cutable which is a hybrid of a shared library and a normal
executable. Programs compiled as PIE appear as shared ob-
ject. The executable behaves like a shared library. Its base
addresses can be relocated. In our image all object code is
position independent and the grsecurity kernel [15] prohibits
text relocation. This closes a security hole that could enable
attackers to modify the memory and execute their own code.
PaX randomizes the return addresses of PIE programs with
Address Space Layout Randomization (ASLR). This further
prevents that attackers could take advantage of security bugs
as the return addresses are not known to them.

Stack Smashing Protector (SSP) [16] has been developed
for protecting applications from stack smashing attacks. This
is the largest class of attacks. The protection uses minimal
time and space overhead while protecting all functions.

All the described features are used by default when com-
piling software on the development system.

The resulting image uses about 24.0 MB in uncompressed
form in RAM and compressed less than 10 MB on the flash
device. Nodes with 128 MB of RAM have still more than 100
MB free for applications.

A. Boot Process

The Compact Flash card has two partitions. Two partitions
are needed for safe kernel updates (see Section IV-C). Partition
1 (/dev/hda1) contains kernel images, the corresponding root
filesystem images, and some boot loader files. Partition 2
(/dev/hda2) holds all configuration images, a state directory,
and some boot loader files (see Section IV-B).

Normally, the Linux standard boot loader grub starts the
default image from the first partition (/dev/hda1) of the flash
device. An image consists of three files: the kernel image
itself, a compressed filesystem archive (.cpio initramfs) and
the sha1/md5 checksum file. The filesystem archive is loaded
into RAM and mounted as root (/) at the very beginning of
the boot process. The whole system lies therefore in RAM
in order to gain performance and to take care of the limited
write cycles of a Compact Flash card. Compared to an ordinary
RAM disk Initramfs requires no fixed size in RAM and can
grow and shrink as needed. The whole root tree is writable.
As soon as the root filesystem has been mounted, the init
process is executed. The init scripts first create device nodes,
load the configuration files from the actual configuration image
and state files from the state directory (described in detail
in Section IV-B). Afterwards, configured services like system
logging, web server, secure remote shell (SSH), network time

(NTP) and a terminal on the serial line are started. If a network
configuration is available at the node, network devices and
network parameters are set up accordingly.

B. Individual Configuration and State

As all the files are kept in an initramfs archive, they can be
changed individually while the system is running. But changes
are not saved over a reboot due to the reload of the original
archive at the next boot. Therefore, a procedure is required to
save files permanently over reboots. Examples are files like
/var/log/wtmp and /var/log/messages, several individual node
and network keys, configuration files for individual node setup,
password files etc.

The config directory on the second flash partition (/de-
v/hda2) contains different configuration images. A configura-
tion image is an ext2 loopback image and contains user defined
files, which are loaded at boot time by the init scripts as
early as possible before any node configuration is done. Each
configuration image contains a list of the files kept in it and
their destination in the real system. The list is contained in the
file /etc/conffiles on the real system. This file can be adapted
in order to add files which must be saved over a reboot.

A node can have more than one configuration image on
the flash device (/dev/hda2). The /etc/init.d/rc.config command
lists all existing configuration images, the actual configuration
image in use, loads or stores configurations from or to con-
figuration images, and creates new configuration images from
the actual system configuration.

Some files should not be stored in the configuration image
explained above because they should not be replaced in case
of configuration switches. For example the file /var/log/lastlog
should be loaded and saved anyway at each reboot indepen-
dently from a specific configuration image in order to store
reliable information on the last logins. All files of this kind
represent the state of the node. We store such files in the state
directory on the second partition. All files in the state directory
are loaded by the init scripts at boot time and stored when the
system reboots. The current log files are saved back to state
directory and new empty files are created at each boot. The
maximum space that different versions of log files may occupy
on disk can be configured. If this limit is reached, the oldest
log files are deleted. The /etc/init.d/rc.syslog script shows all
current log files and maximal quota for log files.

C. Safe Kernel Updates

The grub boot loader is able to perform the following
actions at boot time according to its configuration file menu.lst:

1) Install the MBR pointer to another boot partition (this
has the effect that the other partition is booted the next
time).

2) Boot the operating system from the current boot parti-
tion.

These actions provide us the opportunity to boot an update
kernel, and let the system fall back to the default kernel
when the update kernel fails to boot (e.g. kernel panic). The
procedure is depicted in Fig. 4. The following sequences

Fig. 4. Safe image and kernel update process with fallback.

provide examples for normal operation, a successful update,
and a faulty update:

1) Normal operation: The system is in default configura-
tion (S1). No update is planned. Therefore, the system remains
in default configuration after a reboot (N1/N2).

2) Successful update: The system is in default configura-
tion (S1). MBR points to /dev/hda1. The default image would
be loaded after reboot. An update is intended (U1). The layout
of grub is changed to update layout (U2). The update image is
copied to /dev/hda1 (S2). As MBR points to /dev/hda1, from
where grub configuration is read at the next reboot (U3). Grub
sets MBR pointer to /dev/hda2 and loads the update image. If
the update has been successful, the layout is reverted to the
default layout (U4/U5) and the default image is replaced by
the update image (S3). During the next reboot the boot loader
(grub) configuration on /dev/hda2 is read. MBR is changed
to point to /dev/hda1 again. The default image is loaded from
/dev/hda1 (U6/U7). The node returns to normal operation (S1).

3) Faulty update: The system is in default configuration.
MBR points to /dev/hda1 (S1). The update image is copied to
/dev/hda1 and the update layout is set (U1/U2/S2). The system
is rebooted (U3). MBR is reset to point to /dev/hda2. The
update image is loaded. The update image produces a kernel
panic (E1). The node is automatically rebooted (E2) and is
now in error state (S4). As the MBR points to /dev/hda2, the
MBR is reset to boot /dev/hda1 next time and the default image
is loaded (E3). The node runs with the old kernel again. The
update image is removed, the layout is reset to default (E4).
The node returns to normal operation (E4/S1).

The update of each node concerns only the kernel and

the corresponding initramfs image, which contains all basic
software of the system (configuration and state files are treated
separately as shown in Section IV-B). In order to manage
the configurations there exists the /etc/init.d/rc.update script,
which can initialize updates, detect working and failed updates
and make updates permanent.

The script includes consistency checks of the included files.
It checks the compressed kernel and the initramfs images by
comparing the sha1/md5 checksums, and the grub configura-
tion file menu.lst by parsing the file and checking the content
to the newly calculated form.

V. CONFIGURATION AND MANAGEMENT SOFTWARE

A. Management Console
For network management, we provide a LiveCD for the

Linux management node which serves as the starting point
for any configuration. If the LiveCD detects an USB-storage
device at boot time, it loads its configuration (ssl-certificates,
passwords, node-definitions, cfengine-keys). If no USB device
is detected with these configuration files, the LiveCD prompts
the user to provide the initial configuration parameters on the
console. Once the LiveCD has retrieved its initial configura-
tion, the user connects with a web browser to the LiveCD’s
SSL web server. The new network can be defined on the setup
page by providing the number of nodes, their host names
and some passwords. The LiveCD then generates individual
images for each of the nodes and the user has to install each
image on the corresponding node.

Each node’s network setup may be configured with the web
interface. This can either be done before generating the images
or afterwards when the nodes have been already deployed.
In the second case the nodes will receive their configuration

Fig. 5. Management console: individual configuration page for one node.

from one of their neighbor nodes if their configuration is
already available in the network or else they will signal the
management console that they have no configuration. Figure
5 shows a screenshot of the web interface.

The user can adapt the configuration of the network at
any time. After a configuration has been setup, the new
configuration has to be committed in order to be distributed
by cfengine [17]. The whole configuration of the network,
including the current configuration of the LiveCD itself can
be stored on an USB-storage device, and restored at the
next start of the LiveCD. Therefore one LiveCD can be used
for managing more than one network. Its minimal hardware
requirements are: i586 compatible processor, 128 MB RAM,
ATAPI/IDE CDROM device, USB port.

The LiveCD offers a development mode besides the man-
agement console mode, and when started in development
mode, it acts as a full development system for the node
image. This functionality requires a free hard disk partition.
In development mode, the user is able to compile and install
newly required software for the node-image.

B. Distribution of Configuration Parameters

For the distribution of all configuration parameters and
possible updates we use cfengine [17], [18], a powerful utility
for organizing and distributing system administration tasks in
a network.

We use a distributed design as presented in Section II-A.
The only static parameters are the host names and the unique
public/private key-pair for each node. The configuration of
the network is dynamic and can be done at any time. In order
to work in such an environment, cfengine is configured to
authenticate by host name and security key pair.

As the hosts have to be able to resolve their host names
into the current IP addresses even if no external name service
is available, the nodes have an individual /etc/hosts file. Each

time cfengine is executed, the /etc/hosts file is dynamically
created. The script netcfpeers.sh tests the node’s peers with
traceroute, writes the /etc/hosts file and returns a list of
available peers to cfengine. Therefore, cfengine is able to
distribute all of the settings over different IP networks even if
they are dynamic. Each node stores all configurations of the
networks. The public keys of all nodes are distributed, which
guarantees that every node knows its neighbors.

Cfengine offers a lot of flexibility by its concept of dynamic
grouping of nodes into classes. The membership of a node to
a certain class is dynamically set through the execution of
any script. The class membership defines all other actions of
cfengine. We take advantage of this flexibility in our concept
by defining appropriate classes and actions.

The architecture of cfengine is based on pulling the desired
information from the node’s peers. It is also possible to
simulate a push method by invoking the pull mechanism
remotely, but we do not use this functionality and only rely
on pulling. Every node is a server and a client at the same
time. In order to serve requests for updating configuration files,
the cfservd daemon is running on each node and only grants
access to known peers. Further, all transmissions of cfengine
are encrypted. The pulling mechanism cfexecd is executed
by crond every two minutes in our current setup, but the
frequency can be easily adapted. Cfagent first tries to update
the configuration of cfengine from its calculated peers within
a random time-offset of up to one minute. This reduces the
probability of too many simultaneous connections. After up-
dating, cfengine executes the administrative tasks. The current
state of the node is checked by scripts in order to classify the
node to a particular class. Afterwards, the new configuration is
copied by comparing the modification time of each file. During
each run cfengine tries to gather new information about the
network from its peers by copying the network.test directory.
Periodically (every 15 minutes) cfengine checks for other

updates such as changed configuration parameters or system
updates. For example, there exists a class in cfagent.conf
responsible for updates. A node becomes a member of this
class if it receives a positive exit value when the update-test
script is executed. If cfagent finds itself executed on a node that
has a newer version of these files available it will just interact
with the interface described in Section IV-C to perform the
update.

C. Network Update with User Interaction

If a new network configuration for a certain node is desired,
the user creates the configuration, e.g., with the management
console. The new configuration file is copied by the man-
agement console (or manually) to the exchangefiles directory.
Further, the user defines the wait cycles (intervall between two
cfagent runs, in our case two minutes) until the configuration
becomes permanent.

During the first cfengine cycle every node that has the
node with the new configuration as its own peer, receives the
information about the new configuration. The configuration is
not further processed, except for publishing it to other nodes.

Once the cfagent becomes aware of its newer configuration
files in the network.test directory, it classifies itself to be
member of a new class. This invokes an external bash module
that takes care of the setup. It discovers whether any dynamical
network setup needs to be done (DHCP). If this is the case,
the node delays the update to the next cycle. This procedure is
repeated until there is only statical configuration information
left. We have configured udhcpc to virtually change the state
of the device from dynamic to static after having received the
IP address from the DHCP server. This static configuration
is written back and propagated as the new configuration to
the node’s peers. After all nodes have static IP addresses, the
individual nodes save their current configuration and remove
the user interaction file from previous updates. Further, they
read the number of wait cycles to keep the new config-
uration before falling back to the old configuration. Then
each individual node calculates the new /etc/hosts file and
the changed interfaces (and only those) are restarted on the
reconfigured node. The described update procedure does not
happen simultaneously, but is done in a completely de-central
way.

After the update each node indicates its readiness by touch-
ing a file in its exchangefiles directory. As soon as multiple
nodes are up again, the update notifications are distributed
over the new evolving network. The nodes are now waiting
for a user interaction during the defined fallback period. If no
user interaction has taken place, the nodes copy back their old
configuration and restart the affected network devices.

A user has the possibility to check the state of the mesh net-
work directly on every single node or over the web interface.
If the network satisfies the user’s requirements, he confirms
to the mesh network to keep the current configuration. The
confirmation message has to reach all of the nodes before
they would have counted down their own wait cycles (timer).

If confirmed, the nodes set the current configuration to default,
disable the timer, and remove the old configuration.

If the network is in an inconsistent state after partial
successful updates, it is recommend to define a timeout, after
which a node that has no connection to its previous neighbors
reloads the initial configuration and tries to join the network
as a new node (see Section V-D).

D. Plug&Play Integration of New Nodes

Fig. 6. A new node and its communication peer resolve the host name to
IP address mapping in order to exchange configuration.

A new node Nnew can join the deployed network and
is automatically configured if it has a working base image
with the necessary keys. Image and keys can be generated
by the management console. There is no configuration needed
at the creation time of the image, all parameters including
the network configuration can be set when a node joins the
network. There are two situations, in which a node is treated
as a new node:

1) The node had no connection for a given period of time
and thus falls back to the new node mode. The node has
already all necessary keys of the network.

2) A brand-new node does not have all public keys of the
network. Either the node is created by the management
console and receives the public keys of the network as
well as its own public/private key pair with its image,
or the administrator has to copy all existing keys to the
new node manually. In both cases, the public key of the
new node has to be distributed to all existing nodes. The
management console takes care of all this work and will
distribute the keys using cfengine.

Nnew searches in all predefined configuration networks if
anyone is reachable (by overhearing or through active checks).
If an active node is found, the node selects an unoccupied
IP address in its IP network and tries to make two specific
https requests. The search is repeated until Nnew receives the
correct answers to its https requests. A more detailed view of
the requests is shown in Fig. 6:

1) Nnew connects to https://netnode/newnode.cgi and trans-
mits hreq= HELLOREQ,sha1(newnode.pub, newnode,

ticket) with ticket=floor(SystemTime / TicketValidTime).
The node in the network Nnet calculates hashes for each
node that he knows according to the rule: testhash=
sha1(node.pub, node, ticket). If one hash matches the
received one from Nnew and if no ticket from this node
was received in the last TicketValidTime seconds, Nnet

knows the name and the IP address of Nnew and returns
hello=sha1(netnode.pub, netnode, ticket, hreq).

2) Nnew checks with the same procedure as Nnet in step 1
if the received hello message matches any known node.
Nnew sends the message join=JOIN,sha1(newnode.pub,
newnode, ticket, hello) via https://netnode/newnode.cgi
to Nnet to acknowledge the received message. Nnet

recognizes the join message as it knows the hello mes-
sage’s hash and calculates the join message’s hash. Nnet

now writes the IP address and the host name of Nnew

to its /etc/hosts and replies with ack=sha1(netnode.pub,
netnode, ticket, join).

3) Nnew checks ack and writes the host name and the IP
address of Nnet in its /etc/hosts file.

4) Configuration of Nnew can now done by cfengine. If
a configuration for Nnew is already distributed, Nnew

will receive it by cfengine, otherwise Nnew will show up
as a node waiting for configuration in the management
console.

There are some limitations of the described procedure. As it
would take a long time to search every possible IP network, it
is recommended to predefine some configuration networks. For
security reason (reply attacks) a new node can join a specific
node in the network only once in TicketValidTime seconds.
Therefore, if messages are lost, the node has to wait until the
ticket is invalid before its next try to join the same node in
the network.

VI. CONCLUSION AND FUTURE WORK

We have presented a distributed secure and safe manage-
ment architecture for WMNs. It supports the user in the
configuration task, and guarantees network availability even
after configuration errors or updates with faulty software
images. It does not require any additional infrastructure. The
whole configuration is done in-band. It offers timed updates.
A configuration can be tested and in case of errors the node
reverts to the old configuration after a certain amount of time.

As part of future work, we have planned extensive testing
of the described solution and support for IPv6. IPv6 would
provide unique IP addresses for all nodes. It simplifies dy-
namic setup, mobility management as well as security in
a WMN. As most parts of the embedded Linux already
support IPv6, only extensions to some configuration scripts are
needed. IPv4 Zeroconf protocols (e.g. multicast DNS) will be
integrated in our next release. We further focus on extensions
of configuration interface to include gateways to wireless
sensor networks. Other open issues are modular enhancements
of the management console in order to provide easy integration
of new configuration options, e.g. additional routing protocols,
experimentation setups.

ACKNOWLEDGEMENT

The work presented in this paper was partly supported by
the Swiss National Science Foundation under grant number
200020-113677/1.

REFERENCES

[1] J. Bicket, D. Aguayo, S. Biswas, and R. Morris, “Architecture and
evaluation of an unplanned 802.11b mesh network,” in MobiCom ’05:
Proceedings of the 11th annual international conference on Mobile
computing and networking. Cologne, Germany: ACM Press, August
2005, pp. 31–42.

[2] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris, “Link-
level measurements from an 802.11b mesh network,” in International
Conferences on Broadband Networks (BroadNets), 2004.

[3] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran,
H. Kremo, R. Siracusa, H. Liu, and M. Singh, “Overview of the
ORBIT radio grid testbed for evaluation of next-generation wireless
network protocols,” in WCNC 2005 IEEE Wireless Communications and
Networking Conference, vol. 3, March 2005, pp. 1664 – 1669.

[4] R. Draves, J. Padhye, and B. Zill, “Routing in multi-radio, multi-hop
wireless mesh networks,” in 10th annual international conference on
Mobile computing and networking MobiCom ’04. Philadelphia, PA,
USA: ACM Press, 2004, pp. 114–128.

[5] ——, “Comparison of routing metrics for static multi-hop wireless
networks,” in Conference on Applications, technologies, architectures,
and protocols for computer communications SIGCOMM ’04. Portland,
Oregon, USA: ACM Press, August 2004, pp. 133–144.

[6] R. Karrer, A. Sabharwal, and E. Knightly, “Enabling large-scale wireless
broadband: The case for taps.” in 2nd Workshop on Hot Topics in
Networks (Hot-Nets II, Cambridge, MA, November 2003.

[7] C. C. Ho, K. N. Ramachandran, K. C. Almeroth, and E. M. Belding-
Royer, “A scalable framework for wireless network monitoring,” in
2nd ACM international workshop on Wireless mobile applications and
services on WLAN hotspots WMASH ’04. New York, NY, USA: ACM
Press, 2004, pp. 93–101.

[8] PC Engines GmbH, “Wireless Router Application Platform (WRAP),”
www.pcengines.ch, 2006. [Online]. Available: www.pcengines.ch

[9] M. Baker, G. Rozema, I. Kaloz, N. Thill, F. Fainelli, F. Fietkau,
M. Albon, and T. Yardley, “OpenWrt,” http://openwrt.org/, 2006.

[10] R. Landley, “Busybox,” http://www.busybox.net, 2006.
[11] E. Andersen, “uclibc,” http://www.ulibc.org, 2006.
[12] HLFS Development Team, “Hardened Linux From Scratch (HLFS),”

http://www.linuxfromscratch.org/hlfs, 2006.
[13] J. Jelinek, “Position Independent Executable (PIE),”

http://gcc.gnu.org/ml/gcc-patches/2003-06/msg00140.html, June 2003.
[14] PaX Project, “Pax,” http://pax.grsecurity.net/, 2006.
[15] B. Spengler, “Grsecurity,” http://www.grsecurity.net/, 2006.
[16] H. Etoh, “Stack Smashing Protector (SSP),” http://www.trl.ibm.com/

projects/security/ssp/, August 2005.
[17] M. Burgess, “Cfengine: a system configuration engine,”

http://www.cfengine.org, 1993.
[18] ——, “A tiny overview of cfengine: Convergent maintenance agent,”

in 1st International Workshop on Multi-Agent and Robotic Systems
MARS/ICINCO, Barcelona, Spain, September 2005.

