
PERFORMANCE OPTIMIZATION FOR
TCP-BASED WIRELESS SENSOR NETWORKS

Masterarbeit
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Ulrich Bürgi
2011

Leiter der Arbeit:
Professor Dr. Torsten Braun

Institut für Informatik und angewandte Mathematik

Contents

Contents i

List of Figures iii

List of Tables vii

Listings ix

1 Summary 1

2 Introduction 3
2.1 Wireless Sensor Networks . 3
2.2 TCP/IP in Wireless Multi-hop Networks . 4
2.3 Contributions . 7
2.4 Thesis Outline . 7

3 Related Work 9
3.1 TCP/IP in Wireless Networks . 9

3.1.1 Snoop . 9
3.1.2 Distributed TCP Caching for Wireless Sensor Networks 10
3.1.3 TCP Support for Sensor Networks . 11

3.2 Contiki . 13
3.2.1 Rime Protocol Stack . 13
3.2.2 µIP Stack . 15
3.2.3 The Rime µIP Interface . 17

3.3 Media Access Control Protocols . 18
3.3.1 X-MAC . 18
3.3.2 ContikiMAC . 19
3.3.3 Low Power Probing . 20
3.3.4 NullMAC . 20

3.4 Experiment Resources . 21
3.4.1 TelosB Sensor Node Platform . 21
3.4.2 TARWIS . 22

i

4 Design and Implementation of Local Retransmission Mechanisms 25
4.1 Segment Caching and Local Retransmissions 25

4.1.1 Implementation Issues . 25
4.1.2 Packet Processing . 27
4.1.3 Retransmitting Data and Acknowledgments 28
4.1.4 Maintenance . 29

4.2 Multiple Retransmissions and Duplicate Segment Dropping 30
4.3 Hop-distance Dependent Retransmissions . 31
4.4 Activity Monitoring . 32

4.4.1 MAC Proxy . 32
4.4.2 Activity Dependent Early Retransmissions 33

4.5 Multiple Connections . 35
4.5.1 Split and Merge . 36

4.6 Experiment-related Implementations . 37
4.6.1 TCP Client and Server . 37
4.6.2 Static Routing . 37

5 Evaluation 41
5.1 Experiment Setup . 41
5.2 Testbed Setup . 42
5.3 Single Route Scenario . 43

5.3.1 Segment Caching and Local Retransmissions 44
5.3.2 Multiple Retransmissions and Duplicate Segment Dropping 45
5.3.3 Hop-distance Dependent Retransmissions 49
5.3.4 Activity Monitoring . 51
5.3.5 Multiple Connections . 53
5.3.6 Overall Comparison . 54

5.4 Double Route Scenario . 57
5.4.1 Transmission Performance . 59
5.4.2 Energy Efficiency . 60

5.5 Conclusion . 61

6 Conclusion & Outlook 63
6.1 Conclusion . 63
6.2 Outlook . 64

List of Acronyms 67

Bibliography 69

ii

List of Figures

2.1 Wireless Sensor Network example topology 4
2.2 TCP packet flow with retransmissions . 5
2.3 TCP congestion control phases . 6

3.1 Snoop example topology . 10
3.2 Segment caching and retransmission in DTC 11
3.3 TCP acknowledgment recovery in TSS . 12
3.4 Contiki’s network stack . 14
3.5 Simplified µIP control loop . 16
3.6 Strobed preamble in X-MAC . 18
3.7 Wakeup cycle learning in ContikiMAC . 19
3.8 Receiver initiated sending in LPP . 20
3.9 TelosB sensor node . 21

(a) Node with attached AA battery pack . 21
(b) Block diagram . 21

3.10 Experiment monitoring in TARWIS . 22

4.1 TCP packet flow in Contiki’s network stack 26
(a) Unmodified network stack . 26
(b) Network stack with cctrl module . 26

4.2 Evaluation of retransmission timeout parameters 29
(a) Two-hop round trip time experienced by X-MAC node and inferred re-

transmission timeout. 29
(b) Influence on throughput of NullMAC nodes when using different RTT

weights in Eq. 4.1. 29
4.3 Cctrl nodes’ behavior on packet loss and retransmissions 30

(a) Only one retransmission per node . 30
(b) Up to three retries per node . 30
(c) Dropping of redundant retransmissions 30
(d) TCP acknowledgment spoofing . 30

4.4 Retransmission timeout comparison . 31
4.5 Workflow for processing overheard packet using MAC proxy 33
4.6 Activity levels registered by X-MAC nodes 34
4.7 Two common causes of idle waiting . 35

iii

(a) Loss of data packet on first (unprotected) hop 35
(b) Loss of ACK packet close to its final destination 35

4.8 Multiple TCP connections between application node and Internet gateway . . . 36

5.1 Sensor Node Topology . 43
5.2 NullMAC with cctrl module . 44

(a) Throughput . 44
(b) Retransmissions . 44
(c) Round trip time . 44

5.3 X-MAC with cctrl module . 46
(a) Throughput . 46
(b) Energy consumption . 46

5.4 Throughput with multiple retransmissions . 47
(a) NullMAC . 47
(b) X-MAC . 47

5.5 X-MAC’s energy consumption with multiple retransmissions 47
5.6 Throughput with hop-dependent retransmissions 48

(a) NullMAC . 48
(b) X-MAC . 48
(c) LPP . 48
(d) ContikiMAC . 48

5.7 Amount of bad Rime packets per end-to-end TCP transmission 49
5.8 Throughput with activity monitoring . 50

(a) NullMAC . 50
(b) X-MAC . 50
(c) LPP . 50
(d) ContikiMAC . 50

5.9 LPP’s energy consumption with activity monitoring 51
5.10 Throughput with multiple connections . 52

(a) NullMAC . 52
(b) X-MAC . 52
(c) LPP . 52
(d) ContikiMAC . 52

5.11 Energy consumption with multiple connections 54
(a) X-MAC . 54
(b) LPP . 54

5.12 Throughput comparison of single route scenario 55
(a) NullMAC . 55
(b) X-MAC . 55
(c) LPP . 55
(d) ContikiMAC . 55

5.13 Energy consumption comparison of single route scenario 57
(a) X-MAC . 57

iv

(b) LPP . 57
5.14 Throughput of double route scenario . 58

(a) NullMAC . 58
(b) X-MAC . 58
(c) LPP . 58
(d) ContikiMAC . 58

5.15 Throughput comparison of double route scenario 60
5.16 Energy efficiency of double route scenario . 60

v

List of Tables

5.1 Structure of a data packet . 42
5.2 Sensor node roles for the different scenarios and path lengths 43

vii

Listings

4.1 Cctrl data structures . 27
4.2 Activity dependent early retansmissions . 35
4.3 Example of a TCP server . 38

ix

Acknowledgment

I would like to thank my supervising tutor Philipp Hurni for the many hours spent providing
great support and invaluable assistance, Prof. Dr. Torsten Braun for giving me the opportunity
to write my Master’s thesis at the RVS group, and all the other members of the research group
who supported me with helpful advice.

xi

Chapter 1

Summary

Nowadays, Wireless Sensor Networks become more and more popular in various domains, such
as environmental monitoring, health care, and military operations. They provide a cost-efficient
and easy deployable way for data collection and data aggregation in a widespread area of interest.
With the availability of lightweight implementations of a TCP/IP stack small enough to run on
wireless sensor nodes, it is possible to directly contact the nodes with common, TCP-based
applications. Furthermore, wireless sensor networks can be part of the Internet, which, for
instance, makes it easier to maintain nodes located far away from the operator.

Using TCP/IP in wireless sensor networks, however, has some considerable disadvantages.
TCP has been designed for wired, low error networks, for which packet loss is mainly caused
by network congestion. In wireless multihop networks with high bit-error rates TCP’s conges-
tion control mechanisms lead to significant degradation of throughput. Additionally, due to the
required end-to-end retransmissions, energy consumption is increased, which leads to a shorter
lifetime of the sensor nodes.

For this master’s thesis, we introduce and evaluate a modular approach of caching TCP
segments on intermediate wireless sensor nodes to perform local retransmissions, which we im-
plemented into the Contiki operating system’s µIP stack, the lightweight TCP stack implementa-
tion of one of today’s most popular operating systems for small embedded devices. Besides the
core functionality of the simple retransmission mechanism, we also implemented various exten-
sions to test alternative retransmission schemes, such as multiple retransmissions, hop-distance
dependent retransmission timeouts, and activity dependent retransmissions. The proposed de-
sign works independently of the MAC layer and does not require any specific features from the
MAC protocol used. Furthermore, it is transparent to the application layer and a modification of
the TCP protocol is not required. The goal of the caching and retransmission system is to reduce
the need for end-to-end retransmissions in case of packet loss, increase throughput of TCP data
and, in combination with energy efficient MAC protocols, reduce energy consumption.

To evaluate our approach, we perform real-world experiments in an indoor wireless sensor
node testbed. We test the behavior of the retransmission mechanism with various combinations
of the proposed extensions by transporting TCP data over five routes of different length, and in
two scenarios, which differ in network topology and amount of traffic. We also investigate how
the MAC layer influences the effectiveness of our implementations by running the experiments
with four different MAC protocols, among them radio duty-cycled and energy unconstrained

1

protocols. In total, we evaluate 2500 individual experiment configurations.
The experiment results reveal, that in most situations our proposed caching and retransmis-

sion mechanisms are able to increase throughput, in certain scenarios by up to 84%. Also the
power consumption of wireless sensor nodes running energy-efficient MAC protocols can be
decreased, despite the increased TCP throughput.

2

Chapter 2

Introduction

2.1 Wireless Sensor Networks

A Wireless Sensor Network (WSN) is a collection of autonomous, low-cost, low-power sensor
nodes with the purpose to monitor ambient conditions, such as temperature, humidity, lumi-
nance, movement, pressure, noise levels, and others, within a given area [1]. Along with the
actual sensors, sensor nodes are equipped with a radio for node-to-node communication used
to transport sensed information through the WSN to an observation entity. They also feature
on-board processing units and memory, with which gathered data can be preprocessed before
sending, in order to limit the amount of data to transmit. An example of a wireless sensor node
is the TelosB / Tmote Sky platform, which we describe in more detail in Section 3.4.1.

Many application areas for wireless sensor networks exist today. For example, WSNs are
deployed for military operations, environmental monitoring and health care. Obviously, each
WSN scenario has individual requirements to the sensor nodes’ hardware and software. A sys-
tem which observes seismologic activity of an active volcano [2], for instance, requires a network
capable of processing a high amount of continuous measurements and nodes with long battery
lifetime. On the other hand, a WSN with the purpose of detecting gunfire and localizing the
shooter [3] has to be able to transport irregularly occurring event data with as little delay as
possible.

A typical configuration of a Wireless Sensor Network is illustrated in Fig. 2.1. A large num-
ber of sensor nodes are distributed in an area of interest and interconnected to build a wireless
multi-hop mesh network. The WSN is connected to either a base-station or through a gateway
to another network (e.g. the Internet) to which the sensed data is forwarded and from which the
sensor nodes can be maintained and reconfigured.

Connecting a WSN to the Internet has the benefit that the sensor data can be accessed from
virtually everywhere. But since wireless sensor nodes usually use special communication proto-
cols, a gateway node is needed, which negotiates between the WSN and the IP-based network.
Sensor node operating systems with direct support of TCP/IP also exist, notably Contiki, which
is introduced in Section 3.2. This not only makes it possible to directly access the nodes with
commonly used tools and applications (e.g. Telnet [4]). The nodes themselves are able to
communicate with every other network entity, either directly or via other nodes. They could
receive updates from an administration tool, upload measurement data to a Web server, or send

3

Internet

Figure 2.1: Wireless Sensor Network example topology

out e-mails notifying about low battery level, to name just a few examples. Using TCP/IP in
a WSN, however, brings the drawback of significant performance decrease, due to reasons we
illustrate in the following.

2.2 TCP/IP in Wireless Multi-hop Networks

The TCP/IP protocol suite is the de facto standard for Internet communication. The Transmis-
sion Control Protocol (TCP) is implemented on top of the Internet Protocol (IP) and provides
reliable delivery of an ordered stream of bytes from one application to another.

After an initial three-way handshake between client and server, the two hosts can indepen-
dently transmit data to each other. For transmission, the data is split into segments, which are
sent to the recipient as individual TCP packets. As it is not guaranteed that each packet takes
the same route, the order of arrival may be incorrect. Therefore, the TCP packet header contains
a 32 bit sequence number, which increases for each packet by the size of the previous segment.
This allows the TCP stack at the receiver side to reorder the received segments before passing
them to the application.

The sequence number is also used to provide reliability. Whenever one host, which has
already received data, sends a packet to the other, it acknowledges previously received trans-
missions. This is done by setting the acknowledgment flag in the packet’s TCP header and
specifying the sequence number of the next packet expected to be received as acknowledgment
number. If an incoming packet contains an acknowledgment number for an already sent packet,
the host assumes that all previously sent packets with a sequence number greater or equal to this
acknowledgment number have been lost. The host will then retransmit these packets. Figure 2.2
shows an example of this behavior. Here, host A successfully sends two segments to host B that,
in return, sends three segments. Unfortunately, B’s second segment is lost. A acknowledges only
the first segment to indicate the need of a retransmission. Finally, when the remaining segment
has been received and there is no missing data anymore, A sends an acknowledgment without
any payload to B.

4

Host A Host B
SeqNr: 10

SeqNr: 11

SeqNr: 25, AckNr: 12

SeqNr: 26, AckNr: 12

SeqNr: 27, AckNr: 12

SeqNr: 11, AckNr: 26

SeqNr: 26, AckNr: 12

SeqNr: 27, AckNr: 12

SeqNr: 11, AckNr: 28

Figure 2.2: TCP packet flow with retransmissions

A first disadvantage of using TCP in wireless sensor networks emerges. A lost segment
has to be retransmitted by the original source regardless where the loss actually happened. The
nodes on the path between source and destination do not have the possibility to perform a re-
transmission by themselves. Therefore, the same information has to pass all nodes on a path
multiple times, which is a not only a waste of time and consequently throughput, but also en-
ergy, a valuable resource for wireless sensor nodes.

In wired networks, for which TCP has originally been designed, this is not of great concern
since packet loss caused by transmission errors is a rather rare event. If packet loss does happen,
the major reason is network congestion, the situation where there are too many packets on the fly,
causing buffer overflows in intermediate nodes, as opposed to lossy links in wireless networks.
This is why TCP applies congestion control mechanisms. In each TCP header a host specifies
its current window size. This is the amount of bytes the host is able to receive at once. When a
host starts to transmit data, it will not initially use the full capacity of the receiver’s window size.
Instead, it will just send one single segment. For each subsequent acknowledgment, the host
doubles the amount of simultaneously transmitted segments up to a sender-defined threshold.
This behavior, illustrated in Fig. 2.3, is called slow start and should ensure that the capacity of
the network is not exceeded at the beginning of a connection. This phase is followed by the
congestion avoidance phase, in which the amount of data sent is only increased by one segment
per acknowledgment until the receiver’s window size has been reached. When an expected
acknowledgment does not arrive in a certain time frame, the sender drops back to transmit only
one single segment and restarts the slow start phase with a threshold half the previous size. This
allows the network to quickly recover from a congestive situation.

In large networks TCP’s congestion control mechanisms are essential for flawless commu-
nication. However, these mechanisms as well as the end-to-end retransmission scheme have a
significant negative impact on the performance of wireless multi-hop networks. Here, the packet

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 180
0

5

10

15

20

Time

Se
gm

en
ts

Threshold

Threshold

Slow-Start Congestion Avoidance

Packet loss
20

Figure 2.3: TCP congestion control phases

loss rate is much higher than in wired networks, thus causing the congestion control mechanism
to frequently reduce the window size. For indoor WSNs packet loss rates of more than 30% on a
single hop are not unusual [5]. The major reason for this is not network congestion, however, but
the occurrence of transmission errors caused by signal distortion due to interference with other
devices, interference due to multipath propagation, and packet collisions. Packet collisions occur
because of the half-duplex nature of the wireless media, i.e. the fact that a device cannot transmit
and receive simultaneously. Contention-based random MAC protocols lower the probability of
such an event, but are not able to completely prevent two devices from initiating a transmission
at the same time. Furthermore, it is not possible for a device A to detect, whether a neighboring
device B is already receiving data from a third device C, if A is outside the transmission range of
C. This situation is known as the hidden node problem and is also a source of packet collision.

Such kind of phenomena hardly exist in wired networks, where the link layer error rate
generally remains very low, e.g. with bit-error-rates of at maximum 10−7 for DSL [6].

6

2.3 Contributions

An overview of the key contributions of this thesis is provided in the following:

• We implemented an approach of caching TCP segments on intermediate wireless sensor
nodes to make them able to perform local retransmissions in case of packet loss. The
approach is transparent to the application layer, does not require any modification to the
TCP protocol, and works independently from the used MAC protocol. This is the first
implementation of TCP optimization mechanisms based on DTC [7] and TSS [8] for real
sensor nodes.

• Besides the basic retransmission mechanism, we introduced and implemented various ex-
tensions, which provide alternative retransmission schemes. The extensions allow the
sensor nodes to perform multiple retransmissions of the same TCP segment to cope with
subsequent transmission errors, use the hop-distance as an additional value for calculat-
ing the retransmission timeout, and make use of MAC layer feedback to provide early
retransmissions in case of low external radio activity. Additionally, we investigated in an
extension, which provides multiple TCP connections to transport data.

• We extensively evaluated the implementations with experiments run in a real world sensor
node testbed under realistic conditions. We tested our approaches in combination with an
energy-unconstrained CSMA MAC protocol, as well as with three energy-efficient, radio
duty-cycling MAC protocols.

• Our experiment results revealed the feasibility of improving TCP’s performance in wire-
less sensor networks using the proposed local retransmission schemes. Furthermore, we
showed that the results are heavily depending on the used MAC protocol, the hop distance
between sender and receiver, and the chosen retransmission scheme. In the best case, in
combination with the CSMA MAC protocol, an average increase in throughput of 84%
has been achieved in experiments across 2, 3, 4, 5 and 6 hops.

2.4 Thesis Outline

This thesis is structured as follows: Section 3 gives an overview of the technologies related to
our project, such as the used sensor node operating system, network protocols, and sensor node
platform. Other studies, which pursue objectives similar to ours, are also introduced. Section 4
discusses design issues and the actual implementation of our own caching and retransmission
mechanisms. The experiment setup and the evaluation of the gained results are introduced in
Section 5. Finally, Section 6 concludes with a summary of the presented work and provides an
outlook to future work.

7

Chapter 3

Related Work

In this chapter we give an overview of studies related to our project, and present the used soft-
ware and hardware components. In Section 3.1, we outline other approaches available that aim
to improve the performance or efficiency of TCP/IP in wireless sensor networks. Then, we in-
troduce the Contiki operating system in Section 3.2 focusing on node-to-node communication
as well as TCP/IP communication. This is followed by Section 3.3, a presentation of the various
MAC protocols we used to evaluate the impact of our implementation. Finally, there is a brief
description of the used sensor node platform and testbed management software in Section 3.4.

3.1 TCP/IP in Wireless Networks

As discussed in Section 2.2, the performance of TCP/IP based wireless networks degrades due to
TCP’s congestion control mechanism and end-to-end retransmission scheme. This is especially
true for wireless multi-hop networks. Several approaches concerning this issue have been pro-
posed, such as Snoop [9] on which many others rely. However, we are only aware of two studies
explicitly targeting wireless sensor networks: DTC [7] and TSS [8]. The simulation-based stud-
ies [7] and [8] have shown that both of them are able to improve throughput while reducing
energy consumption. A drawback DTC and TSS have in common is that both protocols are not
designed to work in combination with duty-cycling MAC protocols.

3.1.1 Snoop

Snoop [9] aims to improve TPC/IP performance in 802.11-based wireless local area networks,
where mobile devices are directly connected to a base station, which itself is connected to a wired
network. An example topology is illustrated in Fig. 3.1. The base station monitors ongoing
TCP connections and caches all segments sent from the wired network to a mobile device until
TCP acknowledgements (ACK) for these segments return. If a packet loss is detected on the
wireless link, either due to a timeout or due to duplicate ACKs, the base station will retransmit
the affected segments and drop duplicate ACKs. The host in the wired network will therefore
not be aware of any transmission errors on the wireless link, which it would interpret as a result
of network congestion. This prevents from performance degeneration caused by unnecessarily
triggered congestion control mechanisms.

9

Wired Network

Snoop
Base StationWired Host

Wireless
Mobile Devices

Figure 3.1: Snoop example topology

Snoop also proposes to modify the mobile devices’ TCP implementation to understand TCP
segments containing a Selective Acknowledgment (SACK) block. The TCP SACK option, pro-
posed in RFC2018 [10] and not commonly supported when Snoop was introduced, provides the
possibility for a TCP receiver to inform the sender, which individual segments out of a sequence
have actually been received. Traditionally, even when only one segment gets lost, this segment
and all subsequent ones have to be retransmitted as the receiver can only respond with an ac-
knowledgment for a whole sequence. Using this additional feature, a base station that detects a
packet loss can immediately reply with a SACK, which reduces the amount of retransmissions.

Furthermore, Snoop base stations retransmit selective acknowledgments when they do not
receive any packet from a mobile device for a certain amount of time. If the mobile device has
sent out a sequence of packets, none of which has been received by the base station, such a
spurious SACK reduces the waiting time for the retransmission.

3.1.2 Distributed TCP Caching for Wireless Sensor Networks

Distributed TCP Caching for Wireless Sensor Networks (DTC) [7] is a mechanism which caches
TCP segments on forwarding sensor nodes to be able to perform hop-by-hop retransmissions.
The ultimate goal of DTC is to reduce energy consumption of the sensor nodes.

In DTC, each sensor node keeps a cache for a single TCP segment. A cache capable of
storing multiple segments was assumed to exceed a sensor node’s memory. Whenever such a
segment is forwarded, it is cached with a probability of 50% if the cache is not already in use.
This allows a node to react to TCP acknowledgments (ACK) accordingly to Fig. 3.2: If the
acknowledgment number of an incoming segment is greater than the sequence number of the
cached segment, the cached segment is removed and the TCP ACK is forwarded as is, since this
represents a normally behaving TCP packet flow. However, an acknowledgment number smaller
than or equal to the cached segment’s sequence number is an indicator for packet loss.

If the acknowledgment number is equal to the cached sequence number, the node simply
retransmits the cached segment. Otherwise, DTC additionally makes use of TCP’s Selective
Acknowledgment Option (SACK). If the SACK block of an incoming TCP ACK packet already
contains the sequence number of the cached segment, the node knows that another node, further
towards the sender of the ACK, has cached the same segment as well. In that case, the node
clears the cache and forwards the ACK. Should the sequence number not be part of the SACK
block, however, the node retransmits its cached segment and adds the corresponding sequence

10

1

2 2

Node 2Sender ReceiverNode 1 Node 3

1

2

3

1

2

3

1

1 [3]

1 [3, 2]

2

3

2

2

3

1 [3, 2]

1 1 1

4 4 4 4

s

a [b]
s

Segment with sequence number s

Acknowledgment with ACK number a and SACK b

Cache containing segment s

Figure 3.2: Segment caching and retransmission in DTC

number to the SACK block. If all gaps of the SACK block are filled the node drops the ACK
since then all unacknowledged segments are already cached by other nodes. Otherwise, the ACK
is forwarded as usual.

In addition to observing the TCP ACK packets, DTC nodes relay on link level acknowledg-
ments. Should a node not receive a link level ACK for a forwarded TCP segment, a retransmis-
sion timer is scheduled. If no acknowledging TCP packet is received before the retransmission
timer expires the node retransmits the cached segment as well.

OMNet++ simulations, replicating a 6 hop topology with a 10% packet loss rate, have
shown, that using DTC the amount of TCP packets required to transport a certain amount of
data is indeed reduced. Furthermore, a 450% increase in throughput has been measured.

3.1.3 TCP Support for Sensor Networks

Similarly to DTC, in TCP Support for Sensor Networks (TSS) [8] the sensor nodes cache for-
warded TCP segments to be able to perform local retransmissions. TSS nodes maintain a cache
for two segments. The first segment has already been forwarded to the next node. It remains
cached until the node gains knowledge about the successful reception of the segment at the sub-
sequent node. This can be either explicitly, when the node receives a TCP ACK for this segment,
or implicitly, when it overhears the forwarding of the segment by the subsequent node. When
an acknowledgment for a cached segment does not arrive after 1.5 times the average round trip
time, the node assumes that the segment has been lost and performs a local retransmission.

11

Node 2Sender Node 1 Node 3
Pkt.

ACK

Overheard ACK

Receiver

ACK Recovery

Figure 3.3: TCP acknowledgment recovery in TSS

The second segment has yet to be transmitted. However, this happens only after an (implicit
or explicit) acknowledgment has arrived for the first segment. This behavior guarantees, that
segments are not transmitted towards a node, for which it is not known whether its cache is
already full. Consequently, when one node stops forwarding segments, the preceding nodes will
stop transmitting as well.

Concerning TCP ACKs, TSS performs local regeneration of acknowledgments. Whenever
a TCP data segment is received, for which the node has already received a TCP ACK, the data
segment is dropped and an acknowledgment is regenerated using the highest acknowledgment
number ever seen. Additionally, to reduce the delay of acknowledgments, TSS uses a recovery
mechanism when it is assumed that a TCP ACK has been lost, which is illustrated in Fig. 3.3.
Since TSS nodes are assumed to overhear the communication of other nodes, a node can measure
how long it takes from the time it sends out an acknowledgment until it is forwarded again by the
recipient. If this delay is larger than twice the average value, the acknowledgment is regenerated
and transmitted again.

The performance of TSS has been evaluated in OMNet++. In a sensor node topology with
a packet loss rate of 15%, TSS reduced the amount of transmissions needed to deliver 500
data packets over 9 hops by roughly 70%, and almost removed the occurrence of end-to-end
retransmissions.

12

3.2 Contiki

Contiki [11, 12], first released in 2004, is an open source operating system designed for sensor
nodes and embedded systems with small amounts of memory. Typically, a configuration requires
2 kB of RAM and 40 kB of ROM. On top of an event driven kernel, Contiki applications can
be loaded and unloaded dynamically at runtime. This makes it possible to distribute program
code to running sensor nodes to add new functionalities or provide bug fixes without the need of
collecting the nodes for offline reprogramming.

To be able to communicate with other devices, Contiki uses a layered network stack as il-
lustrated in Fig. 3.4. At the bottom, providing access to the physical medium, is a platform
dependent radio driver. On top of this lies the MAC layer. Several energy efficient, and perfor-
mance orientated MAC protocols are already implemented, some of which are further discussed
in Section 3.3. Finally, there is the Rime layer, Contiki’s major protocol stack, providing differ-
ent methods of node-to-node communication, followed by the optional µIP layer.

3.2.1 Rime Protocol Stack

Rime [13] is a collection of core functionalities for node-to-node communication, so called
Rime protocols. The Rime protocols are implemented in different layers. Lower layer protocols
provide more basic features used by higher layer, more complex protocols in a non-transparent
way. Usually in protocol stacks, outgoing packets acquire additional headers while traveling
through the different layers, which are removed again at the receiver when being processed
as an incoming packet in the opposite direction. In Rime, however, incoming packets are not
modified. Higher layer protocols are therefore aware of the underlying layers and can benefit
from additionally available header information.

Applications and other protocols running on top of Rime may directly use any Rime protocol
to transmit data. To do so, they have to create a connection using the desired protocol, copy the
data to the Rime buffer and initiate the actual transmission. The available protocols, illustrated
in Fig. 3.4, and their responsibilities are as follows:

abc The most bottom layer, used by all other Rime protocols, is the Anonymous Best-effort
Single-hop Broadcast protocol. It is used to send a data packet to all other listening nodes
in the receiving range without providing any information about the initiator of the trans-
mission.

ibc To be able to send packets which identify the sender, the Identified Best-effort Single-hop
Broadcast protocol is needed. It simply attaches the address of the sending node to the
buffered data packet.

uc For sending a packet to just one particular node, the Best-effort Single-hop Unicast proto-
col attaches the address of the target receiver to the packet. Nodes receiving a packet
addressed to another node, will discard it at this layer.

stuc When data is sent using the Stubborn Single-hop Unicast protocol, the packet is cached in
a special buffer and is indefinitely sent and resent until an upper layer protocol explicitly
stops the transmission.

13

ruc The Reliable Single-hop Unicast protocol can perform reliable transmissions. Whenever
a packet arrives at this layer, an acknowledgment is generated and sent back to the orig-
inator. An incoming acknowledgment therefore indicates the successful delivery of the
previous packet, which causes the ruc layer to tell the underlying stuc layer to stop per-
forming retransmissions.

mh, rmh Best-effort Multi-hop Unicast (mh) and Hop-by-hop Reliable Multi-hop Unicast
(rmh) can both be used to send data to a receiver over a multi-hop path. It should be
noted, that the actual path finding is not part of Rime. Both protocols have to be provided
by the calling application or protocol with a function for choosing the next-hop node of a
path. However, Contiki provides a generic approach to build a mesh network which itself
is able to provide this functionality on demand.

polite, ipolite The Polite Single-hop Broadcast protocol is a special purpose, gossip based
broadcasting mechanism. The main idea is avoid multiple transmissions of identical pack-
ets in a node’s vicinity. This can occur, for instance, when using broadcasting schemes
with negative acknowledgments (NACK), where multiple nodes transmit identical NACKs
at the same time as reaction to a lost broadcast. The protocol is available for anonymous
usage (polite) or in combination with a source identifier (ipolite).

Radio

MAC

Rime

abc

polite ibc

uc

mhnf

ipolite

stuc

ruc

rmh

Application

μIP

μIP over Mesh

μIP process

Figure 3.4: Contiki’s network stack

14

nf Best-effort Network Flooding can be used to distribute a single packet to all nodes in a
network. It relies on the underlying ipolite protocol to reduce the occurrence of redundant
transmissions. Contiki itself uses nf for path finding when establishing a mesh network.

3.2.2 µIP Stack

Already integrated in the latest versions of Contiki is µIP [14], a minimalistic implementation of
the TCP/IP suite, which uses only few amounts of memory and RAM. Besides IPv4, IPv6, and
TCP, µIP also supports UDP and ICMP, which is, for instance, required to be able to react to IP
related network errors. Other parts of the suite, not vital for TCP/IP or UDP/IP communication
(e.g. ARP), were left out in order to reduce code size. But since µIP implements all requirements
for Internet hosts, specified in RFC1122 [15], which are related to host-to-host communication,
flawless exchange of data should be possible with almost any device providing a full-featured
TCP/IP stack. An example for an excluded feature of µIP compared to RFC1122 is that the stack
does not allow the transmission of multiple unacknowledged TCP segments. On the one hand,
this results in a decrease of the maximal possible throughput. On the other hand, there is no need
of a sliding window mechanism, which requires a buffer to store sent, but yet unacknowledged
segments, therefore saving valuable memory.

All major functionalities are implemented in µIP’s so called main control loop. Depending
on the implementation, this loop either runs continuously, or each cycle is initiated by a certain
event, as it is the case with Contiki as an event-driven operating system. Such an event could
either be a packet received from the network or the expiration of a periodic timer. The work flow
of the main control loop for handling TCP/IP connections, excluding connection initiation and
termination handshakes, is illustrated in Fig. 3.5. UDP packet processing is not illustrated but
works analogously.

In order to establish a new TCP connection, an application has to initiate the three-way
handshake. This is done by calling the uip connect function. When the connection has been
established successfully, the application gets a notification. Until the connection has been closed
again, a TCP timer will periodically trigger a cycle of the main control loop to maintain the open
connection. The first step of this maintenance process is to check whether the connection has
timed out (i.e. no packets have been received for a certain amount of time). If this is not the case,
the application is polled for new data. Polling is needed because applications running on µIP are
not allowed to send data without explicit permission. If there is a TCP timeout, however, and
a previously transmitted packet is still unacknowledged, a retransmission has to be performed.
Since outgoing packets are not cached by µIP itself, the application has to do the retransmission.

When the application provides new data, either after being polled or asked for a retransmis-
sion, µIP generates TCP and IP headers (e.g. source and destination addresses, port numbers,
checksums, etc.) accordingly to the connection state and passes the resulting packet to the un-
derlying layer (i.e. Rime) for transmission.

After the arrival of a new packet from the network, the upcoming main control loop cycle
will process the given data. First, the IP headers are validated. Invalid packets are dropped. The
next step is to process the packet according to its payload type. This could either be ICMP, UDP
or TCP. Packets with an unknown payload type are dropped.

15

Pass packet to
lower layer

Generate headers
and checksums

Generate RST

Generate ACK

Notify application
about new data

no

yes
Has data
payload?no

Is TCP
ACK?

no

yes

Are TCP
headers and
checksums

valid?

yes

yes

Application
provides new

data?

Reset TCP timeout
& notify application

about ACK

TCP

UDP

ICMP
Check

payload packet
type

Process as UDP

Process as ICMP

yes

Call application
for retransmissionno

Number of
retransmissions

exceeded?

Poll application
for new data

Are IP
headers and
checksums

valid?

ye
s

yesno

Close connectionno

Has un-
acknowledged

data?
yes

TCP
timed out?

Increase
waiting time

Periodic
TCP Timer
expired

New packet
arrived

Open
connection

exists?

yes

Figure 3.5: Simplified µIP control loop, including connection maintenance (purple), incoming packet
processing (blue), and outgoing packet generation (green).

16

In the case of a TCP payload, the TCP header fields are validated and it is checked, whether
a matching TCP connection is already open. If this is not the case, a TCP packet with its
connection reset flag (RST) set is generated and sent back to the originator of the bogus packet.
A proper packet is further processed. If it is an acknowledgment for previously sent data, the
application is notified. This permits the application to immediately respond by providing data to
µIP, which is then transmitted in the current control loop cycle. The application is also informed,
if the incoming TCP packet contains data payload. Additionally in this case, µIP generates a
corresponding TCP acknowledgment as a response.

3.2.3 The Rime µIP Interface

The target receiver of an IP packet can either be a node participating in the sensor network, or
a device of another network. In the latter case, one Contiki node has to be connected to a host
device (e.g. via Serial Line Internet Protocol to a computer), which acts as a router between the
sensor network and any other network (e.g. the Internet). This node then becomes a gateway to
which all IP packets addressed with an IP address belonging to another subnet are forwarded.
Typically, when using IPv4, Contiki nodes live in the private 172.16.0.0/16 subnet. This means,
that the most significant sixteen bits are fixed (i.e. 172.16). The least significant bits are defined
by the node’s 2 byte Rime address. As example, an IP packet addressed to 172.16.8.2 will be
delivered to the node with a Rime address of 8.2.

In order to send and receive IP packets within a sensor network, µIP has to rely on Rime.
But since Rime and µIP are not aware of each other, Contiki adds an additional bottom layer to
the µIP stack, called µIP over mesh, through which all ingoing and outgoing IP traffic flows. µIP
sees this layer as a network interface, whereas for Rime it is a high layer protocol.

Outgoing IP packets are encapsulated in Rime packets by µIP over mesh and sent using
Rime’s best-effort single-hop unicast protocol (uc). Therefore, the Rime packets require a de-
fined receiver address. In multi-hop networks, the receiver address only belongs to the target
receiver on the very last hop. Otherwise, this has to be the address of the next node in the path.
To know to which node µIP over mesh actually has to send an IP packet, it uses Contiki’s built-in
routing mechanism.

17

3.3 Media Access Control Protocols

Media Access Control (MAC) protocols build the link between the network layer and the physi-
cal layer, i.e. the radio driver for wireless devices. For wireless sensor networks, we distinguish
between duty-cycled, often referred as energy-efficient (E2) MAC protocols, and non-duty-
cycled MAC protocols. Radio transceivers usually are the most power consuming components
on a sensor node, not only while transmitting, but also while receiving.

In fact, some transceivers even consume more energy in receive mode than in transmission
mode, depending on the transmission power setting of the radio chip. As example, the TelosB
sensor node platform’s radio consumes up to 19.7 mA in receive mode and only between 8.5 and
17.4 mA in transmission mode using the lowest (-25 dBm) and highest (0 dBm) transmission
power, respectively. With the radio turned off, a TelosB node draws 2.4 mA [16].

To overcome this issue, duty-cycled protocols maintain a regular sleep / wake-up cycle
in which they have long periods with the radio transceiver turned off (sleep state) to save en-
ergy. Examples for such energy saving protocols are B-MAC [17], S-MAC [18], T-MAC [19],
WiseMAC [20], X-MAC [21], ContikiMAC [22], and LPP [23]. Recent contributions to this
protocol class are the runtime traffic adaptive MAC protocols MaxMAC [24] and BEAM [25].
Since we use X-MAC, ContikiMAC and LPP in our experiments, we describe their basic oper-
ation and design principles in the following.

3.3.1 X-MAC

X-MAC [21] is a duty-cycled MAC protocol designed to be used in Wireless Sensor Networks.
To be able to transmit data to another sensor node, duty-cycled protocols need to know, when
the node, which should receive the data, is awake. Therefore, X-MAC transmits a preamble
strobe before the actual data transmission starts. This will alert the receiver in one of its periodic
wake-ups.

Typically, preamble-based approaches [17] transmit a known bit sequence for at least the
duration of a sleep period, or a shortened preamble just when the receiver is about to wake
up [20]. A node receiving such a preamble will stay awake until the data transmission starts.
This approach, however, has some crucial disadvantages. Both, sender and receiver have to stay
awake until the preamble transmission has completed. In the worst case this takes as long as one
sleep period. Furthermore, other nodes hearing the preamble also have to stay awake to receive
the first data packet only to recognize that the data is not addressed to them.

Sender

Receiver
Wakes up

Preamble strobes

Early ACK

Data

Figure 3.6: Strobed preamble in X-MAC

18

X-MAC presents a solution for both of these problems by introducing a short, strobed pream-
ble. Instead of just having an arbitrary bit sequence as preamble, X-MAC directly embeds the
address of the target receiver into the strobes. Therefore, other nodes receiving such a pream-
ble can immediately go back to sleep. The idea of a strobed preamble is to transmit multiple
short preamble packets delimited by short pauses. As illustrated in Fig. 3.6, a receiver can now
stop the preamble strobing process by sending an early acknowledgment, which signals recep-
tion readiness. This not only reduces the energy consumption by reducing unnecessary waiting
times the nodes have to undergo, it also reduces the hop-by-hop latency.

In its original implementation in [21] on top of the MANTIS OS, X-MAC additionally uses
a traffic estimation algorithm to be able to adapt the duty-cycle period to varying traffic loads.
When operating in sensor networks with alternating phases of high and low traffic load, this
brings a better trade-off between throughput and energy saving than having statically configured
duty-cycle timings. However, the current X-MAC implementation for Contiki does not sup-
port traffic load adaptation. The wake-up interval is statically defined at compile time and kept
unchanged.

3.3.2 ContikiMAC

ContikiMAC [22] is the successor of X-MAC in Contiki and combines key concepts used in
various other MAC protocols. Borrowed from X-MAC, ContikiMAC relies on short, strobed
preambles to notify about an upcoming transmission. But instead of having a rather simple bit
sequence as preamble, containing only the target address as actual information, ContikiMAC
directly uses data packets as strobes. When a node wakes up and detects an ongoing transmis-
sion, it stays awake to receive one complete packet and returns an acknowledgment. This means
that at minimum, only three transmissions take place to deliver data small enough to fit in one
packet. The idea of using data packets as wakeup signal has also been used in BoX-MAC [26]
and BEAM [25].

With the reception of an acknowledgment ContikiMAC nodes learn the other node’s wakeup
cycle. This highly effective wake-up schedule exchange mechanism was first introduced in
WiseMAC [20]. Knowing when the receiver is going to wake up, the sender can minimize
the amount of strobe packets needed to deliver a packet. It just has to start the transmission
shortly before the receiver wakes up. This behavior, illustrated in Fig. 3.7, is beneficial because
requiring less strobes reduces the per data packet overhead and thereby the chance of collisions
what increases performance and decreases energy consumption.

ACK

Sender

Receiver
Wakes up

1st data packet

ACK Wakes up

2nd data packet

Figure 3.7: Wakeup cycle learning in ContikiMAC

19

3.3.3 Low Power Probing

As X-MAC and ContikiMAC, Low Power Probing (LPP) [23] is a duty-cycled MAC protocol.
In contrast to most duty-cycled protocols, not the initiator of a transmission is sending strobes,
but the recipients. All nodes periodically send out probe packets indicating that they are ready
to receive data. As shown in Fig. 3.8, a node which wants to send something wakes up and waits
for the target receivers to transmit their probes. Each received probe is acknowledged to notify
the receiver to stay awake. When all target nodes are known to be listening, the sender transmits
the data.

Sender

Receiver

Wakes up

Probe packets

Probe ACK

Data

Figure 3.8: Receiver initiated sending in LPP

This behavior is beneficial especially for broadcasting. Using LPP, a sender can minimize its
idle listening period, since it actually knows when all receivers are ready. In other duty-cycled
protocols, such as the two previously mentioned, a node broadcasting to multiple nodes has to
transmit a preamble for the maximum amount of time, i.e. one duty cycle, to ensure successful
delivery to all receivers.

A similar receiver initiated approach is used in RI-MAC [27]. In addition to LPP, RI-MAC
has a more efficient beaconing mechanism which, for example, is able to recover from collisions.
When multiple senders start transmitting at the same time and the receiver detects a collision, it
retransmits a beacon. The senders will then wait for a random timespan before retransmitting
the data.

3.3.4 NullMAC

Another MAC protocol available for Contiki is NullMAC [28]. It is a minimalistic protocol
which just passes data packets from the network layer to the radio driver and vice versa. This
implies that NullMAC does not check the radio channel for activity before sending a packet.
NullMAC should therefore preferably be used in combination with Contiki’s Carrier Sense Mul-
tiple Access (CSMA) layer to avoid collisions, which we did for the evaluations presented in this
thesis.

Furthermore, NullMAC does not duty-cycle the radio. The resulting high energy consump-
tion is, however, compensated with achieving the maximum throughput possible. This makes
NullMAC ideal to compare the impact of modifications of higher network layers to the trans-
mission performance.

20

3.4 Experiment Resources

For evaluating our proposed protocol mechanisms throughout the case of this thesis we used
TelosB [29] sensor nodes, which are part of a local testbed deployed at the Institute of Computer
Science and Applied Mathematics (IAM) at Neubrückstrasse 10 in Bern. The sensor nodes
are accessed via the TARWIS [30] testbed management system. Since both, the TelosB nodes
and TARWIS, are key components of our experiments, we provide a brief introduction in the
following.

3.4.1 TelosB Sensor Node Platform

The TelosB [29] sensor nodes, one of is illustrated in Fig 3.9, are produced by Memsic (formerly
Crossbow) and follow the same open-source platform design as Sentilla’s Tmote Sky. It features
an 8 MHz MSP430 microcontroller including 10 kB RAM and 48 kB ROM, a CC2402 radio
module, 1 MB flash memory, and two optional sensors for measuring light, temperature and
humidity. Additional devices may be attached using the provided 6 and 10 pin connectors.

The radio module, which operates at 2.4 GHz, has an outdoor range of up to 100 m (30 m
indoors) and is compliant to IEEE 802.15.4. In heterogeneous sensor networks, this allows the
node to communicate with different types of nodes, as long as they support the same standard.

When connected to a computer by USB, the node provides a Universal Asynchronous Re-
ceiver Transmitter (UART) interface through which the node can be programmed. This interface
can also be used to communicate with the currently running operating system on the sensor node
to collect sensor data, for example.

(a) Node with attached AA battery pack

Temp./
Humidity
Sensor

Light
Sensor

(b) Block diagram [29]

Figure 3.9: TelosB sensor node

21

3.4.2 TARWIS

The TelosB sensor nodes, used for the experimental evaluation of our proposed protocol mech-
anisms, are part of the local WISEBED [31] sensor node testbed, which is deployed at our
institute. For scheduling, configuration and maintenance of the experiments, TARWIS, a testbed
management architecture for wireless sensor network testbeds [30] was used.

The TARWIS system is designed to work independently from the architecture of the man-
aged testbed, the deployed sensor nodes, and the sensor nodes’ operating systems. As long as
the nodes can be controlled remotely by the TARWIS server, it does not matter, whether the
sensor nodes are directly connected to a single server, are controlled by gateway mesh nodes, or
act independently without wired backup channel.

Guided by a web interface, the user can schedule and monitor custom experiments. First,
the compiled, binary sensor node images have to be uploaded to the web server. Then, in the
reservation section, the user can select the desired sensor nodes to be used for the experiment,
and choose the points in time at which the experiment should start and end. Due to the multi-
user design of TARWIS, when not all available sensor nodes are reserved for the usage in an
experiment, the remaining nodes can be used by other users in their own experiments scheduled
to run during the same period of time.

After the reservation, the scheduled experiment has to be configured. For each selected sen-

Figure 3.10: Experiment monitoring in TARWIS

22

sor node, the user can assign one of the previously uploaded images. Once the experiment starts,
these images will be flashed to the nodes. Additionally, commands can be scheduled, which will
be sent to the nodes as serial interface input during the experiment run. A configuration can also
be saved as a template and reused in subsequent experiments.

During the runtime of the experiment, TARWIS provides a user interface for live monitoring
of the sensor nodes. A screenshot of this interface is shown in Fig 3.10. The area at the top
left notifies about the ongoing actions of the TARWIS experiment-dependent processes, such as
experiment initiation, sensor node programming, etc. Placed at the bottom, a map of the testbed
illustrates the positions of the sensor nodes participating in the current experiment. Adjacent to
the map, a window is provided for each sensor node, which displays the latest output captured
from the node’s serial interface. Below each of these windows the user can enter commands,
which are written to the corresponding node’s serial interface. This provides the ability of di-
rectly interacting with the sensor nodes, what proofed to be quite handy for debugging.

Once the experiment run has completed, the user can download the gathered results, parsed
as an XML-based format, for further analysis and evaluation.

23

Chapter 4

Design and Implementation of Local
Retransmission Mechanisms

Throughout the course of this thesis, we iteratively designed, tested, and combined a number of
TCP performance optimizations. The starting point of our investigations is formed by the TCP
segment caching strategy proposed in DTC [7] and TSS [8] (see Section 3.1) which permits
to perform local retransmissions. This idea is the core component of our own design as well.
On top of that, we added further extensions, which are independent from each other to a large
extent, and which provide new functionalities or modify existing behavior. All of this is unified
in our cache and control (cctrl) module, implemented into the Contiki OS network stack, with
the possibility to enable or disable certain extensions at compile time.

The cctrl module is easily integrable into the µIP stack without major modifications and is
transparent to the underlying network stack. This implies that it can be used in combination
with any available MAC protocol, however, with the drawback of not being able to rely on
MAC protocol specific features, such as overhearing of other ongoing transmissions on the radio
channel. The only requirement of our approach is to have a sensor network with symmetric
routes, where it is guaranteed that data (in particular TCP acknowledgments) traveling from
node A to node B will take the same path as data traveling in the opposite direction.

The general design of the cctrl module, as well as caching and retransmission functionalities
are described in Section 4.1. The additional extensions, which modify the behavior the retrans-
mission mechanism, alter timeout metrics, and gather external information about ongoing traffic,
are introduced in Section 4.2, 4.3 and 4.4, respectively. In Section 4.5 we propose an idea, which
relies on having multiple connections to transport data.

4.1 Segment Caching and Local Retransmissions

4.1.1 Implementation Issues

In order to be able to cache TCP segments, the cctrl module has to be aware of all TCP packets
the node forwards. Figure 4.1(a) shows the flow of such a packet through Contiki’s network
stack. A TCP packet, encapsulated in a Rime packet, is received by the radio and passed to the
MAC layer, which copies it to Rime’s packet buffer. From here, it is processed by the various

25

Rime modules responsible for sending and receiving unicast traffic until the Contiki module µIP
over mesh gets notified about the newly arrived packet. The Rime payload is then copied to
µIP’s packet buffer. When processing the data as a TCP packet, µIP recognizes that the local
node is not the target recipient and therefore, instead of notifying the application, sends it back
out again.

On its way out, the packet first passes uip-fw, whose purpose is to assign outgoing packets
to the proper network interface, in case more than one exists. Afterwards it gets passed again to
µIP over mesh and to all other layers it has traveled through at arrival but in reversed order.

Rime

abc

ibc

uc

Radio

MAC

Application

μIP

μIP over Mesh

μIP process

tcpip.c

uip.c

uip-fw.c

(a) Unmodified network stack

Rime

abc

ibc

uc

Radio

MAC

Application

cctrl

μIP

μIP over Mesh

μIP process

tcpip.c

uip.c

uip-fw.c

(b) Network stack with cctrl module

Figure 4.1: TCP packet flow in Contiki’s network stack

Since we are only interested in TCP packets forwarded by this node, the easiest way to
intercept the packet flow is just before it leaves the actual µIP stack. Caching outbound instead
of inbound packets is advantageous because then they are already processed and validated. The
actual raw packet data stays the same. Therefore, we modify uip-fw in such a way it first calls
the cctrl module to process outgoing packet still residing in the µIP packet buffer before handing

26

t y p e d e f s t r u c t {
char used ;
f l o a t r t t ; / * Average RTT c a l c u l a t e d u s i n g EWMA * /
s t r u c t u i p t c p i p h d r t c p i p h d r ; / * Header copy o f t h e l a t e s t TCP p a c k e t * /
s t r u c t c t i m e r r e m o v e t i m e r ; / * T r i g g e r s garbage c o l l e c t i o n * /

} c c t r l c o n n i n f o ;

t y p e d e f s t r u c t {
char used ;
u16 t p k t l e n ; / * S i z e o f cached p a c k e t (h e a d e r s + pay load) * /
u 8 t * c c t r l c a c h e p t r ; / * P o i n t s t o p a c k e t i n c c t r l b u f f e r * /
s t r u c t u i p t c p i p h d r * t c p i p h d r ; / * P o i n t s t o TCP / IP header i n c c t r l b u f f e r * /
s t r u c t c t i m e r r e t r a n s m i s s i o n t i m e r ; / * T r i g g e r s r e t r a n s m i s s i o n * /
c l o c k t i m e t t i m e s t o r e d ; / * Used t o c a l c u l a t e RTT * /
c c t r l c o n n i n f o * c o n n i n f o ;
u 8 t r e t r a n s m i s s i o n c o u n t e r ;

} c c t r l c a c h e e n t r y ;

s t a t i c c c t r l c a c h e e n t r y c c t r l c a c h e [CCTRL CACHSIZE * 2] ;
s t a t i c c c t r l c o n n i n f o c c t r l c o n n c a c h e [CCTRL CACHSIZE * 2] ;
s t a t i c u 8 t c c t r l b u f f e r [UIP BUFSIZE * CCTRL CACHSIZE * 2] ;

Listing 4.1: Cctrl data structures

over to µIP over mesh. The adapted packet flow is illustrated in Fig. 4.1(b).
To be able to cache TCP segments, the cctrl module needs to allocate memory in which

the data is buffered. This buffer has to be large enough to hold at least the content of two
TCP/IP packets per observable connection, since data can travel from a client to a server as
well as in the opposite direction. In fact, wc + ws packets need to be cached, where wc and
ws represent the TCP window size of client and server, respectively. But because at least one
host is running µIP, which, as seen in Section 3.2.2, only allows having one unacknowledged
segment per connection in flight, we can safely assume the window sizes not to be greater than
one. Therefore, the cctrl module allocates a buffer with the size of two times the size of µIP’s
packet buffer.

Additionally nodes record state information of observed connections and cached segments.
For each cached segment a node logs the total packet size, the time of arrival and the number of
retransmissions. For each unidirectional connection a node stores the IP addresses and TCP port
numbers of sender and receiver needed for identification, the sequence and acknowledgement
number of the last packet seen, as well as the average round trip time (RTT) to the receiver. For
simplicity, we do not store each connection identifying attribute individually, but copy the entire
TCP/IP header, as seen in Listing 4.1, which shows the actual data structures used. As we will
show later, this header is also used to regenerate TCP ACKs for retransmissions. Hence, this
simplification does not waste a lot of memory, since the only header fields that do not have to be
stored are TCP and IP checksums (i.e. 2 ∗ 16 bits).

4.1.2 Packet Processing

Each IP packet being forwarded is processed by the cctrl module (cf. Fig. 4.1(b)). IP packets
which do not have a TCP payload (e.g. UDP packets) are ignored and directly passed to the

27

next layer. TCP packets are processed according to the observed state of the connection they
belong to and the actual type of the packet. First, it is checked whether the current packet is
an acknowledgement of a cached packet, i.e., whether the current packet’s acknowledgement
number is greater than the cached packet’s sequence number. In this case, the packet is removed
from the cache. Should in contrary the current packet be a retransmission of a segment for which
an acknowledgment has already been received, the packet is dropped and not further processed.
Instead, the node regenerates a corresponding TCP ACK, which is explained in more detail in
the next section.

The next step is the actual caching: Only packets that contain payload data are cached. The
content of the µIP packet buffer is copied to a free slot in the cctrl buffer, if available, and a
retransmission timer is scheduled. When the retransmission timer expires before an acknowl-
edgment returns, the packet is released from the cache and is sent out again.

Finally, the connection information is updated, which includes a backup of the processed
packet’s TCP/IP header. This step is omitted for out-of-sequence packets and retransmissions, to
ensure that the connection information always holds the highest sequence and acknowledgment
number ever seen.

4.1.3 Retransmitting Data and Acknowledgments

We distinguish between two different kinds of packet loss for which a retransmission has to be
performed: either a data packet gets lost between sender and recipient, or an acknowledgment
traveling in the opposite direction. The loss of a data packet is actually not detectable. This is
why for each cached segment a timer is scheduled, which pro-actively initiates a retransmission
should it take considerably more time than usual for an acknowledgment to arrive.

Initially, the retransmission timeout is set to 2 seconds, which is high enough to ensure
the first cached segment is not retransmitted early. With the arrival of an acknowledgment for a
cached but not yet retransmitted segment, the node can calculate the current round trip time (rttc)
to the receiver of the cached segment. This is then used to estimate the average RTT of a
particular connection using an exponentially weighted moving average (EWMA) function as
shown in the following formula, which is used similarly in TSS [8]:

rtt = rttc ∗ α+ rtt ∗ (1− α) (4.1)

Using an α of 0.25, the actual retransmission timeout is then set to be

tr = n ∗ rtt (4.2)

with n = 3. Figure 4.2(a) shows a visualization of the EWMA function applied to RTT measure-
ments taken in a real world experiment, in which an X-MAC node sent TCP packets over two
hops. The retransmission timeout (tr), which results out of the average RTT estimate is illus-
trated as well. It is apparent that using an RTT multiplier of n = 3 to derive the retransmission
timeout is sufficient to minimize the probability of triggering early (i.e. redundant) retransmis-
sions. TSS, in contrary, uses a value of n = 1.5, which, in our case, would be two low and
lead to collisions with returning acknowledgments. Further preliminary small scale experiments
have supported the choice of these values for n and α as well. In contrary, other combinations

28

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 100 200 300 400 500 600

Runtime [s]

Measured RTT
Moving Average

Retransmission Timeout

V
a
lu

e
[s

]

(a) Two-hop round trip time experienced by X-MAC node and inferred retrans-
mission timeout.

0

100

200

300

400

500

600

700

800

900

1000

2 3 4

S
e

n
t

T
C

P
 s

e
g

m
e

n
ts

Hops

α = 0.25
α = 0.5

α = 0.1

(b) Influence on throughput of NullMAC nodes when using different RTT weights
in Eq. 4.1.

Figure 4.2: Evaluation of retransmission timeout parameters

of the multiplier n ∈ [1.5, 3] and α ∈ [0.1, 0.25, 0.5] could not perform as well. For example,
as Fig. 4.2(b) illustrates, using different α values negatively influences throughput.

An acknowledgement is known to be lost when the node receives a retransmission of a
data segment which has already been acknowledged by the receiver. As mentioned before, in
this situation the node does not further forward the retransmission but instead regenerates an
acknowledgement. This is done using the TCP/IP header stored as connection state information.

4.1.4 Maintenance

To prevent the cctrl cache to be occupied by connections that are no longer in use, a maintenance
timer is running for each observed connection. The maintenance timer is initially set to expire
after 60 seconds and is reset every time the node receives a packet from this particular connec-
tion. Should a maintenance time expire, the corresponding connection information entries are
removed together with any remaining cached segments. The same procedure is executed when a
TCP FIN or TCP RST is received, since these packets signal that the connection has either been
terminated or timed out.

29

4.2 Multiple Retransmissions and Duplicate Segment Dropping

In our initial implementation, a segment is removed from the cache after the retransmission
mechanism has started. This is disadvantageous in situations where the first transmission of a
packet is lost and, shortly after, the subsequent retransmission as well, e.g., caused by a tempo-
rary decrease of channel quality due to timely correlated transmission attempts and collisions.
This moves the burden of successful retransmission to nodes further away of the receiver and
eventually increases the likelihood of an additional packet loss (cf. Fig. 4.3(a)). Therefore, a
first, rather small change in the initial implementation is to allow the nodes to do more than one
retransmission of the same segment. After retransmission, the segment remains cached and the
retransmission timer gets rescheduled. We limited the total amount of subsequent retransmis-
sions of a specific segment to 3 retries. If these 3 retries fail, the segment is dropped definitively.
Shortly after the end-to-end retransmission from the original source is expected to arrive, which
will re-initiate the retransmission mechanism for this segment. The resulting change in packet
flow is show in Fig. 4.3(b).

Since this strategy causes all nodes to produce more retransmissions, not just the one in front
of the lossy link, the overall traffic generated by the network is potentially increased by redun-
dant retransmissions. Therefore, we added the following simple countermeasure (cf. Fig 4.3(c):
When a node receives a retransmission of an already cached segment, the node does not forward
the segment, but drops it, to reduce the load on the subsequent links.

We also considered faking a TCP acknowledgment in such a situation, as illustrated in

Client ServerA B
Pkt. 1

Ret.

ACK

Ret.

(a) Only one retransmission per node

Client ServerA B
Pkt. 1

Ret. 1

Ret. 2

Ret. 3

ACK

(b) Up to three retries per node

Client ServerA B
Pkt. 1

Ret. 1

Ret. 2

Ret. 3

ACK

(c) Dropping of redundant retransmissions

Client ServerA B
Pkt. 1

Pkt. 2

Ret. 1

Ret. 2
Fake ACK

Ret. 3
ACK

(d) TCP acknowledgment spoofing

Figure 4.3: Cctrl nodes’ behavior on packet loss and retransmissions

30

Fig. 4.3(d). This would prevent the preceding nodes from retransmitting a packet which al-
ready has successfully been received by an intermediate node. However, the drawback of this
approach is potentially inconsistent TCP traffic, as it violates TCP’s end-to-end semantics: A
spoofed ACK allows the TCP client to send the next data packet. When this packet arrives at the
node which is still waiting for an acknowledgement for the previous segment, the new packet
must not be forwarded any further. Because then, should the packet overtake its predecessor and
arrive out of sequence, this could violate the receivers propagated receive window. Furthermore,
should the retransmitting node exhaust its retransmission limit and ultimately drop the segment,
there would be no possibility for recovery, as this segment has - misleadingly - already been
acknowledged. For this reason, we rejected to let nodes create fake acknowledgments.

4.3 Hop-distance Dependent Retransmissions

The approach designed and illustrated in this section is based on an observation made in small
scale experiments: We experienced that, occasionally, multiple nodes, within a chain of nodes
forming the TCP connection, start to retransmit the same segment at roughly the same time.
This behavior should be prevented by scheduling retransmissions based on the round trip times
between node and receiver. However, in wireless networks round trip times tend to be very
inconsistent. This is why we introduce the hop-distance to the receiver as an additional, more
reliable parameter for calculating the retransmission timeout.

The hop-distance to a host is implicitly propagated by every TCP packet. The TCP header
contains a time to live (TTL) field, whose value is decreased by one every time the packet is
forwarded. Hence, subtracting the current TTL from its initial value results in the hop-distance
to the original sender of this packet. The initial TTL value used by Contiki is 64, which is also
the value recommended by IANA [32].

To use this information to calculate the retransmission timeout, we replace the static n = 3
in equation 4.2 by a hop-distance dependent multiplier, where h represents the number of hops
to the receiver:

tr = min{h, hmax} ∗ β ∗ rtt (4.3)

1 2 3 4 5 6 7

R
et

ra
n

sm
is

si
o
n

 t
im

eo
u

t
[m

s]

Distance to receiver [hops]

1000

2000

3000

4000

5000

6000

0

Default (n=3) Hop-dependent (n=1.25*h')

Figure 4.4: Retransmission timeout comparison for example topology with constant per link round trip
times of 100 ms

31

Since the longest route with which we experimented consisted of 7 nodes, we let hmax be 6.
For β we tested different values in the range between 1 and 2, using 1

4 steps and β = 1.25
showed the most satisfying results.

As Fig. 4.4 illustrates, compared to the default retransmission scheme, nodes closer to the
recipient are now allowed to retransmit earlier whereas node further away have to wait consid-
erably longer. We expected this to result in a reduced chance of multiple simultaneous retrans-
missions without major impact on the overall performance.

4.4 Activity Monitoring

Some wireless channel protocols take advantage of the broadcast nature of omnidirectional wire-
less transmission to gain additional information about ongoing transmissions in the vicinity.
DTC and TSS use overhearing of forwarded packets as implicit acknowledgment for a success-
ful reception. Since overhearing is to a large extent radio-type or MAC-layer specific, relying
on the general availability of this property would limit the application of our cctrl module. For
instance, when used in combination with an energy efficient MAC protocol, packets can only
be overheard when the radio is currently in a wake-up interval, which is not the case for the
majority of time. But also the scarce reception of packets destined for other nodes can bare valu-
able information. For example, a high amount of overheard packets could indicate a situation
in which it would be beneficial for a node to withhold a scheduled transmission to avoid further
collisions, since a lot of other nodes are currently trying to send.

4.4.1 MAC Proxy

Our implementation of the cctrl module in Contiki hence needs a hook to the used MAC pro-
tocol, because this is where overheard packets get rejected. To have access to these packets we
need access to the packet buffer of the MAC layer. Since directly manipulating the functionality
of MAC protocols would be against the design goal of keeping the MAC protocol unmodified
and replaceable, we implemented a MAC protocol proxy. This proxy implements the interface
Contiki expects a MAC protocol to have but does not provide any functionality by itself. Instead,
it initializes a real MAC protocol and simply forwards every function call. This slightly alters
the packet reception workflow, as illustrated in Fig. 4.5. In Contiki, the MAC protocol is notified
by the radio driver after a packet reception. The MAC layer proceeds to inform the Rime layer
about this event. Rime then calls the MAC protocol’s read function to start the actual parsing.
The detour via Rime is needed to make sure that there is no unprocessed packet left in Rime’s
packet buffer before the MAC protocol copies the newly received data.

In our activity monitoring approach integrated with our cctrl module, Rime calls the read
function of the newly introduced MAC proxy instead. The proxy forwards this call to the actual
MAC protocol, which parses the packet, copies the received data to the Rime buffer and returns
the amount of bytes copied. Should there be any error (e.g. a bad CRC checksum) or should
the packet have a wrong target address, the return value is zero. However, since also in this
case the received Rime packet still resides in the packet buffer, which is accessible by the MAC
proxy, the proxy can detect overheard packets and access their content without modification of

32

Rime

Radio

MAC

cctrl

μIP

μIP over Mesh

μIP process

MAC proxy

rime.c
input()

cctrl-mac-proxy.c
read()

xmac.c (e.g.)
read()
receive()

R
ep

or
t A

ct
iv

ity

Figure 4.5: Workflow for processing overheard packet using MAC proxy

the underling MAC protocol. In our case, the proxy checks the packet’s target address. Should
this address not be the node’s Rime address (i.e. the packet has been overheard) the cctrl module
is notified about the channel activity.

4.4.2 Activity Dependent Early Retransmissions

The cctrl module stores timestamps of the 20 most recent activity notifications received from
the MAC proxy. This history is used to calculate the current activity level, i.e. the amount of
overheard packets over a short time window. We chose the time window over which the amount
of packets is calculated to always equal the average round trip time of the corresponding con-
nection. The benefit of such an adaptive window size is that it compensates for throughput and
packet-flow differences between MAC protocols. A static window size would have to be explic-
itly configured for each MAC protocol, since in a fixed amount of time the measured activity
level would be considerably higher when a high throughput MAC protocol (e.g. NullMAC) is
used than it would be in combination with a low throughput protocol (e.g. LPP).

To test whether this approach to generate activity levels has any informative value in combi-
nation with duty-cycling MAC protocols, we set up a test experiment using 7 nodes communi-
cating over X-MAC. The experiment follows the same configuration as described in Section 5.1:
Five cctrl enabled nodes forward TCP traffic between the two other nodes. Each node logged

33

0

2

4

6

8

10

100 150 200 250 300

A
ct

iv
ity

 [P
kt

s
/ R

T
T

]

Runtime [s]

Received packets in [t-0.5,t+0.5]

17 18 19 20 21 22 24 25 27 29 30 31 32 33 34 35 36 38 40 41 42 44 45 47 49 50 51 53 55 57 59 60 61 62

Figure 4.6: Activity levels registered by X-MAC nodes. The dashed line indicates the traveling time for
data segments (yellow) and acknowledgments (blue).

periodically, as well as prior to every local retransmission, their current activity level, i.e., the
number of packets overheard over one RTT. These levels are illustrated in Fig. 4.6, where each
node is represented by one specific color. Figure 4.6 further depicts the reception of data packets
at the end node and the corresponding sequence number, indicated by black bumps and inte-
gers along the x-axis, respectively. Additionally, the dashed line shows the traveling time of
individual data packets and acknowledgments.

As expected, during normal packet flow all sensor nodes register relatively high activity.
However, some packets (e.g. 30, 37, 44, etc.) need a significantly longer time period to be
delivered. Furthermore, little or no activity is registered when this happens, indicating that no
retransmissions are performed and that there is no conceivable source of packet collision.

Further analysis revealed that there are two common problems which caused this type of
delay. Both are visualized in Fig. 4.7. First is the loss of a data packet at the first hop, during
the transmission of the original source. Since this host does not use the cctrl module, the packet
has not yet been cached and cannot be retransmitted early. Hence, all nodes are waiting for the
sending host’s TCP timeout to occur.

A second problem is the loss of a TCP acknowledgment close to its final destination. The
retransmission of the ACK can only be triggered by the reception of a retransmitted data packet.
The more nodes the ACK has already passed, the higher is the idle waiting time, as then there
are fewer nodes left capable of initiation a retransmission, which, in addition, have larger re-
transmission timeouts.

34

IDLE WAITING

Client ServerA B
Pkt.

ACK

(a) Loss of data packet on first (unprotected) hop

IDLE WAITING

Client ServerA B
Pkt.

ACK

(b) Loss of ACK packet close to its final destination

Figure 4.7: Two common causes of idle waiting

when TCP p a c k e t i s f o r w a r d e d do
s c h e d u l e r e t r a n s m i s s i o n i n 2 / 3 * r e t r a n s m i s s i o n t i m e o u t

when r e t r a n s m i s s i o n t i m e r e x p i r e s do
i f i s f i r s t r e t r a n s m i s s i o n a t t e m p t then

i f a c t i v i t y = 0 then
r e t r a n s m i t segment

e l s e
r e s c h e d u l e r e t r a n s m i s s i o n i n 1 / 3 * r e t r a n s m i s s i o n t i m e o u t

e l s e
r e t r a n s m i t segment

Listing 4.2: Activity dependent early retansmissions

Implementation

To address this second issue we extended the core implementation of the cctrl module to be
able to retransmit cached segments earlier if the activity level is lower than a certain threshold.
As the pseudo code in Listing 4.2 depicts, when using activity dependent retransmissions, the
retransmission timeout is reduced to 2

3 of the usual value. When the retransmission timer ex-
pires, the node only sends the cached packet if the current activity level is zero. Otherwise the
retransmission is delayed by the remaining 1

3 of the usual timeout duration.

4.5 Multiple Connections

We continued our investigations to improve TCP flow performance, while maintaining our main
design decisions: The changes should remain independent of any MAC layer participating and
should not put in question any basic design issues of the established µIP stack.

One way of further improving the performance of TCP would be to modify Contiki’s µIP
stack to handle the transmission of multiple unacknowledged segments and to poll the appli-
cation more frequently for new data. But this would require major changes to µIP’s current
implementation with the risk of creating unforeseen side-effects and is, therefore, contradictory
to our design guideline.

35

A similar, more versatile approach is to simultaneously establish multiple TCP connections
between client and server to transport data. This allows an application to send out a new data
packet over a different connection even when a previously transmitted packet has not yet been
acknowledged. This also addresses the issues discovered in the previous section: When one
connection is idle because all nodes have to wait for a retransmission to be triggered, another
connection could still be operating.

The actual implications of this approach were unforeseeable: instead of improving through-
put, it could also have led to a network collapse due to the heavier load and more collisions.
Therefore, we decided to implement this as a simple proof of concept prototype. We modified
the used client application to open multiple TCP connections to the same server instead of only a
single one. Whenever µIP polls one of these connections for new data, the application transmits
the next outstanding chunk. Hereby, we ignore the fact that data fragments might arrive at the
server side in wrong order. However, we present a design idea for this concept which operates
beneath the application layer and does not violate TCP specifications in the following section.

4.5.1 Split and Merge

For this concept, the cctrl module not only monitors outgoing TCP traffic, but incoming traffic
as well. Each node which has a responsibility for a TCP end target, i.e. a node which either runs
a TCP client or server application, or which acts as a gateway node to a foreign network, runs a
lightweight TCP server. When such a node monitors a TCP SYN coming from its observation
target, it redirects this traffic to the locally running TCP server and tries to establish two con-
nections with the server addressed in the original SYN packet. The cctrl module of this server
will intercept these connection requests and open a single connection to the locally running tar-
get application’s TCP server. Once the SYN handshake for this last connection has completed
successfully, the other connections are acknowledged in reversed order. Now whenever the TCP
client sends data, it will be tunneled over either of the two connections within the WSN. An
example with a TCP application communicating from a WSN to a foreign host is illustrated in
Fig. 4.8.

Internet

Radio

Application

MAC

Rime

cctrl

μIP

Radio

MAC

Rime

cctrl

μIP

Figure 4.8: Multiple TCP connections between application node and Internet gateway

36

In order to correctly merge the incoming data split over two connections, the cctrl node at
the receiver side has to maintain a small buffer to be able to hold back and rearrange segments
which may arrive in wrong order. This buffer has to provide space for just a few packets. Should
there not be enough memory left for some reason, a receive window of zero can be propagated
on one connection to temporary stop its data flow.

4.6 Experiment-related Implementations

Since we wanted to experimentally evaluate the performance of our cctrl module, some further
implementations and modifications were needed. To generate, transmit and receive TCP traffic
within the sensor network, some sort of TCP applications had to be built, which are described in
Section 4.6.1. Furthermore, as discussed in Section 4.6.2, the network’s topology had to consist
of static routes.

4.6.1 TCP Client and Server

To be able to send and receive TCP data, a Contiki TCP client and server application is needed.
The implementation of the server software is straightforward. Since we do not need to process
the received data at server side only few instructions are needed. Listing 4.3 shows a minimal
implementation of such a TCP server, which just opens a socket for incoming connections, and
turns the green LED on and off to indicate the successful establishment and closing of a TCP
connection, respectively. Our final implementation also produced some log messages at certain
TCP events, which were used for statistical analysis.

The TCP client application follows a similar structure. Instead of passively listening to
incoming connections, it uses the µIP’s tcp_connect command to establish one or, when
the multiple connections extension is used, many TCP connections. Furthermore, it has to react
accordingly to raised TCP events, as depicted in Listing 4.4, which shows the client application’s
main control loop. Whenever µIP polls the application for new data, or requests a retransmission,
we use the cctrl_client_send_packet function to send out a predefined, fixed size
character string, which, amongst other things, contains the current packet number. Should a
connection abort or expire, it is immediately re-established and the data transmission continues
with as little delay as possible.

4.6.2 Static Routing

As previously mentioned, the only requirement of the cctrl module to the network topology is to
have symmetric routes, which guarantee that packets traveling from node A to node B will pass
the same nodes but in reversed order as packets traveling in the opposite direction. When using
Rime’s own routing mechanism, however, it is not certain whether a TCP acknowledgment will
take the same path as the previous data packet. Rime uses a route discovery protocol and just
sends a packet to the first neighboring node, which claims to know a route to the destination. In
the worst case, the path between client and server could change with every transmitted packet.

37

Therefore, we modified this routing scheme to support manually configured, static routes, which
are valid for all outgoing Rime packets.

The entries in Rime’s routing table now contain an additional flag, to distinguish static from
dynamic routes. Originally, entries are removed from the routing table after a certain amount of
time, if they do not get refreshed by a recent route discovery. Static routes are ignored during
this cleanup. Additionally, static routes can be saved to and loaded from the sensor node’s flash
memory.

i n c l u d e ” c o n t i k i . h ”
i n c l u d e ” n e t / u i p . h ”
i n c l u d e ” dev / l e d s . h ”
i n c l u d e ” . . / c c t r l−r o u t e . h ”
/ *−−−* /
PROCESS(c c t r l s e r v e r p r o c e s s , ”CCTRL S e r v e r P r o c e s s ”) ;
AUTOSTART PROCESSES(& c c t r l s e r v e r p r o c e s s) ;
/ *−−−* /
PROCESS THREAD(c c t r l s e r v e r p r o c e s s , ev , d a t a)
{

PROCESS BEGIN () ;

c c t r l s h e l l i n i t () ; / * I n i t i a t e s e r i a l s h e l l * /
c c t r l r o u t e l o a d () ; / * Load s t a t i c r o u t e s * /
t c p l i s t e n (h t o n s (CCTRL PORT)) ; / * Open i n g o i n g TCP s o c k e t * /

whi le (1) {
PROCESS WAIT EVENT UNTIL (ev == t c p i p e v e n t) ;

i f (u i p c o n n e c t e d ()) {
l e d s g r e e n (1) ;

}
i f (u i p n e w d a t a ()) {

l e d s b l i n k () ;
}
i f (u i p c l o s e d () | | u i p a b o r t e d () | | u i p t i m e d o u t ()) {

l e d s g r e e n (0) ;
}

}

PROCESS END () ;
}

Listing 4.3: Example of a TCP server

38

whi le (1) {
PROCESS WAIT EVENT UNTIL (ev == t c p i p e v e n t) ;

app = (a p p s t a t e *) u ip conn−>a p p s t a t e . s t a t e ;

i f (u i p c o n n e c t e d ()) { / * C o n n e c t i o n has been e s t a b l i s h e d * /
app−>c o n n e c t e d = 1 ;
app−>s u c c e s s i v e f a i l s = 0 ;

}
i f (u i p r e x m i t ()) { / * uIP r e q u e s t s r e t r a n s m i s s i o n * /

app−>r e t r a n s m i s s i o n s ++;
c c t r l c l i e n t s e n d p a c k e t (1) ;

}
i f (u i p a c k e d ()) { / * Data has been acknowledged * /

app−> r t t = (f l o a t) (c l o c k t i m e () − app−>l a s t p a c k e t) / (f l o a t)CLOCK SECOND;
}
i f (u i p p o l l ()) { * / uIP r e q u e s t s new d a t a * /

app−>p a c k e t c o u n t ++;
c c t r l c l i e n t s e n d p a c k e t (0) ;

}
i f (u i p c l o s e d () | | u i p a b o r t e d () | | u i p t i m e d o u t ()) {

app−>c o n n e c t e d = 0 ;
i f (! u i p c l o s e d ()) {

/ * Reconnec t * /
i f (++(app−>s u c c e s s i v e f a i l s) < MAX FAILS) {

conn = t c p c o n n e c t (& addr , HTONS(p o r t) , (void *) app) ;
i f (conn == NULL) {

u i p a b o r t () ;
}

}
}

}
}

Listing 4.4: TCP client’s main loop

39

Chapter 5

Evaluation

For the evaluation of our cctrl module and its various extensions, we run experiments using
TelosB sensor nodes deployed in an indoor WSN testbed, as described in the Sections 5.1
and 5.2. We tested the behavior of unmodified Contiki sensor nodes, and sensor nodes run-
ning Contiki with cctrl module with and without extensions in two different scenarios: First,
data was transmitted over two, three, four, five and six hops on one single path. Second, two
independent paths with one common node were established, each of which consisting of two to
six nodes. The results of these two scenarios are discussed in Section 5.3 and 5.4, respectively.

5.1 Experiment Setup

All experiments were done using NullMAC in combination with the CSMA layer, and X-MAC,
both running on Contiki 2.4. With the release of ContikiMAC included in Contiki 2.5’s first
release candidate, we ported our implementation to the new Contiki version as well. From this
moment on we also run the experiments using ContkiMAC and the receiver initiated Low Power
Probing protocol (LPP).

Each experiment run lasted 10 minutes during which the TCP clients tried to send as many
packets as possible. To keep the size of the individual packets constant, which is a requirement
to maintain a constant transmission error probability, all TCP data packets contained a 16 byte
character string as payload. Including the various headers attached by the underlying network
layers, the radio had to transmit 79 bytes per data packet. The structure of such a packet is
illustrated in Table 5.1. A TCP acknowledgment, as transmitted by the servers in response to a
data packet, is only 63 bytes in total, since it does not contain any TCP payload.

Besides the cctrl experiments, we also evaluated the performance of the default Contiki in
combination with the four MAC protocols. For these control experiments, the sensor nodes’ net-
work stack was unmodified and did not contain the cctrl module. Therefore, the corresponding
results are denoted as unmodified in the subsequent figures.

To reduce the chance of environmental influence, the experiments were run over night or
during weekends. Since the frequency band the nodes use for communication is license-free and
many consumer electronics work in the same or a near frequency range, we experienced that
more stable results are gained by experiments running at non-working hours. Additionally, each

41

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 Checksum Timestamp

R
ad

io

32 Authority Level Footer

48 Channel Number (abc) Sender Address (ibc)

R
im

e80 Receiver Address (uc) Originator Address (mh)
112 Destination Address (mh) Previous Hop Address (mh)
144 Hop Count (mh)

152 Version & Hdr. Length Type of Service Lenght

IP
v4

184 Identification Offset
216 TTL Protocol Checksum
248 Source Address
280 Destination Address

312 Source Port Destination Port

T
C

P

344 Sequence Number
376 Acknowledgment Number
408 Offset Flags Window Size
440 Checksum Urgent Pointer
472 Options

504

Payload Data

A
pp

lic
at

io
n

536
568
600

Table 5.1: Structure of a data packet

run was repeated 15 times to increase statistical significance. Hence, in the following sections,
the figures always show the mean values of 15 runs and the standard deviation. In total, the data
presented in this thesis was acquired in 2500 individual experiment runs, which is equivalent to
a runtime of 425 hours.

5.2 Testbed Setup

We used up to 13 wireless sensor nodes, which are part of the local WISEBED [31] testbed
deployed at our institute. The nodes are configured and monitored via the TARWIS [30] web in-
terface, which is introduced in Section 3.4. As depicted in Table 5.2, depending on the scenario,
each of the nodes used has one specific role: A node can either be a client (C), a server (S), or
a forwarder (F). The client and server software images are Contiki operating systems running
a special purpose TCP client application and TCP server application, respectively, which are
introduced in Section 4.6.1. Besides the added support for static routes (cf. Section 4.6.2), the
network stack of these two images is unmodified, i.e. without cctrl module. The software images
of the forwarders do not run any application, just the operating system. The operating system is
either an unmodified Contiki (for the control experiments) or has the cctrl module integrated.

The experiment configuration that requires the most wireless sensor nodes consists of 13
nodes distributed over two paths, each of which is six hops long. This configuration is illustrated
in Fig. 5.1. The paths span over three floors with both TCP clients (Node 11, Node 13) residing
at the first floor, and the corresponding TCP servers (Node 1, Node 2) placed in the same room

42

1

2
6

7
5

3

8
9

10

13
12

11

4

1
2

6

7
5

3

8 9
10

1312
11

4

Figure 5.1: Sensor Node Topology

Hops N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13

One route scenario
2 S F C
3 S F F C
4 S F F F C
5 S F F F F C
6 S F F F F F C

Two route scenario
2 S1 S2 F C2 C1

3 S1 S2 F F F C1 C2

4 S1 S2 F F F F C1 C2 F
5 S1 S2 F F F F F F F C1 C2

6 S1 S2 F F F F F F F F C2 F C1

Table 5.2: Sensor node roles for the different scenarios and path lengths

at the top floor. Table 5.2 shows the other configurations possible, i.e., with fewer nodes per
route or only one route. Basically, the shortening of a route by one hop moves the client node
one place closer towards the sender.

5.3 Single Route Scenario

In the single route scenario, we evaluated how the cctrl module performs in transmitting data
over 2, 3, 4, 5 and 6 hops, in its initial build without extensions, as well as when used in com-
bination with the extensions introduced in Section 4. The goal of this scenario was to find the

43

configuration most capable of increasing throughput, regardless of the MAC protocol used. Fur-
thermore, we were interested in how this would affect the energy consumption when using radio
duty cycling MAC protocols.

5.3.1 Segment Caching and Local Retransmissions

First, we evaluated the behavior of the initial cctrl module without any extensions compared to
an unmodified network stack. As described in Section 4.1, at this stage, a cctrl node is only
capable of performing just one single local retransmission.

The total amount of packets the TCP client could transmit on average during the 600 sec-
onds experiments is illustrated in Fig. 5.2(a). As seen, NullMAC seems to benefit from the
caching and retransmission mechanism, most notably when data travels long routes consisting

(a) Throughput

0

200

400

600

800

1000

1200

2 3 4 5 6

S
e

n
t

T
C

P
 s

e
g

m
e

n
ts

Hops

unmodified
cctrl

(b) Retransmissions

0

20

40

60

80

100

120

2 3 4 5 6

Hops

unmodified
cctrl

R
et

ra
ns

m
itt

ed
 T

C
P

 s
eg

m
en

ts
 [%

]

(c) Round trip time

0

0.05

0.1

0.15

0.2

0.25

0.3

2 3 4 5 6

E
n
d
-t

o
-e

n
d
 r

o
u
n
d
 t
ri
p
 t
im

e
 [
s]

Hops

unmodified
cctrl

Figure 5.2: NullMAC with cctrl module

44

of five and more hops. For the shorter routes, the result is less distinctive, but performing local
retransmissions still tends to be an improvement.

Figure 5.2(b) depicts the amount of retransmissions occurred per successfully sent packet. It
should be noted, that in the cctrl case, this includes both end-to-end retransmissions as well as
local retransmission. For the two and three hop experiments, there is no real difference between
the cctrl case and the unmodified case, and for the five hop run, the cctrl module produces
an even lower amount of retransmissions. Since there is no longer only one node performing
retransmissions when using cctrl nodes, but several intermediate nodes, which can all start local
retransmissions, it is interesting to see that the retransmission rate does not increase severely.
Assuming only one retransmission is needed to recover a lost packet, this means that only few
redundant retransmissions occurred.

For the sake of completeness, we also looked at the change in latency experienced by the
TCP client. Figure 5.2(c) illustrates the end-to-end round trip time, which is acquired by mea-
suring the time it takes for a TCP acknowledgment to return to the TCP client after a data packet
has been sent out. In both experiments, with cctrl nodes and without, the RTT increases approx-
imately linearly with the hop distance. However, the cctrl module introduces a slightly faster
increase of the end-to-end RTT. This is of course, because the local retransmissions performed
by intermediate nodes happen transparently to the TCP client. Consequently, the TCP client’s
own retransmission timeout is increased as well. This leads to longer waiting times in case a
packet loss cannot be recovered by the cctrl nodes, and has to be done by the original sender.
But this drawback should not be of great concern, since using the cctrl module should ultimately
lead to faster recovering times, and reduce the need for end-to-end retransmissions.

The results obtained with X-MAC on the MAC layer are rather ambiguous. As with
NullMAC, the throughput on five and six hop paths benefits from the cctrl’s functionality
(cf. Fig. 5.3(a)). In contrary, on paths with less hops between client and server, the nodes per-
formed better without the cctrl module.

The same trend is observed when looking at the energy consumption in Figure 5.3(b). Be-
cause it would not be practically feasible to measure the actual energy consumption of every
node in the testbed, Fig. 5.3(b) shows the average radio on time per node and packet, as a sub-
stitute, i.e. the sum of all nodes’ radio on time divided by the amount of nodes and successfully
transmitted TCP packets (

∑
tion

|N |∗|P |). The radio on time ton is the combined duration the radio
spends in receive and transmit mode, and is constantly collected by Contiki functions. As dis-
cussed in Section 3.3, the radio usually is the most power consuming component on a sensor
node. This makes the radio on time ideal to reflect changes in energy consumption.

It is noticeable, that the developing of the radio on time is almost reciprocally proportional
to the developing of the throughput in Fig. 5.3(a). Although not achieved with the bare cctrl
module, this is a first indication that the goal of leveraging throughput does not necessarily
result in increased energy consumption, but in greater efficiency.

5.3.2 Multiple Retransmissions and Duplicate Segment Dropping

The first extension for our cctrl module, introduced in Section 4.2, adds the capability for a
node to produce up to three retransmissions of a cached segment. This gives the forwarding

45

(a) Throughput

0

100

200

300

400

500

600

2 3 4 5 6

S
e
n
t
T

C
P

 s
e
g
m

e
n
ts

Hops

unmodified
cctrl

(b) Energy consumption

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 3 4 5 6

T
im

e
 w

ith
 r

a
d
io

 o
n
 [
s
 /
 p

kt
]

Hops

unmodified
cctrl

Figure 5.3: X-MAC with cctrl module

node the ability to cope with multiple, subsequent packet losses. Additionally, this extension
also allows nodes to drop received retransmissions of TCP segments, which they have already
cached. However, we tested these two features independently, i.e., we tested having multiple
retransmissions with and without the segment dropping feature.

In the following figures, the functionality of keeping the TCP segments cached for multiple
retransmissions is denoted as keep, whereas segment dropping is denoted as drop. Figure 5.4
depicts how these newly introduced changes affect throughput in comparison to having sensor
nodes without cctrl. For NullMAC (a), the usage of multiple retransmissions clearly increases
the total amount of successfully transmitted TCP packets for all path lengths. The dropping of
received retransmissions, has only little influence, especially for the shorter routes. The five and
six hop routes, however, slightly profit from the resulting reduced radio traffic.

X-MAC (b) also profits from this first extension. However, the difference of using the drop-
ping mechanism has a greater impact on the throughput performance. When having multiple
retransmissions in combination with segment dropping, the already poor cctrl performance of
the two to four hop experiment runs (also cf. Fig. 5.3(a)) is even decreased further. Using the
extension without segment dropping, on the other hand, lets the throughput match, more or less,
to the one of unmodified nodes.

The same observation can be made when comparing the energy consumption in Fig. 5.5. For
the 2, 3 and 4 hop routes, when the cctrl module does not drop redundant retransmissions, the
average radio on time of a node is almost as low as when no cctrl module is used. For the 5 and

46

(a) NullMAC

0

200

400

600

800

1000

1200

2 3 4 5 6

S
e
n
t
T

C
P

 s
e
g
m

e
n
ts

Hops

unmodified
cctrl + keep

cctrl + keep, drop

(b) X-MAC

0

100

200

300

400

500

600

2 3 4 5 6

unmodified
cctrl + keep

cctrl + keep, drop

S
e
n
t
T

C
P

 s
e
g
m

e
n
ts

Hops

Figure 5.4: Throughput with multiple retransmissions

unmodified
cctrl + keep

cctrl + keep, drop

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 3 4 5 6

T
im

e
 w

ith
 r

a
d
io

 o
n
 [
s/

p
kt

]

Hops

Figure 5.5: X-MAC’s energy consumption with multiple retransmissions

6 hop routes, the energy consumption is slightly higher without segment dropping, but is still
not as high as without any cctrl support.

For these reasons, i.e. good increase in throughput over all path lengths with NullMAC, and
with X-MAC remarkably better performance for short paths than when using segment dropping,
we decided to disable the segment dropping functionality for the multiple retransmission exten-
sion. At the same time, we chose to no longer use the cctrl module without this extension, as
the experienced performance of both throughput and energy consumption generally increased,
or, at least, remained at an equal level.

47

(a) NullMAC

S
e
n
t
T

C
P

 s
e
g
m

e
n
ts

Hops

unmodified
cctrl + keep

cctrl + keep, hop-delay

0

200

400

600

800

1000

1200

2 3 4 5 6

(b) X-MAC

S
e
n
t
T

C
P

 s
e
g
m

e
n
ts

Hops

unmodified
cctrl + keep

cctrl + keep, hop-delay

0

50

100

150

200

250

300

350

400

450

500

2 3 4 5 6

(c) LPP

S
e
n
t
T

C
P

 s
e
g
m

e
n
ts

Hops

unmodified
cctrl + keep

cctrl + keep, hop-delay

0

50

100

150

200

250

2 3 4 5 6

(d) ContikiMAC

0

100

200

300

400

500

600

2 3 4 5 6

S
e
n
t
T

C
P

 s
e
g
m

e
n
ts

Hops

unmodified
cctrl + keep

cctrl + keep, hop-delay

Figure 5.6: Throughput with hop-dependent retransmissions

48

5.3.3 Hop-distance Dependent Retransmissions

The next extension we implemented, was using hop-distance dependent retransmission timeouts
instead of purely RTT dependent timeouts (cf. Section 4.3). The idea was to use a more robust
distance metric as a base for calculating the retransmission timeouts and increase the retransmis-
sion timeout stronger, the further away a node is from the TCP server. The goal was to reduce
the chance of concurrently initiated retransmissions of the same segment by different nodes.

However, as the experiments revealed, this modification could not deliver the expected ad-
vantage. As the Figures 5.6(a) and (b) illustrate, the introduction of hop-distance dependent
retransmissions clearly reduced the TCP throughput of NullMAC and X-MAC sensor nodes.
Thereby, the difference between the hop-distance dependent approach and the regular cctrl mod-
ule is more dominant for the two and three hop experiment runs than it is for the runs using other
path lengths. This is rather surprising, since the influence the hop-distance has to the calculated
retransmission timeout is not as accentuated for nodes close to the receiver as it is for nodes
further away (cf. Fig. 4.4). For example, at 6 hops distance, a node has a 2.5 times longer re-
transmission timeout when using hop-distance dependent retransmissions, compared to a node
at the same distance that does not. Still, this significant difference has almost no influence on
the achieved throughput.

A possible explanation for the decreased throughput of the 2 and 3 hop experiments is, that
nodes closer than 3 hops use a slightly reduced retransmission timeout, which might lead to
early, unnecessary retransmissions, which then interfere with the original TCP transmission.

We tested this cctrl extension with the receiver initiated Low Power Probing proto-
col (cf. Section 3.3.3) and ContikiMAC as well. As seen in Fig. 5.6(c), LPP shows almost
the same behavior for all three approaches. Neither is there an improvement, nor an impair-
ment when using the cctrl module or the hop-dependent retransmission in particular. When
directly comparing LPP with X-MAC and ContikiMAC, it is noticeable that LPP has a rather
low throughput. This is because LPP is not designed for high data rates, but for efficient broad-
casting.

0

0.5

1

1.5

2

2.5

3

3.5

2 3 4 5 6

B
a
d
 C

R
C

s

Hops

unmodified X-MAC
unmodified LPP

unmodified ContikiMAC

Figure 5.7: Amount of bad Rime packets per end-to-end TCP transmission

Also for ContikiMAC, illustrated in Fig. 5.6(d), there is only little difference in the through-
put achieved by cctrl nodes using hop-dependent retransmission timeouts compared to the ones
who do not. However, in comparison to the experiment with an unmodified network stacks,
the cctrl module dramatically decreased the amount of transmitted TCP packets. It is apparent,

49

(a) NullMAC

0

200

400

600

800

1000

1200

2 3 4 5 6

S
e
n
t
T

C
P

 s
e
g
m

e
n
ts

Hops

unmodified
cctrl + keep

cctrl + keep, activity

(b) X-MAC

0

100

200

300

400

500

600

2 3 4 5 6

S
e
n
t
T

C
P

 s
e
g
m

e
n
ts

Hops

unmodified
cctrl + keep

cctrl + keep, activity

(c) LPP

0

50

100

150

200

250

2 3 4 5 6

S
e
n
t
T

C
P

 s
e
g
m

e
n
ts

Hops

unmodified
cctrl + keep

cctrl + keep, activity

(d) ContikiMAC

0

100

200

300

400

500

600

2 3 4 5 6

S
e
n
t
T

C
P

 s
e
g
m

e
n
ts

Hops

unmodified
cctrl + keep

cctrl + keep, activity

Figure 5.8: Throughput with activity monitoring

50

that ContikiMAC has already been heavily optimized. Introducing an additional retransmission
scheme, which potentially increases the experienced traffic due to redundant retransmissions, is
counterproductive.

This assumption is also supported when looking at the amount of Rime packets per TCP
packet, which have been received with a bad Cyclic Redundancy Check (CRC) checksum. A
packet with a bad checksum has to be dropped by the receiver as this indicates an incorrect
reception. As depicted in Fig. 5.7, the arrival of a bad Rime packet is quite a rare event for non-
cctrl ContikiMAC nodes in comparison to X-MAC and LPP nodes. Therefore, in combination
with ContikiMAC, it is more likely for the cctrl module to spuriously initiate a retransmission,
which then may interfere with the original transmission.

5.3.4 Activity Monitoring

Activity monitoring was introduced in Section 4.4 to have a MAC layer feedback about ongoing
external transmissions available in the cctrl module. The feedback is used to lower the cur-
rent retransmission timeout in situations with low activity, i.e., when no transmissions between
neighboring nodes are detected.

Figure 5.8 illustrates how this modification affects the achieved throughput. NullMAC and
X-MAC show similar outcome, as seen in Fig. 5.8(a) and (b), respectively. For both, when
having activity dependent retransmissions, throughput is considerably increased for the two and
three hop experiments, but drops for longer paths. With X-MAC the throughput even falls below
the control benchmark set by unmodified forwarding nodes, when having paths of four hops and
more.

As illustrated in Fig. 5.8(c), LPP profits from activity dependent retransmissions in a more
general way. The activity monitoring extension is able to raise the throughput persistently over
all tested path lengths, resulting in the highest amount of transmitted TCP packets with this MAC
protocol so far. Since LPP is a duty cycling MAC protocol, it is also interesting, whether the
improved throughput is accompanied by higher energy efficiency. As Fig. 5.9 reveals, activity
monitoring is indeed able to reduce the per packet radio on time of the sensor nodes. However,
this is only true for the 4, 5, and 6 hop experiments. If the data travels only 2 or 3 hops, the
nodes keep their radios turned on longer.

0

0.5

1

1.5

2

2.5

2 3 4 5 6

T
im

e
 w

it
h
 r

a
d
io

 o
n
 [
s/

p
k
t]

Hops

unmodified
cctrl + keep, activity

Figure 5.9: LPP’s energy consumption with activity monitoring

51

(a) NullMAC

0

500

1000

1500

2000

2500

2 3 4 5 6

S
e
n
t
T

C
P

 s
e
g
m

e
n
ts

Hops

unmodified
cctrl + keep, dual

cctrl + keep, activity, dual

(b) X-MAC

0

50

100

150

200

250

300

350

400

450

500

2 3 4 5 6

S
e
n
t
T

C
P

 s
e
g
m

e
n
ts

Hops

unmodified
cctrl + keep, dual

cctrl + keep, activity, dual

(c) LPP

0

50

100

150

200

250

300

2 3 4 5 6

S
e
n
t
T

C
P

 s
e
g
m

e
n
ts

Hops

unmodified
cctrl + keep, dual

cctrl + keep, activity, dual

(d) ContikiMAC

0

100

200

300

400

500

600

2 3 4 5 6

S
e
n
t
T

C
P

 s
e
g
m

e
n
ts

Hops

unmodified
cctrl + keep, dual

cctrl + keep, activity, dual

Figure 5.10: Throughput with multiple connections

52

Cctrl nodes running ContikiMAC, can also benefit from activity monitoring. As seen in
Fig. 5.8(d), their achieved throughput is either increased (3 and 4 hop runs), or stays at roughly
the same level. However, it is still not sufficient to match the high benchmark set by the control
experiment using ContikiMAC nodes without cctrl module. As previously seen in Fig. 5.7,
this can be explained by the very low amount of transmission errors unmodified ContikiMAC
nodes experience, since this increases the chance of spuriously initiated retransmissions, which
interfere with other ongoing transmissions.

5.3.5 Multiple Connections

The last modification we have made to Contiki’s default behavior is to have a second TCP
connection established, through which data is transmitted. Should there be an interruption in the
packet flow of any connection, the TCP client node is still able to use the other one to continue
the transmission. The actual implementation is described in Section 4.5.

We tested this extension in combination with the cctrl module configurations which previ-
ously delivered the best results: keeping segments cached to be able to perform multiple retrans-
missions (keep) and keep together with activity monitoring. The resulting change in throughput
is illustrated in Fig. 5.10.

With NullMAC nodes relying on a second connection (cf. Fig. 5.10(a)) the amount of trans-
mitted TCP packet is almost doubled across all tested hop distances, when compared to the result
of unmodified nodes. If, additionally, the cctrl module receives activity feedback and adapts its
retransmission scheme accordingly, this result is even further increased for the two and three
hop routes. With the exception of the 4 hop run, the two alternatives are otherwise at the same
level.

Also X-MAC nodes, illustrated in Fig. 5.10(b), benefit from having a second open connec-
tion. The nodes’ throughput could be increased consistently for all tested path lengths, in the
best case, the five hop experiment, by about 37%. A notable difference between the performance
of the nodes using the activity extension and the ones which do not is hardly apparent.

The same is true regarding energy consumption, which is shown in Fig. 5.11(a). The average
radio on time per packet, with and without activity monitoring is almost the same. Also when
comparing with unmodified nodes, there is only little difference, at least for the 2, 3, and 4 hop
experiments. A node has its radio turned on for approximately 500 ms to 700 ms per packet. A
real improvement is only achieved in the 5 and 6 hop runs. Here, the average radio on time is
lowered by roughly 100 ms. The cctrl module only achieves a better energy efficiency when the
throughput can be raised by more than a certain amount.

A similar result is revealed by the LPP experiments. As seen in Fig. 5.10(c), the sensor
nodes using LPP fundamentally increased the throughput when more than one TCP connection
is available. Additionally, the presence of the activity monitoring extension leads to a slightly
increased throughput at the 2, 3, and 4 hop experiment runs, compared to the runs without
activity monitoring. Furthermore, the achieved throughput stays at a high level even at the 5 and
6 hop runs when the cctrl module uses activity dependent retransmissions.

To some extent similar to X-MAC is also the change in LPP’s energy consumption, as il-
lustrated in Fig. 5.11(b). For the experiments using short routes (≤ 4 hops), there is almost no
difference in the average radio on time. In the five and six hop experiments, however, the cctrl

53

(a) X-MAC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 3 4 5 6

T
im

e
 w

ith
 r

a
d
io

 o
n
 [
s
/p

kt
]

Hops

unmodified
cctrl + keep, dual

cctrl + keep, activity, dual

(b) LPP

0

0.5

1

1.5

2

2.5

3

2 3 4 5 6

T
im

e
 w

it
h
 r

a
d
io

 o
n
 [
s/

p
k
t]

Hops

unmodified
cctrl + keep, dual

cctrl + keep, activity, dual

Figure 5.11: Energy consumption with multiple connections

nodes suddenly need to keep their radios turned on for a greater amount of time to successfully
send one packet. With LPP, the increase in throughput would have to be even better to maintain
energy efficiency.

In contrary, ContikiMAC still does not show any sign of improvement. When used in com-
bination with the cctrl module, even with the second connection available, the throughput per-
sistently remains at a very low level (cf. Fig. 5.10(d)). As with the previous experiments, the
assumption is still valid that this is caused by falsely triggered retransmissions colliding with the
original transmissions.

5.3.6 Overall Comparison

At the beginning of this section, we defined the goal of the single route scenario to find the most
suitable cctrl configuration, which is capable of increasing transmission performance regardless
of the used MAC protocol. While the previous results provide a good insight of how the cctrl
module variants behave for different path lengths, a more general comparison might be hard to
derive. Therefore, for each experiment configuration, we added up the mean values of each run
with the different path lengths (i.e., 2 - 6 hops) and calculated its average, to obtain a single
value. This not only makes the experiments easier comparable, it also takes into account, that
in wireless sensor networks data is usually transported from and to multiple sensor nodes at
varying distances.

54

(a) NullMAC

0

200

400

600

800

1000

1200

unmodified cctrl
+ keep

cctrl
+ keep,

hop delay

cctrl
+ keep,
activity

cctrl
+ keep,

dual

cctrl
+ keep,

activity,dual

T
ra

n
sm

itt
e
d
 T

C
P

 s
e
g
m

e
n
ts

100.00%

142.51%

117.77%

135.35%

164.69%

184.10%

(b) X-MAC

0

50

100

150

200

250

300

unmodified cctrl
+ keep

cctrl
+ keep,

hop delay

cctrl
+ keep,
activity

cctrl
+ keep,

dual

cctrl
+ keep,

activity,dual

T
ra

n
sm

itt
e
d
 T

C
P

 s
e
g
m

e
n
ts

100.00% 99.10%

82.43%

107.35%
117.44% 116.67%

(c) LPP

0

20

40

60

80

100

120

unmodified cctrl
+ keep

cctrl
+ keep,

hop delay

cctrl
+ keep,
activity

cctrl
+ keep,

dual

cctrl
+ keep,

activity,dual

T
ra

n
sm

itt
e
d
 T

C
P

 s
e
g
m

e
n
ts

100.00% 99.98%

84.11%

118.26%
124.27%

140.25%

(d) ContikiMAC

0

50

100

150

200

250

300

unmodified cctrl
+ keep

cctrl
+ keep,

hop delay

cctrl
+ keep,
activity

cctrl
+ keep,

dual

cctrl
+ keep,

activity,dual

T
ra

n
sm

itt
e
d
 T

C
P

 s
e
g
m

e
n
ts

100.00%

34.27% 33.85%
41.87%

32.24% 35.73%

Figure 5.12: Throughput comparison of single route scenario

55

We use this approach to compare the achieved throughput in Fig. 5.12. It is apparent that
in combination with NullMAC (a) the cctrl module can generally increase the sensor nodes’
performance. The most significant benefit, with respect to throughput, results when the nodes
are able to perform multiple local retransmissions with the aid of the activity monitoring and
multiple connections extensions, with an 84% increase of totally transmitted TCP segments.

When using X-MAC, as depicted in Fig. 5.12(b), the outcome does not differ as distinctively
as with NullMAC, but an overall increase in throughput could be achieved nevertheless. In
average, up to 17% more packets could be delivered, when the cctrl nodes can rely on a second
connection. The lack or presence of activity monitoring does not make any significant difference.
Having hop-distance depending retransmissions, however, causes the throughput to decrease by
about the same ratio.

X-MAC nodes’ energy efficiency can also be increased slightly (cf. Fig. 5.13(a)). In the best
case, the nodes can keep their radios turned off nearly 6% longer per packet.

LPP reveals to be influenced by the various cctrl extensions in a similar manner as X-MAC,
as Fig. 5.12(c) illustrates. Again, introducing hop-distance dependent retransmission timeouts,
results in the lowest experienced throughput. The other modifications achieve equal or better
performance when compared to the results obtained by unmodified nodes. The peak, an in-
crease of 40%, is accomplished by the combination of activity monitoring and having multiple
connections.

Also when using LPP as MAC protocol the cctrl module can result in lower per packet
power consumption. Interestingly however, as seen in Fig. 5.13(b), this is not achieved with
the configuration that gained the highest throughput (cf. Fig. 5.12(c)). The highest increase in
transmission performance also results in about 15% longer radio on time.

Concerning ContikiMAC, Fig. 5.12(d) clearly demonstrates that none of our suggested
improvements harmonize with this MAC protocol in this particular scenario. The design of
ContikiMAC can already cope with most causes of packet loss. One reason for this is, that
ContikiMAC, in contrast to X-MAC and LPP, uses fewer MAC layer transmissions to transport
a certain amount of data, as it directly uses data packets as strobes (cf. Section 3.3.2). Introduc-
ing a retransmission mechanism, such as the cctrl module, is actually counterproductive, because
the local retransmissions only introduce additional interference. However, as Section 5.4 will
show, this assumption is not valid in all situations.

For these reasons, it is hard to give a final, universally valid recommendation what cctrl
configuration should be used. Having cctrl nodes with the default configuration, which includes
the ability to generate multiple retransmissions with support of activity monitoring and multiple
TCP connections, achieves the highest experienced throughput with all tested MAC protocols,
but ContikiMAC. However, in combination with LPP, this is accompanied by increased energy
consumption. Even though a cctrl configuration customized for a certain MAC protocol and
network topology would be preferable, we think this particular configuration is capable of per-
forming well in most situations. Therefore, we tested its performance again in more demanding
situations, as explained in the following section.

56

(a) X-MAC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

unmodified cctrl
+ keep

cctrl
+ keep,

hop delay

cctrl
+ keep,
activity

cctrl
+ keep,

dual

cctrl
+ keep,

activity,dual

T
im

e
 w

ith
 r

a
d
io

 o
n
 [
s/

p
kt

] 100.00%
94.68%

102.84% 105.74%

94.24% 95.43%

(b) LPP

0

0.2

0.4

0.6

0.8

1

1.2

1.4

unmodified cctrl
+ keep

cctrl
+ keep,

hop delay

cctrl
+ keep,
activity

cctrl
+ keep,

dual

cctrl
+ keep,

activity,dual

T
im

e
 w

ith
 r

a
d
io

 o
n
 [
s/

p
kt

]

100.00%

120.03%
111.03%

94.45%

156.86%

114.17%

Figure 5.13: Energy consumption comparison of single route scenario

5.4 Double Route Scenario

In the double route scenario, we tested the performance of our cctrl module in a situation with
increased external traffic. The employed topology has already been illustrated in Fig. 5.1 and
Table 5.2. There are almost twice as many nodes participating in each experiment. With the
exception of node 3, each node is part in one of two independent routes. Each route contains
a TCP client node at one end that tries to send as many TCP data packets to the server node
placed at the other end. Node 3 is member of both routes and has to forward traffic of both
TCP connections. Therefore, around this particular node radio traffic is increased and packet
collisions are more likely to happen.

We tested this setup with network topologies consisting only of regular, unmodified Contiki
nodes, as well as with topologies consisting only of nodes using the cctrl module in the configu-
ration that showed the best overall performance in the previous section, i.e., nodes that perform
multiple, activity dependent local retransmissions and rely on a second TCP connection. For
simplicity, this configuration is just denoted as cctrl in the following figures, instead of cctrl +
keep, activity, dual.

As before, each experiment was performed with 5 different route lengths, ranging from
2 hops to 6 hops, and each run was repeated 15 times. The following charts show the mean
values of all runs and hop distances.

57

(a) NullMAC

0

500

1000

1500

2000

2500

3000

3500

2 3 4 5 6

S
e
n
t
T

C
P

 s
e
g
m

e
n
ts

Hops

unmodified
cctrl

(b) X-MAC

0

100

200

300

400

500

600

700

800

2 3 4 5 6

S
e
n
t
T

C
P

 s
e
g
m

e
n
ts

Hops

unmodified
cctrl

(c) LPP

0

50

100

150

200

250

300

350

2 3 4 5 6

S
e
n
t
T

C
P

 s
e
g
m

e
n
ts

Hops

unmodified
cctrl

(d) ContikiMAC

0

50

100

150

200

250

300

350

400

450

500

2 3 4 5 6

S
e
n
t
T

C
P

 s
e
g
m

e
n
ts

Hops

unmodified
cctrl

Figure 5.14: Throughput of double route scenario

58

5.4.1 Transmission Performance

Figure 5.14 compares the total amount of successfully received TCP packets over both estab-
lished routes. Hence, it represents the transmission performance of the entire topology, not only
of a particular subsection (e.g. a single route). Figure 5.15 illustrates the same, but with the
results of the various path lengths averaged to a single value.

For all tested protocols, the highest throughput is achieved in the 2 hop experiment runs
and decreases almost constantly as the hop distance increases in the subsequent runs, which is a
behavior that has been observed many times. The degradation of throughput across n hops ap-
proximately follows the 1

n rule, where n equals the number of hops the data has to travel, cf. [33].
As expected, NullMAC still achieves the highest throughput of all MAC protocols, with

just about 2000 successfully transmitted TCP data packets on average. As seen in Fig 5.14(a),
the presence of the cctrl module further increases this amount, at least for the 2 and 3 hop
runs. Combined with the slightly reduced throughput for the other runs, 3% more packets can
be transmitted on average, when the cctrl module is used (c.f. Fig. 5.15). Although this is a
considerable increase, the improvement is no longer as good as in the single route scenario.

Also the X-MAC nodes do not reflect the improvement experienced in the previous scenario
tested. The nodes do not seem to be able to cope well with the additional transmissions per-
formed by the cctrl module in an environment with already increased traffic, as the 2 and 3 hop
results illustrated in Fig. 5.14(b) reveal. Therefore, the average transmission rate drops by about
16% (cf. Fig. 5.15).

LPP shows the greatest response to the cctrl module. As illustrated in Fig. 5.14(c), similar
to NullMAC, LPP profits primarily when the data travels only few hops. At 4, 5 and 6 hops,
LPP experiences a decrease in throughput, most notably for cctrl nodes. A possible explanation
is that due to the presence of additional nodes, which periodically transmit probes to indicate
reception readiness, more packet collisions occur. On average, the cctrl module manages to
improve the TCP throughput by almost 49%. This is quite remarkable, as this result is even
better by 9 percentage points than what the cctrl module could achieve with LPP nodes in the
single route scenario.

Most surprising, however, is ContikiMAC’s performance. In this scenario, with unmodified
Contiki nodes, the average amount of sent TCP segments is less than half the amount of the
single route scenario (cf. Fig. 5.12(d) and Fig.5.15). At the six hop run, the transmission almost
stopped completely. And instead of a further decrease, as experienced previously, using cctrl
nodes results in either an equivalent or higher throughput (cf. Fig. 5.14(d)). On average, a gain
of 14% is achieved.

A reasonable explanation for this is, that ContikiMAC nodes without cctrl module, due to
ContikiMAC’s robust design (i.e. data packets as strobes, wake-up schedule learning, etc.), ex-
perienced considerably few interference in the single route scenario, in comparison with nodes
running other MAC protocols. Therefore, when using the cctrl module, a major cause for packet
loss were unnecessarily initiated local retransmissions, which rendered both, the original trans-
mission, as well as the retransmission, invalid. In the dual route scenario, however, more nodes
were participating, and the nodes were responsible for two independent packet flows. This led
to additional packet collisions caused by the increased external traffic, which could be recovered
by local retransmission.

59

0

200

400

600

800

1000

1200

1400

1600

1800

2000

NullMAC
NullMAC

cctrl X-MAC
X-MAC

cctrl LPP
LPP
cctrl ContikiMAC

ContikiMAC
cctrl

T
ra

n
sm

itt
e
d
 T

C
P

 s
e
g
m

e
n
ts

100.0%
103.0%

100.0%
83.2%

100.0% 149.0% 100.0% 114.4%

Figure 5.15: Throughput comparison of double route scenario

1

2

3

4

5

6

X-MAC
X-MAC

cctrl LPP
LPP
cctrl ContikiMAC

ContikiMAC
cctrl

T
im

e
 w

ith
 r

a
d
io

 o
n
 [
s/

p
kt

]

100.00% 113.12%

100.00% 160.78%

100.00%

26.08%

Figure 5.16: Energy efficiency of double route scenario

5.4.2 Energy Efficiency

The change in energy efficiency of the three duty-cycling MAC protocols is illustrated in
Fig. 5.16. During this experiment, both X-MAC and LPP could not maintain their respective
radio on time, when using the cctrl module. In addition to the loss of throughput, X-MAC nodes
spend 13% more time with their radios turned on. With LPP nodes this is even exceeded, with a
considerable increase of more than 60%.

ContikiMAC, on the other hand, greatly benefits from using the cctrl module in regard to
energy efficiency. The average radio on time per packet is lowered by almost 73%, resulting
in the most significant change of this parameter experienced during our experiments. Further
analysis revealed, that without cctrl module, ContikiMAC experienced a major amount of sub-
sequent packet losses, which ultimately caused the TCP connection to time out. Re-establishing
the connection always means a waste of time and energy, as then no data can be transported.

60

5.5 Conclusion

In this Section, we presented the results of our sensor node experiments, which evaluated the
influence of our cctrl module and its extensions in a real world environment. We showed that
the four MAC protocols, with which our implementation was tested, led to great variances when
comparing the individual results. Some protocols (e.g. NullMAC) generally proved to provide a
good response to the local retransmission scheme, whereas others (e.g. ContikiMAC) performed
worse.

But also the individual experiments showed inconsistencies when looking at the actual re-
sults of different hop distances. The unmodified NullMAC control experiment, for instance,
achieved higher throughput on the 3-hop run than it did on the two and four-hop runs. Irregular-
ities like this one are almost certainly caused by temporary changes of environmental conditions
and are a typical phenomenon of real world wireless experiments. The Industrial, Scientific, and
Medical (ISM) 2.4 GHz band, in which the TelosB radio operates, is shared with a lot of other
common technologies, such as WLAN, Bluetooth, wireless audio equipment, cordless phones,
and even microwave ovens, to just name a few. Reducing the influence such devices have in our
experiments is almost impossible. But even though their influence causes somewhat inconsistent
results, and makes it harder to reproduce experiments in equal conditions, they are part of the
everyday environment and therefore, it is not bad to have them reflected in experimented results.

Nevertheless, with the proper combination of extensions, our cctrl module was capable of
increasing throughput in almost any situation and in combination with any MAC protocol. The
cctrl module can be configured to the sensor nodes’ used MAC protocol and network topology
with regard to network size and path lengths, to maximize the achieved performance.

61

Chapter 6

Conclusion & Outlook

6.1 Conclusion

For this master’s thesis, we implemented the cctrl module, an add-on for Contiki’s µIP stack.
This module gives wireless sensor nodes, which are forwarding TCP traffic in a chain of nodes,
the ability to cache TCP packets and perform local retransmissions. On top of a basic retrans-
mission mechanism, we designed and implemented additional extensions for the cctrl module,
which alter its initial behavior. These extensions allow a sensor node to perform multiple retrans-
missions of the same TCP packet in case of subsequent transmission errors, use the hop-distance
as an alternative metric to calculate the retransmission timeout, and introduce a feedback mecha-
nism for the MAC layer to reduce the retransmission delay in times of low external radio activity.
Furthermore, we investigated in an extension which allows to simultaneously use multiple TCP
connections.

We tested our implementations in an indoor wireless sensor node testbed using five routes
of different size in two scenarios with low and high radio traffic, respectively. This is the first
time, TCP optimization concepts for wireless sensor networks proposed in DTC and TSS have
been evaluated using real sensor nodes. The results of both studies are based on simulations
only. Furthermore, DTC and TSS have only been evaluated using CSMA MAC protocols. In
real world applications, not relying on a radio duty-cycling MAC protocol would result in a
considerable waste of energy. In this thesis, we also evaluated these concepts in combination
with energy efficient MAC protocols.

Our experiment results revealed that the cctrl module can increase the sensor node’s achieved
throughput of TCP data in many situations. Comparing the results gained with different
MAC protocols showed, however, that it is almost impossible to find a configuration of the cctrl
module, which achieves maximal increase in throughput in combination with every MAC proto-
col. Due to the significant differences in design and behavior of the MAC protocols, the impact
of the single cctrl extensions varies heavily.

Furthermore, we saw that the achieved result is affected not only by the choice of the
MAC protocol, but also by the network’s topology. For example, having X-MAC nodes in a
network with 2 or 3-hop paths, using the cctrl module with multiple retransmissions and activity
monitoring produces the best result. The same configuration, on the other hand, achieves the
lowest results in a network with 5 and 6-hop paths. However, for almost any combination of

63

MAC protocol and network topology an ideal cctrl module configuration could be found, with
the exception of ContikiMAC in the low traffic, single route scenario. The performance of this
protocol could only be improved by the cctrl module in situations with heavy external radio
traffic.

In general, the resulted increase in throughput ranged from 3% in the dual route scenario
with NullMAC, up to 84% in the single route scenario with the same protocol. Out of the radio
duty-cycling MAC protocols, X-MAC in combination with the cctrl module achieved the highest
average throughput in the single route experiment.

Regarding energy-efficiency the results were similar, with some caveats. For certain exper-
iment runs, the configuration which achieved the best throughput also lead to increased power
consumption. But in many tested situations the cctrl module could slightly reduce the sensor
nodes’ radio on time, while simultaneously increasing throughput.

6.2 Outlook

In Section 4.5.1 we proposed a design of the multiple connection extension, which is completely
integrated into the cctrl module and operates transparently from the application layer. As it
was uncertain, whether or not this extension would be capable of delivering the desired results,
we decided to skip the actual implementation and, instead, use a more simple proof of concept
approach at the application layer, which does not reorder the segments at arrival. The implemen-
tation of this simplified approach is also described in Section 4.5. As experimental evaluations
then revealed, this modification was actually capable of creating a major increase in through-
put. Therefore, it would be reasonable to implement this approach as a proper cctrl module
extension, and do another set of experiments to see whether it still performs as expected.

Another idea for a cctrl module extension is based on the behavior of TSS and DTC, which
are introduced in Section 3.1. Both protocols rely on non-duty cycling MAC protocols, which
are able to overhear a great amount of traffic. TSS and DTC can use overhearing of forwarded
packets by neighboring sensor nodes as an implicit acknowledgment and react accordingly by,
e.g., clear the retransmission cache, spoof TCP ACKs, etc. With our activity monitoring ex-
tension, we demonstrated that it is possible to receive MAC layer feedback independently of
the used MAC protocol and that overhearing also works with energy-efficient MAC protocols,
at least to a certain extent. Hence, we could port some additional overhearing strategies from
TSS and DTC, which are not only based on the actual reception of an overheard packet, as our
approach is, but which evaluate the content of the packet as well, e.g. to gain implicit knowledge
about successfully forwarded packets. However, whether the sparse reception of overheard for-
warded packets by a subsequent sensor node with radio duty-cycling MAC protocols is sufficient
for such an approach, is questionable and would have to be evaluated.

Finally, when working with wireless sensor nodes, besides TCP throughput and energy ef-
ficiency, memory usage is always a critical point. Our current cctrl implementation caches up
to two TCP packets per connection (i.e. one for each flow direction) as a whole in a buffer of
predefined size. Since for a particular TCP connection, many header fields always have the same
value for every packet (e.g. source and destination addresses, port numbers, etc.), they could be
stored only once and the cached packets would then be regenerated prior to their retransmission.

64

Additionally, or as an alternative, header compression algorithms could be used to store the in-
formation more efficiently. Furthermore, the buffer could be allocated dynamically, to maximize
the memory available for other applications. We did not investigate any further in this direction,
as memory usage has no direct influence in the achieved throughput and only little in energy
consumption and is, therefore, not in the scope of this thesis.

65

List of Acronyms

ARP Address Resolution Protocol

CRC Cycling Redundancy Check

CSMA Carrier Sense Multiple Access

DSL Digital Subscriber Line

EWMA Exponentially Weighed Moving Average

IAM Institut für Informatik und angewandte Mathematik

IANA Internet Assigned Numbers Authority

ICMP Internet Control Message Protocol

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

ISM Industrial, Scientific, and Medical

LED Light-emitting Diode

LPP Low Power Probing

MAC Media Access Control

OS Operating System

RAM Random-access Memory

RFC Request for Comments

ROM Read-only Memory

RTT Round Trip Time

RVS Rechnernetze und Verteilte Systeme

TCP Transmission Control Protocol

67

TTL Time To Live

UART Universal Asynchronous Receiver Transmitter

UDP User Datagram Protocol

USB Universal Serial Bus

WLAN Wireless Local Area Network

WSN Wireless Sensor Network

XML Extensible Markup Language

68

Bibliography

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless Sensor Networks:
A Survey,” IEEE Communications Magazine, vol. 38, no. 4, pp. 393–422, March 2002.

[2] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh, “Fidelity and Yield in
a Volcano Monitoring Sensor Network.” USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Seattle, USA, November 2006, pp. 27–39.

[3] G. Simon, M. Maroti, A. Ledeczi, G. Balogh, B. Kusy, A. Nadas, G. Pap, J. Sallai, and
K. Frampton, “Sensor Network-Based Countersniper System.” ACM Conference on Em-
bedded Networked Sensor Systems (SenSys), Baltimore, USA, November 2004, pp. 1–12.

[4] J. Postel and J. Reynolds, “Telnet Protocol Specification,” RFC 854 (Standard), Internet
Engineering Task Force, May 1983, updated by RFC 5198. [Online]. Available:
http://www.ietf.org/rfc/rfc854.txt

[5] J. Zhao and R. Govindan, “Understanding Packet Delivery Performance in Dense Wireless
Sensor Networks.” ACM Conference on Embedded Networked Sensor Systems (SenSys),
Los Angeles, USA, November 2003, pp. 192–204.

[6] P. J. S. Thomas Starr, John M. Cioffi, Understanding Digital Subscriber Line Technology.
Prentice Hall, Upper Saddle River, USA, 1999.

[7] A. Dunkels, J. Alonso, T. Voigt, and H. Ritter, “Distributed TCP Caching for Wireless Sen-
sor Networks.” Mediterranean Ad-Hoc Networks Workshop (Med-Hoc-Net), Bodrum,
Turkey, June 2004, pp. 13–28.

[8] T. Braun, T. Voigt, and A. Dunkels, “TCP Support for Sensor Networks.” Wireless On
demand Network Systems and Services (WONS), Obergurgl, Austria, January 2007, pp.
162–169.

[9] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz, “Improving TCP/IP Performance
over Wireless Networks.” International Conference on Mobile Computing and Network-
ing (MobiCom), Berkeley, USA, November 1995, pp. 2–11.

[10] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective Acknowledgment
Options,” RFC 2018 (Proposed Standard), Internet Engineering Task Force, Oct. 1996.
[Online]. Available: http://www.ietf.org/rfc/rfc2018.txt

69

http://www.ietf.org/rfc/rfc854.txt
http://www.ietf.org/rfc/rfc2018.txt

[11] A. Dunkels, B. Groenvall, and T. Voigt, “Contiki - a Lightweight and Flexible Operating
System for Tiny Networked Sensors.” IEEE Workshop on Embedded Networked Sensors
(EmNets), Tampa, Florida, November 2004, pp. 455–462, http://www.sics.se/contiki/.

[12] Contiki team members. (2011, March) About contiki. [Online]. Available: http:
//www.sics.se/contiki/about-contiki.html

[13] A. Dunkels, F. Österlind, and Z. He, “An Adaptive Communication Architecture for Wire-
less Sensor Networks.” ACM Conference on Embedded Networked Sensor Systems (Sen-
Sys), Sydney, Australia, November 2007, pp. 335–349.

[14] A. Dunkels. (2011, April) The uIP TCP/IP stack. [Online]. Available: http:
//www.sics.se/∼adam/uip/uip-1.0-refman/

[15] R. Braden, “Requirements for Internet Hosts - Communication Layers,” RFC 1122
(Standard), Internet Engineering Task Force, Oct. 1989, updated by RFCs 1349, 4379,
5884, 6093. [Online]. Available: http://www.ietf.org/rfc/rfc1122.txt

[16] A. Prayati, C. Antonopoulos, T. Stoyanova, C. Koulamas, and G. Papadopoulos, “A Mod-
eling Approach on the TelosB WSN Platform Power Consumption,” vol. 83. New York,
NY, USA: Elsevier Science Inc., August 2010, pp. 1355–1363.

[17] J. Polastre, J. Hill, and D. Culler, “Versatile Low Power Media Access for Wireless Sen-
sor Networks.” ACM Conference on Embedded Networked Sensor Systems (SenSys),
Baltimore, USA, November 2004, pp. 95–107.

[18] W. Ye, J. Heidemann, and D. Estrin, “An Energy Efficient MAC Protocol for Wireless
Sensor Networks.” IEEE International Conference on Computer Communications (IN-
FOCOM), New York, USA, June 2002, pp. 1567–1576.

[19] T. V. Dam and K. Langendoen, “An Adaptive Energy Efficient MAC Protocol for Wireless
Sensor Networks (TMAC).” ACM Conference on Embedded Networked Sensor Systems
(SenSys), Los Angeles, USA, November 2003, pp. 171–180.

[20] A. El-Hoiydi and J. D. Decotignie, “WiseMAC: An Ultra Low Power MAC Protocol for
Multihop Wireless Sensor Networks.” International Workshop on Algorithmic Aspects
of Wireless Sensor Networks (ALGOSENSORS), Turku, Finland, July 2004, pp. 18–31.

[21] M. Buettner, V. Gary, E. Anderson, and R. Han, “X-MAC: A Short Preamble MAC Pro-
tocol for Duty-cycled Wireless Sensor Networks.” ACM Conference on Embedded Net-
worked Sensor Systems (SenSys), Boulder, USA, November 2006, pp. 307–320.

[22] A. Dunkels, L. Mottola, N. Tsiftes, F. Osterlind, J. Eriksson, and N. Finne, “The An-
nouncement Layer: Beacon Coordination for the Sensornet Stack.” European Conference
on Wireless Sensor Networks (EWSN), Bonn, Germany, February 2011, pp. 211–226.

[23] R. Musaloiu, C. Liang, and A. Terzis, “Koala: Ultra-Low Power Data Retrieval in Wireless
Sensor Networks.” ACM/IEEE International Conference on Information Processing in
Sensor Networks (IPSN), St. Louis, USA, April 2008, pp. 421–432.

70

http://www.sics.se/contiki/about-contiki.html
http://www.sics.se/contiki/about-contiki.html
http://www.sics.se/~adam/uip/uip-1.0-refman/
http://www.sics.se/~adam/uip/uip-1.0-refman/
http://www.ietf.org/rfc/rfc1122.txt

[24] P. Hurni and T. Braun, “MaxMAC: a Maximally Traffic-Adaptive MAC Protocol for Wire-
less Sensor Networks.” European Conference on Wireless Sensor Networks (EWSN),
Coimbra, Portugal, February 2010, pp. 289–305.

[25] M. Anwander, G. Wagenknecht, T. Braun, and K. Dolfus, “BEAM: A Burst-Aware Energy-
Efficient Adaptive MAC Protocol for Wireless Sensor Networks.” International Confer-
ence on Networked Sensing Systems (INSS), Kassel, Germany, June 2010, pp. 195–202.

[26] D. Moss and P. Levis, “Box-macs: Exploiting Physical and Link Layer Boundaries in
Lowpower Networking,” Technical Report SING-08-00, Stanford University, Tech. Rep.,
2008.

[27] S. Yanjun, O. Gurewitz, and D. B. Johnson, “RI-MAC: A Receiver Initiated Asynchronous
Duty Cycle MAC Protocol for Dynamic Traffic Loads in Wireless Sensor Networks.”
ACM Conference on Embedded Networked Sensor Systems (SenSys), Raleigh, USA,
November 2008, pp. 1–14.

[28] C. Boano, T. Voigt, N. Tsiftes, L. Mottola, K. Roemer, and M. Zuniga, “Making Sensornet
MAC Protocols Robust Against Interference.” European Conference on Wireless Sensor
Networks (EWSN), Coimbra, Portugal, February 2010, pp. 272–288.

[29] “TelosB Datasheet,” MEMSIC Inc. [Online]. Available: http://www.memsic.com/support/
documentation/wireless-sensor-networks/category/7-datasheets.html?download=152%
3Atelosb

[30] P. Hurni, G.Wagenknecht, M. Anwander, and T. Braun, “A Testbed Management System
for Wireless Sensor Network Testbeds (TARWIS).” European Conference on Wireless
Sensor Networks (EWSN) Demo Session, Coimbra, Portugal, February 2010, pp. 33–35.

[31] I. Chatzigiannakis, S. Fischer, C. Koninis, G. Mylonas, and D. Pfisterer, “WISEBED: an
Open Large-Scale Wireless Sensor Network Testbed,” Sensor Applications, Experimenta-
tion, and Logistics, pp. 68–87, 2010.

[32] B. Carpenter, D. Estrin, D. Farinacci, G. Finn, C. Graff, D. Katz, J. Postel,
A. Malis, and R. Ullmann, “IP Option Numbers,” April 2011. [Online]. Available:
http://www.iana.org/assignments/ip-parameters

[33] F. Österlind and A. Dunkels, “Approaching the Maximum 802.15.4 Multi-hop Through-
put.” ACM Workshop on Embedded Networked Sensors (HotEmNets), Charlottesville,
USA, June 2008.

71

http://www.memsic.com/support/documentation/wireless-sensor-networks/category/7-datasheets.html?download=152%3Atelosb
http://www.memsic.com/support/documentation/wireless-sensor-networks/category/7-datasheets.html?download=152%3Atelosb
http://www.memsic.com/support/documentation/wireless-sensor-networks/category/7-datasheets.html?download=152%3Atelosb
http://www.iana.org/assignments/ip-parameters

	Contents
	List of Figures
	List of Tables
	Listings
	Summary
	Introduction
	Wireless Sensor Networks
	TCP/IP in Wireless Multi-hop Networks
	Contributions
	Thesis Outline

	Related Work
	TCP/IP in Wireless Networks
	Snoop
	Distributed TCP Caching for Wireless Sensor Networks
	TCP Support for Sensor Networks

	Contiki
	Rime Protocol Stack
	µIP Stack
	The Rime µIP Interface

	Media Access Control Protocols
	X-MAC
	ContikiMAC
	Low Power Probing
	NullMAC

	Experiment Resources
	TelosB Sensor Node Platform
	TARWIS

	Design and Implementation of Local Retransmission Mechanisms
	Segment Caching and Local Retransmissions
	Implementation Issues
	Packet Processing
	Retransmitting Data and Acknowledgments
	Maintenance

	Multiple Retransmissions and Duplicate Segment Dropping
	Hop-distance Dependent Retransmissions
	Activity Monitoring
	MAC Proxy
	Activity Dependent Early Retransmissions

	Multiple Connections
	Split and Merge

	Experiment-related Implementations
	TCP Client and Server
	Static Routing

	Evaluation
	Experiment Setup
	Testbed Setup
	Single Route Scenario
	Segment Caching and Local Retransmissions
	Multiple Retransmissions and Duplicate Segment Dropping
	Hop-distance Dependent Retransmissions
	Activity Monitoring
	Multiple Connections
	Overall Comparison

	Double Route Scenario
	Transmission Performance
	Energy Efficiency

	Conclusion

	Conclusion & Outlook
	Conclusion
	Outlook

	List of Acronyms
	Bibliography

