
RELIABILITY IN ENERGY EFFICIENT

WIRELESS SENSOR NETWORKS

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Markus Anwander

von Untereggen SG

Leiter der Arbeit:
Professor Dr. Torsten Braun

Institut für Informatik und angewandte Mathematik

RELIABILITY IN ENERGY EFFICIENT

WIRELESS SENSOR NETWORKS

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Markus Anwander

von Untereggen SG

Leiter der Arbeit:
Professor Dr. Torsten Braun

Institut für Informatik und angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Der Dekan:
Bern, 18.12.2012 Prof. Dr. Silvio Decurtins

Abstract

Wireless Sensor Networks (WSNs) are characterized by easy installation and adap-
tive self-organizing with no need for maintenance. The individual sensor nodes
of WSNs are usually battery powered, equipped with sensing devices and use a
low-power radio module for communication. The limited lifetime of batteries
makes energy preserving mechanisms an important topic of current WSN research.
Moreover, a WSN network stack has to offer reliable communication services to
guarantee the functionality of WSN applications. Unfortunately, reliability tech-
niques require additional energy to recover packet loss. High traffic load involving
intra/inter-flow interferences and congestion are especially challenging for energy
aware reliability mechanisms. Additionally, WSN network stacks have to support
standardized protocol headers to enable communication in heterogeneous WSNs.
To solve these problems, this thesis contributes a link layer with two novel mech-
anisms to support energy efficiency and reliability. Both mechanisms are able to
work together with energy efficient and robust packet-oriented radio modules. The
first mechanism is a novel traffic load measuring mechanism using traffic predic-
tion. It predicts the expected incoming traffic load during periods of congestion.
This enables selecting long sleeping periods to preserve energy while it simulta-
neously provides sufficient bandwidth during high traffic load or congestion. The
second mechanism is a congestion detection mechanism that is able to identify and
correctly handle intra-flow and inter-flow interferences as well as congestion. Our
contributed WSN stack supports IEEE 802.15.4, IP, UDP and TCP to enhance the
network connectivity and offers an energy efficient UDP based end-to-end reliabil-
ity protocol. Moreover, we analyzed the impact of Forward Error Correction (FEC)
codes on energy efficiency and reliability performance. The analyzed FEC codes
are able to reduce the required local retransmission attempts but they are neither
able to reduce the energy usage nor to enhance the reliability of our real world WSN
network stack using a packet-oriented radio module. To evaluate our contributed
WSN network stack we compared it to existing real world WSN network stacks. It
uses less energy and shows a lower packet loss than the other stacks. Conducted
experiments show that our WSN network stack is the most energy efficient reliable
among the evaluated stacks. At the same time, our contributed link layer protocols
show significantly higher throughput than the other evaluated protocols, i.e. up to
4 times higher throughput. This is because our contributed link layer protocols are
able to handle intra-flow and inter-flow interferences as well as congestion.

Contents

List of Figures v

List of Tables x

1 Introduction 1
1.1 Overview . 1
1.2 Problem Statement . 5
1.3 Contributions . 7
1.4 Thesis Outline . 11

2 Related Work 13
2.1 Radio Modules and Physical Layer Techniques 13

2.1.1 Survey of Characteristics of Radio Modules for WSNs . . 13
2.1.2 Modulation Techniques 14
2.1.3 Spread Spectrum Techniques 17
2.1.4 Radio Module CC1000 18
2.1.5 Radio Module TR1001 18
2.1.6 Radio Module CC1020 19
2.1.7 Radio Module CC2420 19

2.2 Evaluated Sensor Node Platforms 26
2.2.1 Embedded Sensor Node Developed at FU Berlin 27
2.2.2 Modular Sensor Board 430 Developed at FU Berlin 28
2.2.3 BTnode Developed at ETH Zurich. 29
2.2.4 TelosB Mote Platform Developed by UC Berkeley 30
2.2.5 MicaZ Developed by UC Berkeley and Crossbow 30

2.3 Operating Systems for Sensor Nodes 31
2.3.1 Contiki . 31
2.3.2 ScatterWeb . 35

2.4 Evaluation Tools . 35
2.4.1 OMNeT++ Network Simulation Framework 37
2.4.2 WISEBED WSN Testbed Controlled by TARWIS 39
2.4.3 RIGOL DM3052 Digital Multimeter 40

2.5 Reliability Techniques . 41
2.5.1 Reasons for Erroneous Data Forwarding in WSNs 41

i

2.5.2 Overview Reliability Techniques 43
2.5.3 Automatic Repeat Request Mechanism 45
2.5.4 Forward Error Correction Codes 47
2.5.5 ARQ combined with FEC Mechanisms 51
2.5.6 Reliability Metrics . 52
2.5.7 Summary Reliability Techniques 52

2.6 WSN Network Stack Protocols and Mechanisms 53
2.6.1 Link Layer Protocol . 53
2.6.2 Network and Transport Protocols 62
2.6.3 Packet Aggregation Mechanism 67
2.6.4 Back Pressure Mechanisms 68

2.7 Conclusions . 69

3 Hardware Pre-Evaluation 71
3.1 Required Energy and Time to Forward Data 72

3.1.1 Energy Required to Send a Single Byte 73
3.1.2 Minimal Energy Required to Send a Single Frame 75
3.1.3 Minimal Energy Required to Forward a Single Frame . . . 76
3.1.4 Hypothetical Reference Link Layer Protocol 77

3.2 Energy Required to Check the Radio Channel 78
3.3 Robustness against Interferences 79

3.3.1 Testbed Setup . 79
3.3.2 Packet Loss Caused by External Interferences 81
3.3.3 Packet Loss Caused by External and Inter-flow Interferences 83
3.3.4 IEEE 802.11 Interferences 84

3.4 Network connectivity . 85
3.5 Hardware Pre-Evaluation - Conclusion 85

4 WSN Protocols 87
4.1 Burst Aware Energy Efficient Adaptive MAC Protocol 88

4.1.1 Impact of CC2420 Characteristics on BEAM Design . . . 89
4.1.2 Basic Functionality of BEAM 92
4.1.3 BEAM Optimizations 96
4.1.4 BEAM Reliability Support 103
4.1.5 BEAM FEC Support . 104
4.1.6 BEAM Summary . 105

4.2 Hop-to-Hop Reliability Protocol 106
4.2.1 Packet Queue . 107
4.2.2 Congestion Detection and Control Mechanism 107
4.2.3 H2HR backpressure mechanism 111
4.2.4 Forwarding a Data Frame 111
4.2.5 Packet Aggregation . 112

4.3 UDP End-to-End Reliability Protocol 113
4.3.1 UDP-E2E Sequence Numbers 113

ii

4.3.2 UDP-E2E Frames . 115
4.4 Network Stack Overview . 117

5 Evaluation 119
5.1 Evaluation Setup . 119

5.1.1 Small-scale Scenarios and Testbed Setup 120
5.1.2 Large-scale Scenarios and Testbed Setup 122
5.1.3 Evaluated Performance Characteristics 124
5.1.4 Energy Evaluation Techniques 124
5.1.5 Evaluated Contiki Compliant Network Stacks 130
5.1.6 Summary of Evaluation Setup 132

5.2 Evaluation of BEAM Protocol Optimization Techniques 132
5.2.1 Acknowledgment Mechanism 133
5.2.2 Beacon Strobe Transmission Delay Optimizations 136
5.2.3 Beacon Strobe Modes 140
5.2.4 Duty Cycle Evaluation 143
5.2.5 Traffic Prediction . 146
5.2.6 Packet Aggregation . 149
5.2.7 BEAM Protocol Optimization Techniques Summery . . . 151

5.3 Reliability Evaluations of H2HR and UDP-E2E 151
5.3.1 H2HR Simulation Evaluation 152
5.3.2 H2HR Real Word Evaluation 153
5.3.3 End-to-end versus Hop-to-Hop Reliability 157
5.3.4 Summary Reliability Evaluations of H2HR and UDP-E2E 158

5.4 Impact of FEC Codes to Energy Efficient WSNs 158
5.4.1 Encoding and Decoding Payload 159
5.4.2 Recovery Potential of FEC Codes 163
5.4.3 Evaluating FEC Codes in an Energy Efficient WSN Stack 166
5.4.4 Throughput . 171
5.4.5 FEC Summary . 172

5.5 Comparing BEAM to Existing WSN Protocols 173
5.5.1 Energy Consumption . 174
5.5.2 Reliability and Throughput 178
5.5.3 Packet Delivery Time . 179
5.5.4 Summary Comparing BEAM to Existing WSN Protocols . 181

5.6 BEAM Compared to Energy Efficient MAC Protocols for Bit/Byte
Oriented Radio Modules . 181

5.7 Experiences with Different Evaluation Methodologies 182
5.7.1 Simulation versus Real World Experiences 182
5.7.2 Impact of Traffic Load 183

iii

6 Conclusions and Outlook 185
6.1 Addressed Challenges . 185
6.2 Contributed and Applied Protocols 186
6.3 Main Results and Conclusions 187
6.4 Outlook . 188

7 Acronyms 191

Bibliography 195

List of Publications 205

Curriculum Vitae 211

iv

List of Figures

1.1 WSN Applications. 2
1.2 Small-scale network topologies for basic evaluations. 3

(a) Point-to-point. 3
(b) Star. 3
(c) Tree. 3
(d) Mesh. 3

1.3 Energy efficient and reliable network stack for heterogeneous WSNs. 9
1.4 FEC mechanisms versus spread spectrum techniques. 10

2.1 Digital amplitude modulation. 15
2.2 Digital frequency modulation. 16
2.3 Offset quadrature phase-shift keying (OQPSK). 16
2.4 Manchester encoded data signal for OOK and FSK. 17
2.5 Finite impulse response filter. 19
2.6 IEEE 802.15.4 frame. 20
2.7 Frame Control Field (FCF). 21
2.8 IEEE 802.15.4 acknowledgment frame. 21
2.9 Output pin activity during receive. 22
2.10 Data frame detection by using the FIFOP interrupt. 22
2.11 AUTOACK timing. 24
2.12 2.4 GHz frequencies of IEEE 802.11 and IEEE 802.15.4. 25
2.13 IEEE 802.15.4 Multi-Headers. 26
2.14 Embedded Sensor Node Developed at FU Berlin. 27
2.15 Modular Sensor Board 430. 29
2.16 BTnode rev3. 29
2.17 TelosB sensor node. 30
2.18 MicaZ sensor node. 31
2.19 Contiki network stack. 32
2.20 Energy consumption of a MSB430 node using Contiki and Scatter-

web. 35
2.21 Energy profile of a digital amperemeter. 37
2.22 Bit error probability with the CC2420 radio module in OMNeT++. 38
2.23 Radio control state machine. 39

v

2.24 Measurement setup to record the energy consumption of a sensor
node. 41
(a) Schematic assembly. 41
(b) Real-world assembly. 41

2.25 Forwarding packets in a WSN. 41
2.26 Radio wave propagation effects. 43
2.27 Reliability on hop-to-hop and end-to-end level. 44
2.28 Reliability techniques implemented used in this thesis. 45
2.29 Explicit acknowledgement. 46
2.30 Negative acknowledgement. 46
2.31 Implicit acknowledgement. 46
2.32 Data encoded with an ECC. 48
2.33 Two different FEC codes. 50
2.34 Example of a protocol duty cycling the radio module. 54
2.35 Classification of energy preserving link layer protocols. 55
2.36 Low Power Probing (LPP) mechanism. 56
2.37 Low Power Listening (LPL) mechanism. 56
2.38 LPL mechanism for packet oriented radios. 56
2.39 X-MAC protocol design. 57
2.40 ContikiMac protocol design. 58
2.41 MaxMAC. 59
2.42 NullRDC. 61
2.43 Contiki hop-to-hop reliability protocol CSMA. 61
2.44 Basic idea of TSS: Caching of TCP data packets. 63
2.45 Basic idea of TSS: Retransmission of lost TCP data packets. . . . 64
2.46 Cross layer support of the link layer protocol. 65
2.47 Two mechanisms to reduce the consequences of lost TCP acknowl-

edgments. 65
2.48 RMST frame header. 66
2.49 RMST in a WSN network stack. 67
2.50 Packet aggregation with a data centric routing protocol. 68
2.51 Increasing traffic load in a WSN. 69

3.1 Testbed setup to measure the electric current. 73
3.2 Sending 100 bytes with a CC2420 radio module. 74
3.3 Energy required by different radio modules for sending one byte. . 75
3.4 Energy required by different radio modules for sending a 50 bytes

payload. 76
3.5 Energy required by different radio modules for forwarding a 50

bytes payload. 77
3.6 Energy for forwarding a 50 bytes payload with a hypothetical MAC

protocol. 78
3.7 Energy for a channel check without traffic. 79
3.8 TelosB node on tripod in outdoor testbed. 80

vi

3.9 Indoor evaluation testbed setup. 81
3.10 Indoor packet loss with external interferences. 82
3.11 Outdoor packet loss with external interferences. 82
3.12 Indoor packet loss with external and inter-flow interferences. . . . 83
3.13 Outdoor packet loss with external and inter-flow interferences. . . 84
3.14 Packet loss over 5 hops on different channels and different daytimes. 85

4.1 The two sub-layers of the link layer protocol stack. 87
4.2 Transmission with a LPL based protocol on a packet-oriented radio

module. 90
4.3 LPL MAC beacon strobes for hardware and software acknowledg-

ments. 92
4.4 BEAM using short beacon strobes. 93
4.5 BEAM with beacon strobes including the payload. 95
4.6 Congestion in a WSN. 97
4.7 Transmission delay for beacon strobes. 101
4.8 Energy requirement of different with beacon strobes including the

payload. 102
4.9 H2HR protocol. 112
4.10 Packet Aggregation Format. 112
4.11 UDP-E2E protocol. 114
4.12 UDP-E2E data frame. 115
4.13 UDP-E2E data frame triggering explicit end-to-end acknowledgment.116
4.14 UDP-E2E negative acknowledgment frame. 116
4.15 UDP-E2E explicit acknowledgment frame. 117
4.16 WSN network stack layers. 117

5.1 Small-scale network topologies for basic evaluations. 120
(a) Line scenario. 120
(b) Parallel scenario. 120
(c) Merging scenario. 120
(d) Cross scenario. 120

5.2 Local small-scale testbed with six telosB nodes. 121
5.3 Small-scale testbed setup in the WISEBED testbed. 121

(a) Line scenario. 121
(b) Parallel scenario. 121
(c) Merging scenario. 121
(d) Cross scenario. 121

5.4 Large-scale network topologies with corresponding traffic pattern. 122
(a) Stream scenario. 122
(b) Event scenario. 122
(c) Burst scenario. 122

5.5 Large-scale testbed scenarios in the WISEBED testbed. 123
5.6 Experimental setup to measure the electrical current of telosB node. 125

vii

5.7 Contiki energy profile on a telosB node in idle mode. 127
5.8 CCA channel check energy profile of a CC2420 radio. 128
5.9 Energy profile of a packet forwarding with beacon strobes. 129
5.10 Deviation of the used software energy profiler to the RIGOL mul-

timeter. 130
5.11 Reliable Contiki compliant network stacks with UDP. 131
5.12 Reliable Contiki compliant network stacks with TCP. 131
5.13 Energy profiles of beacon strobes with hardware acknowledgment. 134
5.14 Energy profiles of beacon strobes with software acknowledgment. 134
5.15 Channel check by a receiver node with continuous listening. . . . 135
5.16 Channel check by a receiver node with periodic CCA. 135
5.17 Energy profile of strobe transmissions with and without transmis-

sion delay. 137
5.18 Reduction of the beacon strobe transmission time period. 138
5.19 Energy per byte with and without transmission delay. 139
5.20 ETX count measured in the different scenarios. 139
5.21 Energy per byte of involved nodes with 40 bytes payload. 141
5.22 Required retransmissions per hop. 142
5.23 Energy per second of the noninvolved neighbor nodes with 40 bytes

payload. 142
5.24 Energy per second of the noninvolved neighbor nodes with max.

payload. 143
5.25 Throughput of different fixed duty cycle durations. 145
5.26 Energy consumption of different duty cycle durations. 145
5.27 Throughput with traffic monitoring. 147
5.28 Throughput with traffic prediction. 147
5.29 Packet loss at different traffic load values with traffic monitoring

and prediction. 149
5.30 Energy consumption with and without packet aggregation. 150
5.31 WISEBED testbed streaming scenario used for H2HR transmis-

sion delay evaluation. 153
(a) Traffic flow. 153
(b) WISEBED testbed nodes. 153

5.32 End-to-end packet loss ratio at different traffic load values. 155
5.33 Packets dropped at different traffic load values. 155
5.34 Energy per successfully transmitted byte. 156
5.35 End-to-end packet loss. 157
5.36 Encoding and decoding time of Hamming(12,8) for 66 bytes payload.160
5.37 Encoding and decoding time of Reed-Solomon(255,225). 161
5.38 Energy to forward one packet with different reliability techniques. 162
5.39 WISEBED testbed FEC evaluation setup. 164
5.40 Different kinds of bit errors with external interferences. 164
5.41 Different kinds of bit errors with external and internal interferences. 165

viii

5.42 ETX count for protocols with static, adaptive and without FEC sup-
port. 168

5.43 Adaptive FEC codes with CC2420 radio module. 169
5.44 Energy required forwarding 66 bytes payload. 170
5.45 FEC enabled network stack for throughput evaluation. 171
5.46 Testbed for throughput evaluations. 172
5.47 Throughput with and without FEC codes. 173
5.48 Energy per byte in UDP streaming scenario (including XMAC). . 175
5.49 Energy per byte in UDP streaming scenario (without XMAC). . . 175
5.50 Energy per second of noninvolved nodes. 176
5.51 Energy per forwarded byte in event and burst scenario. 177
5.52 Packet loss ratio under different traffic load values. 178
5.53 Maximum throughput. 179
5.54 Packet delivery time for the stream scenario. 180
5.55 Packet delivery time for the event and burst scenarios. 180

(a) Event scenario. 180
(b) Burst scenario. 180

5.56 Energy usage of BEAM compared to the reference protocol. . . . 182

ix

List of Tables

2.1 Characteristics of the evaluated radio modules 15
2.2 Time periods of different actions on the telosB node 24
2.3 Packet length of IEEE 802.11 and IEEE 802.15.4 packets. 25
2.4 Evaluated sensor node platforms and corresponding radio modules 27
2.5 Hamming(12,8) code word . 48
2.6 WSN link layer protocol overview 53
2.7 Characteristics of different IEEE 802.11 frame aggregation mech-

anisms . 69

3.1 Evaluated sensor node platforms and corresponding radio modules 72
3.2 Different evaluated interference scenarios 80

4.1 Buffer index selected according to the amount of pending packets. 99
4.2 Two mappings of the pending buffer indices to the selected wake-

up frequency. 100
4.3 BEAM neighbor table . 104
4.4 Channel load factor. 109
4.5 Transmission delay by buffer index. 110
4.6 Transmission delay by retransmission count. 110
4.7 Information sources. 111
4.8 Transmission delay by retransmission count. 115

5.1 Required energy for different kind of channel checks. 136
5.2 Measurement setup for transmission delay optimization evaluations 137
5.3 Measurement setup for beacon strobe evaluations 141
5.4 Measurement setup for transmission delay optimization evaluations 144
5.5 Measurement setup for traffic prediction evaluations 146
5.6 Measurement setup for packet aggregation evaluations 150
5.7 Information sources used for the WISEBED testbed evaluations. . 154
5.8 FEC calculation costs per byte on a telosB running Contiki 161
5.9 Evaluated protocol versions with static, adaptive and without FEC

support. 167
5.10 Measurement setup for BEAM with different FEC versions. . . . 167
5.11 Successfully recovered packets. 168

x

5.12 Overall packet loss. 170
5.13 Percentage of the energy required for the FEC calculations. 171

xi

Preface

The following PhD thesis is based on work performed during my employment as
a research assistant at the Institute of Computer Science and Applied Mathemat-
ics (IAM) of the University of Bern, Switzerland. The research conducted has
been partially supported by the Hasler Foundation under grant number ManCom
2060 and the Swiss National Science Foundation under grant number (200020-
113677/1).

I would like to thank everybody who provided me with support, ideas, and en-
couragement during my employment at the Communication and Distributed Sys-
tems group (CDS). First, I want to express my gratitude to Prof. Dr. Torsten Braun,
head of the Communication and Distributed Systems group (CDS), who supervised
and encouraged my work. He offered me an interesting and challenging work en-
vironment and the opportunity to participate in national and European research and
technology transfer projects. I would also like to thank Prof. Dr. Mesut Güneş for
reading this work and Prof. Dr. Gerhard Jäger, who was willing to be co-examiner.

Many thanks go to my colleagues at the institute and in our research group
for being part of the CDS team. In particular, I want to thank Islam Alyafawi,
Carlos Anastasiades, Thomas Bernoulli, Peppo Brambilla, Marc Brogle, Desislava
Dimitrova, Kirsten Dolfus, Philipp Hurni, Almerima Jamakovic-Kapic, Zan Li,
Dragan Milic, Benjamin Nyffenegger, Thomas Staub, Nikolaos Thomos, Gerald
Wagenknecht, Markus Wälchli, Markus Wulff and Zhongliang Zhao.

Special thanks to the secretaries Ruth Bestgen and Daniela Schroth of the CDS
research group for their support in the administrative tasks during all these years.
I am very grateful to my girlfriend Nadine Nigg for supporting me in many ways
and being always patient during the years of my PhD thesis.

Last but not least, I would like to express my thanks to Thomas Staub for
proofreading this thesis, correcting language and stylistic errors and pointing out
inconsistencies in the original manuscript.

xiii

Chapter 1

Introduction

A Wireless Sensor Network (WSN) consists of a number of autonomous sensor
nodes. Each sensor node is equipped with different sensing devices, a microcon-
troller and a radio module for wireless data transmissions. The individual sensor
nodes are usually battery driven, which makes energy efficiency a very important
field of current WSN research. The main objective of this thesis is to enhance en-
ergy efficiency and reliable data transmission in WSNs. Energy efficient support of
reliable data transmission in WSNs requires a combination of efficient hardware,
appropriate energy preserving algorithms and robust packet loss recovery mecha-
nisms. This chapter briefly introduces different characteristics of WSNs, then de-
scribes the related challenges and outlines the contributions of this thesis. Finally,
it summarizes the following chapters of the thesis.

1.1 Overview

WSNs have experienced an increasing degree of research interests and a growing
number of industrial applications in the last decade. They are characterized by easy
installation and adaptive self-configuration with no need for maintenance. Figure
1.1 depicts different common WSN applications:

• Environmental monitoring: WSNs are able to monitor environmental con-
ditions such as temperature, humidity, illumination, water flows, air pollu-
tion, chemical emissions or radiation. They enable a continuous and unat-
tended remote surveillance of large, inaccessible or protected areas. Applica-
tions for environmental monitoring have become an area of growing interest.
For example, water flow studies in the Alps help to enhance the water supply
during dry summer periods [1].

• Detection and tracking of objects: Object detection and tracking enabled
WSNs are applied within different fields of applications. Detecting and
tracking people is used for security surveillance, crowd detection, people
counting or for timekeeping systems to manage employees’ working time.
Detecting and tracking of objects is used to localize freight containers, cars

1

1.1. OVERVIEW

Environmental monitoring

Detection and tracking

Health care systems

Early detection of disasters

Industrial process control

2.2. EVALUATED SENSOR NODE PLATFORMS

Figure 2.15: Modular Sensor Board 430.

2.2.3 BTnode Developed at ETH Zurich.

Figure 2.16 shows a BTnode [11]. BTnodes have been developed at the Eid-
genössische Technische Hochschule (ETH) Zürich by the Computer Engineering
and Networks Laboratory (TIK) and the research Group for distributed systems.
The BTnode rev3 is a dual radio device with a CC1000 low-power radio module

Figure 2.16: BTnode rev3.

29

2.2. EVALUATED SENSOR NODE PLATFORMS

Figure 2.15: Modular Sensor Board 430.

2.2.3 BTnode Developed at ETH Zurich.

Figure 2.16 shows a BTnode [11]. BTnodes have been developed at the Eid-
genössische Technische Hochschule (ETH) Zürich by the Computer Engineering
and Networks Laboratory (TIK) and the research Group for distributed systems.
The BTnode rev3 is a dual radio device with a CC1000 low-power radio module

Figure 2.16: BTnode rev3.

29

2.2. EVALUATED SENSOR NODE PLATFORMS

Figure 2.15: Modular Sensor Board 430.

2.2.3 BTnode Developed at ETH Zurich.

Figure 2.16 shows a BTnode [11]. BTnodes have been developed at the Eid-
genössische Technische Hochschule (ETH) Zürich by the Computer Engineering
and Networks Laboratory (TIK) and the research Group for distributed systems.
The BTnode rev3 is a dual radio device with a CC1000 low-power radio module

Figure 2.16: BTnode rev3.

29

2.2. EVALUATED SENSOR NODE PLATFORMS

Figure 2.15: Modular Sensor Board 430.

2.2.3 BTnode Developed at ETH Zurich.

Figure 2.16 shows a BTnode [11]. BTnodes have been developed at the Eid-
genössische Technische Hochschule (ETH) Zürich by the Computer Engineering
and Networks Laboratory (TIK) and the research Group for distributed systems.
The BTnode rev3 is a dual radio device with a CC1000 low-power radio module

Figure 2.16: BTnode rev3.

29

2.2. EVALUATED SENSOR NODE PLATFORMS

Figure 2.15: Modular Sensor Board 430.

2.2.3 BTnode Developed at ETH Zurich.

Figure 2.16 shows a BTnode [11]. BTnodes have been developed at the Eid-
genössische Technische Hochschule (ETH) Zürich by the Computer Engineering
and Networks Laboratory (TIK) and the research Group for distributed systems.
The BTnode rev3 is a dual radio device with a CC1000 low-power radio module

Figure 2.16: BTnode rev3.

29

Figure 1.1: WSN Applications.

or equipment in hospitals. For example, car tracking applications are used in
urban environments to handle traffic flows or to manage parking lots includ-
ing automated parking fee accounting.

• Health care systems: WSNs are able to continuously monitor vital values
of the human body such as its temperature, blood pressure, glucose level or
heart and brain activity. This enables real time patient monitoring to rapidly
detect clinical deterioration or to improve the life quality of elderly people by
prolonging their time living at their own home. Additionally, WSNs are used
in medical and psychological large field studies to study chronic diseases or
the human behavior.

• Early detection of disasters: WSNs are able to detect geophysical haz-
ards such as landslides, tsunamis, earthquakes or volcanic eruptions as well
as meteorological disasters caused by extreme weather or wildfires. Early
warnings for natural or man made disasters are used to reduce the impact of
these events on lives and property. For example, wildfire detection is used to
plan the evacuation of residential areas or to support firefighters. Addition-
ally, fire detection WSNs are used inside buildings to accelerate evacuation
time or active sprinkler systems.

• Industrial Process Control: WSNs are used in industrial processes for ma-
chine condition monitoring, building automation, predictive maintenance,
energy management or vendor managed inventory. The ultimate goals of
these WSNs are to decrease the manufacturing costs, to improve the opera-
tional reliability and to increase the health and safety of the employees.

2

1.1. OVERVIEW

The various real world WSNs are individually customized to fulfill their intended
purposes. The design of the individual WSNs has to be cost-efficient and to ensure
functional reliability during operation. The various application purposes result in
various WSNs, which differ in the following characteristics:

• Hardware components: Sensor nodes used in WSNs differ in size, attached
sensing devices, calculation performance, available memory, battery size and
attached radio module. Different WSN applications require different kinds
of sensing devices to measure the required environmental characteristics.
This results in heterogeneous WSNs, consisting of different types of sensor
node platforms equipped with the corresponding sensing devices. Different
radio modules attached to the individual sensor node platforms in heteroge-
neous WSNs represent a challenge to network connectivity. Usually, these
different radio modules make use of an individual wireless channel, which
prevents a direct communication between the individual sensor nodes.

• Network topology: Common WSNs network topologies are using point-
to-point, star, tree or mesh topologies. Figure 1.2a depicts a point-to-point
topology, where two or more nodes are directly interconnected with each
other. A star topology uses a centralized node to coordinate the traffic (see
Figure 1.2b). Tree topologies can be considered as a combination of several
star topologies (see Figure 1.2c). In mesh topologies the individual nodes
are connected to every other node in the neighborhood (see Figure 1.2d).

(a) Point-to-point. (b) Star. (c) Tree. (d) Mesh.

Figure 1.2: Small-scale network topologies for basic evaluations.

• Deployment: The positions of the individual sensor nodes inside the WSN
can be planned systematically or uniformly random. Sensor nodes placed in
a square grid represent a classical systematic deployment of WSNs. Indi-
vidual sensor nodes inside buildings are sometimes systematically placed to
enhance connectivity.

In a uniform random deployment, individual nodes have an equal probability
of being placed at any point in a given deployment area. For example, such a
random deployment can result from scattering sensor nodes by an airplane.
Uniform random deployment is cost-efficient and easy to apply for large
WSNs.

3

1.1. OVERVIEW

• Mobility: Individual sensor nodes in WSNs are generally static. Neverthe-
less, some WSN applications make use of mobile nodes. The movement of
the individual mobile nodes can be constant or sporadic with slow or at high
speed. Advantages of mobile WSNs over static WSNs are for instance im-
proved coverage and an enhanced target tracking potential. Mobile WSNs
require dynamic routing mechanisms to ensure connectivity between the in-
dividual nodes.

• Connectivity: Network connectivity between the individual sensor nodes
can be permanent, periodic or only sporadic. Network connectivity may
include dynamic routing mechanisms to repair broken network links. For
example, when a sensor node runs out of power, then a dynamic routing
mechanism has to reconfigure routing inside the WSN. Additionally, some
WSNs use monitoring applications to observe current connectivity inside the
WSN to ensure quality of service.

• Coverage and network size: WSNs show different network sizes and cover-
age strategies. WSN based health care systems attached to the human body
usually consist of few individual sensor nodes. Environmental monitoring
applications on the other hand may consist of thousands of individual sensor
nodes. The coverage of a local area can be sparse, dense or redundant. The
coverage of a WSN can refer to the coverage of the sensing devices as well
as to the coverage of wireless radio devices.

• Lifetime: One common characteristic for most sensor node platforms is, that
they are battery powered to feature an autonomous power supply. Unfortu-
nately, the lifetime of battery powered sensor nodes is limited. Therefore,
energy preserving mechanisms are an important field of current WSN re-
search. The required lifetime of a WSN depends on its intended purpose.
For example, medical applications for patient monitoring have to be opera-
tional for several hours or days only, while a volcano monitoring application
has to collect data during years.

The multiple characteristics and requirements for real world WSNs result in vari-
ous research interests in the field of WSNs. Although all WSNs have very different
characteristics, some requirements are common. We have identified energy preser-
vation as the major common requirement for real world applications. Therefore,
energy preserving mechanisms to increase the lifetime of battery powered sensor
nodes are an important field of current WSN research. Two other common require-
ments are reliable data transmissions and interconnection of heterogeneous nodes
equipped with sensing devices. Reliable data transmissions are required by WSN
applications for different purposes, e.g. to reliable report critical events or to send
configuration messages or code updates. The interconnection of heterogeneous
nodes is required to enable communication among different sensor node platforms
and to directly connect them to the Internet.

4

1.2. PROBLEM STATEMENT

1.2 Problem Statement

In this thesis, we investigate three major problems of current real world WSN ap-
plications, namely energy efficiency, reliable data transmissions and network con-
nectivity. Energy efficiency and data reliability are basic requirements for most
real world WSNs applications. As sensor nodes are powered by batteries, their
lifetime is limited. Data reliability mechanisms are required to ensure successful
data forwarding. Therefore, data reliability mechanisms have to be able to de-
tect and recover packet loss. Additionally, a real world WSN stack has to enable
communication between individual heterogeneous sensor node platforms and the
Internet.

• Energy efficiency: A key challenge in the design as well as during the op-
eration of WSNs is the extension of the system lifetime. Battery powered
sensor nodes feature only a limited amount of energy, which determines the
node and network lifetime. To increase the lifetime of a WSN the energy
consumption of all sensor nodes has to be reduced as replacing the batter-
ies is often not feasible. Therefore, energy preserving mechanisms present
a major research challenge for WSNs. The most energy consuming parts
of a sensor node are the attached sensors, the microcontroller and the radio
module. Energy preserving mechanisms use sleep and wake-up scheduling
techniques to put the individual components as long as possible into an en-
ergy preserving sleep mode. The longer the sleeping period in relation to
the wake-up period is, the lower is the resulting duty cycle of individual
components. A duty cycle is defined by the ratio of the wake-up period and
the duty cycle period. Therefore, reducing the duty cycle of the individual
components on a sensor node is, next to using energy efficient hardware, the
most effective way to reduce energy consumption. The most effective, but
also most challenging way to preserve the energy is to reduce the duty cycle
of the radio module, as the radio module is usually the component with the
highest energy usage during the operation. Furthermore, a radio module re-
quires 103 - 106 times less energy in sleeping mode than in listening mode.
Therefore, the sleeping period of the radio module should be adapted to the
currently forwarded traffic load. Long sleeping periods ensure a low energy
usage of the radio module at low traffic load. Short sleeping periods provide
short data forwarding delays and offer sufficient bandwidth to forward in-
coming traffic at high traffic load. The link layer protocol must to be able to
determine the expected incoming traffic load to apply an appropriate sleeping
period. Current traffic load detection mechanisms are not able to determine
if a low traffic load is caused by a low amount of generated packets or by
congestion. This represents a major problem, as a low amount of generated
packets enables long sleeping periods, whereas congestion requires exactly
the opposite, short sleeping periods.

5

1.2. PROBLEM STATEMENT

• Reliable data transmission: Current WSN protocols only offer weak data
reliability support. Usually, they struggle when handling inter-flow and intra-
flow interferences caused by concurrently forwarded packets. Especially,
high traffic load depicts a challenge for existing link layer protocols. During
periods with high traffic load, transmission attempts have to be scheduled
carefully in order to not interfere with transmissions of, maybe hidden, other
nodes. Otherwise, higher traffic load results in congestion and significant
packet loss.

End-to-end reliability protocols are able to detect packet loss and to trigger
a new end-to-end retransmission of corresponding packet. This requires a
considerable amount of additional energy to retransmit the lost packet. Ad-
ditionally, end-to-end reliability protocols have a difficult time when han-
dling packet loss at high traffic load. The extra traffic caused by end-to-
end acknowledgments generates additional interferences and packet loss.
Therefore, end-to-end reliability mechanisms, such as TCP, even increase the
packet loss at high traffic load instead of reducing them. Local hop-to-hop
retransmission mechanisms require less energy than end-to-end retransmis-
sion mechanisms to retransmit an erroneous packet. Unfortunately, hop-to-
hop reliability mechanisms cannot trigger an end-to-end retransmission of a
dropped packet.

• Network connectivity: The individual sensor node platforms deployed in a
real world WSN should to be interconnected among themselves as well as
connected to the Internet. An interconnection of different nodes requires
a WSN protocol stack using well-established standards released by stan-
dardization bodies such as Institute of Electrical and Electronics Engineers
(IEEE) and Internet Engineering Task Force (IETF) or at least quasi-standards
described by Request for Comments (RFCs). Standardized physical and
data link layer protocol (e.g., IEEE 802.15.4) enable direct communica-
tion among neighbor nodes. A standardized network layer protocol (e.g.,
IP) enables addressing and data routing between individual nodes within a
network. Standardized transport layer protocols such as Transport Control
Protocol (TCP) and User Datagram Protocol (UDP) enable establishing and
handling an end-to-end connection or a data flow between different nodes.

Our research into these three major problems showed that the radio module has a
significant impact to all three research topics. Additionally, the radio module influ-
ences the design of the energy preserving link layer protocol. Therefore, the radio
module has to be selected carefully to achieve an energy efficient and reliable WSN
stack. Next to that, the limited resources of the microcontroller require to design
not only energy preserving but also efficient mechanisms in terms of processing
power and available memory.

6

1.3. CONTRIBUTIONS

1.3 Contributions

The main contribution of this thesis is an energy efficient and reliable data trans-
mission in a real world WSN stack, which is compliant to IEEE standards and
commonly used RFCs. On the link layer, we contribute with two novel mecha-
nisms to support energy efficiency and data reliability. The first contribution is
a novel traffic load measuring mechanism called traffic prediction mechanism.
The mechanism predicts the expected incoming traffic load, also during periods
of congestion. This enables selecting long sleeping periods to preserve energy,
while it simultaneously provides sufficient bandwidth during high traffic load or
congestion.

The second contribution is a congestion detection and control mechanism,
which is able to identify and correctly handle intra-flow and inter-flow interferences
as well as congestion. Our contributed WSN stack supports IEEE 802.15.4, IP,
UDP and TCP to enhance network connectivity. The link layer protocol works
with energy efficient and robust packet oriented radio modules. To support energy
efficient end-to-end reliability we contribute an application layer overlay protocol
providing reliable end-to-end flows over UDP. Additionally, we evaluate the impact
of different radio modules as well as the impact of Forward Error Correction (FEC)
codes on energy usage and data reliability in WSNs. Our network stack is evaluated
by simulation experiments and in real world testbeds.

The individual contributions of this thesis are summarized as follows:

• Energy and data reliability evaluation of different radio modules. We
evaluated five common sensor node platforms equipped with different radio
modules. We analyzed their energy usage and data reliability under differ-
ent network conditions, e.g., with low SNR or with high interferences. We
show that packet oriented radio modules perform significantly better than
bit and byte oriented radio modules. Packet oriented radio modules offer
a higher robustness against interferences and require significantly less en-
ergy for transmissions and channel checks. Additionally, they support IEEE
802.15.4 compliant physical and data link layers to enhance the connectivity
in heterogeneous WSNs.

• Energy preserving, adaptive radio duty cycle protocol supporting traffic
load prediction mechanism. We contribute an energy efficient, adaptive
link layer protocol designed for energy efficient and robust packet oriented
radio modules. The traffic prediction mechanism that we developed is
able to predict the incoming traffic even during congestion or periods with
high interferences. This enables the protocol to adapt the radio duty cycle
according to the incoming traffic load. The developed protocol header of
link layer protocol is compliant to IEEE 802.15.4.

• Hop-to-hop reliability protocol with congestion detection and control
mechanism. We developed a hop-top-hop reliability protocol with a con-

7

1.3. CONTRIBUTIONS

gestion detection and control mechanism. This congestion detection and
control mechanism is able to detect and properly react on intra-flow and
inter-flow interferences by adapting the frequency of the individual transmis-
sion attempts. This results in a higher throughput and reduces the number of
energy consuming retransmission attempts caused by packet collisions.

• End-to-end reliability support for UDP. We developed an application layer
overlay protocol supporting end-to-end reliability based on UDP. Using this
application layer overlay protocol, a reliable and energy efficient end-to-end
transport service between sensor nodes and machines in the Internet may be
offered to any application. The application layer overlay protocol employs
standard network sockets to support a regular application programming in-
terface.

• Modular network stack for heterogeneous WSNs. Our contributed net-
work stack extends the existing modular Contiki network stack [23]. We
only use standardized protocol headers for the physical, network and trans-
port layer to enable communication in heterogeneous WSNs.

• Evaluation of FEC concerning energy consumption and reliability. FEC
codes showed promising results on bit/byte oriented radio modules due to
the low reliability performance and low energy efficiency of these modules.
Nevertheless, the FEC codes that have been evaluated in this thesis are nei-
ther able to reduce the energy usage nor to enhance the reliability of our
contributed real world WSN network stack using a packet oriented radio
module.

As a next step, we shortly discuss our contributions using an example of a sensor
node communicating to the external Internet. Figure 1.3 shows a unicast con-
nection between a sensor node using our WSN stack and a server located in the
Internet. The transport layer provides the end-to-end communication services for
the applications. Our network stack offers the transport protocols TCP and UDP.
TCP already provides services such as end-to-end reliability, flow control and con-
gestion control, while UDP is delegating these functions to the application. UDP
requires less energy to forward application payload and offers a higher throughput
than TCP. Therefore, we developed a UDP based application layer overlay proto-
col offering end-to-end reliability to the application. Our network stack is using
IP on the network layer. Our link layer is divided into two sublayers. The upper
sublayer provides hop-to-hop reliability as well as a congestion control and a back
pressure mechanism. The lower sublayer implements the adaptive radio duty cycle
mechanism including a traffic prediction mechanism to estimate expected incom-
ing traffic. On the physical layer, we apply the Direct Sequence Spread Spectrum
(DSSS) technique for data transmission. DSSS significantly improves robustness
against interferences caused by other transmissions or wave propagation effects
such as reflections, multi-path fading or diffraction.

8

1.3. CONTRIBUTIONS

MAC

Application Application

Transport

Network

Transport

Network

Ethernet

Reliable
 unicast connection

Network

Radio moduleRadio module Internet

H2H reliability

Radio duty cylcling

H2H reliability

Radio duty cylcling
MAC

Network

LANSerial
interface

Network

Radio
module

H2H reliability

Radio duty cylcling

Serial
interfaceUSB

Sensor node
(Forwarding node)

Sensor node
(End point)

Sensor node Server
 (Gateway node)

Server
(End point)

Figure 1.3: Energy efficient and reliable network stack for heterogeneous WSNs.

For our selected scenario, at least one sensor node in the WSN has to be attached
(e.g., over USB) to a machine connected to the Internet to work as a gateway node.
This gateway node handles all the routing for packets between the WSN and the
Internet.

The implementation of the contributed network stack is based on the modular
Contiki network stack. The network stack can be compiled for different sensor
node platforms. This enables the usage of the same protocol and application im-
plementations on different sensor node platforms. Only the radio driver and the
radio duty cycle protocol at the link layer have to be selected according to the used
radio module. Our link layer protocols are optimized for the packet oriented radio
module CC2420. Therefore, our network stack can be used for every sensor node
using such a radio module (e.g, telosB and MicaZ).

Besides the already presented contributions, we evaluated the impact of FEC codes
on energy efficiency and data reliability. FEC codes have shown promising results
in reducing packet loss on bit/byte-oriented radio modules using a simple On Off
Keying (OOK) modulation technique. FEC codes are able to reduce the required
local retransmission attempts and, therefore, they possibly are able to reduce the
energy consumption in real world WSNs. Bit/byte-oriented radio modules require
several times more energy and time to forward data than than packet oriented radio
modules. Additionally, packet oriented radio modules use significantly more ad-
vanced spectrum spreading and modulation techniques than bit/byte-oriented radio
modules. Bit/byte-oriented radio modules show a higher potential for FEC codes
to save energy due to the higher probability of packet loss and the higher energy
requirements for a retransmission attempt. We evaluated the impact of FEC codes
on the energy efficiency and data reliability of our contributed real world WSN
stacks using packet oriented radio modules. Figure 1.4 shows a schematic repre-
sentation of the FEC code evaluations including the impact of spectrum spreading
and modulation techniques.

9

1.3. CONTRIBUTIONS

• FEC mechanism: The FEC codes are handled by the microcontroller. FEC
codes add redundant parity bytes to the outgoing data stream. We evalu-
ated the Hamming(12,8) FEC code and the Reed-Solomon(255,225) FEC
code. The Hamming(12,8) algorithms require less calculation time for en-
coding and decoding the parity information than more complex algorithms
of Reed-Solomon(255,225). Therefore, Hamming(12,8) requires less energy
than Reed-Solomon(255,225), while Reed-Solomon(255,225) is able to re-
cover more bit errors than Hamming(12,8).

• Spectrum spreading techniques: Spectrum spreading techniques are used
to enhance the robustness against interferences. Manchester encoding is used
to ensure sufficient transitions of the data stream to keep the radio receiver
module using an OOK modulation in synchronization. The DSSS technique
spreads the incoming data stream by a factor of eight, which enables the
receiver to recover bit errors. On the receiver side, frame start detection is
performed after spectrum spreading has restored the data stream. Therefore,
a spectrum spreading mechanism is able to increase the frame detection rate.

• Modulation techniques: The spread data streams have to be modulated on
a carrier wave to be transmitted over the air to the receiver. The evaluated
bit/byte-oriented radio modules use a simple OOK modulation technique,
while the packet oriented radio module is using Offset Quadrature Phase
Shift Keying (OQPSK), where two digital data signals are modulated to one
carrier wave at the same time.

Forward
Error

Correction
q(t)

IEEE
802.15.4

sequences
O-QPSK

Modualtion

OOK

FEC

Manchester
encoding

q2(t)

Microcontoller
Packet oriented radio modules

Modualtion

Bit/byte oriented radio modules

01 11 01

q2(t)

q3(t)

1 1 0 1 0

Spectrum
Spreading

q1(t)

Spectrum
Spreading

Figure 1.4: FEC mechanisms versus spread spectrum techniques.

Our evaluations show that performance of FEC codes heavily depends on the used
radio module. All evaluated FEC codes were able to reduce the required retrans-
mission attempts for both types of radio modules. But when using packet oriented

10

1.4. THESIS OUTLINE

radio modules, the energy preserved by less transmission attempts is insufficient
to compensate the additional energy costs caused by the FEC calculations on the
microcontroller and the additional energy required by the radio module to trans-
mit parity data. Therefore, we do not use FEC support in our energy efficient and
reliable WSN stack.

1.4 Thesis Outline

The thesis is structured as follows. Chapter 2 provides a discussion of the related
work in the area of energy efficient and reliable WSNs. Chapter 3 describes the
evaluation of different radio modules. The evaluation results enable us to select
the most appropriate radio modules to achieve an energy efficiency and reliable
link layer protocol. Chapter 4 introduces the two contributed radio duty cycled
link layer protocols and the application layer overlay protocol to support an energy
efficient and reliable WSN stack. The design of a radio duty cycled link layer pro-
tocol depends on the selected radio module. In Chapter 5, our developed real world
WSN stack is evaluated using the WISEBED real world testbed. Additionally, the
impact of FEC is evaluated. Finally, Chapter 6 concludes the thesis and discusses
potential future work.

11

Chapter 2

Related Work

This chapter introduces and discusses the related work concerning the main topics
of this thesis, which are energy efficiency, reliable data transmission and network
connectivity. Section 2.1 describes the characteristics of low-power radio modules
for WSNs. Then, Section 2.2 presents the sensor node platforms equipped with
the individual radio modules introduced in the Section 2.1. Section 2.3 discusses
the operating systems used on sensor node platforms. Section 2.4 describes the
used evaluation tools, such as WSN simulators, real world WSN testbeds and the
hardware setup for energy measurements based on a digital multimeter. Section
2.5 discusses different reliability mechanisms used by WSNs. Finally, Section 2.6
introduces the most important related work concerning energy efficient link layer
protocols for WSNs.

2.1 Radio Modules and Physical Layer Techniques

This section introduces and categorizes different low-power radio modules de-
signed for communication in WSNs. Additionally, this Section describes the phys-
ical and link layers used by theses radio modules.

The remainder of this section is structured as follows. Subsection 2.1.1 gives an
overview about the different radio modules for WSNs. Subsection 2.1.2 introduces
different modulation techniques used by low-power radio modules for WSNs. Sub-
section 2.1.3 describes frequency speeding techniques used by the radio modules.
The following for Subsections 2.1.4, 2.1.5, 2.1.6 and 2.1.7 introduce the four used
radio modules.

2.1.1 Survey of Characteristics of Radio Modules for WSNs

Currently available radio modules for WSNs can be roughly divided into two
classes, namely bit/byte oriented radio modules and packet oriented radio modules.
Bit oriented radios radio modules only provide a digital transmission interface to
the microcontroller. This enables a connected microcontroller to transmit individ-
ual bits over the radio module to other sensor node platforms. The microcontroller

13

2.1. RADIO MODULES AND PHYSICAL LAYER TECHNIQUES

of the receiving node has to continuously read the signal strength indicated by the
connected radio module to estimate the individual received bits.

Byte oriented radio modules enable a connected microcontroller to send and
receive individual bytes, instead of individual bits. To transmit a byte stream, the
individual bytes have to be written to the radio module. The exact time scheduling
of the individual byte transmissions has to be coordinated by the microcontroller.
On the receiver side, a byte radio module is able to announce the reception of a
single byte by triggering an interrupt of the microcontroller.

The flexibility in the design process of a byte stream, which is provided by
bit/byte oriented radio modules, enables a microcontroller to implement almost
any protocol design. Physical layer tasks, such as frame start detection and bit rate
control, as well as all link layer tasks, such as checksum calculations or acknowl-
edgment handling are controlled and handled directly by the microcontroller. Bit
rate control on the physical layer includes the need for an exact scheduling of the
individual bit/bytes write operations according to the selected physical bit rate. The
accuracy of the used microcontrollers enables a physical transmission bit rate up
to 38.4 kbps. Most real world implementations even apply a lower bit rate of 9.6
kbps and Manchester coding (see Section 2.1.3) to achieve a lower bit error rate.

In contrast to bit/byte oriented radio modules, the highly integrated packet ori-
ented radio modules allow the connected microcontroller to only send and receive
entire packets. It is not possible for the microcontroller to send and receive indi-
vidual bytes using these packet oriented radio modules. All tasks of the physical
layer are autonomously handled by the radio modules itself. The packet oriented
radio modules offer an effective bit rate of 250 kbps on the link layer. Additionally,
packet oriented radio modules offer several additional functions on the link layer,
such as handling acknowledgments or calculating checksums. Link layer functions
executed by the radio module require considerably less time and energy than a cor-
responding implementation on the microcontroller. Furthermore, packet oriented
radio modules require significantly less time and energy for sending a packet du to
the higher bit rate. The main drawback of packet oriented radio modules is their
limitation in the design process of the physical and link layer protocol header. This
decreases the flexibility in designing a suitable WSN communication protocol.

Table 2.1 gives a brief overview about the characteristics of the different radio
modules used in this thesis. All operate in the narrowband, which is considered to
cover frequencies 300 - 3400 MHz. The next subsection introduces the different
modulation techniques used by radio modules presented in Table 2.1.

2.1.2 Modulation Techniques

This subsection briefly introduces different modulation techniques used by low-
power radio modules for WSNs. Modulation techniques are used to encode data
symbols to an electromagnetic wave, called carrier wave. To encode a data symbol
to a carrier wave, either the amplitude, frequency or phase of the carrier wave is
modulated according to the data symbol. The frequency of the carrier wave is

14

2.1. RADIO MODULES AND PHYSICAL LAYER TECHNIQUES

Radio Frequency
(MHz)

Modulation
technique

Sensitivity
(dBm)

Theoretical
bit rate (kbps)

CC1000 [89] 300 − 1000 BFSK -110 76.8
TR1001 [71] 868.15−868.55 OOK, ASK -104 115.2
CC1020 [90] 402 - 470

804 - 960
OOK, BFSK,
GFSK

-118 153.6

CC2420 [91] 2400 - 2484 DSSS with
OQPSK

-94 250

Table 2.1: Characteristics of the evaluated radio modules

usually several times higher than the frequency of the individual data symbols into
the data signal.

Figure 2.1 shows the two most common amplitude modulation techniques
used by radio modules for WSNs [18]. The depicted frequency (f0) of the carrier
wave (z(t)) is four times higher than the frequency of the data signal (q(t)). Every
data symbol of the data signal is able to transmit a single bit.

t/T

t/T

t/T

t/Tq(t)

z(t)

data signal
symbol length = T

 carrier signal f0 = 4/T

 On-off keying (OOK)
amplitude A1= 2, A2= 0

x(t)

x(t)

1 2 3 4 5 6 7

A

-A

A

-A

A

-A

1

-1

 Amplitude-shift keying (ASK)
A3amplitude A3= 2, A4= x

Figure 2.1: Digital amplitude modulation.

The most simple digital amplitude modulation technique is On Off Keying (OOK)
[18]. Corresponding to the current data symbol in the data signal, the carrier wave
is turned on or off. Another amplitude modulation technique is Amplitude Shift
Keying (ASK) [18]. ASK is adapting the height of carrier wave’s peak value in
response to the data symbol.
Besides amplitude modulation, frequency modulation techniques are used. Fre-
quency Shift Keying (FSK) [18] modulation techniques adapt the frequency of the
carrier wave according to the data symbol. Binary Frequency Shift Keying (BFSK)
[60], depicted in Figure 2.2, is the simplest FSK modulation technique. BFSK uses
a pair of discrete frequencies to transmit the individual data symbols. The carrier
wave changes the frequency of the carrier wave according to the current data sym-

15

2.1. RADIO MODULES AND PHYSICAL LAYER TECHNIQUES

bol.

t/T

Binary Frequency Shift Keying
frequency f1 = 5/T, f2 = 3/T

x(t)
A

-A

t/T

t/Tq(t)

z(t)

data signal
symbol length = T

 carrier signal f0 = 4/T

1 2 3 4 5 6 7

A

-A

1

-1

Figure 2.2: Digital frequency modulation.

Gaussian Frequency Shift Keying (GFSK) [60] is basically the same as BFSK.
GFSK is offered by the CC1020 radio module for high bit rates. The higher the bit
rate of the data signal is, the lower is the distance of the data signal frequency to the
frequency of the carrier wave. This results in a problem called pulse shaping [18].
A result of high bit rates and a low frequency of the carrier wave are inter symbol
interferences when the waveform of the carrier wave is switching between the in-
dividual frequencies. Gaussian filtering is one of the standards for reducing pulse
shaping. Therefore, the data signal additionally passes a Gaussian filter before the
FSK modulation is applied.
A further modulation technique is Phase Shift Keying (PSK) [18]. PSK is a phase
modulation technique, where the phase of the carrier wave is changed according to
the data symbol. Figure 2.3 shows the Offset Quadrature PSK (OQPSK) modula-
tion technique [82], which is used by IEEE 802.15.4 [58] compliant radio modules.

t/T

t/T

z(t)

x(t)

A
-A

A

-A

t/T
q1(t) 1 2 3 4 5 6 7

1
-1

QPSK
modualtion

t/T
z(t)A

-A

t/T
q2(t) 1 2 3 4 5 6 7

1
-1

1,-11,1 -1,-1 1,1 -1,1 -1,-1 1,1 -1,-1

data signal
symbol length = T

 carrier signal f0 = 4/T

data signal
symbol length = T

 carrier signal f0 = 4/T

Figure 2.3: Offset quadrature phase-shift keying (OQPSK).

With OQPSK two data symbols can be modulated at the same time to the carrier
wave. Therefore, the spectral efficiency [18] of OQPSK is twice the spectral ef-

16

2.1. RADIO MODULES AND PHYSICAL LAYER TECHNIQUES

ficiency of the introduced amplitude and frequency modulation techniques. The
receiver compares the phase of the received signal to the carrier wave to retrieve
the corresponding data symbol.

2.1.3 Spread Spectrum Techniques

Spread spectrum techniques are used to enhance the robustness of a transmission
[18]. The data signal is spread in the frequency domain on purpose. This results in
a data signal with a wider bandwidth.

A common spread spectrum technique used for bit/byte oriented radio modules
is Manchester coding depicted in Figure 2.4. Manchester coding ensures sufficient
transitions of the individual data symbols in the data stream. This is required due
to the fact that a receiver is only able to detect a changeover in the waveform
when the value of the transmitted data symbol changes. The changeover between
two identical data symbols cannot be recognized by the radio receiver. The radio
receiver has to measure the time period between the individual changeovers in the
waveform to determine the amount of individually sent data symbols. Therefore,
the clock drift of the radio modules can result in a synchronization problem if too
many of the same data symbols are sent in a row. Manchester coding generates
sufficient transitions in the data stream to ensure short periods of identical data
symbols.

Manchester encoded
data signal for OOK & FSK

data signal
symbol length = T

clock

t/T
x(t)

A

-A

t/T

t/T
q(t)

z(t)

1 2 3 4 5 6 7

A

-A

1

-1

Figure 2.4: Manchester encoded data signal for OOK and FSK.

Packet oriented radio modules such as the CC2420 [91] offer significantly more
advanced spread spectrum technique namely Direct Sequence Spread Spectrum
(DSSS) [60]. With DSSS, the individual data symbols of the data stream are
mapped to longer symbol sequences, e.g. the DSSS technique used by the CC2420
radio module defines 16 different 32 bit chipping sequences. DSSS takes four
subsequent data symbols and maps them to the corresponding 32 bit chipping se-
quences. The 32 bit chipping sequences used by the CC2420 are defined by the
IEEE 802.15.4 standard. The receiver maps the received 32-bit chipping sequence
back to the four data symbols with the shortest hamming distance. By using the
shortest hamming distance, bit errors can be recovered. The DSSS spreading mech-

17

2.1. RADIO MODULES AND PHYSICAL LAYER TECHNIQUES

anism enhances the signal to noise ratio on the channel. The resulting improvement
is called process gain [60].

2.1.4 Radio Module CC1000

The CC1000 [89] is a low-power radio transceiver manufactured by Chipcon. In
the Non Return to Zero (NRZ) mode, the CC1000 supports a bit rate up to 76.8
kbps, in Manchester mode up to 38.4 kbps. In contrast to the other radio modules,
the CC1000 just provides digital transmission. The CC1000 enables a microcon-
troller to send and receive individual bits. Every other functionality, such as frame
start detection, bit rate synchronization, or checksum verification is not provided by
radio module itself and, therefore, has to be implemented by the microcontroller.
This enables researchers to implement almost any protocol [59]. On the BTnode
platform [11], using this radio module, the highest functional transmission speed
is 38.4 kbps when using the Contiki operating system.

2.1.5 Radio Module TR1001

The TR1001 [71] transceiver is a low-power radio module designed for short-range
wireless connections manufactured by RFM. The transmitter supports OOK and
ASK modulation. OOK can be used up to a bit rate of 30 kbps. For higher bit
rates up to 115.2 kbps, ASK has to be used. The TR1001 enables a microcontroller
to send and receive individual bytes. Scheduling for sending the individual bytes
has to be handled by the microcontroller. After receiving a byte, the radio module
triggers an interrupt of the microcontroller to announce the reception of a single
byte. The operating frequency of the TR1001 is between 868.15 and 868.55 MHz.
The TR1001 uses an analog implementation of a Finite Impulse Response Filter
(FIR) filter [60] to reduce the interfered in the received signal. In Chapter 3 we
compare the receiving characteristics of TR1001 using a FIR filter with the other
radio modules.

Finite Impulse Response Filter

An electronic filter is able to change the phase and the amplitude of an electric
wave depending on the frequency. This enables suppressing or attenuating un-
wanted frequencies. In mobile applications with a carrier wave frequency below 3
GHz, FIR filters are used. FIR filters enable out-of-band rejection [16] to reduce
interferences. The TR1001 uses a Surface Acoustic Wave (SAW) filter [16] as an
analog implementation of a FIR filter.

A SAW filter converts an electrical signal to a mechanical wave using a piezo-
electric crystal. The mechanical wave shows a delayed propagation within the
piezoelectric crystal. The delayed outputs of the mechanical wave are converted
back to an electrical signal and recombined to implement the FIR filter. The FIR

18

2.1. RADIO MODULES AND PHYSICAL LAYER TECHNIQUES

filter convolutes the digital input signal with its impulse response. Figure 2.5 shows
a FIR filter:

• Input signal: Sin(t)

• Output signal: Sout(t)

• Delay elements: τ

• Filter coefficients: bx (also known as amplitude adapters)

• Filter order: n (with n+ 1 terms on the right-hand side)

b2b0 b1

Sin(t)

Sout(t)

bn-1bn-2

∑ ∑ ∑ ∑

τ τ τ τ

Figure 2.5: Finite impulse response filter.

The output Sout(t) is calculated by convolving the input signal Sin(t) with the
filter coefficients b. The result is a weighted sum of the current and a finite number
of previous values of the input. The operation can described by the following
equation: Sout(t) = a0 ∗ Sin(t) + a1 ∗ Sin(t− τ) + a2 ∗ Sin(t− 2 ∗ τ) + an−1 ∗
Sin(t− (n− 1) ∗ τ) =

∑n−1
k=0 ak ∗ sin(t− k ∗ τ).

2.1.6 Radio Module CC1020

The CC1020 [90] is a low-power radio transceiver manufactured by Chipcon. It can
be programmed to operate in the 402 − 470 and 804 − 960 MHz band. It supports
a bit rate up to 153.6 kbps. The CC1020 can be configured to use OOK, BFSK
or GFSK modulation. It also offers a digital Received Signal Strength Indicator
(RSSI) and a carrier sense indicator to the microcontroller. Similar to the TR1001,
the CC1020 enables a microcontroller to send and receive individual bytes. The
microcontroller has to schedule the transmission of the individual bytes. After a
byte has been received, the CC1020 triggers an interrupt to instruct the microcon-
troller to read the received byte.

2.1.7 Radio Module CC2420

The CC2420 [91] is an IEEE 802.15.4 compliant low-power radio transceiver. It
operates in the 2.4 GHz Industrial, Scientific and Medical (ISM) radio band. It

19

2.1. RADIO MODULES AND PHYSICAL LAYER TECHNIQUES

provides extensive hardware support for services, such as packet handling, au-
tonomous link layer acknowledgments, data buffering, data encryption and au-
thentication, Clear Channel Assessment (CCA), RSSI and Link Quality Indication
(LQI). For transmitting data, the microcontroller has to copy a complete packet
to the CC2420 TX buffer. To utilize the services provided by the CC2420 radio
module, the frame format of the packet has to be compliant to IEEE 802.15.4. The
following subsections introduce the IEEE 802.15.4 standard and its packet han-
dling within the CC2420.

IEEE 802.15.4

The IEEE 802.15.4 [58] standard specifies the physical and link layers for Wireless
Personal Area Networks (WPAN). It is maintained by the IEEE 802.15 working
group. In contrast to Wireless Local Area Network (WLAN), WPAN is designed
for shorter distances, i.e. distances of centimeters to a few meters to interconnect
personal devices located in a person’s immediate vicinity. IEEE 802.15.4 is used
by protocol stacks, such as ZigBee [103] , ISA100.11a [46], WirelessHART [35],
and the MiWi [102] specifications.

Synchronization Header
(SHR)

Frame
Control Field

(FCF)

Data
Sequence
Number

Address
Information

MAC frame
payload

Frame Check
Sequence

(FCS)

2 1 0 to 20 n 2

MAC Header (MHR) MAC payload MAC Footer
(MFR)

Preamble
Sequence

Start of
Frame

Delimiter
Frame
Length

4 1 1Bytes:

PHY
Header

MAC Protocol
Data Unit
(MPDU)

PHY Protocol Data Unit
(PPDU)

0 - 127 Bytes

Figure 2.6: IEEE 802.15.4 frame.

Figure 2.6 shows the IEEE 802.15.4 data frame structure. An IEEE 802.15.4 frame
starts with a 5 bytes Synchronization Header (SHR) and the PHY Header. The SHR
is a 4 bytes preamble sequence and an 1 byte Start of Frame Delimiter (SFD). A
receiver requires the preamble sequence bytes (0x00) to synchronize the demodu-
lator and searches for the SFD byte (0x7A) to determine the position of the 1 byte
PHY header. The PHY header provides the frame length of the MAC Protocol Data
Unit (MPDU). The MPDU consists of the MAC Header (MHR), the MAC payload
and the MAC Footer (MFR). Depending on usage of 16-bit or 64-bit addresses,
the biggest MAC payload is 118 or 106 bytes, respectively. The MFR includes a
2-bytes Frame Check Sequence (FCS), which is a CRC-CCITT 16-bit checksum
of the MPDU (CCITT stands for Comité Consultatif International Téléphonique

20

2.1. RADIO MODULES AND PHYSICAL LAYER TECHNIQUES

et Télégraphique). The maximum frame length, including all the headers is 133
bytes. It requires 4.256 ms for transmitting a frame with maximum length.

The MHR contains the Frame Control Field (FCF), the data sequence number
and the address of the sender and receiver nodes. Figure 2.7 shows the FCF in
more detail. The FCF provides information about the frame, such as the frame
type, usage of 16-bit or 64-bit addresses and frame handling. For example, the
acknowledgment request flag informs the receiver if an automatic acknowledgment
request has to be sent.

Frame Control Field (FCF)

Frame Type

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Reserved

Security
enabled

Frame
Pending

Acknowledge
request

Intra
PAN

Reserved

Source
addressing mode

Destination
addressing mode

Figure 2.7: Frame Control Field (FCF).

Figure 2.8 shows the IEEE 802.15.4 acknowledgment frame structure. The ac-
knowledgment frame has a fix length of 11 bytes. The first 5 bytes of the ac-
knowledgment frame are part of the physical layer. They are used as synchroniza-
tion header to enable frame start detection of the receiver. The remaining 6 bytes
are part of the link layer. An incoming acknowledgment frame provides neither
address information about the sender nor the addressed receiver. Only the data
sequence number can be used to allocate the received acknowledgment to the pre-
viously sent data frame.

PHY
Header

Frame
Control Field

(FCF)

Data
Sequence
Number

Frame Check
Sequence

(FCS)

2 1 2

MAC Header (MHR) MAC Footer
(MFR)

Preamble
Sequence

Start of
Frame

Delimiter
Frame
Length

4 1 1Bytes:

Synchronization Header
(SHR)

Figure 2.8: IEEE 802.15.4 acknowledgment frame.

CC2420 Packet Receiving

Receiving packets with a packet oriented radio differs from bit- and byte oriented
radio modules. Microcontrollers connected to bit or byte oriented radios con-
stantly have to read every received bit respectively byte directly after its reception
from the radio to a local buffer. Using packet oriented radio modules, the radio

21

2.1. RADIO MODULES AND PHYSICAL LAYER TECHNIQUES

module autonomously handles the detection, receiving and verification of a frame
autonomously without any interaction of the microcontroller. The radio module
triggers an interrupt of the microcontroller, after the packet has been received com-
pletely. This enables the microcontroller to copy the RX buffer of the radio module
to the local buffer.

The CC2420 offers three pins to announce the reception of a packet to the
microcontroller. The output pins are depicted in Figure 2.9. One is the SDF pin,
which goes high after the SFD field of the IEEE 802.15.4 frame header has been
completely received. The SFD pin goes low again after the last byte of the MPDU
has been received. This makes it possible to detect ongoing transmissions by the
microcontroller. The FIFO pin usually goes high when the length byte of the frame
header has been completely received. The FIFOP pin will go high when the last
byte of a new packet is received. In receive mode, the FIFOP pin can be used to
inform the microcontroller about a received frame in RX buffer. Therefore, the
FIFOP pin has to be connected to an interrupt of the microcontroller.

Preamble SFD MAC Protocol Data Unit (MPDU)

SFD Pin

FIFO Pin

FIFOP Pin

Length

Figure 2.9: Output pin activity during receive.

Figure 2.10 depicts the operations of an energy efficient link layer protocol receiv-
ing a frame with the CC2420 radio module. The radio module is turned off most
of the time to preserve energy. The link layer protocol periodically turns on the ra-
dio module and switches it into listening mode. In listening mode the CC2420 au-
tonomously detects any incoming packet by the predefined synchronization header.
After recognizing the synchronization header, the SFD pin is set to high. The SFD
pin can be used by microcontroller to recognize an incoming frame if required.
The radio module copies every incoming byte to its RX buffer. After the frame

radio offradio offdetecting a frame
with interrupt

microcontroller
reads RX-buffer

CC2420 FIFOP pin triggers
microcontroller interrupt

transmission detected
SFD goes high

process frame
on microcontroller

receiving
a frame

radio in listening mode

Figure 2.10: Data frame detection by using the FIFOP interrupt.

22

2.1. RADIO MODULES AND PHYSICAL LAYER TECHNIQUES

reception has been completed, the CC2420 FIFOP pin triggers an interrupt of the
microcontroller. This enables the microcontroller to turn off the radio and read the
received data from the RX buffer for further processing.

CC2420 Packet Transmission

For transmitting a frame, the microcontroller has to copy the frame to the TX buffer
of the CC2420 first. Then the microcontroller is able to send a command to the ra-
dio module to initiate the transmission of a frame. The command named STXON
can be used to directly send a frame. It enables and calibrates the frequency synthe-
sizer and directly transmits the content of the TX buffer. The command STXON-
CCA can be used to additionally perform a channel check before sending the frame.
If the channel is busy, the frame is not transmitted. Usually STXONCCA is used to
send a data frame, while STXON is used to send a software acknowledgment.

CC2420 Channel Checking Support

A channel check basically fulfills two different requirements. First, before sending
a packet, the transmitter has to ensure that the channel is free. Second, the channel
has to be scanned for incoming data packets and acknowledgments. To perform a
channel check, the CC2420 offers the so-called Clear Channel Assessment (CCA)
function. The CCA function supports three different modes:

• Mode 1: The channel is free if the currently received energy is below a
predefined RSSI threshold.

• Mode 2: The channel is free if no valid IEEE 802.15.4 data is currently
received.

• Mode 3: The channel is free if the energy is below threshold and no valid
IEEE 802.15.4 data is currently received.

The output of the CCA function is offered by the digital interface of the CC2420
on the CCA output pin. The value of the pin is valid when the receiver has been
enabled for at least a 4 bytes period (128 µs). A sleeping node has to turn on the
radio for at least 128 µs before performing a channel check. The CC2420 also
shows at the SFD output pin if a synchronization header has been detected. All
our protocol implementations use the CCA in Mode 1. CCA in Mode 1 enables
a receiver to detect an ongoing transmission even if the radio module has been
turned on only after the synchronization header has been already transmitted or if
the synchronization header has been corrupted by interferences.

CC2420 Auto Acknowledgment Support

The CC2420 includes hardware support for sending IEEE 802.15 acknowledgment
frames. If the so-called AUTOACK function is enabled an acknowledgment is
transmitted every time:

23

2.1. RADIO MODULES AND PHYSICAL LAYER TECHNIQUES

1. The incoming frame passed the address recognition.

2. The acknowledge request flag in the FCF of the incoming frame is set to 1.

3. The incoming frame passed the cyclic redundancy check (CRC) check.

Then, the radio module creates an IEEE 802.15 compliant acknowledgment in
TX buffer by copying the required values from the header of the received frame.
Concerning the IEEE 802.15 standard, the transmission of the acknowledgment is
started 192 µs after the last byte of the data frame has been received. Figure 2.11
shows the corresponding time periods.

PHY Protocol Data Unit (PPDU) Acknowledge

11 byte6 byte15 - 133 byte
480 - 4256 μs 192 μs 352 μs

ACKt

Figure 2.11: AUTOACK timing.

When using the AUTOACK function (hardware acknowledgment) of the CC2420
radio module, the sender of a data frame can rely on an exactly timed incoming
acknowledgment. The AUTOACK function releases the microcontroller from cre-
ating and copying the acknowledgment frame to the radio module. On the other
side, if the acknowledgment is handled by the microcontroller (software acknowl-
edgment), the frame format of the acknowledgment can be customized. For exam-
ple, additional information about the current network conditions can be added to
the acknowledgment. Unfortunately, the software acknowledgment requires signif-
icantly more execution time than hardware acknowledgment. Table 2.2 shows the
required time periods that we measured for different actions related to sending an
acknowledgment with a telosB node. tACK refers to the time period between the
last byte of the data frame has been received and the start of the acknowledgment
transmission.

Action required time (µs)
Microcontroller writes/reads one byte 11.5
Radio module sends/receives one byte 32.0
tACK hardware acknowledgment 192
tACK software acknowledgment 335 - 1800 (and more)

Table 2.2: Time periods of different actions on the telosB node

The duration of tACK when using software acknowledgments depends on the length
of the sent frame and the required processing. A hardware acknowledgment on
the contrary requires for every transmitted frame length always the same response
time. Moreover, the required response time for a hardware acknowledgment is
clearly shorter than a software acknowledgment could ever be.

24

2.1. RADIO MODULES AND PHYSICAL LAYER TECHNIQUES

Interferences in the 2.4 GHz ISM band

The IEEE 802.15.4 standard defines several different frequency bands to be used.
If using the 2.4 GHz ISM band, IEEE 802.15.4 shares some of its available chan-
nels with IEEE 802.11 [43, 44] and IEEE 802.15.1 (Bluetooth) [45]. Using IEEE
802.15.4 side by side with Bluetooth is not a problem, especially since the Blue-
tooth working group introduced the adaptive frequency-hopping spread spectrum
(AFH) in version 1.2 of the Bluetooth specification in November 2003. AFH im-
proves resistance to interferences by avoiding the use of occupied frequencies in
the hopping sequence. In contrast to Bluetooth, IEEE 802.11 can cause signifi-
cant bit errors in co-located IEEE 802.15.4 networks [53]. An IEEE 802.11 radio
transmitter uses a transmission power that is up to 14 dBm allocated on 20 MHz
bandwidth. IEEE 802.15.4 usually uses 0 dBm on 3 MHz bandwidth. Figure 2.12
shows the used frequencies band of IEEE 802.11 and IEEE 802.15.4

22 MHz

25 MHz
Channel spacing

2.437 GHz2.425 GHz2.412 GHz 2.450 GHz 2.462 GHz 2.480 GHz

25
Channel

15
2.405 GHz

IEEE 802.15.4 5 MHz

3 MHz

IEEE 802.11
WiFi

Channel
20

Channel
26

Figure 2.12: 2.4 GHz frequencies of IEEE 802.11 and IEEE 802.15.4.

The IEEE 802.15.4 channels 25 and 26 are outside of the most frequently used
IEEE 802.11 access points. Table 2.3 shows different packet lengths of IEEE
802.11 and IEEE 802.15.4 packets. The packets sent by IEEE 802.11 transmit-
ters are considerably shorter than IEEE 802.15.4 packets.

Parameter 802.15.4 [µs] 802.11.b [µs] 802.11.g [µs]

Minimal length 352 202 194
Maximal length 4’256 1’906 542

Table 2.3: Packet length of IEEE 802.11 and IEEE 802.15.4 packets.

The authors of [53] analyzed the IEEE 802.11 interferences in low-power WSNs
using a ZigBee network stack. The ZigBee [103] network stack uses IEEE 802.15.4

25

2.2. EVALUATED SENSOR NODE PLATFORMS

on the physical and link layer. By using several different optimizations, they im-
proved the ZigBee network delivery rate by 70%. They experimentally found that
the location of the IEEE 802.11 transmitter has significant influence on the bit er-
ror pattern distribution in an IEEE 802.15.4 frame. Depending on the used IEEE
802.11 transmitter and the distance to an IEEE 802.15.4 transmitter, they split the
interference domain into symmetric and asymmetric regions. In asymmetric re-
gions, the IEEE 802.15.4 transmission power is too low to be detected by an IEEE
802.11 transmitter. The observed bit errors are often evenly distributed over the
entire IEEE 802.15.4 packet. In this case, the authors of [53] propose to use For-
ward Error Correction (FEC) to reduce the packet loss. FEC codes do not include
any retransmission, they just enhance the probability of a successful transmission.
A FEC code will fail in case of a missed frame start or if the received payload
contains too many bit errors. Section 2.5.4 introduces the used FEC codes in more
detail.

In symmetric regions, IEEE 802.15.4 transmissions can be detected by the
IEEE 802.11 transmitter. In such a case, an IEEE 802.11 transmitter backs off
and schedules a retransmission. The authors of [53] observed in symmetric regions
that bit errors mainly happen in the IEEE 802.15.4 synchronization header. There-
fore, numerous frames are not detected by the receiver. For symmetric regions, the
authors introduced so-called multi-headers. Figure 2.13 shows an IEEE 802.15.4
frame with using these multi-headers. The MPDU of the IEEE 802.15.4 contains a
second synchronization, PHY and MAC header. If the synchronization header has
been correctly received, the second header can be removed. If the first synchro-
nization header was corrupted, maybe the second one can be detected successfully.

FCSMHRPreamble SFD Frame MAC frame payloadMHRPreamble SFD Frame

1. Header

2. Header MAC frame payload

FCS

FCS

MAC frame payload

LengthSequenceLengthSequence

Figure 2.13: IEEE 802.15.4 Multi-Headers.

The CRC checksum in the FCS field is only valid is the first header was correctly
received. If the first header was corrupted but the second header could be received
successfully, then the CRC in FCS field is not valid for this frame. Therefore,
the AUTOACK function of the CC2420 cannot be used to autonomously send ac-
knowledgments if the second header was received successfully.

2.2 Evaluated Sensor Node Platforms

This section briefly introduces the different sensor node platforms equipped with
the radio modules that were mentioned in Section 2.1. The highest bit rate of the ra-
dio module depends on the used microcontroller. Table 2.4 shows a brief overview

26

2.2. EVALUATED SENSOR NODE PLATFORMS

about the five different evaluated sensor node platforms and corresponding radio
modules.

Node Radio Highest physical
bit rate (kbps)

Bit rate including
spreading (kbps)

ESB TR1001 38.4 19.2
MSB430 CC1020 38.4 19.2
BTnode CC1000 38.4 19.2
telosB CC2420 2000 250
MicaZ CC2420 2000 250

Table 2.4: Evaluated sensor node platforms and corresponding radio modules

The column highest physical bit rate shows the highest reasonable working trans-
mission speed on the physical layer. The column bit rate including spreading
shows the bit rate on the link layer before applying spectrum spreading. For the
bit/byte oriented radio modules, i.e. TR1001, CC1000 and CC1020, the spreading
has to be done by the microcontroller.

In addition to the radio module and microcontroller, the sensor node platforms
differ in the attached sensors and components for debugging. The following Sub-
sections 2.2.1 - 2.2.5 introduce the different sensor node platforms.

2.2.1 Embedded Sensor Node Developed at FU Berlin

Figure 2.14 shows an Embedded Sensor Board (ESB) [75], which has been de-
veloped and released by the Freie Universität Berlin and the spin-off company
Scatter-Web GmbH [76] in 2002.

Figure 2.14: Embedded Sensor Node Developed at FU Berlin.

27

2.2. EVALUATED SENSOR NODE PLATFORMS

The ESB consists of an MSP430 F149 low-power microcontroller [88] from Texas
Instruments with 2kB RAM and 60kB+256B flash ROM. A TR1001 radio transceiver
[71] is used as radio module. On the ESB platform, the highest functional trans-
mission speed of the TR1001 is 38.4 kbps. Most real world implementations for
the ESB node use a bit rate of 9.6 kbps.

A RS232 port and a JTAG port are available for connecting the microcontroller
to a development environment. Operating elements for diagnostics are a beeper,
two buttons and three LEDs. The ESB node offers the following onboard-sensors:

• IR movement PIR sensor with Fresnel lens

• IR transmitting diode

• IR receiving diode

• Microphone

• Movement detector CM 1800

• Temperature sensor

• Potentiometer

With the IR transmitting and receiving diodes, the ESB nodes provide an addi-
tional ability of communication. The microphone offers the possibility monitor to
environmental noise. The ESB nodes cannot only detect its own movement but can
also monitor movements in front of the device with the integrated IR sensor and
its Fresnel lens. This makes it possible to implement different movement detection
approaches including alarming.

2.2.2 Modular Sensor Board 430 Developed at FU Berlin

Figure 2.15 shows the Modular Sensor Board 430 (MSB430) [8]. It has been de-
veloped and released by the Freie Universität Berlin and the spin-off company
Scatter-Web GmbH [76] in 2005.

The MSB430 consists of a MSP430 F1612 low-power microcontroller [88]
from Texas Instruments with 5kB RAM and 55kB+256B flash ROM. A CC1020
radio transceiver [90] from Chipcon is used as radio module. On the MSB430 plat-
form, the highest functional transmission speed is 38.4 kbps. Most real world im-
plementations for the MSB430 node use a bit rate of 9.6 kbps. The only operating
element for feedback is a red LED. The MSB430 node comes with an integrated
battery case for 3xAA cells and offers the following onboard-sensors:

• SHT 11 temperature and humidity sensor

• MMA7260QT 3-axis-accelerometer

28

2.2. EVALUATED SENSOR NODE PLATFORMS

Figure 2.15: Modular Sensor Board 430.

2.2.3 BTnode Developed at ETH Zurich.

Figure 2.16 shows a BTnode [11]. BTnodes have been developed at the Eid-
genössische Technische Hochschule (ETH) Zürich by the Computer Engineering
and Networks Laboratory (TIK) and the research Group for distributed systems.
The BTnode rev3 is a dual radio device with a CC1000 low-power radio module

Figure 2.16: BTnode rev3.

29

2.2. EVALUATED SENSOR NODE PLATFORMS

and a Zeevo ZV4002 Bluetooth radio module. The Bluetooth system supports up
to four independent piconets and seven slaves. The BTnode can operate both radios
simultaneously or shut them down independently when not in use. The sensor node
platform comes with an integrated battery case for 2xAA cells and extension con-
nectors. Operating elements for diagnostics are four LEDs. The microcontroller is
an Atmel ATmega 128L with 64+180 Kbyte RAM, 128 Kbyte FLASH ROM and
4 Kbyte EEPROM.

A brand-new BTnode comes without an attached antenna for the CC1000 radio
module. Under this condition the communication range of a BTnode is below 1 m.
Therefore we added a λ/4 monopole antenna to all our BTnodes.

2.2.4 TelosB Mote Platform Developed by UC Berkeley

Figure 2.17 shows a telosB [10] node from Crossbow [17], designed at the Uni-
versity of California, Berkeley. It is identical in construction to the TmoteSky
node from Sentilla [78]. The telosB node consists of a MSP430 F1611 low-power
microcontroller [88] from Texas Instruments with 10kB RAM, 48kB+256B flash
ROM and 1024k serial storage, on-board humidity, temperature and light sensors.
A CC2420 radio transceiver [91] from Chipcon is used as radio module. Operating
elements for diagnostics are a button and three LEDs.

Figure 2.17: TelosB sensor node.

2.2.5 MicaZ Developed by UC Berkeley and Crossbow

Figure 2.18 shows a MicaZ [10] node from Crossbow [17]. The MicaZ node con-
sists of an Atmega 128L microcontroller [6] from Atmega with 4kB RAM and
128kB flash ROM. A CC2420 radio transceiver [91] from Chipcon is used as radio
module. Operating elements for diagnostics are three LEDs.

30

2.3. OPERATING SYSTEMS FOR SENSOR NODES

Figure 2.18: MicaZ sensor node.

2.3 Operating Systems for Sensor Nodes

An operating system for sensor nodes handles the resources of a microcontroller
and offers useful services to WSN applications. Handling the resources of a mi-
crocontroller includes scheduling and prioritizing of processes as well as memory,
interrupt and power management functions. Most operating systems for sensor
nodes consist of operating system kernel, which includes communication services
besides the normal microcontroller resource handling and user space services suit-
able for WSN applications. The remaining subsections introduce the two operating
systems for WSNs used in this thesis, namely Contiki [23] and ScatterWeb [76].

2.3.1 Contiki

Contiki [23] is a free and open source operating system targeting embedded sys-
tems. It has been developed by the Swedish Institute of Computer Science. Con-
tiki is a multitasking enabled operating system kernel and communication services.
Contiki is written in the standard C programming language. It supports several mi-
crocontroller architectures, including the MSP430 from Texas Instruments and the
Atmel ATmega. All sensor node platforms introduced in Section 2.2 are equipped
with one of these two microcontroller architectures. Additionally, Contiki sup-
ports energy preserving mechanisms, such as switching the microcontroller into
low-power mode during idle periods.

Figure 2.19 gives an overview about the Contiki network stack located in user
space and the communication services of the operating system kernel. The ap-
plication layer featuring the WSN application is located in user space, while the
underlying network layers providing µIP [21] and RIME [25], are part of the com-
munication services. The µIP network stack supports TCP/IP, UDP, ICMP and
SLIP. The RIME network stack interconnects the µIP with the link layer and pro-

31

2.3. OPERATING SYSTEMS FOR SENSOR NODES

PHY

RIME

Link
Hop to hop reliability

Radio duty cycling

uIP
Transport layer

Network layer

Application

(MAC) protocol

RDC protocol

Radio driver

chameleon

abc, broadcast, unicast

UDP

uIP

Application

RIME
packet buffer

μIP
packet buffer

Interface uip over mesh

TCP

Application

User space

Kernel - communication services

Energy
profiler

Figure 2.19: Contiki network stack.

vides numerous options to forward a packet to the next hop. The individual layers
and functions of the network stack are discussed in more detail in the following:

WSN Applications in Contiki

WSN applications are executed on top of the Contiki network stack in the appli-
cation layer. With Contiki the individual WSN applications are running in user
space, separated from the operating system kernel and communication services.
Contiki WSN applications are individually loadable and also removable during
runtime. The individual WSN applications are able to communicate with each
other by posting events through the operating system kernel.

µIP Network Stack in Contiki

To send messages to other nodes in an IP network, a session socket for TCP/IP
respectively a datagram socket for UDP/IP packets can be established by an ap-
plication. µIP handles all the required TCP/IP and UDP functionality and adds
the required protocol headers to the WSN application payload. Additionally, µIP
handles the forwarding of IP packets on intermediate nodes.

Interface Layer

The interface layer copies and converts the packets from the µIP packet buffer to
the RIME packet buffer and vice versa. If no IP support is required, then the in-

32

2.3. OPERATING SYSTEMS FOR SENSOR NODES

terface layer is used to directly connect the RIME network stack to the application
layer. Additionally, the interface layer queries the routing mechanism to get the
next address of the next hop.

Contiki RIME Network Stack

The RIME network stack provides the RIME packet buffer to queue multiple pack-
ets. Every stored packet consists of a buffered packet and meta-data, such as rout-
ing information, reliability requirements or sequence numbers. Modifications to
the frame headers are directly executed in the RIME packet buffer.

The RIME network stack provides several very thin layers to build a cus-
tomized communication stack connecting the overlaying network protocol with
the link layer. Every individual RIME layer is responsible to modify one part of
the meta-data of the handled packet in the RIME packet buffer. The RIME layers
do not directly modify the frame headers, this is done by the link layer protocols.
RIME follows an aspect-oriented implementation approach. Different thin layers
are solely responsible for single aspects. RIME provides the following thin layers
to modify the meta-data in the RIME packet buffer:

• Anonymous best effort single-hop broadcast (abc)

• Identified best effort single-hop broadcast (ibc)

• Stubborn identified best effort single-hop broadcast (sibc)

• Best-effort single-hop unicast (uc)

• Stubborn best effort single-hop unicast (suc)

• Reliable single-hop unicast (ruc)

• Unique anonymous best effort single-hop broadcast (uabc)

• Unique identified best effort single-hop broadcast (uibc)

• Best effort multi-hop unicast (mh)

• Best effort multi-hop flooding (nf)

• Reliable multi-hop flooding (trickle)

For example, with µIP the layers abc, ibc and uc are used. The uc layer copies the
address received from the routing mechanism to the RIME packet buffer. The ibc
layer copies the address of the sender and abc layer adds the sequence number to
the RIME packet buffer. Chameleon adds a two-byte header to the frame to define
the used arrangement of the individual RIME layers. The receiving node uses this
information to determine the sequence of the individual thin RIME layers required
for this packet.

33

2.3. OPERATING SYSTEMS FOR SENSOR NODES

Contiki Link Layer

The link layer of Contiki is split into two sub-layers. The upper one, called MAC
sub-layer, is responsible for the hop-to-hop reliability by using local retransmis-
sions. The lower one, the so-called Radio Duty Cycle (RDC) layer, handles the
sleep cycles of the radio module. Both sub-layers make use of the RIME packet
buffer to handle the payload and to add the required frame headers. Depending on
the addressing of the received packet, the payload is either dropped or forwarded
to the RIME network stack.

Radio Driver and Energy Profiler

The radio driver handles all switches of the radio module between sleep, listen
and transmission mode. To transmit a packet, the radio driver copies the frame
stored in the RIME packet buffer to the radio module and controls its transmission.
Received bytes respectively packets are directly written to the RIME buffer and
then delegated to the link layer.

The radio driver of Contiki supports a software based energy profiler [28] to
estimate the energy consumption of a single sensor node. The total energy con-
sumption of the radio module (Eradio) is estimated by the following equation:

Eradio = Vbat

(
(Isleep · tsleep) + (Itx · ttx) + (Ilisten · tlisten)

)

The power supply voltage (Vbat) as well as the current draw in sleep mode (Isleep),
during transmission (Itx) and listening (Ilisten) is considered to be static. The indi-
vidual current draw values corresponding of the evaluated radio module have to be
taken either from the radio module manual or determined with an ampere meter,
such as the RIGOL multimeter. The time periods tsleep, ttx, tlisten are determined
by the energy profiler located in the radio driver module. The radio driver mod-
ule handles the switches between the individual radio modes. The energy profiler
updates the length of the individual time periods, every time the radio module is
switched into a new state.

Contiki Summary

Contiki is one of the most widely used operating systems for WSNs. The net-
work stack of Contiki supports several communication standards such as TCP/IP,
UDP/IP and IEEE 802.15.4 to enhance network connectivity in heterogeneous
WSNs. The individual network layers enable a modular development of different
protocols supporting energy aware hop-to-top and end-to-end reliability mecha-
nisms. The integrated energy profiler enables the concurrent energy estimation of
every sensor node in a WSN.

34

2.4. EVALUATION TOOLS

2.3.2 ScatterWeb

ScatterWeb [76] is a free and open source operating system designed for sensor
node platforms developed by Scatter-Web GmbH [76]. ScatterWeb is written in the
standard C programming language and divided into two parts. The first part holds
the firmware featuring the operating system kernel and rather simple communica-
tion services. The second part holds the individual WSN applications, which can
neither be loaded nor stopped during runtime in ScatterWeb.

The operating system kernel is purely event driven and does not support pre-
emptive multitasking. ScatterWeb keeps the microcontroller most of the time in
a low-power mode to reduce the energy costs. The microcontroller periodically
wakes up from low-power mode by using a hardware interrupt. Then, the event
handler executes all required tasks. After all tasks have been completed, the mi-
crocontroller reenters the low-power mode again. Figure 2.20 depicts the energy
consumption of an MSB430 sensor node running ScatterWeb and Contiki. The
radio module and attached sensor devices are turned off during measurement. The
difference in energy consumption is caused by energy preserving mechanisms used
to put the microcontroller into low-power mode. The Figure shows that the power
cycling mechanism for the microcontroller used by Scatterweb requires around
twice the energy compared to the mechanism used by Contiki.

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30 35 40 45 50

El
ec

tri
c

cu
rre

nt
 [m

A]

Time [ms]

Power consumption of a MSB430 at 4.5V (radio off)

Contiki
Scatterweb

Figure 2.20: Energy consumption of a MSB430 node using Contiki and Scatterweb.

ScatterWeb does not support a layered network stack such as Contiki. The radio
driver, link and network layers do neither offer a well-defined interface to each
other nor to the WSN applications. The used communication protocols do not
comply with any common protocol standard.

2.4 Evaluation Tools

This section introduces the different evaluation tools that we used to analyze and
compare the performance of our contributed WSN communication stack to already
existing ones. Additionally, the evaluation tools are used during the development
phase to detect and analyze common problems and improve the recognized weak-
nesses. The used evaluation tools can be divided into three classes:

35

2.4. EVALUATION TOOLS

• Network simulators: WSNs may consist of hundreds or thousands individ-
ual nodes distributed over a large area. Building and maintaining such a large
WSN is costly in terms of time and money. Moreover, it is rather impracti-
cal to evaluate new mechanisms for WSN applications and communication
protocols in such large real world WSNs. For example, reliable distribution
of new communication protocols as well as collecting the required evalua-
tion data depict two changeling problems in a real world world WSN testbed.
Network simulators provide a solution for this problem by enabling inexpen-
sive and flexible setups of large WSNs. A simulated network can be reseted
at any time if the new software results in an erroneous WSN condition. Fur-
ther advantages of network simulators are, for example, exact repeatability
of challenging network conditions, visualization tools showing the behavior
of the individual sensor nodes, and tools collecting any kind of evaluation
data.

However, for meaningful results, the network characteristics have to be care-
fully modeled. For example, the evaluation of network protocols requires re-
alistic radio models to simulate the complex interrelation of individual wire-
less transmissions, interferences and wave propagation effects.

• Real world WSN testbeds: Different research facilities built real world
WSN testbeds to evaluate WSN applications and communication protocols
in a large real world WSN. Examples for real world WSN testbeds are the
different WISEBED WSN testbeds [79] funded by the European-Union,
MoteLab [99] the testbed of Harvard University [62], TWIST [34], the testbed
of Technical University of Berlin [93] and Kansei [30] at Ohio State Univer-
sity. Usually each sensor node in such a real world WSN testbed is connected
over a serial connection to a controlling unit. The controlling unit offers ser-
vices to upload new software images and to monitor the individual sensor
nodes to collect statistical data.

• Energy measurment equipment: Energy efficiency is an important field of
current WSN research. Digital multimeters [48] supporting digital ammetry
[48] are able to frequently measure and record current draw. The individual
recorded measurements build an energy profile as depicted in Figure 2.21.
The used energy (E) is determined by the integral of the recorded electrical
current (I(t)) multiplied with the voltage (U) over time (t):

E =
∫ t1
t0
Imeasured(t) · Ubattery · dt

The voltage Ubattery is assumed to be static according to the power supply
voltage of the corresponding sensor node.

36

2.4. EVALUATION TOOLS

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6 7 8 9 10

El
ec

tri
c

cu
rre

nt
 [m

A]

Time [ms]

software ACK
El

ec
tri

ca
l c

ur
re

nt
 [m

A]
energy profile

Figure 2.21: Energy profile of a digital amperemeter.

2.4.1 OMNeT++ Network Simulation Framework

As a respective of network simulators, the following subsection describes the Ob-
jective Modular Network Testbed (OMNeT++) Network Simulation Framework
[2], which we have used in our evaluations. OMNeT++ is a modular open-source
network simulator. The OMNeT++ core, the Graphical User Interface (GUI) and
analysis tools are completely written in C++ programming language. Individual
modules contain core parts written in C++, which are then interconnected by the
high-level language Network Description (NED). It is used to define the network
topology as well as to attach different network protocol modules to a network stack.
Strong points of OMNeT++ are its GUI support, the clean design and the straight-
forward simulation development process. Additionally, it benefits of several freely
available OMNeT++ extensions available such as the INET Framework [95] in-
cluding UDP, TCP and IP support or the Castalia project [7] supporting IEEE
802.15 protocols.

Radio Wave Propagation Models

We use a free space model for direct waves, parameterized for the physical char-
acteristics of the CC2420 radio module using an OQPSK modulation of a 2.4 GHz
carrier wave. We do not consider wave propagation effects such as reflections,
multi-path fading or diffraction [81]. In the free space model, the receiving power
(PRdb) in decibel is calculated by using the transmitting power (PTdb) in decibel
and the distance (dTR) between the sender and the receiver:

PRdb = PTdb + 20log10

(
λ

4·π·dTR

)
To calculate the probability of a bit error, one has to be calculated the Signal-to-
Noise Ratio (SNR). The signal strength corresponds to the calculated receiving
power (PRdb). The total noise is calculated by summing up the receiving power
of all other concurrently ongoing transmissions, the thermal noise and the receiver

37

2.4. EVALUATION TOOLS

noise. The resulting SNR determines the probability of a bit error. The error prob-
ability corresponding to the calculated SNR value is taken from Castalia [7] and
real world measurements [52].

Figure 2.22 shows a graphical illustration of the bit error probability, without
concurrently ongoing transmissions in the simulated area. The depicted values
correspond the characteristics of a CC2420 radio module equipped with an omni-
directional antenna.

150 300 450 600 750 900

150

300

450

1050 1200 1350 1500 1650

SNR always to low
bit error probability = 100%

0 dBm (1mW)

SNR okay

[m]

[m]

increasing
expectation
of bit errors- 94 dBm

radio sensitivity

Figure 2.22: Bit error probability with the CC2420 radio module in OMNeT++.

To consider external interfaces, we added a mechanism simulating external inter-
faces. We configured our mechanism to simulate a probability of 15% for concur-
rently occurring external interferences. Therefore, in 15% of the time a randomly
placed device is transmitting with 1 mW (0 dBm).

CC2420 Radio Module for OMNeT++

We implemented and configured our CC2420 module for OMNeT++ according to
specifications found in the manual of the CC2420 radio module [91] and Castalia
[7]. The radio module emulates the four communication pins SFD, FIFO, FIFOP
and CCA, the TX and RX buffer and the internal state machine of the CC2420 to
achieve a realistic behavior of the radio module.

Figure 2.23 shows the implemented internal state machine of the CC2420 ra-
dio module for our OMNeT++ module. A transition between the single states is
triggered either by an internal timer, an event such as the detection of a frame
start or by sending a command to the radio module. To start a transmission of
a packet that is stored in the TX buffer, either the command STXON or STX-
ONCCA has to be sent to the radio. Listening mode is represented by the state
RX SFD SEARCH. In this state, the radio searches for a frame start. Before the

38

2.4. EVALUATION TOOLS

radio module can go into listening mode, the radio has to be calibrated for 192µs
in state RX CALIBRATE. When detecting a frame start in RX SFD SEARCH,
then the state is changed to RX FRAME during receiving the frame. Without en-
abled AUTOACK, the state switches back to RX SFD SEARCH after receiving
the last byte of the frame. Otherwise, with enabled AUTOACK function, the state
is switched to TX ACK CALIBRATE in order to initiate the transmission of the
acknowledgment.

TX_CALIBRATE

TX_PREAMBLE

TX_FRAME

All RX states

RX_CALIBRATE

RX_SFD_SEARCH

RX_FRAME

TX_ACK_CALIBRATE

TX_ACK_PREAMBLE

TX_ACK

RX_WAIT

IDLEAll States
(expect Power Down)

Power Down

SXOSCOFF

SRFOFF STXON

SRXON
STXON

STXONCCA

SFD found

SACK
SACKPEND

Automatic
 acknowledge

Framereceived

Listen & Receive

Sleep Mode

Send
Acknowledgment

Send Data

Figure 2.23: Radio control state machine.

2.4.2 WISEBED WSN Testbed Controlled by TARWIS

To verify our developed protocols, we used a real world WSN testbed. We, em-
ployed the WISEBED WSN testbed [79], which is controlled by the Testbed Man-
agement Architecture for Wireless Sensor Networks (TARWIS) software [38]. The
target of the WISEBED WSN testbed is establishing and interconnecting several
real world WSN testbeds within a federation of testbeds. Interconnecting the in-
dividual WISEBED WSN testbeds located at different research facilities enhances
the scalability and enables establishing large WSN networks. For our evaluations,
we used the WISEBED WSN testbed, which is located in the building of the In-
stitute of Computer Science and Applied Mathematics at the University of Bern
(IAM). During our evaluations, the interconnection of individual WSNs on differ-

39

2.4. EVALUATION TOOLS

ent research facilities was not completely finished and, therefore, not available for
our tests. Additionally, the interconnection of individual WSNs is very challeng-
ing in terms of supporting adequate transmission delays and radio interferences
between the individual WISEBED WSN testbeds .

The WISEBED WSN testbed at the IAM is managed by the TARWIS software.
Two strong points of the web-based TARWIS user interface are:

• TARWIS experiment execution system: The TARWIS experiment execu-
tion system enables the configuration and execution of experiments with the
40 available telosB sensor nodes in the IAM WISEBED WSN testbed. To
configure an experiment, the duration, the required nodes and the software
images for the individual nodes can be defined in advance. Additionally, the
experiment configuration supports so-called commands. A command con-
sists in a string, a time specification in seconds and a node address. The
TARWIS experiment execution system sends the defined string at the spec-
ified time during the experiment execution over the serial connection to the
addressed sensor node. These commands can be used to send instructions to
a sensor node during the measurement. For example, instructions can trigger
a transmission or to print out statistical data over the serial line.

• TARWIS event recording system: TARWIS uses the Wireless Sensor Net-
work Markup Language (WiseML) [20] to store recorded data during the
experiment execution. Every string, which a sensor node writes to the serial
interface, including a timestamp, is written to a WiseML file.

2.4.3 RIGOL DM3052 Digital Multimeter

The digital multimeter DM3052 from RIGOL [72] enables an accurate recording
of the electrical current of a single sensor node with a resolution up to 50’000
samples per second. The RIGOL multimeter is connected over an USB interface
to a notebook running the measurement and control software. The measuring ac-
curacy of the RIGOL multimeter is ±2 µA. At the highest resolution of 50’000
samples per second, the measuring period of the RIGOL multimeter is limited to
42 seconds.

We use the laboratory power supply VOLTCRAFT VLP-1303 PRO [96] to
power the sensor node connected to the RIGOL multimeter. The VLP-1303 PRO is
a stabilized power supply, supporting a low residual ripple [37] to enable accurate
measurements. Figure 2.24 shows the measurement setup to record the energy
consumption of a sensor node with the RIGOL multimeter. We soldered copper
wires to the sensor node to achieve a stable electric circuit. The copper wires of
the sensor node are connected to the power supply, delivering electricity at voltage
of at 3.00 V, and the RIGOL multimeter.

40

2.5. RELIABILITY TECHNIQUES

- +

Multimeter
RIGOL DM3052

Power source
VLP-1303 PRO

telosB
(a) Schematic assembly. (b) Real-world assembly.

Figure 2.24: Measurement setup to record the energy consumption of a sensor node.

2.5 Reliability Techniques

This section presents different reliability techniques to recover data loss occurring
during data transmissions in WSNs. Subsection 2.5.1 introduces different reasons
for data loss in WSNs. Subsection 2.5.2 provides an overview and classification of
different reliability techniques to recover failed data transmission attempts. Sub-
section 2.5.3 and 2.5.4 describe two reliability techniques used in WSNs in more
details. Subsection 2.5.5 describes a possible combination of these two reliabil-
ity techniques. Subsection 2.5.6 defines two different metrics used to measure the
reliability performance. Finally, Subsection 2.5.7 summarizes this section.

2.5.1 Reasons for Erroneous Data Forwarding in WSNs

This subsection introduces different reasons for data loss in WSNs. Figure 2.25
shows a typical WSN scenario, where two nodes are frequently sending data pack-
ets on a network path over multiple hops towards a sink. The intermediate nodes
forward the received packets to the next node in the direction of the sink.

sink

sender

sender

network path

intermediate node
one hop

Figure 2.25: Forwarding packets in a WSN.

41

2.5. RELIABILITY TECHNIQUES

The authors of [65] identified different reasons for data loss in such a typical WSN
scenario. In the following list we divide the discovered reasons for data loss into
four groups:

1. Inter-flow and intra-flow interferences: These two types of interferences
are generated by transmissions of neighboring nodes, which are part of the
same WSN and use the same carrier wave frequency. Packets forwarded on
neighboring network paths cause inter-flow interferences, while intra-flow
interferences are caused by packets forwarded on the same network path. A
good example for intra-flow interferences are acknowledgement messages
sent by the sink back to the sender to acknowledge successful reception of
a data packet. The authors of [83] evaluated the impact of concurrent trans-
missions with sensor nodes equipped with CC1000 radio modules. They
reported that interferences caused by concurrent transmission show a signif-
icant impact on link quality and packet loss. They observed that if the SNR
exceeds a critical threshold, the packet reception rate is over 90%.

Moreover, inter-flow and intra-flow interferences are responsible for the hid-
den node problem [73]. Therefore, handling inter-flow and intra-flow inter-
ferences is an important task of WSN network stacks supporting multi hop
communication. Mottola et al. [63] analyzed the hidden node problem in
real road tunnels where some nodes are able to detect concurrent transmis-
sions of other nodes. They reported that the hidden nodes create significant
interferences and generated additional packet loss to other transmissions.

2. External-interferences: Any electrical device can emit electromagnetic ra-
diations at different frequencies. Especially, devices using wireless commu-
nication systems that operate on similar carrier wave frequencies may cause
significant interferences. Many works report that IEEE 802.11 networks can
cause significant interferences in WSNs using IEEE 802.15.4 compliant ra-
dio modules [69, 80, 100]. For example, the authors of [53, 84] observed
that many IEEE 802.11b nodes are not able to detect IEEE 802.15.4 trans-
missions. Srinivasan et al. [85] discovered that only IEEE 802.15.4 channel
26 is not affected by IEEE 802.11b transmissions.

Moreover, the frequency of the electromagnetic radiation has not to be in the
same range as the frequency of the carrier wave to cause interferences. Any
electrically conductive component on a sensor node can receive electromag-
netic radiation of specific frequencies which increases the noise in the radio
receiver module.

3. Radio wave propagation effects: The sender itself generates interferences
caused by radio wave propagation effects [81]. Figure 2.26 depicts different
radio wave propagation effects such as reflections, diffraction and multi-path
fading, which can cause bit errors in the received packet. Radio wave prop-
agation effects are difficult to influence by a link layer protocol. The most

42

2.5. RELIABILITY TECHNIQUES

sender receiver

reflection

diffraction

line of sight

multi-path
fading

Figure 2.26: Radio wave propagation effects.

promising option is to adapt the transmission power of the radio module. The
authors of [92] analyzed radio wave propagation effects in potato field. They
report that the radio wave propagation was better at high humidity. This is
maybe caused by changes in the reflection of the potato canopy.

4. Packet buffer overflow: The available packet buffer space is limited on
the individual nodes. During periods with high traffic load or congestion,
some of the forwarding nodes may receive more packets than they are able
to forward to the next hop. If the difference between incoming and outgoing
packets is too high, then the packet buffer overflows. In this case, the receiver
has to drop packets, even if there is bit error in the received packet.

The probability of bit errors in received packets depends on the SNR during their
reception. Moreover, the distribution of individual bit errors inside the received
packets can differ according to the source of interference. For example, interfer-
ences generated by IEEE 802.11g networks cause significantly more bit errors in
the first bytes of received IEEE 802.15.4 frames than in the rest of frame [53]. This
happens due to the following reason. A node communicating by IEEE 802.11g
requires a shorter time period to send a frame than a node that uses IEEE 802.15.4
If both nodes perform the channel check at the same time, then the transmissions
of both nodes start at the same time. As a result, the received IEEE 802.11g frame
and the link header of the received IEEE 802.15.4 frame header are corrupted.

The next subsection introduces different techniques for WSNs to recover failed
packet forwarding attempts.

2.5.2 Overview Reliability Techniques

This subsection introduces and classifies different reliability techniques for WSNs
to recover packet loss. The authors of [57] present a survey on existing reliability
protocols for WSNs. All these reliability techniques require additional energy for
recovery. This depicts a fundamental problem for energy preserving WSNs. On

43

2.5. RELIABILITY TECHNIQUES

one hand WSNs require a reliable communication to ensure the functionality of
the WSN applications. But on the other hand, WSNs require an energy efficient
communication to enhance the is lifetime. Therefore, there is a need for energy
preserving reliability techniques.

The reliability performance required by WSN applications can either be on the
level of event reliability or on the level of packet reliability. With event reli-
ability, the corresponding WSN application requires only enough information to
recognize an event. Packet reliability is required by WSN applications that require
all packets containing sensed data or event information. Moreover, packet reliabil-
ity is required by applications performing software or configuration updates on the
sensor nodes.

In general, protocols offering reliability functionality either use retransmis-
sion based or redundancy based packet recovery techniques. Additionally, some
hybrid protocols use a combination of both recovery techniques. Retransmission
based recovery mechanisms make use of Automatic Repeat Request (ARQ) to
detect and retransmit lost packets. Redundancy based recovery mechanisms apply
Forward Error Correction (FEC) codes to increase the probability of a success-
ful transmission. Hybrid protocols combine ARQ schemes with FEC codes to
reduce the required retransmission attempts to preserve energy.

Figure 2.27 shows that the individual recovery mechanisms can be applied ei-
ther on a hop-to-hop or an end-to-end level. Hop-to-hop reliability mechanisms
are implemented by link layer protocols and executed by each node on the multi-
hop network path between sender and sink. End-to-end reliability mechanisms
are implemented by transport layer protocols and, therefore, are only applied by
sender and sink. With end-to-end reliability, every lost packet has to be retransmit-
ted by the sender node and again forwarded by all intermediate nodes. With hop-
to-hop reliability, intermediate nodes can directly retransmit a detected lost packets
if packet forwarding has failed. Therefore, hop-to-hop reliability mechanisms gen-
erate a lower delay and require less energy than end-to-end reliability mechanisms
in general. Unfortunately, hop-to-hop reliability mechanisms are not able to guar-
antee full packet reliability between a sender and sink as shown in Figure in 2.27.
For example, hop-to-hop reliability mechanisms are not able to recover packet loss

sink
sender

end-to-end
hop-to-hop

Figure 2.27: Reliability on hop-to-hop and end-to-end level.

44

2.5. RELIABILITY TECHNIQUES

caused by a packet buffer overflow. Therefore, a WSN network stack requires an
end-to-end reliability protocol on the transport layer using a retransmission based
recovery mechanisms to offer full packet reliability. Additionally, a hop-to-hop re-
liability protocol on the link layer can be used to reduce the end-to-end packet loss
rate and, therefore, to preserve energy.
In this thesis, we apply retransmission based recovery techniques on the hop-to-hop
and end-to-end level to ensure packet reliability in our WSN network stack. Fur-
thermore, we evaluate the impact of redundancy based and hybrid packet recovery
mechanisms to energy efficiency and packet loss. To sum up this subsection, Fig-
ure 2.28 shows a rough classification of the reliability techniques used in this thesis
and the relation of the introduced terms and definitions.

Reliability Techniques

 Redundancy based

Hybird redundancy & retransmission based

Redundancy based Retransmission based Retransmission based
(ARQ)

(ARQ & FEC)

(FEC) (ARQ)

(Transport layer)
End-to-end

(Link layer)
Hop-to-hop

Figure 2.28: Reliability techniques implemented used in this thesis.

2.5.3 Automatic Repeat Request Mechanism

Automatic Repeat Request (ARQ) mechanisms are used in hop-to-hop and end-to-
end retransmission based recovery mechanisms. ARQ mechanisms in WSNs make
use of three different acknowledgement mechanisms to trigger the retransmission
of a lost packet:

1. Explicit acknowledgements: Figure 2.29 depicts an example of an explicit
acknowledgement for a forwarded data packet. With explicit acknowledge-
ments, every successfully received data packet is directly acknowledged by
the receiver with a short notification message. If a sender is not able to
recognize the expected implicit notification message, then the packet is re-
transmitted. This mechanism offers the highest reliability guarantee. It is
used by protocols providing packet reliability on hop-to-hop as well as on
end-to-end level.

45

2.5. RELIABILITY TECHNIQUES

Data packet

Explicit
acknowledgement

Figure 2.29: Explicit acknowledgement.

2. Negative acknowledgements: Negative acknowledgement mechanisms use
sequence numbers to detect packet loss. Figure 2.30 depicts an example for
a negative acknowledgement. A node detects the failed transmission of the
packet with sequence number n after having received the subsequent packet
with sequence number n+ 1. Now, this node sends a negative acknowledge-
ment to the sender to indicate the loss of packet n. During periods with low
packet loss, this mechanism requires a lower amount of individual notifica-
tion messages than explicit acknowledgements. Negative acknowledgements
are used by protocols providing packet reliability on a hop-to-hop as well as
an end-to-end level.

Data packets

Negative
acknowledgement

n+1

n

n

Figure 2.30: Negative acknowledgement.

3. Implicit acknowledgements: Figure 2.31 shows how implicit acknowl-
edgements are realized. After transmitting the data packet, the sender over-
hears the channel to detect the forwarding of the same packet by the next
node. This mechanism does not require any additional notification messages.

Data packet

Implicit
acknowledgement

Data packet

Figure 2.31: Implicit acknowledgement.

46

2.5. RELIABILITY TECHNIQUES

Implicit acknowledgements show some drawbacks in WSNs. For example,
overhearing of the forwarded packet requires additional energy and over-
hearing does not work on last hop. This mechanism is only used by protocols
providing hop-to-hop reliability.

The next subsection introduces redundancy based packet recovery mechanisms us-
ing FEC. In contrast to ARQ, FEC mechanisms do not retransmit lost packets. FEC
mechanisms try to recover bit errors in packets which are successfully detected by
the physical layer, but incorrectly received, using redundant data.

2.5.4 Forward Error Correction Codes

In this subsection we introduce redundancy based packet recovery mechanisms
based on Forward Error Correction (FEC). FEC codes use Error Correction Codes
(ECCs) [61, 68] to add redundant information to a packet. The redundant informa-
tion enables a receiver to detect and correct bit errors in the received packet. The
amount of bit errors that can be corrected depends on the ECC used by the FEC
code. FEC codes show the following advantages and disadvantages concerning
reliability and energy consumption:

• Advantages:

– Some of the corruptly received packets can be restored.
– The amount of required transmissions attempts can be reduced.
– Lesser transmission attempts reduce intra-flow and inter-flow interfer-

ences.

• Disadvantages:

– Additional time and energy for calculations of FEC codes are required.
– The redundant data part has to be transmitted additionally.
– Packets cannot be recovered if there are bit errors in the preamble or

the frame start delimiter as well as if received packet has too many bit
errors.

Figure 2.32 shows data, which has been encoded by an ECC code. The data word
represents the original data with a length of m individual data symbols . The
parity code is the redundant data with a length of r data symbols added by the
ECC. Both parts together build the code word with length of n = m + r data
symbols, which is transmitted by the sender. To announce for example a FEC code
using a Hamming ECC, we use the notation Hamming(n,m).
The remainder of this subsection is structured as follows. In a first part the two
ECCs used for our FEC code evaluation are introduced, namely the linear Ham-
ming ECC [33] and the cyclic Reed-Solomon ECC [70]. Afterwards, we introduce
the two ECCs Hamming(12,8) and Reed-Solomon(255,225) as instances of Ham-
ming Reed-Solomon with specific code word lengths and discuss them in detail.
Finally, the differentiation between FEC codes and process gain is discussed.

47

2.5. RELIABILITY TECHNIQUES

data word parity code

n = m + r

code word

rm

Figure 2.32: Data encoded with an ECC.

Hamming Code

Hamming codes [33] are linear ECCs. The data symbols used in a Hamming code
are bits, which have a cardinality (S) of 1. The cardinality of a set of symbols is
given by 2|S|:

Bit: 2|S| = 2|1| = 2 symbols.
Byte: 2|S| = 2|8| = 256 symbols.

With Hamming codes, the individual parity bits of the parity code are placed inside
a code word at predefined positions. The individual bit positions are the elements
2x. Therefore, every parity bit has exactly one 1 at its positions represented as
binary number. Table 2.5 shows an example of Hamming(12,8) for the data word
00101011.

Position Type Example
Decimal 2x Binary Code word

1 20 0 0 0 1 Parity bit 0
2 21 0 0 1 0 Parity bit 0
3 0 0 1 1 Data bit 0
4 22 0 1 0 0 Parity bit 0
5 0 1 0 1 Data bit 0
6 0 1 1 0 Data bit 1
7 0 1 1 1 Data bit 0
8 24 1 0 0 0 Parity bit 1
9 1 0 0 1 Data bit 1
10 1 0 1 0 Data bit 0
11 1 0 1 1 Data bit 1
12 1 1 0 0 Data bit 1

Table 2.5: Hamming(12,8) code word

48

2.5. RELIABILITY TECHNIQUES

To every parity bit, a set of individual code words bit are associated. The sum
modulo 2 of the individual associated bits is the value of the parity bit. The indi-
vidual associations are based on the parity bit and code word bit positions. To the
parity bit at position 2x, all code word bits with position y are associated where
2x · y = 2x. For example code word bit at position y = 9 = 10012 is associated to
parity bit 24 = 10002 (P1000) due to 10002 · 10012 = 10002.
P1000 = D1001 +D1010 +D1011 +D1100 = 1 + 0 + 1 + 1 = 1
P0100 = D0101 +D0110 +D0111 +D1100 = 0 + 1 + 0 + 1 = 0
P0010 = D0011 +D0110 +D0111 +D1010 +D1011 = 0 + 1 + 0 + 0 + 1 = 0
P0001 = D0011 +D0111 +D0111 +D1001 +D1011 = 0 + 0 + 0 + 1 + 1 = 0

The final code word to be transmitted is 0000’0101’1011. The receiver is able to
decode the code word and check if there is a bit error by summing up all bits that
have the value ”1” at the corresponding position in the binary number:
S1000 = 1 + 1 + 0 + 1 + 1 = 0
S0100 = 0 + 0 + 1 + 0 + 1 = 0
S0010 = 0 + 0 + 1 + 0 + 0 + 1 = 0
S0001 = 0 + 0 + 0 + 0 + 1 + 1 = 0

The decoded number is 0000. This number indicates that there is no bit error in the
code word. If there is a single bit error, for example at the third bit in the received
code word (10’0101’1011), then the decoding delivers a number different from
0000.
S1000 = 1 + 1 + 0 + 1 + 1 = 0
S0100 = 0 + 0 + 1 + 0 + 1 = 0
S0010 = 0 + 1 + 1 + 0 + 0 + 1 = 1
S0001 = 0 + 1 + 0 + 0 + 1 + 1 = 1

The result 0011 shows that the bit at position 0011 = 3 has flipped its value. Ham-
ming(12,8) is able to repair one single bit error in a data word with a length of one
byte.

Reed-Solomon Code

Reed-Solomon codes [70] are widely used in practice, e.g. in audio-CDs, mobile
communication, digital video and audio broadcasting systems. A Reed-Solomon
code is a subgroup of Bose-Chaudhuri-Hocquenghem (BCH) [68] code. A BCH
code is a polynomial code over the Galois field GF (q) [68] with a particularly
selected generator polynom. To encode the data word, we use the generator poly-
nomial (g(x)):

g(x) = (x− α)(x− α2) · · · (x− αt) = g0 + g1x+ · · · + gt−1x
t−1 + xt

The coefficients g0, g1, . . . , gt−1 are determined by the length of the data word
and the length of the code word (n). The length of a Reed-Solomon code word is
determined by the following equation:

49

2.5. RELIABILITY TECHNIQUES

n = 2c − 1 = q − 1

Thus the code word length of Reed-Solomon codes is one symbol smaller than the
cardinality (c) of the symbols. For the Reed-Solomon code we use byte symbols
with a cardinality of 8. Therefore, the code word length for Reed-Solomon codes
words with byte symbols is:

n = 28 − 1 = q − 1 = 256 − 1 = 255

To recover t symbols with a Reed-Solomon code, a parity code with length 2t
symbols is required. We select a parity code length of 30 bytes to recover up to
15 bytes bit errors in a received code word. The according notation for this code
used is Reed-Solomon(255, 225). Usually, data packets in WSN networks are
significantly shorter than 225 bytes. Therefore, the remaining symbols in the data
word are filled with 0 to calculate the parity code. The added 0 in the data word
have not to be transmitted.

FEC Encoded Data Packets

Figure 2.33 shows two packets with 66 byte data payload, once encoded with
Hamming(12,8) [33] and once with Reed-Solomon(255, 225) [70]. For Ham-
ming(12,8), the 66 byte data payload has to be split into 66 individual data words
of 8 bits resulting in 66 code words of 12 bits with a total length of 99 bytes. With
Reed-Solomon(255, 225), the 66 byte data payload fits into one single code word.
The resulting code word length is 96 bytes.

Hamming (12,8)

Reed-Solomon (255,225)

0 20 40 60 80 100

data (66 byte)
redundant/parity information

Figure 2.33: Two different FEC codes.

Forward Error Correction Versus Process Gain

Subsection 2.1.3 introduced the process gain provided by the spread spectrum tech-
nique DSSS. Both mechanisms, DSSS and FEC, add redundant information to the
data stream to enable the receiver recovering bit errors. Nevertheless, both mecha-
nisms differ in some specific characteristics:

50

2.5. RELIABILITY TECHNIQUES

• Position in the network stack layer: In general, FEC codes are applied to
the link layer, while spread spectrum techniques are executed by the physical
layer. Spread spectrum techniques add redundant information to all transmit-
ted data symbols including the physical preamble and the frame start delim-
iter, while FEC codes are only applied to the data payload of the physical
layer. Therefore, only spread spectrum techniques enable the detection of a
frame with bit errors in the physical frame header. With FEC codes, packets
having bit errors in the physical preamble or the frame start delimiter are not
detect and, therefore, lost.

• Execution time: In general, FEC codes are implemented in software and
handled by the microcontroller. Depending on the used FEC code and sen-
sor node platform, the encoding and decoding operations require more time
than the transmission of the frame. Spread spectrum techniques are directly
handled by the radio module hardware, without generating any additional
time delay.

The required processing time is less important for FEC code evaluations if
no energy preserving radio sleep cycles are used [41]. For energy preserving
link layer protocols using radio sleep cycles, the execution time for FEC
encoding and decoding has a major impact on their energy consumption, i.e.
negatively affect their energy efficiency. Section 4.1.5 explains the individual
problems in more detail. In the near future, maybe software defined radio
modules with Field Programmable Gate Array (FPGA) [47] placed between
the radio module and the microcontroller can reduce the required execution
time and, therefore, improve the energy efficiency of FEC codes.

• Application: FEC codes have to be implemented within a WSN network
stack protocol. Moreover, FEC codes require considerable programming
skills to realize an efficient implementation. Spread spectrum techniques
do neither require any programming skills nor have they to be added to a
network stack protocol. They are implemented directly by the radio module
hardware that handles the carrier wave modulation.

A detailed performance analysis of both mechanisms is presented in Section 5.4.

2.5.5 ARQ combined with FEC Mechanisms

This subsection briefly introduces a hybrid packet recovery mechanism combining
ARQ with FEC mechanisms. ARQ mechanisms are able to detected and retransmit
any failed packet transmission attempt, while FEC mechanisms are able to recover
bit errors in received packets. If, for example, a received packet contains a single
bit error, then the entire packet has to be retransmitted with ARQ. With FEC, a
packet with a single bit error can be recovered without any retransmission.

The expectation of a hybrid reliability protocol using ARQ with FEC is that
FEC reduces the required numbers of retransmission attempts, while ARQ still

51

2.5. RELIABILITY TECHNIQUES

guarantees full packet reliability. The saved retransmission attempts may preserve
more energy than the additional overhead of the FEC itself requires. Moreover,
the reduced retransmission attempts also reduce the resulting internal interfaces,
which can reduce the bit error rate in other transmissions.

The next subsection introduces different reliability metrics used to compare the
reliability performance of different protocols.

2.5.6 Reliability Metrics

To evaluate and compare the reliability performance of different protocols, we em-
ploy the following two reliability metrics:

• Expected Transmission Count (ETX): The ETX metric measures the qual-
ity of a direct link between two nodes. The ETX value is a positive integer
with a minimal value of 1. The number represents the estimated number of
transmission attempts to successfully forward a packet to the next hop. This
metric is used in many wireless mesh networking algorithms, i.e. by the
routing protocols shown in [19].

• End-to-end packet loss rate: The end-to-end packet loss rate specifies how
many packets that a sender has generated are not received by the sink. If the
end-to-end reliability mechanism is able to recover all packets, the end-to-
end packet loss rate is 0%.

Moreover, we measure how many end-to-end retransmissions were executed by the
end-to-end reliability protocol to determine how many packets are dropped by our
hop-to-hop reliability protocol.

2.5.7 Summary Reliability Techniques

In this section we introduced and categorized different reliability techniques. ARQ
schemes are retransmission based recovery mechanisms, while FEC codes are re-
dundancy based recovery mechanisms. ARQ schemes employ different acknowl-
edgment techniques to detect and retransmit failed packet transmission attempts.
Redundancy based FEC codes increase the probability of a successful transmis-
sion, but they do not retransmit a lost packet. Combinations of FEC and ARQ may
reduce the required transmission attempts to support full reliability.

Moreover, we showed that signal spreading techniques able recover bit errors
on the physical layer. In this thesis, we evaluate ARQ with implicit acknowledg-
ments and FEC codes in hop-to-hop reliability protocols, implicit and negative
acknowledgments in end-to-end reliability protocols and the signal spreading tech-
niques DSSS.

52

2.6. WSN NETWORK STACK PROTOCOLS AND MECHANISMS

2.6 WSN Network Stack Protocols and Mechanisms

This section introduces different communication protocols for WSN network stacks.
Moreover, we introduce common mechanisms used by WSN communication pro-
tocols to fulfill tasks, such as energy preserving, packet loss recovery, traffic flow
handling. All protocols in a WSN network stack share the fact that they are de-
signed to operate with the limited processing power and memory constraints of
sensor nodes. Subsection 2.6.1 introduces different link layer protocols for WSNs.
These protocols control the radio sleep cycles to preserve energy and enable reli-
able hop-to-hop data transmissions. Subsection 2.6.2 describes network and trans-
port protocols for WSNs. Common tasks for these protocols are addressing and
routing of packets in multi-hop WSNs as well as ensuring the end-to-end reliabil-
ity of the transmission. Subsection 2.6.3 presents data aggregation mechanisms for
WSNs. These mechanisms are used by different layers to reduce the total amount
packets that have to be forwarded in a WSN. Finally, Subsection 2.6.4 discusses
back pressure mechanisms for WSNs used to control the traffic flow.

2.6.1 Link Layer Protocol

This subsection introduces different link layer protocols for WSNs. The two major
tasks of WSN link layer protocols are preserving energy and ensuring hop-to-hop
reliability. Therefore, the link layer is usually divided into two sub-layers to sepa-
rate these mechanisms and reduce the complexity. The lower layer handles the ra-
dio sleep cycles to preserve energy. The upper layer ensures hop-to-hop reliability.
Moreover, WSN link layer protocols have to handle interferences and congestion
occurring during periods with high traffic.

The remainder of this subsection introduces a classification of energy preserv-
ing link layer protocols for WSNs. Furthermore, the WSN link layer protocols
shown in Table 2.6 are described in more detail. All these protocols are imple-
mented in real world WSN network stacks.

Protocol Main function Available for Supported sensor nodes
XMAC Energy saving Contiki MicaZ, telosB
ContikiMac Energy saving Contiki MicaZ, telosB
MaxMAC Energy saving Scatterweb MSB430
NullRDC (RDC reference) Contiki ESB, BTnode, MSB430,

MicaZ, telosB
Contiki
CSMA

Hop-to-hop
reliability

Contiki ESB, BTnode, MSB430,
MicaZ, telosB

Table 2.6: WSN link layer protocol overview

53

2.6. WSN NETWORK STACK PROTOCOLS AND MECHANISMS

Energy Preserving WSN Link Layer Protocols

WSN link layer protocols preserve energy by duty cycling the radio module. A
duty cycling mechanism periodically turns off the radio module to reduce energy
consumption of the radio module. Depending on the radio module, the energy
consumption during sleeping mode is 103 − 106 times lower than during listening
mode. Between the individual sleeping periods, the radio module wakes up to
listen to the channel for detection and reception of packets. Figure 2.34 shows
a schematical example of a protocol duty cycling the radio module to define the
following terms:

• Wake-up period: During the wake-up period, the radio module listens to the
channel for incoming packets. The duration of the wake-up period depends
on the result of the channel check. If no transmission can be detected, then
the radio module goes back to sleep.

• Sleeping period: Between the individual wake-up periods, the radio module
is turned off to preserve energy within the sleeping period. The longer the
applied sleeping period, the less energy is required during time periods with
low traffic load.

• Duty cycle period: The duty cycle period is the time period required for a
wake-up period and the subsequent sleeping period.

• Duty cycle: The term duty cycle is used as the ratio of the wake-up period
and the duty cycle period.

wake-up
perdiod

sleeping
perdiod

duty cycle
period

wake-up
perdiod

listening

sleeping

time

Figure 2.34: Example of a protocol duty cycling the radio module.

A major challenge for radio duty cycling protocols is to determine the point in time
to start the next wake-up period to receive a new packet. In the best case the radio
module wakes up as soon as another node tries to send a packet to it.

Figure 2.35 shows an overview of existing radio duty cycling mechanisms han-
dling the timing problem of the wake-up period in different ways. Radio duty
cycling mechanisms can be divided into synchronous and asynchronous radio
duty cycle protocols. Synchronous radio duty cycle protocols synchronize the

54

2.6. WSN NETWORK STACK PROTOCOLS AND MECHANISMS

Radio duty cycling mechanisms

Synchronous wake-up Asynchronous wake-up

Time division
multiple access

Contention
based

Static
sleep cycle lengths

Adaptive
sleep cycle lengths

Figure 2.35: Classification of energy preserving link layer protocols.

wake-up periods among neighboring nodes. With these protocols all neighbor-
ing nodes are active during the same time period. Synchronous radio duty cycle
protocols can be subdivided into contention based and time division multiple ac-
cess (TDMA) based protocols. Contention based protocols, such as Sensor-MAC
(S-MAC) [101], use carrier sense multiple access (CSMA) mechanisms during the
synchronized wake-up period to enable the forwarding of packets between neigh-
bor nodes. With TDMA based protocols such as the Lightweight Medium Access
(LMAC) protocol [94], the individual nodes can only transmit packets during their
exclusively allocated wake-up periods. In contrast to synchronous, asynchronous
radio duty cycle protocols do not synchronize the wake-up periods among neigh-
boring nodes. Every sensor node can perform its wake-up period independently
from the schedule of the neighbor nodes. Asynchronous radio duty cycle protocols
can be subdivided into protocols with static and adaptive sleep cycle lengths. With
adaptive sleep cycle lengths, the duration of the sleeping period can be adapted, for
example, to the current traffic load. A sender using an asynchronous radio duty cy-
cle protocol requires a mechanism to recognize the wake-up periods of its receiver
to forward a packet. The following list introduces two common mechanisms used
by asynchronous radio duty cycle protocols to detect the wake-up periods:

• Low Power Probing (LPP): This mechanism employs the receiver nodes to
announce the wake-up periods to a sender (see Figure 2.36). Every sensor
node sends a short Hello message called probe at the beginning of a wake-
up period. A sender that has a packet to forward scans the radio channel for
such a probe from the desired receiver. After having received the probe, the
sender immediately forwards the data packet to the receiver. An example
for a LPP protocol is Koala [64]. This protocol is designed for long term
environmental monitoring with low traffic load.

55

2.6. WSN NETWORK STACK PROTOCOLS AND MECHANISMS

listen data
packet

listen

probe

sender

receiverLP
P

Figure 2.36: Low Power Probing (LPP) mechanism.

• Low Power Listening (LPL): This mechanism employs the sender nodes to
announce the forwarding of a packet to the receiver node (see Figure 2.37).
Therefore, a sender transmits a long physical preamble. If a neighbor node
detects such a preamble during the wake-up period, then it waits until the
data part is transmitted. Usually, the preamble includes the target address of
the data part. This enables non-involved neighbor nodes to quickly return
back to sleep. Wireless Sensor MAC (WiseMAC) [29] uses LPL with a
long preamble including the receiver address of the data part. WiseMAC is
designed to send data from a management node to the sensor nodes.

data
packet

listen

sender

receiver

LP
L long preamble

Figure 2.37: Low Power Listening (LPL) mechanism.

The authors of A Real-Time and Energy Efficient MAC (AREA-MAC) [50, 51]
propose an asynchronous and adaptive LPL protocol using several short preambles
including the destination address instead of one single long preamble. Replacing
the long physical preamble with short preamble packets, so called beacon strobes,
additionally enables the support of packet oriented radio modules. Figure 2.38
shows an LPL approach, with short preamble packets modified for packet oriented
radio modules. Single packets, so called beacon strobes, replace the long physical
preamble. A receiver that gets a beacon strobe addressed to itself sends back an

LP
L

ACK

data
packet

listen

Sender

Receiver

beacon beaconbeaconbeacon

listen

Figure 2.38: LPL mechanism for packet oriented radios.

56

2.6. WSN NETWORK STACK PROTOCOLS AND MECHANISMS

acknowledgment to announce the wake-up period to the sender node. Then, the
sender transmits a data packet to the receiver.

XMAC

XMAC [13] is an LPL based link layer protocol using beacon strobes instead of a
long preamble. Therefore, XMAC is capable of supporting packet-oriented radio
modules such as the CC2420 radio module. XMAC adapts the duty cycle period
according to current traffic load. Current traffic load is determined by counting
the wake-up periods in which a packet has been received. If more than a cer-
tain percentage of wake-up periods having received packets, then the duty cycle
period is decreased to offer more bandwidth. If the percentage of wake-up peri-
ods having received packets is too low, then the duty cycle period is increased to
save energy. The used percentages of wake-up periods triggering a change in the
duty cycle period is not defined by the authors of XMAC. Such traffic monitoring
mechanisms work quite well in simple network topologies with low internal inter-
ferences. Network topologies including multiple connections and simultaneously
forwarded packets cannot be handled efficiently by this simplistic mechanism. Re-
sulting internal interferences may trigger congestion. Congestion results in lower
generated traffic. This causes a lower number of counted packets and, therefore,
traffic monitoring decreases the duty cycle. Lower duty cycles in case of con-
gestion and high traffic load further increases packet loss due to buffer overflow.
Congestion rather requires high duty cycle to increase network bandwidth for high
traffic load. XMAC has been implemented on real sensor nodes using the Contiki
operating system [87]. The Contiki implementation of XMAC does not support
adaptive duty cycles due to the simplistic traffic monitoring mechanism, which is
not able to handle internal interferences and congestion in real world WSN.

Figure 2.39 explains how XMAC forwards a pending frame. The numbering
of the following list refers to the numbers depicted in Figure 2.39:

sleeprx

 data packetsender

receiver

sleep

sleepneigbour sleep

beacon strobes

early ACK

listen for early ACK

sleep

sleep

2

3 4 51
rx

rx

Figure 2.39: X-MAC protocol design.

57

2.6. WSN NETWORK STACK PROTOCOLS AND MECHANISMS

1. The sender turns on the radio to forward a pending packet. After having ini-
tially checked the channel, the sender starts repeatedly transmitting beacon
strobes including the address of the receiver node.

2. A neighbor node wakes up to check the channel and receives the next trans-
mitted beacon strobe. Since the packet has not been addressed to the node,
the radio module is still turned off.

3. The addressed receiver node wakes up and receives a beacon strobe.

4. The receiver instantly returns an early acknowledgment to announce wake-
up period to the sender.

5. The sender receives the early acknowledgment and starts transmitting the
data packet.

ContikiMac

ContikiMac [24, 26] is an improvement of the Contiki XMAC implementation.
ContikiMac is an LPL based link layer protocol using beacon strobes and applying
static duty cycle periods.

Figure 2.40 shows the protocol design of ContikiMac. The numbering of the
following list refers to the numbers depicted in Figure 2.40:

 data packet

listen rx

 data packet data packetsender

receiver

sleep

Data ACK

listen for
data ACK

sleepneigbour rx sleep

1 5 6
sleep sleep
2 3

4

listen

Figure 2.40: ContikiMac protocol design.

1. A sender with a pending packet repeatedly transmits IEEE 802.15.4 conform
beacon strobes including the data payload.

2. A neighbor node wakes up and detects an ongoing transmission.

3. Since the target address of the next beacon strobe does not belong to this
neighbor node, no acknowledgment has to be sent. The radio module is
turned off until the next wake-up period.

58

2.6. WSN NETWORK STACK PROTOCOLS AND MECHANISMS

4. The channel check of a receiver node detects an ongoing transmission. There-
fore, the radio module remains in listening mode to receive the next beacon
strobe.

5. The radio module detects and receives the next beacon strobe.

6. The beacon strobe has been transmitted completely and is acknowledged by
the receiver node. After having processed the beacon frame, the receiver
node turns off the radio module. The transmitter goes back to sleep after the
data acknowledgment has been received.

In contrast to XMAC, ContikiMac is able to make use of the energy efficient link
layer functions provided by the CC2420 radio module, such as handling acknowl-
edgments or calculating checksums directly by the radio module. Moreover, Con-
tikiMac introduces the so-called transmission phase-lock mechanism to reduce the
total amount of beacon strobes required to forward a packet. This mechanism tries
to learn the wake-up period phases of the receiver nodes. Once the sender learned
these wake-up periods, the beacon strobe transmissions are delayed until the re-
ceiver node switches to the wake-up period. Evaluation in [26] showed that the
wake-up period of ContikiMAC requires 11 times less energy than the wake-up
period of XMAC.

ContikiMac does not support adaptive duty cycles, i.e. does not adapt the duty
cycle duration to the current traffic load. The duration of the static duty cycle
periods has to be defined during the network setup. By default ContikiMac applies
a duty cycle period of 125ms.

MaxMAC

MaxMAC [39, 66] is an LPL based link layer protocol with adaptive duty cycles
using long preambles. Figure 2.41 shows protocol design of MaxMAC. The num-
bering of the following list refers to the numbers depicted in this figure:

listen rx

preamble including address payloadsender

recevier

sleep

Data ACK

listen for
data ACK

sleep rxneigbour sleep

2 3 54
sleepsleep

1

Figure 2.41: MaxMAC.

59

2.6. WSN NETWORK STACK PROTOCOLS AND MECHANISMS

1. A sender with a pending packet transmits a long preamble including the
address of the receiver. The preamble is transmitted for the length of one
duty cycle.

2. A neighbor node wakes up and receives the preamble including the receiver
address. Since the target address belongs to another node, the radio is turned
off.

3. A receiver node wakes up and receives the preamble including the receiver
address.

4. After having the length of one duty cycle, the sender assumes that the re-
ceiver is listening to the channel. Therefore, the frame start and payload can
now be transmitted.

5. After having received the payload, a data acknowledgment is sent to the
sender. Sender and receiver turn off their radio modules.

MaxMAC uses adaptive duty cycles to adapt the duty cycle periods to the current
traffic load. Moreover, MaxMAC tries to learn the wake-up periods of the receiver
nodes to reduce the length of the preamble. Once a sender learned these wake-up
cycles, it delays the transmission of the preamble until the expected wake-up of
that receiver node. This mechanism reduces the energy required by the sender to
forward a packet.

MaxMAC determines the current traffic load, like XMAC, by counting the
wake-up periods in which a packet has been received. As described before, this
mechanism works quite well in simple network topologies with low internal in-
terferences, but network topologies including multiple connections and simultane-
ously forwarded packets cannot be handled by MaxMAC.

MaxMAC does not work with packet oriented radio modules. The long pream-
bles used by the LPL based MaxMAC requires a bit/byte-oriented radio module.
Therefore, MaxMAC has been implemented in Scatterweb for MSB430 sensor
nodes equipped with a CC1020 radio module.

NullRDC

The Contiki NullRDC protocol does not apply any sleep periods to the radio mod-
ule. Therefore, NullRDC does not preserve energy. NullRDC is used as reference
protocol for other RDC protocols.

Figure 2.42 shows the protocol design of NullRDC. The numbering of the fol-
lowing list refers to the numbers depicted in Figure 2.42:

1. All nodes are in listening mode.

2. A sender transmits a pending packet to the receiver. The receiver as well as
all neighbor nodes receive this packet.

60

2.6. WSN NETWORK STACK PROTOCOLS AND MECHANISMS

 data packetsender

receiver
data ACK

neigbour

2 3
listen

listen

listen rx

rxrx

1

Figure 2.42: NullRDC.

3. The designated receiver sends back an acknowledgment to the sender. All
other neighbor nodes drop the packet.

Contiki CSMA

The Contiki CSMA protocol is currently the only hop-to-hop reliability protocol
provided by Contiki. It is located on the link layer in the MAC sub-layer, which
is on top of the RDC sub-layer. If the RDC protocol, e.g., ContikiMAC, detects a
packet loss, then the Contiki CSMA protocol may retransmit the packet at a later
point in time.

Figure 2.43 shows the Contiki CSMA protocol within the Contiki network
stack. The numbering of the following list refers to the numbers depicted in Figure
2.43.

out
RDC

CSMA

RIME
in

in

out

1

2

3

4ACK
handler(e.g. XMAC/ContikMAC)

packet
buffer

packet
handler

Figure 2.43: Contiki hop-to-hop reliability protocol CSMA.

1. Packets received by the RDC protocol are forwarded to the upper layer (e.g.,

61

2.6. WSN NETWORK STACK PROTOCOLS AND MECHANISMS

RIME) without any interaction of the CSMA protocol.

2. Packets received from the upper layer are cached in the packet buffer. The
packet handler controls the queuing of the packets in the packet buffer.

3. The packet handler forwards the next packet of the packet buffer queue to
the RDC protocol.

4. After the RDC protocol has finished the transmission attempt of the packet, it
sends a transmission report to the CSMA packet handler. This transmission
report informs the packet handler if the transmission attempt was successful
or if it failed. If the transmission was successful, then the packet is removed
from the packet buffer. Otherwise, the packet is retransmitted with a certain
delay. The length of the retransmission delay depends on the number of
retransmission attempts.

2.6.2 Network and Transport Protocols

This subsection introduces existing network and transport protocols for WSNs.
The network layer enables forwarding of data packets from a sender in one net-
work to a receiver in another network. The transport layer provides end-to-end
connections including reliability and flow control mechanisms. The remaining of
this subsection introduces the TCP/IP protocol suite and TCP improvements for
WSNs. Moreover, we introduce the Reliable Multi-Segment Transport (RMST)
protocol supporting end-to-end reliability functionality based on negative acknowl-
edgments.

TCP/IP

TCP/IP is the de facto standard protocol suite for wired communication. By run-
ning TCP/IP in the WSN, it is possible to directly connect the WSN to a wired
network infrastructure, without proxies or middle-boxes [27]. While UDP can be
used to transmit sensor data to a sink, TCP can be used for administrative tasks
such as sensor node configuration and updating program code [4, 98].

Due to limited resources of the sensor nodes, high packet loss, and inefficiency
in memory and energy consumption of TCP [56], it is rather difficult to implement
TCP/IP on sensor nodes. µIP [21] is an existing TCP/IP implementation for sensor
nodes equiped with 8-bit microcontrollers. Usually, µIP is using a very small TCP
Receive Window Size to trigger an acknowledgement for every sent segment. This
prevents the WSN from too many collisions and reduces the memory overhead. A
big drawback of a small TCP Receive Window Size is the excessive additional sig-
naling traffic. It requires additional energy and network bandwidth. Furthermore,
handling traffic in both directions of a connection is a significantly higher chal-
lenge for the link layer protocols. This leads to many end-to-end retransmissions.
These extra packets reduce throughput and increase Round-Trip-Time (RTT). The

62

2.6. WSN NETWORK STACK PROTOCOLS AND MECHANISMS

extra energy for retransmissions also reduces the lifetime of the individual sen-
sor nodes. Optimizations, e.g. distributed caching of TCP data packets, local re-
transmissions, and regeneration of TCP acknowledgment packets can reduce these
problems [12, 22].

TCP Support for Sensor Networks

TCP Support for Sensor Networks (TSS) [12] is located between TCP and IP. It
controls the packet forwarding on every intermediate node part of a TCP connec-
tion. TSS tries to improve the performance of TCP in WSNs with the following
three mechanisms:

• Caching and local retransmission of TCP data packets (basic mechanism).

• Improved the TCP acknowledgment mechanism.

• Flow and congestion control.

Figure 2.44 depicts the basic idea of TSS. TSS caches a TCP-DATA packet for-
warded in the WSN until the packet has been acknowledged. The numbering of
the following list refers to the numbers depicted in Figure 2.44:

1. Node 4 caches the TCP-DATA packet n and forwards it.

2. The receiver acknowledges TCP-DATA n by transmitting TCP-ACK n+1.

3. The intermediate node receives TCP-ACK n+1 and deletes TCP-DATA n.

SENDER RECEIVER

n

drop cached
TCP data packet

TCP-ACK
n+1

n

Node 4

1
2

3cache
TCP data packet

end-to-end connection

Figure 2.44: Basic idea of TSS: Caching of TCP data packets.

Figure 2.45 shows the case of a packet loss. The numbering of the following list
refers to the numbers depicted in Figure 2.45:

1. Node 4 caches the TCP-DATA packet n and forwards it.

2. Due to the missing TCP-ACK, the cached TCP-DATA packet n is retrans-
mitted after 1.5 ∗RTT .

63

2.6. WSN NETWORK STACK PROTOCOLS AND MECHANISMS

SENDER RECEIVER
1

2

3

end-to-end connection

1.5 * RTT

n

TCP-ACK
n+1

Node 4

n

retransmit
packet n

Figure 2.45: Basic idea of TSS: Retransmission of lost TCP data packets.

3. After receiving TCP-ACK n+1 it deletes TCP-DATA n from the buffer.

Too long retransmission timeouts cause retransmissions by the sender. Simula-
tions in [12] show that a retransmission timeout of 1.5 * RTT is adequate to also
retransmit multiple losses of TCP-DATA packets without triggering end-to-end re-
transmission. The RTT is measured between the node and the destination.

Because of the limited memory, only a few packets can be cached and an ef-
ficient caching strategy is required. Using cross layer support of the link layer
protocol, TSS can discover a successful forwarding of the TCP-DATA packet n to
the next hop. This enables a node to drop a cached TCP-DATA packet as soon as
it knows that the successor node has successfully received the packet. Figure 2.46
shows an example of TSS using cross layer support of a link layer protocol with
implicit acknowledgments:

1. Node 5 receives, caches, and forwards TCP-DATA n and n+1. The link layer
protocol informs the TSS protocol that forwarding has failed.

2. Now node 5 tries to retransmit TCP-DATA n. After confirmation, it deletes
TCP-DATA n from the buffer and transmits TCP-DATA n+1.

Experiments in [12] show that the loss of TCP-ACKs may have an impact on the
amount of TCP-DATA packet transmissions. Figure 2.47 shows that the following
two mechanisms reduce the consequences of lost TCP-ACKs:

1. Local TCP acknowledgment regeneration: The local TCP acknowledg-
ment regeneration is used to drop duplicated TCP data packets, which are al-
ready acknowledged by the receiver. Due to the history list, an intermediate
node can discover an already acknowledged packet. The duplicated packet
is dropped and a TCP-ACK with the highest acknowledgment number seen
so far is regenerated and transmitted.

64

2.6. WSN NETWORK STACK PROTOCOLS AND MECHANISMS

Node 5

n

n+1
cache n & n+1

ACK
overhearing

remove cached
packet

SENDER RECEIVERend-to-end connection

1ACK
overhearing

n

n+1

ACK
overhearing ACK

overhearing

ACK
overhearing ACK

overhearing

ACK
overhearing ACK

overhearing

2

Figure 2.46: Cross layer support of the link layer protocol.

2. Aggressive TCP acknowledgment recovery: The aggressive TCP acknowl-
edgment recovery becomes active when a sensor node cannot ensure by link
layer acknowledgment that the TCP-ACK has been successfully transmitted
to the next hop. Using link layer acknowledgments, the retransmission can
be enforced directly.

TCP-ACK n+1

n

Local TCP ACK regeneration

history list

drop packet and
recover TCP-
ACK n+1 from

history listTCP-ACK
n+1

n

Node 3Node 2 Node 7

Aggressive TCP ACK regeneration

TCP-ACK n discovered
forwarding of
TCP-ACK n

SENDER RECEIVERend-to-end connection

2

1

Figure 2.47: Two mechanisms to reduce the consequences of lost TCP acknowledgments.

The authors of [42] implemented the caching and retransmission mechanisms of
TSS for µIP in Contiki. The evaluations are performed with telosB nodes in the
WISEBED WSN testbed at the University of Bern. The evaluated network topol-

65

2.6. WSN NETWORK STACK PROTOCOLS AND MECHANISMS

ogy is a single line of nodes with 2, 3, 4, 5 or 6 hops. Every experiment was
executed for 10 minutes. During this time period, as many TCP segments as pos-
sible are forwarded to measure the throughput. On the link layer NullRDC, Con-
tikiMAC and XMAC are used. They report that µIP with TSS and NullRDC was
able to increase the throughput about 84% and µIP with TSS and XMAC able able
to increases the throughput about 18% compared to unmodified µIP. When using
ContikiMAC on the link layer, the throughput of TSS with µIP was up to 68%
lower than with unmodified µIP.

Reliable Multi-Segment Transport Protocol

The Reliable Multi-Segment Transport (RMST) [86] protocol is a reliable transport
layer protocol for Directed Diffusion [15, 36]. RMST uses selective negative ac-
knowledgments to guarantee data delivery from different sensor nodes to a single
sink node. Moreover, RMST provides a caching and repair mechanisms within the
intermediate nodes.

Figure 2.48 shows the RMST frame format. RMST adds an incremented se-
quence number (FragNo) to each frame received from the application layer. Large
application data frames are split into several smaller fragments before adding the
incrementing sequence number. To these fragments, RMST adds the total number

FragNo
sequence
number

application payload

RMST header

Directed Diffusion payload

MaxFrag
(optional)

Figure 2.48: RMST frame header.

of fragments (MaxFrag) to enable reassembly of the application data frame at the
sink.
RMST supports two different modes for recovering lost frames. The first mode is
called non-caching mode. In this mode, only the sink is sending selective neg-
ative acknowledgment to request missing fragments according to their sequence
numbers. The second mode is called caching mode. In this mode, each node
in the network that caches frames sends selective negative acknowledgments if it
detects missing packets. The detection of packet loss is timer driven. A watch-
dog periodically scans for missing sequence numbers within the packet history. If
one or more sequence numbers are missing for a too long time period, a negative
acknowledgment is sent to request the missing frames.

Figure 2.49 depicts a small example with three sensor nodes using RMST on
top of Directed Diffusion. Every nodes that receives a negative acknowledgment
checks its local cache for the missing packet. If the packet cannot be found in the

66

2.6. WSN NETWORK STACK PROTOCOLS AND MECHANISMS

local cache, then the negative acknowledgment is forwarded on the reinforced path
towards the source. Otherwise, the missed frame is retransmitted towards the sink.

Directed Diffusion Directed Diffusion Directed Diffusion

application - sink

local
cache

watchdoglocal
cachewatchdog

RMST

local
cache

fragmentationRMST reassemblingRMST

application - source

used only with
caching mode

data

Figure 2.49: RMST in a WSN network stack.

The protocol designers assume a low number of bytes in flight and that the inter-
mediate nodes can completely cache this amount of data. The authors experienced
and stated that for packet loss rates below 10%, the caching and negative acknowl-
edgment mechanism is more efficient than a reliable link layer approach based on
ARQ due to the overhead caused by link level acknowledgments [86].

2.6.3 Packet Aggregation Mechanism

Packet aggregation mechanisms combine packets from different sources to reduce
the total number of packets forwarded in the network. Reducing the number of
required packets may preserve energy and increase the throughput by reducing the
overhead by physical preambles, headers, CRC, etc. Moreover, at high traffic load,
packet aggregation can prevent or at least decrease congestion by reducing inter-
nal interferences and the number of concurrently forwarded packets. Figure 2.50
shows a small WSN using a data centric routing protocol and packet aggregation
to reduce the number of forwarded data packets to the minimum.
Generating an optimal packet aggregation routing tree in a WSN is an NP-hard
problem. Krishnamachari et al. [49] introduced the following three suboptimal
aggregation heuristics to solve the problem of establishing an aggregation routing
tree:

• Center at Nearest Source (CNS): The source node nearest to the sink per-
forms packet aggregation. All other source nodes send their packets directly
to this source node.

• Shortest Paths Tree (SPT): All source nodes send their packets on the
shortest path to the sink. Packet aggregation is performed on the nodes where
two or more individual path are overlapping.

67

2.6. WSN NETWORK STACK PROTOCOLS AND MECHANISMS

sink

network path

data aggregation

one hop

forwarding node

sender node

Figure 2.50: Packet aggregation with a data centric routing protocol.

• Greedy Incremental Tree (GIT): With GIR, the packet aggregation routing
tree is constructed sequentially. Initially, the sink and the source node with
the shortest path to it build the initial tree. In the next step, the source node
that is closest to the existing tree is connected and builds a new tree. This
step is repeated until all the source nodes are part of the tree.

In IEEE 802.11 networks, packet aggregation is a subject of ongoing research
[54, 55, 74, 77]. A main target of packet aggregation in IEEE 802.11 networks
is achieving a high throughput. Packet aggregation can be handled on different
levels in the IEEE 802.11 network stack. The following list introduces three com-
mon aggregated IEEE 802.11 frame types:

• Aggregated MAC Service Data Units (A-MSDUs): Multiple MSDUs are
aggregated into a single MAC Protocol Data Units (MPDU). A-MSDUs
show the lowest total length of the physical frame, due to the lowest link
layer header overhead. An A-MSDU is protected by only one link layer
CRC.

• Aggregated MAC Protocol Data Units (A-MPDUs): Multiple MPDUs
are aggregated into a single Physical Service Data Unit (PSDU). With A-
MPDUs every individual aggregated packet keeps an own CRC.

• Aggregated Physical Protocol Data Units (A-PPDUs): Multiple PSDUs
are aggregated into a single Physical Service Data Unit (PSDU). With A-
PSDUs every individual aggregated packet keeps its own CRC. Moreover,
A-PSDUs enable aggregation of packets with different destination addresses.

Table 2.7 compares the three IEEE 802.11 frame aggregation mechanisms:

2.6.4 Back Pressure Mechanisms

Back pressure mechanisms adapt the traffic load in a network to avoid a network
collapse caused by congestion. The high number of individual source nodes in

68

2.7. CONCLUSIONS

Characteristic A-MSDU A-MPDU A-PPDU
Link layer computing overhead High Middle Low
Overhead on the physical layer Low Middle High
Impact of single bit errors High Low Low

Table 2.7: Characteristics of different IEEE 802.11 frame aggregation mechanisms

large scale WSNs may generate too high traffic load near the sink node. Figure
2.51 depicts the problem by an example. Five source nodes are sending traffic
towards a sink. The closer to the sink a node is, the higher is its traffic load on a
single hop.

sink

forwarding node
S

S

S

S

5

1
1

1

1

43
2 3

2

source node1

1

5

1

4

S

5
4

1
1

1

Figure 2.51: Increasing traffic load in a WSN.

Back pressure mechanisms try to control the output of the individual source nodes
to keep the traffic load on every intermediate link between the source and the sink
node at a working level. Back pressure mechanisms can either be realized on an
end-to-end or a hop-by-hop bases. For example, the TCP flow control mechanism
tries to adapt the traffic load of a TCP connection on an end-to-end bases. There-
fore, the receiver announces to the sender a TCP window size no larger than it can
buffer. Unfortunately, this mechanism does not scale well with a large number of
simultaneous TCP connections [67].

2.7 Conclusions

In this chapter, we introduced the relevant related work in the area of energy pre-
serving mechanisms and reliability techniques for WSNs. We described different
sensor node platforms including the radio module characteristics for real world
WSNs. Moreover, we introduced different evaluation tools and existing WSN
communication protocols to analyze and compare the contributed protocols of this
thesis. In the next chapter, we present the pre-evaluation of the available radio
modules presented in Section 2.1. With the help of the pre-evaluation we identify
the most suitable radio module to design and implement an energy preserving real

69

2.7. CONCLUSIONS

world WSN communication stack supporting reliable data transmissions in hetero-
geneous networks.

70

Chapter 3

Hardware Pre-Evaluation

The pre-evaluation of the available radio modules is an essential part in the design
process of an energy efficient and reliable communication protocol for real world
sensor nodes. The selected radio module determines the basic energy consump-
tion as well as the basic conditions for the protocol design. Some radio modules
require a compliant link layer header to autonomously execute link layer tasks
such as sending acknowledgments. This enables time and energy efficient link
layer operations, but requires using a given format of the physical and link layer
header. Some radio modules enhance the robustness of the physical channel by
using spread-spectrum techniques. Therefore, the evaluation and selection of the
radio module is an essential task for reaching the major targets of this thesis.

To evaluate the real world performance of a radio module, the used communi-
cation interface to the microcontroller has to be taken into account. Using bit/byte-
oriented radio modules, the microcontroller has to exactly schedule every individ-
ual bit/byte read and write operation to the radio module. Otherwise, transmissions
may fail. Therefore, we have used existing sensor node platforms equipped with
the individual radio modules for the evaluation. To determine the performance of
the different radio modules, we analyzed the following characteristics:

1. Required energy and time to forward data: The required energy for send-
ing and receiving data should be as low as possible. The shorter the required
time for a transmission, the longer the radio module can be turned off.

2. Required time and energy for a channel check: A standard operation of
all radio duty cycling MAC protocols is the channel check. If no traffic
has to be forwarded, the radio module is used for periodically checking the
channel.

3. Bit error rate and robustness against interferences: Packets received with
bit errors have to be recovered either by error correction codes or retransmis-
sion mechanisms. Both mechanisms require additional time and energy.

4. Connectivity between different sensor node platforms: To support het-
erogeneous networks, the physical and the link layer should meet a well-

71

3.1. REQUIRED ENERGY AND TIME TO FORWARD DATA

established standard.

We used the sensor nodes introduced in Section 2.2 to evaluate the radio modules
introduced in Section 2.1. Table 3.1 presents a brief summary of the different sen-
sor nodes characteristics. We use two different sensor node platforms featuring the
packet oriented CC2420 radio module and three sensor node platforms featuring
different bit/byte oriented radio modules. Using two sensor node platforms fea-
turing a CC2420 radio module allows testing the direct communication between
two heterogeneous sensor node platforms. We configured the bit/byte-oriented ra-
dio modules with a physical data rate of 38.4 kbps to ensure an optimal energy
consumption. Our experiments have shown that higher transmission rates are not
working properly on the used sensor nodes. This is due to the limited performance
of the microcontroller and the required accuracy of the write and read operations on
the radio module. Most of the available real world implementations made for the
BTnode, MSB430 and ESB sensor nodes use even lower physical radio transmis-
sion rates of 9.6 kbps or 19.2 kbps. The lower the transmission rate is, the higher is
the required energy to send and receive the same amount of data. We used Manch-
ester coding (see Section 2.1.3) to ensure the synchronization of the radio module
receiver clock. When using Manchester coding, the link layer data rate is half
the physical transmission rate. The packet-oriented radio module CC2420 uses a
physical transmission rate of 2’000 kbps. The direct sequence spreading modula-
tion technique used by IEEE 802.15.4 reduces the link layer data rate to 250 kbps.

Sensor
node

Radio
module

Modulation Physical data
rate (kbps)

Link layer data
rate (kbps)

telosB CC2420 DSSS 2000 250
MicaZ CC2420 DSSS 2000 250
MSB430 CC1020 OOK 38.4 19.2
ESB TR1001 OOK 38.4 19.2
BTnode CC1000 BFSK 38.4 19.2

Table 3.1: Evaluated sensor node platforms and corresponding radio modules

The remainder of this chapter is structured as follows. Section 3.1 analyzes the
required time and energy for forwarding data. Then Section 3.2 evaluates the re-
quired time and energy to perform a channel check. Section 3.3 compares robust-
ness against interferences. Section 3.4 shows which radio modules are compatible
to meet a standard.

3.1 Required Energy and Time to Forward Data

This section describes the evaluation of the energy required for forwarding data.
First, we determined the energy that is required to send a single byte. Then, we

72

3.1. REQUIRED ENERGY AND TIME TO FORWARD DATA

measured the minimal energy required by a duty-cycled radio module to send a
complete frame. Finally, we evaluated the minimal energy required for forwarding
a single frame. The results allow comparing the energy efficiency of the different
radio modules. Additionally, they make it possible to calculate the energy require-
ments for a hypothetical link layer protocol featuring the smallest possible energy
consumption for every radio module. The hypothetical link layer protocol is used
to verify the efficiency of our final real world implementation.

Figure 3.1 shows the experimental setup to measure the transmission time and
energy consumption of a radio module. The experimental setup enables the record-
ing of the electric current of one sensor node by the RIGOL DM3052 digital multi-
meter introduced in Section 2.4.3. We soldered copper wires to one sensor node of
each individual platform. The copper wires are used to connect them to the RIGOL
multimeter and the VOLTCRAFT VLP-1303 PRO power supply, as described in
Section 2.4.3. A second sensor node is connected over a serial connection to a
desktop computer. This enables monitoring the traffic during a running experi-
ment. All sensor node platforms are running Contiki as operating system. The
RIGOL multimeter is connected over a USB interface to a notebook, which runs
the measurement application. We used the maximal recording resolution of 50’000
samples per second. The measuring accuracy of the RIGOL multimeter is ±2 µA.
The sensor nodes are placed in distance of 0.5m to ensure high SNR and to min-
imize the impact of external interferences. Internal interferences are excluded by
sending one packet after each other.

- +

Multimeter
RIGOL DM3052

Power source
VLP-1303 PRONotebook

USB

desktop

USB
sensor
node

sensor
node

Figure 3.1: Testbed setup to measure the electric current.

3.1.1 Energy Required to Send a Single Byte

First, we used the testbed depicted in Figure 3.1 to determine the required energy
for sending one single byte. For every sensor node type, we performed 20 record-

73

3.1. REQUIRED ENERGY AND TIME TO FORWARD DATA

ings with the RIGOL multimeter. During each recording period the node connected
to the RIGOL multimeter sent 30 packets within an interval between packets of 500
ms and a payload of 100 bytes. This results in 600 analyzed packets for each sensor
node type.

Between the individual transmissions, the radio module is turned off for two
reasons. First, the switch-off is used to determine the amount of energy used by the
radio module. To determine the energy used by the radio module, the energy costs
during the sleeping period are subtracted from the energy measured during packet
transmission. Second, turning off the radio helps to determine the time required by
the individual radio modules to transmit the packets. We compared the measured
time period to the expected time period for verifying the experiment setup.

Figure 3.2 shows an example of such an energy profile recorded with the
RIGOL multimeter. The radio module is only turned on to transmit 100 bytes. This
results in an energy profile with a distinguishable transmission period. During the
transmission, a total of 19.5 mA is recorded by the RIGOL multimeter. Turning
off the radio between the individual transmissions reduces the energy consumption
to 0.48 mA.

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14

el
ec

tri
ca

l c
ur

re
nt

 [m
A]

time [ms]

CC2420 on a telosB

transmission of
(100 bytes)

2

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14

el
ec

tri
ca

l c
ur

re
nt

 [m
A]

time [ms]

CC2420 on a telosB

idle energy
0.48mA

Figure 3.2: Sending 100 bytes with a CC2420 radio module.

Figure 3.3 shows the energy for sending one single byte by the different radio
modules. The corresponding energy costs are calculated using the energy measure-
ments for sending 100 bytes. All additional energy costs caused by other consid-
ered sensor node components as well as switching the radio module are excluded
from the calculation. The CC2420 radio module is most energy efficient when
transmitting only one single byte. It requires several times less energy and time
than every other radio module needs for this operation due to the higher bit rate of
the CC2420 radio module. There is no difference in the energy consumption of the
CC2420 radio module on a telosB or a MicaZ sensor node. In sleep mode, i.e. with
turned off radio modules, the MicaZ requires more energy than the telosB. This dif-
ference is due to different electrical components included in these two nodes. The

74

3.1. REQUIRED ENERGY AND TIME TO FORWARD DATA

TR1001 radio module shows the lowest energy usage for sending a single byte
with a byte-oriented radio module. The energy requirement for sending a single
byte provides a basic indication about the energy efficiency of the different radio
modules.

 0

 10

 20

 30

 40

 50

CC2420
2’000 kb/s

CC1000
38.4 kb/s

CC1020
38.4 kb/s

TR1001
38.4 kb/s

en
er

gy
 [u

J]

telosB, MicaZ
BTnode
MSB430
ESB

Figure 3.3: Energy required by different radio modules for sending one byte.

3.1.2 Minimal Energy Required to Send a Single Frame

Next, we measured the minimal energy required by a duty-cycled radio module for
sending a complete frame. The operation process of a radio duty cycle starts with
the wake-up of the radio module followed by a channel check to ensure a free radio
channel. Then, a single frame with 50 bytes link layer payload is sent. After the last
byte has been transmitted, either the radio module is switched to listening mode or
immediately turned off. The radio module switched to listening mode waits for
an incoming acknowledgment before it is turned off. If no acknowledgment is
expected, the radio module is immediately turned off. This setup determines the
smallest possible energy consumption to forward a single frame.

We used the testbed depicted in Figure 3.1 to measure the required energy. We
performed 25 measurements with and without acknowledgments. In each mea-
surement, the node connected to the RIGOL multimeter sent 30 frames with a
sleep interval of 500ms between the individual transmissions. The second node
remains always in listening mode to receive the packets and to send back an ac-
knowledgment if required. We dropped all measurements where the channel was
busy during the channel check to exclude the effects of interferences. For the evalu-
ations with acknowledgment, we additionally dropped all the measurements where
no acknowledgment was received.

Figure 3.4 shows the minimal energy required by these radio modules to send
a single frame with 50 bytes payload. The percentage on top of the bar shows how
much of the total energy is actually used to send the payload. The rest of the energy

75

3.1. REQUIRED ENERGY AND TIME TO FORWARD DATA

is required for checking the radio channel and switching the radio module on and
off. The CC2420 radio module requires 10 additional link layer header bytes to
fulfill the IEEE 802.15.4 requirements. Again, the CC2420 radio module is the
most energy efficient when transmitting a single frame. Using acknowledgments
requires around 15%-20% additional energy.

When comparing Figure 3.4 to previous Figure 3.3 we see that the TR1001 ra-
dio module requires comparatively more energy to transmit a frame. In Figure 3.3,
depicting the required energy to transmit a single byte, the TR1001 radio module
requires 56% less energy than the CC1020 and 21% less than the CC1000. How-
ever, in Figure 3.4, the TR1001 radio module requires 43% less energy than the
CC1020 and even 7% more than the CC1000 without acknowledgment. The dif-
ference in energy consumption is basically caused by the ESB sensor node, which
requires disproportionately more time to power on the radio module then the other
sensor nodes.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

cc2420 cc1000 cc1020 TR1001 cc2420 cc1000 cc1020 TR1001

en
er

gy
 [u

J]

82.5% 67.6%

91.7%
77.9%

88.3%

74.2%

68.1%
59.0%

telosB, MicaZ (+ 10 byte)
BTnode
MSB430
ESB

without acknowledgment with acknowledgment

Figure 3.4: Energy required by different radio modules for sending a 50 bytes payload.

3.1.3 Minimal Energy Required to Forward a Single Frame

Finally, we determined the minimal energy required by a duty-cycled radio mod-
ule to forward a packet with 50 bytes payload. Forwarding a single frame includes
the energy required to receive and handle routing of a packet in the network stack.
We reuse the testbed to measure the electric current as depicted in Figure 3.1. The
sensor node connected to the desktop PC sends a packet every 500 ms to the sensor
node connected to the RIGOL multimeter. This sensor node immediately forwards
every incoming packet back to the source node. As in the previous experiment,
presented in Section 3.1.4, the radio module is immediately turned off after the
frame has been forwarded or the acknowledgment has been received. The radio
module is turned on 100ms before the next transmission of the packet is expected.
The energy used during idle listening is removed from the energy costs to forward

76

3.1. REQUIRED ENERGY AND TIME TO FORWARD DATA

a single frame. We performed 25 measurements with and without acknowledg-
ment. In each measurement, 30 frames with a link layer payload of 50 bytes are
forwarded. We dropped all failed forwarding attempts.

Figure 3.5 shows the minimal energy required to forward a single frame with
50 bytes payload. The percentage on top of the bar shows how much of the total
energy is actually used to send the payload. The remaining energy is required for
checking the radio channel and switching the radio module on and off. It requires
around twice the energy to forward a packet than just transmitting it. The CC2420
is the most energy efficient radio module when forwarding a single frame. The
most inefficient radio module is the CC1020 with almost twice the energy con-
sumption of the CC1000 and TR1001.

without acknowledgment with acknowledgment

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

cc2420 cc1000 cc1020 TR1001 cc2420 cc1000 cc1020 TR1001

en
er

gy
 [u

J]

88.0%

94.5%

92.4%

79.7%

69.3%

79.3%

76.4%

67.0%

telosB, MicaZ (+ 10 byte)
BTnode
MSB430
ESB

Figure 3.5: Energy required by different radio modules for forwarding a 50 bytes payload.

3.1.4 Hypothetical Reference Link Layer Protocol

We defined a hypothetical link layer protocol featuring global knowledge of the en-
tire WSN. This protocol has the lowest possible energy consumption for every of
the evaluated radio modules. The authors of [29] introduced a MAC protocol called
ideal protocol, which serves the same purpose. Our ideal protocol can predict the
time period of every packet transmission and any other source of interference. Ev-
ery sender knows the exact point in time to transmit a packet to a receiver without
interfering with any source of interference. The receiver knows the exact point in
time to wake up for receiving a frame. There are no bit errors and therefore no
packet retransmissions. Moreover, no acknowledgements and no channel checks
are required by this protocol. The protocol only turns on the radio module to send
or receive a frame without any idle listening. The hypothetical link layer protocol
depicts the most energy efficient and reliable protocol design that is feasible. We
use the hypothetical link layer protocol in Section 5.6 for an energy benchmark and
verification of our real world implementation. The energy required by the differ-

77

3.2. ENERGY REQUIRED TO CHECK THE RADIO CHANNEL

ent radio modules to forward 50 bytes with this hypothetical protocol is shown in
Figure 3.6.

 0

 1000

 2000

 3000

 4000

 5000

CC2420 CC1000 CC1020 TR1001

en
er

gy
 [u

J]

telosB, MicaZ (+ 10 byte)
BTnode
MSB430
ESB

Figure 3.6: Energy for forwarding a 50 bytes payload with a hypothetical MAC protocol.

3.2 Energy Required to Check the Radio Channel

A sensor node is waiting for incoming data most of the time. During this time, a
duty cycling MAC protocol periodically performs channel checks. For a channel
check, the radio module is turned on and switched to listening mode. If no trans-
mission can be detected, the radio module is switched off again. The periodical
channel check is one of the main energy consumers during time periods without
traffic or in case of very low traffic rate. Therefore, we determined the minimal
energy required by the individual radio modules to perform a channel check. We
connected one sensor node to the RIGOL multimeter to record the energy profile
during wake-up, checking the channel and going back to sleep. The radio mod-
ules perform 10 channel checks per second for a time period of 20 seconds. We
performed 20 recordings for each radio module. Sometimes interferences are mis-
interpreted as an ongoing transmission. We ignored these wrongly detected frames
in our evaluation.

A radio channel check starts by turning on the radio module and switching it
into listening mode. Then, a channel check is performed before the radio mod-
ule goes directly back to sleep again. For each radio module we used the most
efficient available detection technique. Therefore, the detection mechanism used
for the bit/byte-oriented radio module searches for an ongoing transmission of a
specific physical preamble. The CC2420 uses the built-in channel check support
mechanism introduced in Section 2.1.7.

Figure 3.7 shows the measured energy to perform a single channel check dur-
ing periods without traffic. Energy used by other components of the sensor node
platform has been excluded. Therefore, the major reason for the differences in the

78

3.3. ROBUSTNESS AGAINST INTERFERENCES

energy consumption is the time required to perform the channel check. The time
periods required by the different radio modules to perform a channel check is writ-
ten to the legend in Figure 3.7. The radio modules require different time periods
after wake up to achieve a state of the receiving circuit to correctly demodulate
the incoming signal. The CC2420 is the fastest and most energy efficient of the
evaluated radio modules. The TR1001 requires a very long time to wake up on the
ESB node. This time is several magnitudes longer than specified in the manual of
the TR1001.

 0

 100

 200

 300

 400

 500

CC2420 CC1000 CC1020 TR1001

en
er

gy
 [u

J]

telosB, MicaZ (0.3ms)
BTnode (0.8ms)
MSB430 (2.4ms)
ESB (8.8ms)

Figure 3.7: Energy for a channel check without traffic.

3.3 Robustness against Interferences

The radio modules should be as robust as possible against interferences to mini-
mize bit errors. Dealing with interferences is one of the most challenging tasks for
real world WSN implementations. As long as only one packet is forwarded in a
WSN, no internal interferences have to be handled. Then packet loss is basically
caused by wave propagation effects and external interferences. With increasing
traffic load, inter-flow and intra-flow interferences have to be handled as well. Only
interferences with a signal strength higher than the receiver sensitivity limit can be
directly detected by the radio modules. Lower signal levels cannot be directly de-
tected and are therefore harder to handle. They can cause, for example, a hidden
node problem. The lower the actual SNR during the reception is, the higher is the
probability of bit errors caused by interferences.

3.3.1 Testbed Setup

The environment shows an impact on the wave propagation effects. Walls and
furniture in typical indoor environments cause wave propagation effects such as

79

3.3. ROBUSTNESS AGAINST INTERFERENCES

reflections, multi-path fading or diffraction. These effects are also occurring in
outdoor environments by buildings or trees, but not to this extent. Additionally,
indoor topologies, for example an office building, show a high density of electronic
devices generating interferences. Table 3.2 shows four different setups to evaluate
the impact of the environment, the SNR and internal-interferences.

Scenario Topology Interferences SNR Section
External Internal

1 Indoor Yes No 4 Levels 3.3.2
2 Outdoor Yes No 4 Levels 3.3.2
3 Indoor Yes Yes 4 Levels 3.3.3
4 Outdoor Yes Yes 4 Levels 3.3.3

Table 3.2: Different evaluated interference scenarios

We use an indoor and an outdoor testbed to evaluate the influence of the environ-
ment. To analyze the impact of the SNR we used four different distances between
the sender and the receiver. We used a third node to simulate internal interferences.
The outdoor testbed has been established on a plane meadow. The nodes were
placed 1m above ground on tripods as depicted in Figure 3.8. The selected four
distances between the outdoor nodes are 10m, 50m, 100m and 250m.

Figure 3.8: TelosB node on tripod in outdoor testbed.

The indoor testbed has been established in the building of the Institute of Computer
Science and Applied Mathematics (IAM). Figure 3.9 shows setup of the indoor
testbed. A notebook is connected to the receiver node to record the sequence num-
bers of the received packets (number 1 in Figure 3.9). The sender node is placed in
different distances to the receiver node (numbers 2-5). Both nodes are placed 1m

80

3.3. ROBUSTNESS AGAINST INTERFERENCES

above ground on tripods. The shortest distance with the highest SNR was 0.5m.
For the second distance, the same two nodes were placed in neighboring rooms.
The connecting door was closed. For the next larger distance two rooms at the op-
posite side of a corridor were used. The largest distance, with the lowest SNR, was
made by choosing two rooms that are two floor levels apart and on the opposite
side of the corridors. The SNR decreases with increasing distance and amount of
obstacles. The lower the SNR is, the higher is the bit error rate. An additional node
is able to generate internal interferences if required (number 6).

1

6

4

5

2
3

Figure 3.9: Indoor evaluation testbed setup.

We used the Contiki operating system version 2.4 using an out-of-the-box con-
figuration. The network stack uses µIP and nullRDC link layer protocol without
duty cycling the radio module. For the different bit/byte-oriented radio modules,
namely C1000, CC1020 and TR1001, we use a physical transmission speed of 38.4
kbps with a Manchester encoding to enhance reliability. All other reliability mech-
anisms are deactivated. If a packet gets lost, it is not retransmitted. We operate
all radio modules with the maximal available transmission power. For every dis-
tance, we performed a set of 32 measurements. Each of the 500 packets was sent
with a data payload of 50 bytes. The time between two packets was 250ms. We
use packet loss as metric to express the robustness of the different radio modules
against interferences. A packet is lost if the frame start was missed or the received
frame contained a bit error.

3.3.2 Packet Loss Caused by External Interferences

Figure 3.10 shows the packet loss for the different SNRs inside the IAM building
without internal interferences. The nodes equipped with the CC2420 (telosB and

81

3.3. ROBUSTNESS AGAINST INTERFERENCES

MicaZ) show significantly better robustness against interferences than all other
nodes. The micaZ node shows a slightly lower packet loss rate than the telosB.
This might be caused by a higher gain of the external micaZ antenna. The BTn-
ode, equipped with a CC1000, showed the most bit errors. A brand-new BTnode
comes without any antenna. Under this condition, BTnodes are not able to send
farther than 1 m distance. Therefore, we added a λ/4 monopole antenna to all the
BTnodes. The results additionally show that a high transmission power does not
necessarily result in a lower packet loss rate.

 0

 20

 40

 60

 80

 100

same table other side of
the door

office on other
side of the corridor

office on other side
and other level

pa
ck

et
 lo

ss
 [%

]

telosB (0 dBm)
MicaZ (0 dBm)
MSB430 (5 dBm)
ESB (1.5 dBm)
BTnode (5 dBm)

Figure 3.10: Indoor packet loss with external interferences.

Figure 3.11 shows the packet loss for the different SNRs, without internal interfer-
ences in the outdoor testbed. In the outdoor testbed, the packet loss is significantly
lower than indoor, as expected. Especially, the MSB430 shows outdoor a signif-
icantly lower packet loss than indoor. This may be an indicator that the CC1020
radio module has some effort with wave propagation effects caused by reflections,

 0

 20

 40

 60

 80

 100

10m 50m 100m 250m

pa
ck

et
 lo

ss
 [%

]

telosB (0 dBm)
MicaZ (0 dBm)
MSB430 (5 dBm)
ESB (1.5 dBm)
BTnode (5 dBm)

Figure 3.11: Outdoor packet loss with external interferences.

82

3.3. ROBUSTNESS AGAINST INTERFERENCES

multi-path fading or diffraction. The CC2420 has a significantly lower packet loss
rate than the other radio modules. The CC1000 on the BTnode still shows high
packet loss.

3.3.3 Packet Loss Caused by External and Inter-flow Interferences

Transmission by neighbor nodes can cause massive intra-flow or inter-flow inter-
ferences. In this section, we perform some basic tests, to estimate the performance
of the radio modules with inter-flow interferences. The same testbeds like in the
preceding sections are used. An additional neighbor node produces traffic with
transmission power and distance adapted to the sensing range of the receiver node.
The additional node continuously sends single packets with 50 bytes payload. Be-
tween packet transmissions, it uses a random back-off window of two to five times
of the time required to transmit a frame. The chosen distance and transmission
power makes it hard to detect the ongoing transmission, but still generates signif-
icant interferences at the receiving node. More complex measurements including
intra-flow interferences are made in the evaluation part of Chapter 5.

Figure 3.12 shows the packet loss with inter-flow interferences inside the IAM
building. The sending node tries to send a packet every 250 ms. It tries to retransmit
the packet twice if the channel was busy. As expected, all radio modules show an
explicitly higher packet error rate than indoor without inter-flow interferences (see
Figure 3.10). The CC2420 radio module still shows the lowest packet loss rate.
The interferences caused by the third BTnode are limited.

 0

 20

 40

 60

 80

 100

same table other side of
the door

office on other
side of the corridor

office on other side
and other level

pa
ck

et
 lo

ss
 [%

]

telosB (0 dBm)
MicaZ (0 dBm)
MSB430 (5 dBm)
ESB (1.5 dBm)
BTnode (5 dBm)

Figure 3.12: Indoor packet loss with external and inter-flow interferences.

For the outdoor measurements, the third node is placed in 300m distance to the
sender and receiver node. Figure 3.13 shows the packet loss for different distances
between sender and receiver in the outdoor testbed. The additional interferences
generated by the third node result in higher packet loss. Under external interfer-
ences, the CC1020 showed a lower packet loss than the TR1001. With inter-flow

83

3.3. ROBUSTNESS AGAINST INTERFERENCES

interferences the TR1001 now has a similar packet loss rate than the CC1020. The
results show that the CC2420 radio module is the most robust radio module. This
is basically caused by significantly higher process gain of the DSSS mechanism
defined by IEEE 802.15.4. Manchester coding used for the byte-oriented radio
modules shows only a low process gain.

 0

 20

 40

 60

 80

 100

10m 50m 100m 250m

pa
ck

et
 lo

ss
 [%

]

telosB (0 dBm)
MicaZ (0 dBm)
MSB430 (5 dBm)
ESB (1.5 dBm)
BTnode (5 dBm)

Figure 3.13: Outdoor packet loss with external and inter-flow interferences.

3.3.4 IEEE 802.11 Interferences

We evaluated the interferences caused by IEEE 802.11 transmissions to the CC2420.
The CC2420 radio module is operating in the same 2.4 GHz ISM radio band like
IEEE 802.11 networks. We used the WISEBED WSN real world testbed at the
IAM building, introduced in Section 2.4.2, to estimate the influence of the installed
IEEE 802.11 networks to transmissions made by telosB nodes. We used a simple
network topology of six telosB nodes in a row featuring a high SNR. To avoid in-
ternal interferences, we sent a packet only every two seconds from node 1 to node
6. This is sufficient time to pass all five hops. We used Contiki 2.4 wit nullRDC
and no additional reliability functions. If a packet gets lost, it is not retransmitted.
We sent 200 packets on each channel before switching to the next channel. We
repeated the experiments twenty times during an entire workday and twenty times
after midnight. Figure 3.14 shows the results of this measurement. IEEE 802.11
access points that are close to the tested nodes, probably cause the peaks at channel
12 and 17. One access point with lower impact seems to be operating in the range
of channel 22. There is a slightly higher packet loss during daytime in the IEEE
802.11 frequency range from channel 11 to 24. The channels 25 and 26 outside of
the IEEE 802.11 frequency spectrum show almost no packet loss during night. At
work time, there was a time period of very high packet loss. A student using the
telosB nodes for his Bachelor thesis generated traffic in a local testbed on channel
26. This traffic interfered with our measurements. The advantage of channel 26 is

84

3.4. NETWORK CONNECTIVITY

 0

 20

 40

 60

 80

 100

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

pa
ck

et
 lo

ss
 [%

]

channel

night
work time

Figure 3.14: Packet loss over 5 hops on different channels and different daytimes.

that it avoids interferences by IEEE 802.11 networks. For our future evaluations
we use channel 26 and ensure that no other testbed is enabled at the same time
period.

3.4 Network connectivity

The available sensor node platforms differ in computing power, sensing capabili-
ties, energy consumption and used radio module. To resolve complex environmen-
tal sensing requirements, different sensor nodes with specific characteristics have
been selected to fit to the particular operation purpose. The CC2420 radio module
provides an IEEE 802.15.4 conform physical interface to enable direct communi-
cation between different sensor node platforms. The sensor node platforms telosB
and MicaZ are both using a CC2420 radio module. This makes it possible to com-
municate directly between two different sensor nodes using different microcon-
troller platforms. Direct communication between the two sensor node platforms
has been working perfectly fine. Also the autonomous acknowledgment function
of the CC2420 is working perfectly between telosB and MicaZ. Every radio mod-
ule that is conform to IEEE 802.15.4 should be able to directly communicate to
telosB and MicaZ nodes.

3.5 Hardware Pre-Evaluation - Conclusion

The results show that the CC2420 radio module is the most energy efficient and
robust radio module. The DSSS mechanism of the CC2420 is significantly more
robust against interferences than the bit/byte-oriented radio modules. It is the only
radio module that supports a standardized physical layer and a link layer to enable
direct communication between heterogeneous sensor nodes. The CC2420 is widely
used in different sensor nodes such as telosB, micaZ, sensinode or imote2. The

85

3.5. HARDWARE PRE-EVALUATION - CONCLUSION

link layer functions offered by the CC2420 radio module reduce the load of the
microcontroller and ensure a precisely predictable transmission timing. Therefore,
we select the CC2420 radio module to design our energy efficient and reliable link
layer protocols. In the next chapter we introduce our contributed WSN protocols.

86

Chapter 4

WSN Protocols

This chapter introduces our contributed WSN protocols and the resulting network
stack. Two of our contributed protocols are located on the link layer, one on the
application layer. The link layer protocol offers the main functions to provide
energy efficiency and hop-to-hop reliability. The third protocol is an application
layer overlay protocol. It provides end-to-end reliability for UDP data flows.

Our link layer protocol stack is divided into two sub-layers to reduce the com-
plexity as shown in Figure 4.1. The lower layer handles the access to the physical
channel and the radio duty cycle mechanism to preserve energy. The upper layer
ensures hop-to-hop reliability. The lower layer is called radio duty cycle (RDC)
layer, according to the naming used by the Contiki [23] operating system. On the
other side Contiki names the upper layer the MAC layer, which can lead to con-
fusions. To avoid misunderstandings, we named this layer hop-to-hop reliability
(H2H) layer.

Link Layer
Hop to Hop Reliablity (H2H)

Radio Duty Cycling (RDC)

H2HR

BEAM

Figure 4.1: The two sub-layers of the link layer protocol stack.

On the RDC layer we implemented the Burst-aware Energy-efficient Adaptive
MAC protocol (BEAM) [3, 5]. BEAM is suitable to work with all IEEE 802.15.4
compliant radio modules such as the CC2420. It uses adaptive radio duty cycle
mechanisms to optimize the wake-up frequency corresponding to current network
load. BEAM uses positive acknowledgments and link condition information to
support the reliability functions of the H2H layer. We developed a traffic predic-
tion mechanism to enable BEAM to determine the optimal duty cycle.

On the H2H layer, we implemented the hop-to-hop reliability protocol (H2HR)
[3, 97]. H2HR ensures reliable hop-to-hop forwarding by local retransmissions.
Most retransmissions are required during periods with high internal interferences

87

4.1. BURST AWARE ENERGY EFFICIENT ADAPTIVE MAC PROTOCOL

and cause additional packet loss. Therefore, handling reliability at high traffic loads
is a major challenge for adaptive hop-to-hop reliable protocols. Main functions
for H2HR are detecting of traffic congestion and calculating an optimal transmis-
sion delay for a new or a retransmitted packet. H2HR uses different information
sources from one-hop neighbor nodes to determine the current conditions of the
physical channel. An optimal retransmission delay reduces packet collisions and
retransmission during a high traffic load period. This preserves energy, minimizes
internal interferences and decreases the traffic load and resulting interferences to a
noncritical level.

On the application layer we developed the UDP end-to-end reliability (UDP-
E2E) protocol to add an end-to-end reliability mechanism to UDP unicast flows.
The design of UDP-E2E is based on the sequence number mechanism of RMST
[86]. UDP-E2E uses negative acknowledgments to request retransmissions of lost
packets. It requires significantly less signaling packets than TCP to handle low
end-to-end packet loss rates.

To support the design process we started with implementing different proto-
col versions in the OMNeT++ network simulation framework [2]. The OMNeT++
simulator enables extensive and repeatable comparisons and analyses of the dif-
ferent protocol variations in a short time period. This enables improving the effi-
ciency, reliability and robustness of the protocols. Basic prerequisites for mean-
ingful results were a realistic model of radio channel interferences and a detailed
radio module implementation. Afterwards, we migrated the protocols to the net-
work stack of Contiki. This enables testing the protocols on real sensor nodes.
First, we used small scenarios to evaluate and improve the basic functions of our
protocols. Second, we used the WISEBED WSN real world testbed with different
larger network topologies to verify and compare the performance to other proto-
cols.

The remainder of this chapter is structured as follows. Subsection 4.1 describes
the protocol design of BEAM. Subsection 4.2 introduces the hop-to-hop reliability
protocol H2HR. Subsection 4.3.2 describes the end-to-end reliability application
layer overlay protocol UDP-E2E. Subsection 4.4 shows the embedding of our pro-
tocols into the Contiki network stack.

4.1 Burst Aware Energy Efficient Adaptive MAC Proto-
col

The main purpose of BEAM is to minimize the energy consumption to enhance
the lifetime of a WSN. BEAM preserves energy by duty cycling the radio mod-
ule. The radio duty cycle mechanism periodically turns the radio module on to
check the radio channel for incoming packets. Between these channel checks, the
radio module is turned off. The wake-up periods of the individual nodes in a WSN
are unsynchronized. This prevents synchronization messages and enables dynamic
duty cycles. Dynamic duty cycles enable the adaptation of the radio module sleep-

88

4.1. BURST AWARE ENERGY EFFICIENT ADAPTIVE MAC PROTOCOL

ing periods to the actual traffic load. BEAM additionally implements an ARQ
mechanism to support hop-to-hop reliability. BEAM is developed to work best
with the energy efficient packet-oriented and IEEE 802.15.4 compliant radio mod-
ule CC2420 [91] from Texas Instruments. It employs all advanced features of this
radio module. The design of the BEAM frame format is IEEE 802.15.4 compliant.
The direct support of the IEEE 802.15.4 frame format enables the CC2420 radio
module to execute common link layer tasks such as sending acknowledgments or
validating the CRC without interacting with the microcontroller as well as the di-
rect communication between heterogeneous sensor nodes.

The remainder of this section is organized as follows. First, Subsection 4.1.1
describes the requirements to implement a radio duty cycle protocol on the CC2420
radio module. Afterwards, Subsection 4.1.2 explains the basic functionality of
BEAM. Then several optimizations for BEAM are discussed in Subsection 4.1.3.
Subsection 4.1.4 specifies the offered reliability support for the H2H layer. Finally,
Subsection 4.1.5 describes the requirements to add FEC support to a RDC protocol
such as BEAM.

4.1.1 Impact of CC2420 Characteristics on BEAM Design

The hardware evaluation in Chapter 3 showed that the packet-oriented CC2420 ra-
dio module works best for our goals. On one hand, packet-oriented radio modules
reduce the flexibility in designing a link layer protocol, but, on the other hand, they
are able to efficiently execute common link layer tasks, such as channel checking
or acknowledgment handling. Shifting link layer tasks from the microcontroller
to the radio module can significantly reduce the execution time of link layer tasks.
Additionally, it preserves energy and reduces the code size on the microcontroller.
Related work in Subsection 2.6.1 introduced two common approaches for an asyn-
chronous radio duty cycle protocol on a packet-oriented radio module. To estimate
the capability of the two approaches, we implemented the basic functions of a LPP
and a LPL based protocol in the OMNeT++ network simulator. The evaluations
did not show a superior protocol for handling high traffic periods. But under low
traffic, LPL based protocols require significantly less energy than LPP based pro-
tocols. Therefore, BEAM is designed as an LPL protocol using beacon strobes.

The following subsections explain how to design an IEEE 802.15.4 compliant
LPL protocol using CC2420 radio functions.

Energy Efficient LPL Data Transmission Detection with the CC420

An energy efficient channel check mechanism is a basic requirement to achieve an
energy efficient link layer protocol. A channel check is required to periodically
scan for incoming traffic. This subsection describes LPL based data transmissions
and how to minimize energy costs of periodic channel checks for incoming traffic
with a CC2420 radio module. Data transmissions with LPL based protocols on a
packet-oriented radio module works basically as depicted in Figure 4.2. A node

89

4.1. BURST AWARE ENERGY EFFICIENT ADAPTIVE MAC PROTOCOL

with a pending packet sends a burst of beacon strobes to announce an upcoming
data transmission. At some point in time, the radio duty cycled receiver node wakes
up and listens to the channel for a particular time period (1). Within this particular
time period, any possibly existing beacon strobe burst can be detected. The shorter
the required time period to detect a beacon strobe the less energy is consumed by
the radio module if no frame has been detected. If a single beacon strobe has been
received that is addressed to the receiver, then an acknowledgment has to be sent
back to the sender (2). The acknowledgment enables the sender node to recognize
the wake-up of the receiver node. Now, the sender transmits the pending packet to
the listening receiver (3).

sleepsleep listen

sender

recevier

sleep

 data packet

send
early ACK

wait for
Early ACK

 data packet

send beacon
strobes

wake-up
and check channel

1 2 3

Figure 4.2: Transmission with a LPL based protocol on a packet-oriented radio module.

The length of the required listen period to reliably detect a beacon strobe, deter-
mines the energy consumption during very low traffic periods. The required mini-
mum length of a channel check to reliably detect a beacon strobe depends on two
factors. The first factor is the frame detection technique used by the receiver to rec-
ognize an ongoing transmission. The second factor is the time period required by
a sender to detect the acknowledgment after having sent the last byte of a beacon
strobe. This time determines the length of the silence period between the single
beacon strobe transmissions.

There are four different frame detection techniques to recognize a possible bea-
con strobe by a receiver.

1. First In First Out P-interrupt: The CC2420 FIFOP-pin triggers an interrupt
on the microcontroller after receiving the last byte of a frame. This tech-
nique is used by the evaluated XMAC implementation of Contiki described
in Chapter 5. The nodes listen to the channel until the CC2420 triggers the
interrupt. Using this technique, a frame is detected after its complete recep-
tion by the radio module.

2. Checking Start of Frame Delimiter: An ongoing frame reception can be de-
tected by checking the SFD pin. The value of the SFD pin is set to 1 after a
valid synchronization header has been received (see Section 2.1.7). Frames

90

4.1. BURST AWARE ENERGY EFFICIENT ADAPTIVE MAC PROTOCOL

with missing synchronization header cannot be detected using this detection
technique. This might be the case when the radio module was not yet in lis-
tening mode or by too many interferences while the synchronization header
was sent.

3. Using Clear Cannel Assessment: The CCA function, described in Subsec-
tion 2.1.7, makes it possible to detect ongoing transmissions, even if the
synchronization header is missing. The value of the CCA pin can be ar-
bitrarily checked by the microcontroller. The time interval between single
CCA checks has to be shorter than the time required to transmit a beacon
strobe. Otherwise, a beacon strobe could be missed.

4. Consistently reading the RX buffer: Instead of waiting for the interrupt, the
RX buffer can also be periodically copied to the microcontroller while the
radio module is in listen mode. This works well for short packets with known
length, such as XMAC beacon strobes or acknowledgments.

A sender of beacon strobes has to minimize the silence period between the individ-
ual beacon strobes. The silence period is the time period between two subsequent
beacon strobes, when the sender of the beacon strobe is listening to the channel
for the expected beacon strobe acknowledgment. The shorter this silence period is,
the shorter is the time period that has to be checked by the receiver to ensure that
there is no ongoing beacon strobe transmission. LPL requires a silence period to
enable the receiver acknowledging the successful reception of the beacon frame.
The acknowledgment is usually triggered by the microcontroller, using so-called
software acknowledgments. Therefore, the microcontroller has to copy the frame
from the radio module first. Then, the frame has to be interpreted by the micro-
controller, before it can generate the acknowledgment frame and copy it to the TX
buffer of the radio module. Finally, the microcontroller has to trigger the radio
module to send the acknowledgment.

The packet oriented radio module CC2420 offers an AUTOACK function for
sending hardware acknowledgments. They are handled without any interaction
with the microcontroller. Supporting IEEE 802.15.4 compliant link-layer headers
enables the radio module to construct link-layer header data, to calculate the CRC
and to generate an acknowledgment. These operations are executed while the frame
is being received. The elimination of interactions with the microcontroller results
in constant and reliable acknowledgment response times. Acknowledgments ex-
pected by the sender can be read with a small static delay from the RX buffer
after transmission of the last data frame. The response time of acknowledgments
handled by the microcontroller depends on the payload size and workload of the
microcontroller. Figure 4.3 shows the transmission of beacon strobes if expecting
a hardware or software acknowledgments. The send parts depict the beacon strobe
transmission announcing a pending packet. The incoming delay of the software ac-
knowledgment basically depends on the length of the previously sent data frame.
The waiting time is long enough to turn off radio module. The radio module has to

91

4.1. BURST AWARE ENERGY EFFICIENT ADAPTIVE MAC PROTOCOL

be turned on and switched into listening mode around 300 µs before the software
acknowledgment is expected. The 300 µs consist of 250 µs for starting the radio
module and 50 µs to compensate the time jitter caused by microcontroller opera-
tions of the receiver. Then, the microcontroller reads the RX buffer to check if the
received data is an acknowledgment.

radio offSend radio offSend

copy CC2420
RX-buffer

listen to channel
for ACK

Send

check if copied
data is ACK

silent period (0.8 ms)

silent period (4.6 ms)

beacon strobes expecting

beacon strobes expecting
hardware acknowledgements

software acknowledgements

Send Send Send

Figure 4.3: LPL MAC beacon strobes for hardware and software acknowledgments.

With the quick and static response time of the hardware acknowledgments, the
radio module is switched to listening mode after sending the beacon frame. After
a short delay, the acknowledgments can be copied from the RX buffer. As soon as
the received frame corresponds to the expected acknowledgment, the data frame
is sent. Otherwise, the next beacon strobe is sent. Section 5.2 of the evaluation
part describes a detailed performance analysis of the different channel check and
acknowledgment handling techniques.

4.1.2 Basic Functionality of BEAM

The design of BEAM is based on the LPL approach introduced in Subsection 2.6.1.
We developed two LPL based versions of BEAM. One version is based on the de-
sign of XMAC. Like XMAC, it uses short beacon strobes to announce a pending
data packet transmission. The data part is transmitted after receiving an acknowl-
edgement for a sent beacon strobe. In contrast to XMAC an additional acknowl-
edgement for the data part is sent. The additional acknowledgement is used by our
hop-to-hop reliability mechanism, introduced in Section 4.2, to detect packet loss.
The other LPL version of BEAM is different from XMAC. This BEAM version
uses beacon strobes including the payload. The payload is piggybacked to the
beacon strobe to avoid the additional data transmission after the beacon strobes.

All transmitted packets are IEEE 802.15.4 compliant to maximize reusability
of BEAM and enable the full support of the CC2420 radio module. BEAM uses
16-bit IEEE 802.15.4 sender and destination addresses. To ensure a successful
transmission of the data part, every correctly received packet is acknowledged.
The next two subsections describe the two LPL based versions of BEAM in more
detail.

92

4.1. BURST AWARE ENERGY EFFICIENT ADAPTIVE MAC PROTOCOL

BEAM using Short Beacon Strobes

Figure 4.4 depicts the BEAM version using short beacon strobes to announce a
pending frame. This version is based on XMAC. Four successful transmissions are
required to forward a single packet. The numbering of the following list refers to
the numbers depicted in Figure 4.4.

sleepsleep listen

sender

receiver

sleep

 data packet

neighbor sleep

early
ACK

CCA check

 data packet

3

5 7

10

CCA check

1 4 8

short beacon
strobes

wait and read
early ACK

data
ACK

9

2

6

CCA
check

Figure 4.4: BEAM using short beacon strobes.

1. A sender with a pending packet repeatedly transmits short beacon strobes.
With the CC2420 radio module, a short beacon strobe is realized as an IEEE
802.15.4 conform frame with an empty MAC frame payload addressed to the
receiver.

2. A neighbor node wakes up to check the channel. The CCA check detects
an ongoing transmission. Therefore, the neighbor node does not turn off the
radio module. It stays in listening mode to be able to receive the next frame.

3. The neighbor receives the next short beacon strobe. Since the packet has not
been addressed to the node, the radio module is turned off for the remaining
duty cycle period.

4. The addressed receiver node wakes up to check the channel. During the
first CCA check of the receiver node, the sender is listening for an incoming
acknowledgment. Therefore, the receiver cannot detect a transmission with
the first CCA check. To save energy, the receiver now shortly turns off the
radio module, before the second CCA check is performed.

5. At the second CCA check, the receiver detects an ongoing transmission, but
the frame start has been missed. The receiver now waits for receiving the
next beacon strobe. The receiver now waits for receiving the next beacon
strobe that raises the FIFOP interrupt.

93

4.1. BURST AWARE ENERGY EFFICIENT ADAPTIVE MAC PROTOCOL

6. The receiver node receives the next short beacon strobe.

7. After receiving the entire frame, the receiver instantly returns an early ac-
knowledgment. With the CC2420 radio module this can be realized by the
automatic acknowledgment (AUTOACK) without any interaction with the
microcontroller. With enabled AUTOACK function, an acknowledgment is
sent if the receiver address matches, the acknowledgment flag in the link-
layer header is set and the CRC was correct. Simultaneously, the FIFOP
interrupt triggers the microcontroller to copy the beacon strobe to a local
packet buffer. After the beacon frame has been processed, the receiver ex-
pects a data packet. To save energy, the radio module can shortly be turned
off, as some time is required by the sender to process the acknowledgment
before the transmission of the data part can be started.

8. The sender receives the early acknowledgment, which announces that the
receiver is ready. Now, the sender starts the data transmission without any
channel check. This works as the successful exchange of beacon strobe and
early acknowledgment indicates a free channel.

9. After receiving the entire data packet, it is processed and acknowledged by
the receiver node. With the CC2420 radio module, this time the acknowl-
edgment flag has not been set to in the IEEE 802.15.4 link-layer header.
The software acknowledgment is created directly by BEAM, copied to the
CC2420 radio TX buffer and then sent without any channel check. A data
acknowledgment created by BEAM offers the opportunity to add additional
state information to the frame. The detailed meaning of the state informa-
tion is explained in Section 4.1.3. To save energy, the sender turns the radio
module shortly off between sending the data packet and receiving the data
acknowledgment.

10. The neighbor node performs two CCA checks to ensure that there is no on-
going traffic. Now, both CCA checks have been negative. Therefore, the
node goes back to sleep until the next wake-up period.

BEAM with Beacon Strobes Including Payload

BEAM with beacon strobes including payload, piggy-back the data part to the bea-
con strobe. A sender with a pending packet periodically transmits beacon strobes
including payload until an acknowledgment has been received. Only two success-
ful transmissions are required to forward and acknowledge a data packet. This
reduces the complexity of the protocol. If a receiver gets a corrupted data payload,
it can wait for the next beacon frame including the same data payload. A drawback
of this approach is the higher energy consumption at non-involved receivers. In
case of no detected traffic, both versions require exactly the same amount of en-
ergy. Figure 4.5 depicts how BEAM is using beacon strobes including the payload.
The numbering of the following list refers to the numbers depicted in Figure 4.5.

94

4.1. BURST AWARE ENERGY EFFICIENT ADAPTIVE MAC PROTOCOL

sleep

sleepsleep listen

sender

receiver

sleep

data ACK

neighbor sleep

data beacon
strobes

CCA check

listen

1 4

2
7

CCA check

 data packet data packet data packet

3

5 6

Figure 4.5: BEAM with beacon strobes including the payload.

1. A sender with a pending packet repeatedly transmits beacon strobes includ-
ing payload. These beacon strobes are IEEE 802.15.4 conform frames.
There is no difference compared to the data packet sent by BEAM with short
beacon strobes.

2. A neighbor node wakes up and detects an ongoing transmission. Therefore,
the node waits for the next synchronization header.

3. Since the target address of the next beacon strobe belongs to another node,
no acknowledgment has to be sent. After receiving the data packet, the radio
module is turned off for the rest of the wake-up interval. Especially when
sending long packets, the neighbor has to listen to the channel for a signifi-
cantly longer time than with short beacon strobes.

4. The CCA check of a receiver node detects an ongoing transmission. The
synchronization header has been missed. The radio module stays in listening
mode to receive the next beacon strobe.

5. The radio module of the receiver detects and receives the next beacon frame.

6. The beacon strobe has been transmitted completely and is acknowledged by
the receiver node. With the CC2420 radio module, the acknowledgment can
be realized by the AUTOACK function without any interaction with the mi-
crocontroller. After processing the beacon frame, the receiver node turns off
the radio module. The transmitter goes back to sleep after the data acknowl-
edgment has been received.

7. In case of no ongoing traffic, a node goes back to sleep immediately after
two CCA checks. There is no difference between the both BEAM versions
if no frame has been detected.

95

4.1. BURST AWARE ENERGY EFFICIENT ADAPTIVE MAC PROTOCOL

The performance characteristics of both BEAM versions are compared in Subsec-
tion 5.2.3. The next subsection introduces our approaches to optimize the perfor-
mance of both BEAM versions.

4.1.3 BEAM Optimizations

The first part of this subsection introduces different approaches to optimize the
performance of BEAM. This includes one of our main contributions, namely the
buffer index, which is used to determine the optimal length of the next sleeping
period. The second part shows how BEAM integrates the time and energy efficient
link layer functions offered by the CC2420 radio module. The use of the AU-
TOACK and the CCA function enables an energy efficient operation during time
periods with low traffic load.

Adaptive Duty Cycles

BEAM supports asynchronous adaptive duty cycles. The adaptivity is used to
change the duration of the sleeping period to the needs matching the current traffic
load. During idle periods with low traffic load, a predefined default duty cycle
period is applied. The default duty cycle period is the longest sleeping period
performed by BEAM. A drawback of long sleeping periods is the long delivery
time required to forward a single packet throughout the WSN. The duration of the
default duty cycle period can be configured according to the application require-
ments of the WSN. If an environmental monitoring application requires a short
response time, then the default duty cycle period has to be rather short. Otherwise,
the default duty cycle period can be extended according to the required energy
consumption.

Subsection 5.2.4 evaluates different default duty cycle period for BEAM. XMAC
and ContikiMAC are using a default duty cycle period of 125 ms.

BEAM uses four different predefined adaptive duty cycle periods. The corre-
sponding duty cycle period is selected according to the expected traffic load. Sub-
section 4.1.3 shows how the expected traffic load is calculated. An appropriately
selected duty cycle period only consumes as few energy as required to provide
sufficient bandwidth for the current traffic load. Increasing the bandwidth during
periods with high interferences also saves energy by improving the reliability per-
formance due to less retransmissions and lower packet loss. Too low bandwidth
may cause packet buffer overflow. Packets dropped by a packet buffer overflow
require an energy costly end-to-end retransmission. Moreover, shorter duty cycle
periods reduce the time duration between to wake-up periods. This reduces the
number of beacon strobes required to be detected by the receiver node. A lower
number of required beacon strobes decreases inter-flow and intra-flow interferences
and resulting packet loss of simultaneously forwarded packets.

Figure 4.6 explains the advantage of an appropriately selected duty cycle period
with the help of an example. The nodes labeled with C (C-nodes) are able to detect

96

4.1. BURST AWARE ENERGY EFFICIENT ADAPTIVE MAC PROTOCOL

A

A A

A

B

B

B

C

C

C DD

D

1

2

3

interference

range

A

se
ns

in
g

 ra
ng

e

Figure 4.6: Congestion in a WSN.

transmissions of other nodes placed inside the sensing range area. The sensitivity
of the radio module and the used transmission power determine the sensing range.
The smaller of the dashed circles around the C-nodes depicts the sensing range
of the individual nodes. Additionally, this circle depicts the range in which a C-
node is able to forward a packet. The larger dashed circle depicts the interference
range of a C-node. Nodes within an interference range experience bit errors in
the packet reception. Nodes labeled with A are able to forward their packets to
the next hop. Less than 5% of these transmissions fail and, therefore, require hop-
to-hop retransmission. The nodes labeled with B are able to forward the received
packets to C-nodes. Some of these transmissions have to be retransmitted due to
bit errors. C-nodes have serious problems to forward their packets towards nodes
labeled with D. C-nodes receive significantly more packets than they are able to
forward. Unfortunately, they are not able to detect each other’s transmissions. This
results in a hidden node problem, causing high internal interferences, respectively
a too low SNR at the nodes labeled with D. If congestion cannot be dissolved, then
C-nodes have to drop packets from their local packet buffers.

We identified two network conditions provoking congestion. First, bidirec-
tional traffic on a single network path, as represented by line 1 and line 2 in Figure
4.6, may cause intra-flow interferences. Second, packets concurrently forwarded
on different nearby located network paths, represented by line 1 and line 3, may
cause inter-flow interferences and hidden node problems. Both network conditions
tend to cause congestion and packet loss at higher traffic loads.

Protocols such as BEAM, which require link layer acknowledgments, may in-
crease the congestion problem caused by intra-flow and inter-flow interferences. In
some cases, a node is able to receive most of the data packets, but the acknowledg-

97

4.1. BURST AWARE ENERGY EFFICIENT ADAPTIVE MAC PROTOCOL

ments fail. The missing acknowledgments trigger additional non-required retrans-
missions. This further increases interferences and prevent the sender node from
processing the next frame.

By reducing the duty cycle period, bandwidth is increased and the delivery time is
reduced. A faster delivery time can reduce the number of simultaneously forwarded
packets in the network. If only one packet is forwarded, no internal interferences
appear. Internal interferences significantly increase bit error rates. The result-
ing packet loss further triggers additional retransmissions to recover lost packets.
Triggered retransmissions generate additional traffic and interferences. Rapidly
increasing interferences and resulting retransmissions may cause congestion. In-
coming packets during congestion have to be buffered by the node. The packet
count that can be stored by a node is limited. Therefore, packets usually have to be
dropped if the congestion persists for longer period of time.

Handling simultaneously forwarded packets is a major challenge for reliable
radio duty cycle protocols. Our tests with the OMNeT++ network simulator con-
firm that congestion and packet loss are basically caused by several packets for-
warded during the same time period in the same interference range. The result-
ing congestion and blocked traffic are hard to dissolve and may cause significant
packet loss. To avoid congestion and to simultaneously preserve energy, an ap-
propriate duty cycle period has to be applied to the individual nodes. To apply an
appropriate duty cycle period, the current traffic load has to be measured.

The next subsection discusses how to determine the current traffic load to apply
an appropriate duty cycle period.

Buffer Index

Adaptive duty cycle protocols adapt the duty cycle period according to the current
traffic load. Therefore, adaptive duty cycle protocols require a traffic load measur-
ing mechanism to determine the current traffic load. Protocols such as XMAC and
MaxMAC use traffic monitoring, which counts the recently forwarded packets to
determine the current traffic flow. These mechanisms work quite well in simple
network topologies with low traffic rates where almost no internal interferences
can occur. Network topologies including multiple connections and simultaneously
forwarded packets cannot be handled by these simplistic mechanisms. Resulting
internal interferences may provoke congestion, which then considerably delay the
forwarded traffic flow. Counting recently forwarded packets shows the same re-
sults for low traffic load caused by less generated packets as well as for congestion
caused by a too high traffic load. Therefore, traffic monitoring mechanism will
increase the duty cycle period in both cases. Longer applied duty cycle periods
in case of congestion will increase resulting packet loss even more. Congestion
requires short duty cycle periods to enhance offered network bandwidth for high
traffic load. Therefore, traffic monitoring is not suitable to avoid congestion caused
by internal interferences. With traffic monitoring, packets forwarded during the
same time period are dropped to reduce the internal interferences.

98

4.1. BURST AWARE ENERGY EFFICIENT ADAPTIVE MAC PROTOCOL

BEAM uses forward-looking traffic prediction to determine an appropriate
duty cycle period. This mechanism is based on a two-bit buffer index representing
the number of pending packets. The buffer index is added to every beacon strobe
to inform a receiving node about pending packets for the addressed node. The
buffer index is also copied to the software acknowledgment used by the BEAM
version with short beacon strobes. The hardware acknowledgments used by the
other BEAM version cannot be modified. The buffer index in the software ac-
knowledgment informs a sender about total pending packets in the buffer of the
receiver node. To not waste the limited IEEE 802.15.4 MAC frame payload, the
buffer index is written inside two of the five reserved bits of the IEEE 802.15.4
Frame Control Field.

Table 4.1 shows the mapping between the value of the buffer index and the
amount of pending packets. The column generic shows a mapping, which is in-
dependent of the used packet buffer capacity. The column implemented shows the
mapping used in our implementation with a packet buffer capacity of six packets.
A packet buffer capacity of six packets is also the default capacity used by Contiki.

Transmitted
buffer index

Pending Packets
(generic)

Pending Packets
(implemented for a buffer
capacity of 6 packets)

0 0 0
1 1 1
2 2 - 50% of the buffer capacity 2-3
3 >50% of the buffer capacity 4-6

Table 4.1: Buffer index selected according to the amount of pending packets.

A node stores the received buffer index with the current timestamp and correspond-
ing sender address in its neighbor table. This table holds all relevant neighbor
node information received by beacon strobes, data frames or acknowledgments.
For every neighbor node an individual buffer index entry is maintained in the neigh-
bor table. The use of the buffer index depends on the addressing of the received
beacon strobes. If the beacon strobe was addressed to this node then the buffer
index is stored as pending buffer index to the neighbor table. Every time the radio
module is turned off, the pending buffer indices are accumulated to calculate the
expected traffic and resulting duty cycle period. In case of an implicit acknowl-
edgment or if a packet has been received by overhearing, the buffer index is stored
in the neighbor table as fuzzy buffer index. The fuzzy buffer index indicates the
expected traffic load between neighbor nodes, while the pending buffer index is
announcing incoming traffic for this node. Therefore, the fuzzy buffer index value
is not used by BEAM to calculate the expected incoming traffic load. It is only
offered to the reliability layer to estimate the expected overall local traffic load and
resulting inter-flow interferences.

99

4.1. BURST AWARE ENERGY EFFICIENT ADAPTIVE MAC PROTOCOL

The use of the pending buffer index enables a sender to announce multiple
pending packets with a single beacon strobe to a receiver. The accumulated re-
ceived pending buffer indices determine the length of the next duty cycle period.
Every time after the radio has been turned off, the next wake-up time point is cal-
culated. This mechanism enables a node to directly switch from the longest to the
shortest duty cycle period by receiving a single beacon strobe announcing abruptly
increasing traffic load. Table 4.2 shows two possible mappings between the ac-
cumulated pending buffer indices and the applied duty cycle period. The values
in column wake-ups per sec. (implemented) represents the mapping used by our
BEAM implementation for comparison with XMAC and ContikiMAC. This map-
ping uses, like XMAC and ContikiMAC, a default duty cycle period of 125 ms.
resulting in eight wake-up periods per second. Column wake-ups per sec. (low
energy profile) shows an alternative mapping for a more energy preserving config-
uration. A drawback of the energy preserving mapping is the longer delivery times
at low data rates. A detailed evaluation for a maximum and a minimum value for
the wake-ups per second is shown in the evaluation part in Subsection 5.2.4.

Traffic load Accumulated
pending
buffer indices

Wake-ups per sec.
(implemented)

Wake-ups per sec.
(low energy profile)

Low 0 8 1
Moderate 1 16 8
High 2 - 4 64 64
Maximum >4 256 256

Table 4.2: Two mappings of the pending buffer indices to the selected wake-up frequency.

Optimizing Beacon Strobe Transmissions

With a LPL protocol, the exact timing of the next wake-up of a receiver is usually
unknown to a sender. Therefore, BEAM starts transmitting the beacon strobes as
soon as a new packet has been received from the upper layer. The longer the sleep-
ing period of the receiver is, the more beacon strobe transmissions are required on
average. Optimization of the beacon strobe transmission, presented in this subsec-
tion, tries to calculate the next wake-up of a receiver. This enables BEAM to delay
the start of the beacon strobe transmissions until the receiver wakes up. Shorter
beacon strobe transmission periods reduce the interferences and preserve energy.

A precondition for reliable wake-up calculations are consistent time lengths
between the individual wake-up periods, i.e. each of the four predefined duty cycle
periods shown in Table 4.2 has to be exactly as long as defined in the table. Frame
or noise detection during the wake-up phase must not affect the total length be-
tween two wake-up periods (one duty cycle period). This means if currently eight
wake-up periods per second are applied, then every 125ms a new wake-up period

100

4.1. BURST AWARE ENERGY EFFICIENT ADAPTIVE MAC PROTOCOL

has to be performed. Therefore, the time taken for the wake-up period is subtracted
from the total duty cycle period to get a matching sleeping period length. Some-
times, the duration of a wake-up period is longer than the predefined duty cycle
period. In this case a multiple of the current duty cycle period is used to get a suit-
able sleeping period duration. This results in consistent channel check periods,
where a node is able to receive a frame.

Next to the consistent channel check periods, a two-bit duty cycle index is
added to the IEEE 802.15.4 Frame Control field. The duty cycle index informs
the neighbor node, which of the four available duty cycle periods is currently used
by the node. It is added to every beacon strobe and software acknowledgment. A
received duty cycle index is stored in the neighbor table. The duty cycle index, in
combination with the timestamp and neighbor node address, provides an estimation
of the next wake-up time for a receiver. The transmission delay is not applied if
the next wake-up time is estimated within the next 8 ms. If no acknowledgment
has been received, beacon strobes are sent for an entire duty cycle period of the
receiver. If still no acknowledgment has been received, then the beacon strobes are
sent for the duration of a default duty cycle period.

Figure 4.7 shows a delayed transmission for BEAM with short beacon strobes.
The upper layer respectively the reliability layer H2HR forwarded a packet to
BEAM at (1). BEAM checks if there is a valid entry for the receiver in the neigh-
bor table. According to the last timestamp and duty cycle index the next wake-up
is expected at (3). BEAM delays the beacon strobe burst until this point in time
(2). BEAM using beacon strobes including the payload works exactly the same.
The transmission delay mechanism introduced in this subsection is analyzed in
Subsection 5.2.2.

sleepsender sleep

beacon
strobes

 data packet

2

1

new packet
from upper layer

3

receiver sleep sleeplisten

Figure 4.7: Transmission delay for beacon strobes.

Reducing Energy Consumption during Low Traffic

During periods with low or no traffic load, hundreds of wake-up periods may be
performed between two forwarded packets. During these idle periods, all energy
consumed by the radio module is used to detect a potential beacon strobe trans-
mission. To preserve energy, the required length of the listen interval to check the

101

4.1. BURST AWARE ENERGY EFFICIENT ADAPTIVE MAC PROTOCOL

channel, has to be as short as possible.
The CC2420 radio module offers different channel checking techniques. Fig-

ure 4.8 shows the energy required by three different channel checking techniques,
which could be used by BEAM. The shown measurements are generated by the
RIGOL multimeter with 50’000 measurement points per second. They are intended
to get a basic impression about the performance of the different mechanisms. A de-
tailed evaluation of the channel check techniques is performed in Subsection 5.1.4.
Most energy is required by using the FIFOP pin interrupting the microcontroller
to detect a transmission. This technique is for example used by XMAC. Using the
AUTOACK and CCA function offered by the CC2420 radio module enable clearly
shorter channel checks. The curve for the continuous CCA check shows the short-
est execution time. During the used time period, three individual CCA checks are
performed in a row. This is sufficient to detect any ongoing BEAM beacon strobe
transmission acknowledged by the AUTOACK function. The curve with the two
short peaks shows the energy profile if the radio module is turned off between
the single CCA channel checks. Here the radio module is turned on twice for the
minimum time to achieve a valid value of the CCA pin. The applied time period
between the two individual CCA checks is shorter than the transmission time re-
quired to send the shortest possible beacon strobe. Otherwise, a beacon strobe
could be missed. As a result BEAM will use the AUTOACK function and two short
CCA checks to minimize the energy consumption during idle periods.

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6 7 8

el
ec

tri
ca

l c
ur

re
nt

 [m
A]

time [ms]

FIFOP pin interrupting the microcontroller (350.6uJ)
Continuous CCA checks (57.5 uJ)

Two short CCA checks (38.9 uJ)

Figure 4.8: Energy requirement of different with beacon strobes including the payload.

CRC Calculation

The AUTOACK function of the CC2420 radio module requires an IEEE 802.15.4
conform CRC to validate incoming frames. To relieve the microcontroller from
calculating and verifying a compliant CRC, the AUTOCRC function of the CC2420
can be used. The AUTOCRC function calculates the CRC on the radio module and
transmits it after the last data byte of the TX buffer. On the receiver side, the CRC

102

4.1. BURST AWARE ENERGY EFFICIENT ADAPTIVE MAC PROTOCOL

is calculated and checked for validity. Calculating the CRC by the radio module
reduces the code size, preserves energy and reduces the execution time.

4.1.4 BEAM Reliability Support

Introducing BEAM reliability support requires a short introduction into the coop-
eration between BEAM and the overlaying hop-to-hop reliability protocol. The
reliability protocol is responsible for handling the packet queue and additionally
delaying the transmissions if required. Transmission delays are used to prevent
and handle congestion during time periods with too high traffic load or internal
interferences.

Forwarding a packet with BEAM and the overlaying hop-to-hop reliability pro-
tocol works as follows. First, the reliability layer determines which packet at which
time has to be forwarded next. This packet is delegated to BEAM including a se-
quence number for reference purposes. Then, BEAM tries to transmit the packet
to the next hop. After processing the packet, BEAM sends a transmission report
including the sequence number back to the reliability protocol. The transmission
report provides additional information necessary to calculate an appropriate trans-
mission delay if required. BEAM defines four different transmission reports:

1. Transmission successful: The acknowledgment for the data frame has been
received. The data packet has been successfully transmitted. Additionally,
BEAM offers the measured RSSI and LQI values offered by the CC2420
radio module to the reliability protocol. This information can be used for
routing decisions.

2. Missing Acknowledgment: The beacon frame strobe has been sent. But
no acknowledgment or other packets have been received during the beacon
frame strobe. This may indicate that there is currently a hidden node problem
or that the node has disappeared.

3. Interference detected: The beacon frame strobe has been interrupted due
to interferences. Some other nodes are transmitting data.

4. Channel busy: The channel has been busy. There was no possibility to start
the beacon strobes.

BEAM also provides access to its neighbor table. This offers the reliability pro-
tocol additional information about the current network condition at the neighbor
nodes. Table 4.3 shows the values provided in the neighbor table.

The introduced BEAM transmission report and BEAM neighbor table provide
detailed information about the current network condition in the local area. Our hop-
to-hop reliability protocol uses the information to detect and dissolve congestion.

103

4.1. BURST AWARE ENERGY EFFICIENT ADAPTIVE MAC PROTOCOL

Value Description/Purpose
Timestamp Time of the last successful reception
Address Address of the neighbor node
Duty cycle index Currently used duty cycle period
Pending buffer index Expected packets from this neighbor
Fuzzy buffer index Pending packets of this neighbor

Table 4.3: BEAM neighbor table

4.1.5 BEAM FEC Support

FEC codes are a common approach to enhance reliability of wireless transmis-
sions. The intention of a FEC code is basically to improve the probability of a
successful transmission by adding redundant information. They do not include
a retransmission mechanism and, therefore, do not save energy. Packet loss that
is caused by corrupted a physical frame start cannot be detected by FEC mech-
anisms. Therefore, retransmissions have to be performed by an additional ARQ
mechanism. Moreover, energy efficiency has to be provided by a mechanism such
as radio duty cycling. Although FEC codes are able to reduce the number of re-
quired retransmissions, they do not directly preserve energy by default. Instead of
retransmitting a lost frame, the radio module is switched into listening mode. Un-
fortunately, this does not save energy, since the CC2420 radio module consumes
less energy in transmission than in listening mode. The radio module has to be
turned off to save energy. Nevertheless, FEC codes are known to be able to en-
hance the energy efficiency and reliability performance of a network stack.

We performed a detailed evaluation of the general potential of two different
FEC codes. One FEC code features a high recovery capability with high energy
and time requirements. The other FEC code has low energy and time requirements,
but also a lower recovery potential. We measured the energy consumption and reli-
ability performance under different network conditions. Additionally, we analyzed
the impact of the physical channel to FEC codes by using a packet-oriented and
a byte-oriented radio module. The evaluation and resulting potential of both FEC
codes are presented in Section 5.4. To verify the results about the general poten-
tial of the FEC codes, we included both FEC codes into BEAM. The rest of this
subsection describes the requirements and resulting design decisions to add the
FEC codes to a radio duty cycle protocol using an IEEE 802.15.4 compliant radio
module.

The additional energy and time requirements of FEC codes imply a serious
challenge for energy efficient radio duty cycle protocols. Especially the decoding
of an erroneous packet depicts a problem. FEC decoding cannot be handled by
the radio module, which makes it impossible to use the AUTOACK function. A
FEC encoded frame has to be encoded by the microcontroller. This delays frame
acknowledgment, leading to longer silence periods between the individual beacon

104

4.1. BURST AWARE ENERGY EFFICIENT ADAPTIVE MAC PROTOCOL

strobes. The decoding delay additionally increases the acknowledgment delay and
the resulting acknowledgment delay increases the energy required to perform the
periodical channel check.

Furthermore, a valid IEEE 802.15.4 frame header is required to make use of
the AUTOACK function. Therefore, the link layer header cannot be encrypted by
a FEC code, when using a CC2420 radio module. Only the link layer payload can
be encoded. These restrictions result in the following protocol design:

• Use short beacon strobes: Short beacon strobes do not contain any payload
that can be encrypted. This enables a receiver to make use of the AUTOACK
function to acknowledge a beacon strobe. The resulting silence period be-
tween the individual beacon strobes is as short as possible, which enables
an energy efficient wake-up periods. In case of erroneous beacon strobe, the
next beacon can be used to receive the payload.

• Encryption of the payload: The encryption of the payload is done by the
reliability protocol handling the local packet buffer and retransmissions. By
buffering the encrypted packet for retransmissions, the packet has to be en-
coded only once.

• Software acknowledgement for data frames. The receiver only has to
recover a packet if the CRC check of the radio module indicates a bit error.
The maximum acknowledgement waiting time of the sender depends on the
transmitted payload length. This is due to the fact that the time required by
the receiver to read the frame from the RX buffer and to recover potential bit
error depends on the received frame length.

• Static and adaptive versions: We implemented two versions of the Ham-
ming(12,8) and Reed-Solomon(255, 225) FEC codes introduced in Section
2.5.4. The static FEC code versions encode every transmitted packet re-
gardless of the bit error rate of a link. The adaptive FEC code versions
announce in the data acknowledgment if the packet was received with bit
errors. The sender encodes a packet if either the data acknowledgment for
the last data frame was missing or if the receiver announced bit errors in the
received packet. After receiving a data acknowledgment announcing error
free transmission, FEC encoding is disabled for the next data transmission.

Section 5.4 presents a detailed evaluation of FEC codes concerning energy ef-
ficiency and reliability performance in WSNs. This includes the evaluation of
BEAM supporting FEC introduced in this section.

4.1.6 BEAM Summary

BEAM is an energy efficient link layer protocol to maximize the lifetime of a WSN.
It employs adaptive and unsynchronized radio duty cycle periods to minimize en-
ergy usage of the attached radio module. BEAM uses a traffic prediction mecha-
nism for adapting the duty cycle periods to the current traffic load. BEAM employs

105

4.2. HOP-TO-HOP RELIABILITY PROTOCOL

all advanced features of the energy efficient IEEE 802.15.4 compliant radio module
CC2420 to optimize the energy efficiency. Supporting the IEEE 802.15.4 standard
additionally enables a direct communication between different heterogeneous sen-
sor node platforms. The performance of BEAM is evaluated in Chapter 5.

4.2 Hop-to-Hop Reliability Protocol

The purpose of the hop-to-hop reliability protocol (H2HR) [3, 97] is to ensure reli-
able hop-to-hop forwarding. The design of H2HR has its source on the evaluation
results of different end-to-end reliability protocol mechanisms. We analyzed dif-
ferent existing reliability mechanism for WSNs with the OMNeT++ network sim-
ulator [4]. We implemented the different mechanisms introduced by the authors of
[22] and [12]. These mechanisms are located on a layer between the IP and the
TCP layer to handle caching and forwarding of TCP/IP packets. One of these op-
timization mechanisms makes use of acknowledgment information offered by the
link layer. In case of failed forwarding to the next hop, a cached copy of the lost
TCP frame is immediately injected into the network layer to be forwarded again.
This mechanism has been the most efficient mechanism evaluated by far. Unfortu-
nately, the caching mechanism requires that all frames of a single TCP connection
are sent over the same route through the WSN. Furthermore, they require an adap-
tation of IP forwarding rules to send every incoming TCP/IP frame to the transport
layer instead of routing them directly. This would violate the layer separation in
our network stack, where transport protocols are only involved at the endpoints of
a TCP connection.

Therefore, we shifted the additional reliability functions in our network stack
to the link layer and created H2HR. H2HR insistently tries to retransmit every un-
successfully transmitted packet to avoid end-to-end retransmissions. This enables
reliable hop-to-hop forwarding for all unicast based transport protocols. We expect
lower energy consumption by excessive local retransmissions than for end-to-end
retransmissions. A main challenge for H2HR is to avoid packet loss caused by
congestion. H2HR is able to detect critical network conditions as well as adapting
traffic flow by controlling the particular point in time of every transmission. This
enables H2HR to avoid or dissolve congestion.

Subsection 4.2.1 describes the packet buffer queue for storing packets in H2HR.
Subsection 4.2.2 then introduces the congestion detection and control mechanism
to calculate an optimal transmission time. Subsection 4.2.3 explains the H2HR
backpressure mechanism. Subsection 4.2.4 describes the different processes of
H2H when forwarding a data frame. Finally, Subsection 4.2.5 introduces the packet
aggregation mechanism used by H2HR and BEAM to minimize the amount of for-
warded packets.

106

4.2. HOP-TO-HOP RELIABILITY PROTOCOL

4.2.1 Packet Queue

A basic requirement for a hop-to-hop reliability layer is to be able to buffer packets
in a packet queue. All packets received from an upper layer have to be stored in
the packet queue for possible retransmissions. Incoming packets from the lower
layer can be forwarded to the upper layer without the need of being processed. To
enhance the effectiveness of the packet queue, we add some status information to
the slots of the packet queue.

• Ready to send. This packet is ready to be sent. There was no transmission
of this packet yet.

• Transmission in process. The packet in this slot is currently processed.
Either BEAM is trying to send the packet right now or the H2HR packet
handler is delaying the transmission.

• Successfully transmitted. The packet has been successfully forwarded to
the next node. The queue slot can be overwritten. This is also used as default
state after the system has powered on.

• Transmission failed. It was impossible to forward the packet to the next
hop. The retransmission limit for this packet has been reached.

H2HR does neither delete a packet after successful forwarding nor after reaching
the retransmission limit. Slots are just marked with the corresponding state and
timestamp. New packets received from the upper layer are copied to a slot la-
beled with successfully transmitted if available. Otherwise, they are copied to slots
marked with transmission failed. If none of these slots is available, the packet is
dropped. Most of the packet loss, which occurred in our experiments, was caused
by overflow of the local packet buffer during congestion. BEAM already tries to
minimize congestion by offering sufficient bandwidth during critical periods, but
sometimes too many packets are forwarded within the WSN. The resulting conges-
tion disrupts traffic flow and results in packet buffer overflow. The next subsection
describes the H2HR congestion detection and control mechanism to detect and
prevent congestion by reducing the traffic flow and internal interferences.

4.2.2 Congestion Detection and Control Mechanism

The goal of the H2HR congestion detection and control mechanism is to adapt the
traffic flow before it is disrupted by congestion. Most congestion is either caused by
too much interference in a challenging network topology or by too many packets
generated and injected into the network. The adaptive radio duty cycle protocol
BEAM already adapts the bandwidth concerning the expected traffic flow to avoid
traffic bottlenecks. H2HR slows down the traffic flow if the offered bandwidth
by BEAM is not sufficient. Reducing the traffic flow also reduces the inter-flow
interferences in network topologies with multiple traffic flows. This enhances the

107

4.2. HOP-TO-HOP RELIABILITY PROTOCOL

probability of blocked nodes to forward their buffered packets. In case of too many
generated packets, packets have to be dropped as soon as possible in order not to
overload the WSN. The most energy efficient procedure is to drop them already on
the generating node, i.e. before they are transmitted for the first time. Controlling
the delays of the individual packet transmissions causes a hop-to-hop backpressure
mechanism.

When detecting upcoming congestion, H2HR reduces the data rate by calculat-
ing an optimal transmission delay. H2HR uses three different information sources
to enable an accurate congestion detection and determination of an appropriate
transmission delay:

1. Transmission report of BEAM: The transmission report provides informa-
tion about the channel load. The message channel busy as well as inter-
ference detected shows detected nearby transmissions. Missing acknowledg-
ments indicate a hidden node problem.

2. Neighbor table of BEAM: The neighbor table provides information about
the receiver load such as cached packets and current duty cycle period (see
Table 4.3). This enables the detection of upcoming congestion. The more
traffic load a receiver node currently has to handle, the longer is the used
transmission delay to that node.

3. Retransmission count of a packet: For each retransmission attempt of an
individual packet the transmission delay is increased.

An optimal transmission timing of the individual packets provides an optimal traf-
fic flow. In case of low traffic load, forwarding of a packet can be executed rapidly.
Moreover, a lost packet can be instantly retransmitted. With increasing traffic load,
especially the retransmissions of lost packets have to be timed carefully. Other-
wise, too much interference may overload the radio channel. The next subsections
describes the use of the information of the three different available information
sources in more detail.

1. Source: Transmission Report of BEAM

The transmission report enables the estimation of the current channel load. The
higher the channel load is, the higher is the probability of internal interferences re-
sulting in bit errors and retransmissions. Unfortunately, only interferences caused
by transmissions from nearby nodes can be directly detected by the radio mod-
ule. The radio module cannot directly detect interferences caused by distant nodes.
H2HR uses the following transmission reports of BEAM to detect interferences by
distant nodes:

• Transmission successful shows that no interferences are detected. In this
case, no delay is required for sending additionally cached packets.

108

4.2. HOP-TO-HOP RELIABILITY PROTOCOL

• Missing acknowledgment indicates existing interferences outside the sensing
range. A hidden node problem probably prevents the node from a successful
transmission. Adding longer delays can solve the hidden node problem by
providing the blocked nodes sufficient time to successively send their pack-
ets. To solve packet collisions caused by a hidden node problem, the traffic
load has to be significantly reduced.

• Interference detected is caused by detecting another transmission than the
expected acknowledgment. This can be caused for example by an acknowl-
edgment destined for another node, a simultaneous transmission outside the
sensing range or external interferences.

• Channel busy is reported if every of the 10 performed channel checks showed
a busy channel. It was not possible to send one single beacon strobe. This
points to a nearby transmitter sending its own beacon strobes.

A single transmission report only indicates a problem with the channel load. For
example, the transmission reports Missing acknowledgment and Interference de-
tected are basically caused by external interferences during very low traffic peri-
ods. Therefore, the frequency and type of the transmission report has to be taken
into account for calculating the appropriate transmission delay. Considering the
frequency and type of the transmission report, we define a so-called channel load
factor. The range of the current channel load factor, shown in Table 4.4, is de-
fined between 1 and 20. A calculated channel load factor higher than 20 is always
reduced to 20. A range with a limit higher than 20 would result in a very long
delay, longer than the maximum delay we apply. Every transmission successful
reduces this counter by a value of 2. For every missing acknowledgment report, we
add a value of 2, for every interference detected and channel busy report we add 1.
For example, a current channel load factor of 3 for specific node is increased to 5
by a missing acknowledgment report. Besides the channel load, the receiver load
and already executed retransmissions have to be taken into account to determine
an appropriate transmission delay. The following subsections show, how they are
considered to calculate the actual transmission delay.

Transmission report Channel load factor
increase/decrease

Transmission successful −2

Missing acknowledgment +2

Interference detected +1

Channel busy +1

Table 4.4: Channel load factor.

109

4.2. HOP-TO-HOP RELIABILITY PROTOCOL

2. Source: Neighbor Table of BEAM

The information available from the BEAM neighbor table (see Table 4.3) enables
conclusions about the current receiver load of the one-hop neighbor nodes. H2HR
uses this neighbor table information of the receiver node to calculate an appropri-
ate transmission time. The two buffer indices indicate pending packets, while the
duty cycle index shows the current duty cycle period. If the buffer indices are not
available or zero, then no additional delay is used. Otherwise, H2HR delays the
next transmission for an appropriate time period as shown in Table 4.5. The val-
ues shown in the table are determined by evaluations with the OMNeT++ network
simulator and the WISEBED WSN real world testbed (see Section 5.3). If the duty
cycle index is not available, then the default duty cycle period is used. Sometimes,
congestion can prevent the traffic required for updating the neighbor table. This
may lead to out-of-date neighbor tables, i.e. the update lags behind reality.

Buffer index of
the target node

Transmission delay

0 no delay
1 1 - 3 duty cycle periods
2 2 - 6 duty cycle periods
3 4 - 12 duty cycle periods

Table 4.5: Transmission delay by buffer index.

3. Source: Retransmission Count of a Packet

For every retransmission attempt of an individual packet, an additional delay is
added. Table 4.6 shows the used relation between retransmission attempts and
delay. The values were determined by evaluations with the OMNeT++ network
simulator and the WISEBED WSN real world testbed (see Section 5.3). If the
retransmission limit has been reached, the neighbor node has some reception prob-
lems. In case of a high traffic load, the corresponding node is usually overloaded.
Otherwise, the neighbor could be moved away or run out of energy.

Retransmission
attempts

Transmission delay

1 1 - 3 duty cycle periods
3, 4 2 - 6 duty cycle periods
4, 5 4 - 12 duty cycle periods
6-10 8 - 24 duty cycle periods

Table 4.6: Transmission delay by retransmission count.

110

4.2. HOP-TO-HOP RELIABILITY PROTOCOL

Total Transmission Delay

Information source Information Unit Symbol
Transmission report Channel load Factor fCL
Neighbor table Receiver load Number dpRL
Retransmission count Retransmission count Number dpRC
Neighbor table Duty cycle index Time NodeDL

Table 4.7: Information sources.

Table 4.7 shows the different information sources used by the congestion detec-
tion and control mechanism. All information sources are taken into account to
determine an appropriate duration for the next transmission delay (TXdelay). The
applied transmission delay time is calculated by:

TXdelay = NodeDL · (fCL · (dpRC + dpRC))

The maximum applied delay is limited to 1000 ms. An evaluation of the different
information sources is shown in Section 5.3.2.

4.2.3 H2HR backpressure mechanism

Some WSN protocols are using hop-to-hop based backpressure techniques to avoid
congestion (see Section 2.6.2). If too many sensor nodes continuously generate and
forward packets towards the sink, then the resulting traffic load can be too high to
be forwarded in the WSN. The resulting interferences cause congestion and packet
loss. The H2HR retransmission delay mechanism works as a hop-to-hop based
backpressure mechanism. In the best case, the retransmission delay mechanism is
able to delay the transmission attempts on the entire path up to the nodes generating
the packets. This reduces the amount of packets injected into the WSN.

4.2.4 Forwarding a Data Frame

This section explains how H2HR handles packet forwarding with the help of an
example. H2HR tries to ensure the successful forwarding of every frame to the
next node. With H2HR, frames are only dropped due to packet buffer overflow
or if the receiver node seems to be disappeared. This mechanism minimizes the
amount of required end-to-end retransmissions. End-to-end retransmissions cause
a significant higher energy consumption and generate more intra-flow interferences
than extensive local retransmissions. Figure 4.9 shows how a packet is forwarded
by H2HR. The H2HR packet handler executes the required actions and controls
the packet queue. The packet handler processes one packet at a time. New packets
received from the upper layer are copied to the packet queue (1). We extended
the packet queue implementation of Contiki with the status information introduced

111

4.2. HOP-TO-HOP RELIABILITY PROTOCOL

out

BEAM

H2H

in

packet
handler

1

5

4

routing
in RIME

2

out

neighbor
table

packet
queue

packet
handler 3

Figure 4.9: H2HR protocol.

in Section 4.2.1. The packet handler calculates the transmissions delays and del-
egates the packet at the corresponding time to BEAM (2). BEAM immediately
tries to send the packet (3). After having finished a transmission attempt, the corre-
sponding transmission report is sent back to the H2HR packet handler (4). Packets
received from other nodes are directly forwarded from BEAM to upper layer (5).

4.2.5 Packet Aggregation

A way to reduce internal interferences is to reduce the number of simultaneously
forwarded packets within the network by aggregation. Figure 4.10 shows the pro-
tocol header for handling aggregated packets. H2HR adds to every aggregated
data frame the corresponding length and sequence number values. The sequence
number is used by the reliability layer to detect packet duplication. Aggregated
packets are announced to the receiver by a set multiple frames bit. When using
the CC2420 radio, the multiple frames can be set as one of the five reserved bits
of the IEEE 802.15.4 frame. Including the two bits of the buffer index and the two

Frame
Control Field

(FCF)

Data
Sequence
Number

Address
Information

MAC frame
payload

Frame Check
Sequence

(FCS)

2 1 0 to 20 n 2

MAC Header (MHR) MAC payload MAC Footer
(MFR)

0 - 128 Bytes

Data frame 1 Data frame 2Frame 1
Length

1 1k l

Preamble
Sequence

Start of
Frame

Delimiter
Frame
Length

4 1 1Bytes:

multiple
frames

1 Bit

PHY
Header

Synchronization Header
(SHR)

Seq. 1
Numb.

1Bytes:

Seq. 2
Numb.

1

Frame 2
Length

Figure 4.10: Packet Aggregation Format.

112

4.3. UDP END-TO-END RELIABILITY PROTOCOL

bits of the duty cycle index, all five reserved bits are used. If future revisions of
IEEE 802.15.4 prevent us from using five reserved bits, then BEAM can introduce
an additional one-byte header inside the IEEE 802.15.4 MAC payload.

When using the CC2420 radio, the packet aggregation mechanism can only
be applied to small packets. This is due to the limited MAC payload of the IEEE
802.15.4 frame. When using µIP and UDP, only three packets fit into an aggre-
gated data frame. Subsection 5.2.6 analyzes the impact of the packet aggregation
mechanism.

4.3 UDP End-to-End Reliability Protocol

To provide a reliable WSN network stack, an end-to-end reliability mechanism is
required. End-to-end reliability mechanisms are able to detect dropped packets on
intermediate nodes and to trigger retransmissions from the source node. The TCP
support of Contiki enables using the retransmission mechanisms of TCP. Unfortu-
nately, the protocol overhead of TCP has some drawbacks in WSNs. One problem
with TCP is the overhead caused by the end-to-end acknowledgments for success-
fully received data frames. They generate intra-flow interferences and, therefore,
require additional energy. The authors of [12] introduced different techniques to
optimize the TCP end-to-end acknowledgment mechanism to enhance bandwidth
utilization and reduce power consumption in wireless sensor networks, see Section
2.6.2.

For WSNs, we use UDP, which shows only a low protocol overhead. Unfortu-
nately, UDP does not offer an end-to-end reliability mechanism to recover packet
loss. Therefore, we added an end-to-end reliability mechanism to UDP called
UDP-E2E. It is located and executed on top of UDP, i.e. as an application layer
protocol. This enables establishing reliable UDP flows between a sensor node and
any server in the Internet. UDP-E2E provides datagram sockets to establish host-
to-host communications. An application can bind a socket with a combination of
the IP address and the service port of the unicast flow endpoint. The reliability
mechanism is handled by UDP-E2E and hidden to the application. The remainder
of this section describes the functionality of UDP-E2E.

4.3.1 UDP-E2E Sequence Numbers

The design of UDP-E2E is based on the sequence number mechanism of the trans-
port protocol RMST [86] introduced in Section 2.6.2. UDP-E2E does neither sup-
port in-network caching nor repair functions of RMST. RMST has to manage for-
warding of a packet on every intermediate node to support in-network caching
and repair functions. Using a transport layer protocol, such as RMST, on inter-
mediate nodes would violate the layer separation in our network stack, where the
network layer is responsible to handle packet forwarding of a packet. Usually,
transport protocols are only involved at the endpoints of a connection. In our stack,

113

4.3. UDP END-TO-END RELIABILITY PROTOCOL

local caching and repair functions of RMST are shifted to the hop-to-hop relia-
bility layer. Moreover, bit error detection is only performed hop-to-hop by IEEE
802.15.4 and not end-to-end by UDP-E2E. UDP-E2E only implements the packet
loss detection based on sequence numbers and the end-to-end retransmission mech-
anism of RMST.

The sequence numbers are used to enable the receiver to detect packet loss. In
order to request a retransmission of a lost packet, a negative acknowledgment has
to be sent, which includes the sequence number of the missing packet. In case of
multiple lost packets, all missing sequence numbers are included in one negative
acknowledgment. In contrast to TCP, there is no connection establishment and
termination in our transport protocol UDP-E2E.

Figure 4.11 shows how UDP-E2E works. Using UDP-E2E works in the same
way such as TCP or UDP, i.e. by using sockets. An application sends the payload to
a socket, which is handled by UDP-E2E. The sequence number handler first frag-
ments the received application payload into smaller UPD-E2E frames if necessary
(1). The maximum payload for a UDP-E2E frame is 86 bytes. Otherwise, it would
not fit into an IEEE 802.15.4 frame in our network stack. The sequence number
handler adds a 8-bit sequence number to each UDP-E2E frame. If the application
payload has been fragmented into multiple UPD-E2E frames, then the total num-
ber of fragmented frames is added to every UDP-E2E frame header. This enables
UDP-E2E on the receiver side to reassemble the individually received UDP-E2E
frame again to the original application payload. If the application payload fits into
one UPD-E2E frame, then the same sequence number is added a second time. The
individual frames are sent to a UDP socket (2). A watchdog at the receiver period-
ically checks for missing or outstanding sequence numbers (3). In case of detected
packet loss, the watchdog sends a selective negative acknowledgment back to the
sender to trigger retransmission of missing packets (4). Otherwise, the data is re-
assembled if required and forwarded to the application (5).

UDP
in

out

out

application - source

1

UDP
in

in

out

application - sink

3
2

UDP
E2E

UDP
E2E 5

4

data

fragmentation

Seq Nr
handler

local
cache

watchdoglocal
cache

reassembling

outin

Figure 4.11: UDP-E2E protocol.

114

4.3. UDP END-TO-END RELIABILITY PROTOCOL

4.3.2 UDP-E2E Frames

This subsection gives an overview about the four different frame types defined by
UDP-E2E. The first byte of the UDP-E2E header characterizes the frame type.
To minimize the header size we use the following mechanism. If the first header
byte of the received frame is either 0xFD, 0xFE or 0xFF, then the received frame
is not a data frame. Otherwise, the received frame is a data frame and the first
byte represents its sequence number. Table 4.8 shows the different frame types and
corresponding first byte.

Frame type Length First frame byte
Data Frame [Default] 3 - 88 0x00 - 0xFC
Data Frame with Acknowledgment 4 - 88 0xFD
Negative Acknowledgment Frame 2 - 88 0xFE
Positive Acknowledgment Frame 2 0xFF

Table 4.8: Transmission delay by retransmission count.

Default Data Frames

The default data frame with its two header bytes is depicted in Figure 4.12. It
is used to encapsulate and transport the application payload over UDP. The first
header byte represents the sequence number of the current frame. The second one
indicates into how many individual UDP-E2E frames the application payload was
fragmented. This enables a receiver to rebuild fragmented application payload and
detect missing fragments.

current
sequence
number

application payload

1

3 - 88 bytes

1

UDP-E2E header

1 - 86 Bytes

UDP payload

total
fragments

Figure 4.12: UDP-E2E data frame.

Data Frame Triggering Explicit End-to-End Acknowledgment

Negative acknowledgment mechanisms require at least one successfully delivered
packet to detected the loss of other packets. Depending on the frequency of re-
ceived packets it can take a longer time period to detect a packet loss. For exam-

115

4.3. UDP END-TO-END RELIABILITY PROTOCOL

ple, in an event detection scenario each node only sends one short event-notification
frame. If this single packet gets lost, the receiver detects the loss not before another
succeeding packet has been received. Thus, the sink misses one event. Therefore,
we implemented a data frame triggering an explicit end-to-end acknowledgment.
The frame format of such a data frame is depicted in Figure 4.13. The message
type 0xFD indicates that this data frame requires an explicit end-to-end acknowl-
edgment. The current sequence number is the sequence number given by the UDP-
E2E fragmentation mechanism. The header field total fragments announces the
total number of UDP-E2E frames into which the application data frame was frag-
mented.

message
type
(0xFD)

application payload

1

3 - 88 bytes

1

current
sequence
number

UDP-E2E header

1 - 85 Bytes

UDP payload

1

total
fragments

Figure 4.13: UDP-E2E data frame triggering explicit end-to-end acknowledgment.

Negative Acknowledgment Frame

Figure 4.14 shows a negative acknowledgment frame. The first byte is 0xFE and
announces a negative acknowledgment. Each following byte then includes a se-
quence number of a missing packet.

message
type
(0xFE)

1

2 - 88 bytes

1

UDP-E2E header

requested
SEQ nr.
(otional)

0-86

UDP payload

requested
sequence
number

Figure 4.14: UDP-E2E negative acknowledgment frame.

116

4.4. NETWORK STACK OVERVIEW

Positive Acknowledgment Frame

Figure 4.15 shows a positive acknowledgment frame. The first byte is 0xFF and
announces a positive acknowledgment. The receiver sends a positive acknowledg-
ment if it was requested by the sender.

message
type
(0xFF)

1

2 bytes

1

UDP-E2E header

UDP payload

acknowl.
sequence
number

Figure 4.15: UDP-E2E explicit acknowledgment frame.

4.4 Network Stack Overview

Figure 4.16 shows the Contiki network stack including our contributed protocols to
support energy efficiency and reliable data flow. The different layers and protocols
are described in the following. Our all protocol implementations are fully interop-
erable with existing Contiki protocols. Therefore, BEAM and H2HR can easily be
replaced by any protocol implementations delivered by Contiki without touching
the other layers. This enables meaningful comparisons with other protocols.

ra
di

o
m

ic
ro

co
nt

ro
lle

r

PHY

RIME

MAC
Hop to Hop Reliablity

Radio Duty Cycling

uIP
Transport Layer

Network Layer

Application
Test Application

UDP-E2E

UDP TCP

uIP

H2HR

BEAM

chameleon

abc, broadcast, unicast
21

CC2420 driver

SLIP

Figure 4.16: WSN network stack layers.

117

4.4. NETWORK STACK OVERVIEW

• Application: The test application sends and receives packets for the evalu-
ation scenarios. In addition, it logs transmission times and the overall data
loss. UDP-E2E is an application-layer overlay protocol that provides reli-
able end-to-end communication over UDP. It can use negative and optional
positive acknowledgments.

• Transport Layer: UDP and TCP is part of µIP. Both protocols are RFC
compliant to support heterogeneous network connectivity. End-to-end relia-
bility is supported by TCP.

• Network Layer: The RFC compliant IP implementation is supporting het-
erogeneous network connectivity. The network layer additionally supports
SLIP to interconnect the network layer with another computer over the USB
interface.

• RIME Layer: It consists of several sublayers to support reusability of the
link layer with different network protocols. Our RIME layer uses the chame-
leon, abc, broadcast and unicast sublayers.

• Hop-to-hop reliability: H2HR handles hop-to-hop reliability. Congestion
control is performed by adapting the forwarded data rate. H2HR does not
require any frame header.

• Radio Duty Cycle mechanism: Adaptive radio duty cycle mechanisms are
employed to save energy and to adapt the sleeping period length according to
the current traffic load. All used frame formats are IEEE 802.15.4 compliant.

• Physical Layer: The energy efficient CC2420 radio module is used on the
physical layer. The CC2420 radio module is robust against interferences and
is IEEE 802.15.4 compliant to support network connectivity. In addition, it
supports and exploits the offered hardware functions of the CC2420 radio
module.

All our protocols use either RFC or IEEE standard conform protocol headers.
This enables communication between heterogeneous nodes inside the WSN and
to nodes located in the Internet. The standardized physical layer enables direct
communication between different sensor nodes. The support of IP on the network
layer provides routing and forwarding of packets between sensor nodes and the
Internet, without using any proxy mechanisms. The RFC compliant transport pro-
tocols UDP and TCP and the application layer protocol UDP-E2E enable reliable
end-to-end data flows between WSN nodes and servers in the Internet.

118

Chapter 5

Evaluation

This chapter describes the evaluation of our contributed protocols presented in
Chapter 4. In a first step we evaluate the performance of the different protocol
options introduced in the previous chapter. Based on this evaluation, we are able
to select the best protocol parameterization for the final version of our protocols
and the resulting network stack. In a following step, we compare the final protocol
versions of BEAM and H2HR to existing protocols.

Section 5.1 starts with the description of the different experiment scenarios
and setups. This includes the description of the used network topologies and en-
ergy measurement methodologies to evaluate the energy usage and reliability per-
formance under different conditions. Section 5.2 describes the evaluation of the
different protocol versions of BEAM introduced in Section 4.1.3. The results are
used to select the best performing optimization techniques for the final BEAM im-
plementation. Then, Section 5.3 analyzes the H2HR hop-to-hop reliability mecha-
nisms introduced in Section 4.2. The results indicate the best hop-to-hop reliability
mechanisms for H2HR. The impact of FEC codes on the energy efficiency and re-
liability performance is evaluated in Section 5.4. The results show whether FEC
codes have a benefit to our network stack. Section 5.5 compares our final proto-
col stack with protocols implemented in Contiki. These protocols are designed for
packet oriented radio modules. In Section 5.6 we compare BEAM/H2HR to pro-
tocols that require bit/byte oriented radio modules. This is done by comparing real
world results of BEAM/H2HR to the theoretical performance of the introduced
hypothetical link layer protocol on the different radio modules. Finally, Section
5.7 describes the experienced differences of results achieved by our tests in a sim-
ulator and by our real world measurements in a testbed. Additionally, it outlines
the impact of the used traffic load pattern and network topology on the received
evaluation results.

5.1 Evaluation Setup

A main contribution of this thesis is the design and implementation of an energy
efficient and reliable link layer protocol that can handle any kind of traffic patterns

119

5.1. EVALUATION SETUP

in different network topologies. Many existing energy efficient link layer protocols
have been evaluated at low traffic load values or only in simple network topolo-
gies. These evaluation setups are not suitable to evaluate the impact of intra-flow
and inter-flow interferences. Therefore, we define more challenging traffic patterns
and network topologies generating significant internal interferences. Subsection
5.1.1 describes our four small-scale network topologies to cover the basic traffic
patterns appearing within a WSN. The small-scale network topologies are used to
evaluate the impact of intra-flow and inter-flow interferences on different protocol
optimizations. Then, Subsection 5.1.2 introduces our three large-scale scenarios
with individual traffic patterns. The purpose of the three scenarios is to cover most
of the traffic patterns and resulting interference patterns generated by real world
WSN applications. These topologies are used to validate protocol optimizations in
larger scenarios and to compare our network stack to other protocol implementa-
tions delivered by Contiki. Subsection 5.1.3 describes which performance charac-
teristics are evaluated and how they are defined. Especially, the determination of
the energy consumption is challenging and requires an accurate preparation. Fi-
nally, Subsection 5.1.5 depicts the analyzed Contiki network stacks including all
contributed and evaluated protocols.

5.1.1 Small-scale Scenarios and Testbed Setup

First, we define four different small-scale network topologies to cover the basic
traffic and interference patterns appearing within a WSN. These topologies are
used for basic tests, i.e. to analyze and compare the impact of the different protocol
optimization techniques. A schematic overview of the four defined small network
scenarios is given in Figure 5.1. The line scenario (5.1a) is the simplest one. This
offers the possibility to analyze the forwarding performance of a node. The par-
allel scenario 5.1b enables the evaluation of inter-flow interferences. The merging
scenario 5.1c represents a common network condition, e.g. the traffic flow from
several source nodes towards the sink. One node must handle and forward traffic
of two different nodes. The cross scenario 5.1d evaluates the impact of crossing
traffic as well as intra-flow interferences. We implemented these four scenarios in

0

1

2

(a) Line scenario.

0

1

2

3

4

5

(b) Parallel scenario.

0

2

3

1

(c) Merging scenario.

0

1

2

(d) Cross scenario.

Figure 5.1: Small-scale network topologies for basic evaluations.

120

5.1. EVALUATION SETUP

the OMNeT++ network simulator, in the WISEBED WSN real world testbed and
in a local small-scale testbed consisting of six telosB nodes.

The nodes of the local small-scale testbed are connected over USB to a single
desktop computer as depicted in Figure 5.2. The local small-scale testbed enables
a detailed evaluation of high traffic load. Every sensor node in this testbed receives
radio transmissions from every other node with high SNR. This reduces collisions
to a minimum, as every node is able to detect all possible transmissions before
starting an own transmission. Collisions in such scenarios happen when two nodes
start to send at the same time. The high SNR of all possible connections prevents a
hidden node problem. External interferences show only low impact on the bit error
ratio due to high SNR.

telosB telosB telosB

telosB telosB telosB
desktop

USB

Figure 5.2: Local small-scale testbed with six telosB nodes.

The four small-scale scenarios used in the WISEBED testbed are shown in Figure
5.3. The line and cross scenarios consist of the same three nodes. These three
nodes are also used to setup the parallel and the merging scenario.

(a) Line scenario. (b) Parallel scenario. (c) Merging scenario. (d) Cross scenario.

Figure 5.3: Small-scale testbed setup in the WISEBED testbed.

121

5.1. EVALUATION SETUP

The WISEBED testbed and the local small-scale testbed show some differences.
First, the longer distances between the nodes in the WISEBED testbed result in
a lower SNR while receiving packets. This results in a higher packet loss in the
WISEBED testbed. Second, the WISEBED testbed uses TARWIS for the autom-
atization of the experiment execution. This gives us the opportunity to execute a
large amount of measurements without any manual interaction. Experiments with
the local testbed have to be started and controlled manually. Third, the offered
TARWIS event recording system provides the evaluation results in the WiseML
format [20], which enables comfortable analyzation of the measurements. Unfor-
tunately, the recording performance of the TARWIS event recording system is quite
limited. Too closely spaced reporting events may result in faulty WiseML evalu-
ation reports. We experienced a limit of 20 to 30 records per second in the final
WiseML evaluation report. This is caused by the mechanism used by TARWIS to
write events reported from the sensor nodes to the database on the TARWIS portal
server. We added sequence numbers to the Contiki logging statements to identify
entries that have been dropped by the TARWIS event recording system. In addi-
tion, the logging frequency of the individual nodes has to be low to not overload the
TARWIS event recording system for throughput measurements. The local testbed
with telosB nodes directly connected to a desktop computer, supports at a signif-
icantly higher recording rate. This enables measuring the throughput of the basic
scenarios and sending instructions to two nodes at the same time. The testbeds
introduced in this subsection are basically used to compare the performance char-
acteristics of the different BEAM and H2HR protocol versions.

5.1.2 Large-scale Scenarios and Testbed Setup

We implemented the three large-scale scenarios in the OMNeT++ network simula-
tor and in the WISEBED testbed. With the three large-scale scenarios, we evaluate
the reliability performance of the different H2HR mechanisms and compare our
final protocols to already existing ones. Figure 5.4 shows the different traffic pat-
terns and network topologies used in the large-scale scenarios. In the streaming

6

9

8

2

3

74

10

1

115

(a) Stream scenario.

3

4

2

5

7

1

6

(b) Event scenario.

6

9

8

2

3

74

10

1

115

(c) Burst scenario.

Figure 5.4: Large-scale network topologies with corresponding traffic pattern.

122

5.1. EVALUATION SETUP

scenario, four leaf nodes are sending continuously small packets to the sink. It
represents a WSN scenario collecting sensor data from the environment. In the
event scenario, four neighbor nodes detect an event at the same time. These four
nodes simultaneously try to send a notification message to the sink. In the burst
scenario the root node sends 800 bytes to all four leaf nodes. For example, this
may represent a code update.

Figure 5.5 shows the used telosB nodes for the streaming and burst scenarios
in the real world WISEBED testbed at IAM. This is the largest mesh network that
we were able to build with the WISEBED testbed, as the amount of nodes having
three neighbor nodes with an adequate SNR is limited. An appropriate neighbor
node obtains at most 10% packet loss caused by external interferences and wave
propagation effects. Nodes located far from each other in this topology are out of
each other’s detecting range. However, they still interfere with each other, which
enhances the probability of bit errors and can cause a hidden node problem. This
results in clearly more challenging network conditions than in case of small-scale
topologies.

source

source

source

source
sink

Figure 5.5: Large-scale testbed scenarios in the WISEBED testbed.

123

5.1. EVALUATION SETUP

A basic requirement of the evaluated traffic load is that more than one single packet
is simultaneously forwarded in the network. Evaluations, in which each generated
packet can pass the network before the next one is generated, do not deliver sig-
nificant results. They completely ignore the impact of internal interference, which
represents the major challenge for any link layer protocol.

In all large-scale scenarios, we additionally record the energy profile of neigh-
bor nodes, which are not participating in data forwarding. These nodes periodically
wake-up to check the channel for packets that are addressed to them. With the
WISEBED testbed, we record the energy consumption of all 27 nodes located in
the building of the Institute of Computer Science and Applied Mathematics (IAM).

5.1.3 Evaluated Performance Characteristics

In this subsection, we define the evaluated performance characteristics. We use the
following four characteristics to compare the performance of the different protocol
designs:

1. Energy consumption: Measuring the energy consumption is a very chal-
lenging very task. We use two different techniques to determine energy con-
sumption. On the one hand, we use the RIGOL digital multimeter to measure
the electrical current on a single node. On the other hand, we use a software
based energy profiler that records the radio state switches.

2. Reliability: To determine the reliability performance we use the three met-
rics: ETX, end-to-end packet loss ratio and end-to-end retransmission at-
tempts, which were all introduced in Section 2.5.6. The reliability perfor-
mance is closely connected to throughput (3.).

3. Throughput: The throughput shows how many packets can be successfully
forwarded to target nodes for a given time interval.

4. Packet delivery time: The packet delivery time is defined as the time be-
tween the first transmission by the source node and the successful reception
by the sink.

Measuring energy consumption is technically more complex than determining packet
loss, throughput and packet delivery time. To measure energy usage of a sin-
gle node, we used a digital multimeter. To simultaneously determine the energy
consumption of the individual sensor nodes in our real world testbeds, we used a
software based energy profiler. The next subsection explains the different setups
to determine energy consumption. This includes a description of the modification
and verification of the used software based energy profiler.

5.1.4 Energy Evaluation Techniques

We use a RIGOL DM3052 digital multimeter introduced in Subsection 2.4.3 and a
software based energy profiler introduced in 2.3.1 to measure energy consumption.

124

5.1. EVALUATION SETUP

Figure 5.6 shows the used evaluation setup to measure the electrical current of a
single sensor node. The used power source is a VOLTCRAFT VLP-1303 PRO
power supply described in Subsection 2.4.3. We solder copper wires to one of the
telosB node. The copper wires are connected to the power supply at 3.00 V and the
RIGOL multimeter. The RIGOL multimeter is connected over an USB interface
to a notebook running the measurement and control software. The buffer size of
the RIGOL multimeter is limited to 2’100’000 recording samples. This results in
a maximum recording duration of 42 seconds when recording 50’000 samples per
second. The energy profiles recorded by the measurement software can be used for
the following purposes:

• Energy consumption: The energy profile shows the varying energy con-
sumption over a certain period of time. It helps identifying the varying radio
and microcontroller states and determining the corresponding energy con-
sumption.

• Energy profiler configuration and verification: The energy profile calcu-
lated by the energy profiler can be compared to the energy profile recorded
by the RIGOL multimeter.

• Tracking radio and microcontroller state switches: The high resolution
of the RIGOL multimeter enables monitoring of the CC2420 radio state
switches as well as tracking of the microcontroller activity. Microcontroller
tracking can be used to exactly determine the computation time for encod-
ing FEC codes. Tracking the radio state switches enables debugging and
optimization of protocol timers.

- +

Multimeter
RIGOL DM3052

Power source
VLP-1303 PRO

telosB telosB telosB

Notebook

USB

desktop

Figure 5.6: Experimental setup to measure the electrical current of telosB node.

125

5.1. EVALUATION SETUP

The RIGOL multimeter can only monitor one sensor node for a limited time period.
To monitor every node within a network topology, a software based energy profiler
of Contiki can be used. The energy profiler estimates the current energy usage
according to the currently executed tasks. It is integrated into the radio driver,
where the radio switches are handled. It measures how long the radio module
remains in the individual radio states. The duration is measured in steps with a
resolution of 31 µs. The Contiki profiler for the CC2420 distinguishes between
three radio states: sleeping, sending and listening. Listening and receiving are
represented by the same state. We use the same approach to measure the energy
with the OMNeT++ network simulator. We integrated the energy profiler into a
newly implemented CC2420 radio module, which we developed according to the
technical specifications of CC2420 radio module for OMNeT++. To calculate the
energy consumption (Eradio), we assumed that every radio state has a constant
energy usage. The energy is calculated by multiplying the recorded time periods
(∆t) of the individual radio states with the according electrical current (I) and
battery voltage (Ubat) :

Eradio = Ubat · ((Isleep · ∆tsleep) + (Isend · ∆tsend) + (Ilisten · ∆tlisten))

The electrical current measured for the different radio states corresponds to the val-
ues declared in the CC2420 manual. In a following step, we evaluate the accuracy
the energy profiler by comparing the profiles recorded by the RIGOL multimeter
with profiles generated by the Contiki energy profiler. This is done in two steps.
First, we compare the energy profiles generated for typical link layer operations
such as a channel check or sending/receiving a packet. Based on these results, we
adapt the Contiki energy profiler to the CC2420 radio module and the used protocol
algorithms. Then, we simultaneously measure the energy required to forwarding
packets by the RIGOL multimeter and the adapted Contiki energy profiler. The
results show the accuracy of the adapted Contiki energy profiler.

Energy Consumption in Idle Mode

To verify the Contiki energy profiler, we started analyzing the energy consumption
of Contiki in idle mode. In idle mode the radio module is turned into the Power
Down state and all sensors are turned off. The Contiki operating system minimizes
the energy usage of a microcontroller by keeping it most of the time in sleep mode.

The energy profile of Contiki recorded by the RIGOL multimeter is shown in
Figure 5.7. The small energy peaks that occur every 7.8 ms are caused by periodic
wake-ups of the microcontroller. The mean energy required by a telosB node run-
ning Contiki at a voltage (Ubat) of 3.00 Volt is 0.4779 mA with a standard deviation
of 0.0129 mA caused by small energy peaks. According to the CC2420 manual,
the radio module is using 0.020 mA in Power Down mode. This value cannot be
measured without removing the radio module from the telosB node. We subtract
the energy used by the CC2420 radio in Power Down mode (Iradio) from the total

126

5.1. EVALUATION SETUP

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30

El
ec

tri
c

cu
rre

nt
 [m

A]

Time [ms]

Figure 5.7: Contiki energy profile on a telosB node in idle mode.

energy used in idle mode (Iidle) to calculate the amount of energy used by telosB
running Contiki in idle mode (Eidle):

Eidle = Ubat · (Iidle − Iradio) · t)
Eidle = 3.00V · (0.478mA− 0.020mA) · 1s = 1.374µJ

Energy Consumption of Channel Checks

Next, we analyze the energy required for a channel check if no traffic can be de-
tected. We recorded 4’000 channel checks with the RIGOL multimeter and the
Contiki energy profiler. 2.2% of the performed channel checks were wrongly de-
tected as ongoing transmissions. This is because the measured RSSI level during
the channel check was above the defined threshold. We removed these wrongly
detected channel checks to calculate the energy required for a channel check.

Figure 5.8 shows the energy profile for a channel check recorded by the RIGOL
multimeter. The peaks represent the two individual channel checks required by
ContikiMAC and BEAM to detect ongoing beacon strobe transmissions. The
red area shows the energy measured by the RIGOL multimeter. The radio driver
switches the radio module on at position (1) in Figure 5.8. Now, the radio module
switches from power down mode to receive mode. At point (2) the radio module
is able to listen to the channel. Now the channel must be checked for at least eight
symbols (128 µS) to ensure a valid CCA value. At point (3), the microcontroller
reads out the CCA-pin of the CC2420. If no ongoing transmission has been de-
tected, the radio module is switched off. The ending shapes of the two peaks are
a little bit different as the RDC protocol must process the results of the channel
check and calculate the next wake-up. This requires some additional energy by
the microcontroller. For calculating the energy required by the radio module and
the microcontroller, we subtract Eidle from the RIGOL energy measurements. The
first peak requires 19.28 µJ with a standard deviation of 0.0034 µJ. The second

127

5.1. EVALUATION SETUP

31 231 2

Figure 5.8: CCA channel check energy profile of a CC2420 radio.

peak requires 19.64 µJ with a standard deviation of 0.0039 µJ. This includes the
additional energy required by the microcontroller to perform the channel check.

The green area shows the energy measured by the Contiki radio energy profiler.
For both peaks, always a time period of 10 time steps (0.31 ms) is measured. The
Contiki radio energy profiler assumes a constant current during this time period.
This results in 18.3 µJ per peak using a current of 19.7 mA as defined in the manual
[91]. If we add the energy from the microcontroller energy profiler, we get 19.5 µJ
per peak.

In addition, we analyzed the energy required for a wrongly detected transmis-
sion by the channel check. In this case, the RDC layer keeps the radio module in
listening mode to wait for the next frame start. If the frame start is still missing
after a certain time out, the radio module is switched off.

Energy Consumption for Sending and Receiving a Single Frame

Besides the channel check, we analyze the energy required for sending and receiv-
ing a single frame. Figure 5.9 shows the recorded energy profiles by the RIGOL
multimeter for a sending node and the corresponding receiving node. The sending
node performs two channel checks to ensure a free channel (see previous subsec-
tion). Then, it starts to periodically send beacon strobes including payload until it
receives an acknowledgment from the receiver. The receiver wakes up while the
sender is transmitting the third beacon strobe. The frame start of the actual frame
is missed. The receiver waits for the next beacon strobe and sends an acknowledg-
ment after checking the CRC.

128

5.1. EVALUATION SETUP

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30

El
ec

tri
c

cu
rre

nt
 [m

A]

Time [ms]

receiver
sender

channel checks beacon strobes ACK

Figure 5.9: Energy profile of a packet forwarding with beacon strobes.

We divided sending and receiving into individual smaller tasks. Sending is divided
into channel checks before sending, strobe sending, channel checks for acknowl-
edgment and acknowledgment receiving. Receiving is divided into channel checks
before receiving, data receiving, acknowledgment sending and listening after ac-
knowledgment sending. We analyze the energy consumption for the different tasks
with the RIGOL multimeter and the Contiki energy profiler. We adapted the Con-
tiki energy profiler in the following way. For tasks with dynamic durations, we
record their duration. For tasks that have always the same duration and energy
consumption, we simply count the number of their occurrences.

Verification of the Software Based Energy Profiler

To verify the adapted Contiki energy profiler, we use the measurement setup from
Figure 5.6. We forwarded one packet per second over two hops. The forwarding
node in the middle is connected to the RIGOL multimeter. We made 50 measure-
ments for BEAM, XMAC and ConitkiMAC with 40 and 100 bytes payload. In
each measurement, 30 packets are forwarded. The energy used to forward one
individual packet was measured simultaneously with two different methods. We
measured once using the RIGOL multimeter and once using the adapted Contiki
energy profiler. The energy for an individual packet measured by the RIGOL mul-
timeter is used as reference value. The deviation of the results achieved by the
adapted Contiki energy profiler to the measurements of the RIGOL multimeter is
shown in Figure 5.10. The energy recorded by the software based energy profiler
shows a mean deviation below 4% compared to the energy measured by the RIGOL
multimeter. There is no significant difference in the accuracy between frames with
40 and 100 bytes payload.

129

5.1. EVALUATION SETUP

 0

 2

 4

 6

 8

 10
D

ev
ia

tio
n

[%
]

40 byte payload 100 byte payload

XMAC
ContikiMac
BEAM

Figure 5.10: Deviation of the used software energy profiler to the RIGOL multimeter.

Energy Evaluation Conclusions

The RIGOL multimeter is able to generate a very accurate energy profile of a sin-
gle node with 50’000 samples per second. Unfortunately, the RIGOL multimeter
buffer size is limited. This results in a maximum recording duration of 42 sec-
onds with 50’000 samples per second. Here, the adapted Contiki energy profiler
provides an interesting solution, as it is able to record energy consumption with
an adequate accuracy for all nodes within the WSN. This software based energy
profiler can log the energy of every node within a real world testbed over the entire
experiment execution time. We used the adapted Contiki energy profiler in all of
our evaluations.

5.1.5 Evaluated Contiki Compliant Network Stacks

Our contributed link layer protocols BEAM and H2HR have been integrated into
the Contiki network stack. BEAM is fully compliant to the Radio Duty Cycling
layer protocol defined by the Contiki network stack. The same applies to H2HR
concerning the Hop to Hop Reliability layer. On top of the link layer, we use Con-
tiki’s RIME layer to interconnect the link and network layer. On the network layer,
µIP is used. UDP and TCP are used on the transport layer. TCP is additionally
used to support the required end-to-end reliability. To improve UDP, we use the
application layer overlay protocol UDP-E2E to support end-to-end reliability.

Figure 5.11 shows the reliable network stack used with UDP. The Evaluation
Application located on the application layer is able to receive instructions from
the TARWIS experiment management system. We use these instructions to create
and schedule the injection of new packets into the network. The schedule and
subject of the instruction commands can be predefined by the WISEBED testbed.
The Evaluation Application adds an incrementing 16-bit number to the payload of
every generated packet. The generated sequence numbers and the sequence number

130

5.1. EVALUATION SETUP

of each received packet are reported to the TARWIS event recording system. The
timestamp mechanism of the TARWIS event recording system enables measuring
one way packet delivery time of each packet.

ra
di

o
m

ic
ro

co
nt

ro
lle

r

PHY

RIME

MAC
Hop to Hop Reliablity

Radio Duty Cycling

uIP
Transport Layer

Network Layer

Application

H2HR

BEAM

21 3

CSMA

XMAC ContikiMAC

CC2420 driver

chameleon

abc, broadcast, unicast

UDP-E2E

UDP

uIP

Evaluation Application

Figure 5.11: Reliable Contiki compliant network stacks with UDP.

Figure 5.12 shows the reliable network stacks used with TCP. It offers the possi-
bility to compare the end-to-end reliability support of TCP and UDP. TCP sends
positive acknowledgments for successfully received data frames. While UDP-E2E
is sending negative acknowledgments for missing data frames.

ra
di

o
m

ic
ro

co
nt

ro
lle

r

PHY

RIME

MAC
Hop to Hop Reliablity

Radio Duty Cycling

uIP
Transport Layer

Network Layer

Application

H2HR

BEAM

21 3

CSMA

XMAC ContikiMAC

CC2420 driver

chameleon

abc, broadcast, unicast

TCP

uIP

Evaluation Application

Figure 5.12: Reliable Contiki compliant network stacks with TCP.

131

5.2. EVALUATION OF BEAM PROTOCOL OPTIMIZATION TECHNIQUES

5.1.6 Summary of Evaluation Setup

In this section, we defined the different network topologies and performance char-
acteristics used to analyze and compare WSN network protocols. Four small-scale
network topologies are defined to analyze and compare different protocol opti-
mization techniques of BEAM and H2HR. These small-scale network topologies
were implemented in the OMNeT++ network simulator, in the WISEBED testbed
and within a local small-scale testbed consisting of six telosB nodes. Additionally,
we defined three large-scale topologies with according traffic patterns to achieve
realistic interference patterns similar to the ones generated by real world WSN ap-
plications. They are used to optimize the reliability mechanisms of H2HR and to
compare the finalized network stacks to other protocol implementations delivered
by Contiki. The large-scale network topologies were implemented in the OM-
NeT++ network simulator and the WISEBED testbed. We defined four perfor-
mance characteristics, namely energy consumption, packet loss, throughput and
packet delivery time, to evaluate and compare the protocol implementations. The
next section uses the small-scale network topologies to find the best protocol opti-
mization techniques for BEAM.

5.2 Evaluation of BEAM Protocol Optimization Techniques

This section presents the evaluation of the different protocol versions and opti-
mization techniques of BEAM. The results are used to identity the best performing
optimization techniques and protocol versions for the final version of BEAM. The
following list summarizes the individual optimization techniques and performed
evaluations considered in this section.

• Acknowledgment mechanism: We compare hardware and software ac-
knowledgments by analyzing their energy profiles and the required execu-
tion times. The energy and time profiles are established using measuring by
the RIGOL multimeter.

• Beacon strobe transmission delay: First, we test the impact of the beacon
strobe transmission optimization on the energy consumption measured by
the RIGOL multimeter. Then, we use BEAM in the four small-scale scenar-
ios in the WISEBED testbed to measure the impact of the transmission delay
optimization on the energy consumption and reliability performance.

• Beacon strobe design: We compare BEAM with short beacon strobes and
its variation with beacon strobes including payload in the four small-scale
scenarios in the WISEBED testbed. We evaluate the impact of the traffic load
and the payload size on the energy consumption and reliability. Additionally,
we analyze the energy consumption of the noninvolved idle neighbor nodes.

• Duty cycle evaluations: We evaluate the energy consumption and through-
put of different duty cycle durations. During low traffic load periods, the

132

5.2. EVALUATION OF BEAM PROTOCOL OPTIMIZATION TECHNIQUES

applied duty cycle duration should use as low energy as possible while still
providing short packet delivery times. In case of high traffic load, the duty
cycle duration must offer maximum throughput. We search for ideal duty
cycle durations for both situations. We perform the evaluation using the
local small-scale testbed with six telosB nodes to enable the evaluation of
throughput.

• Traffic prediction versus traffic monitoring: We compare our duty cycle
adaptation mechanism based on traffic prediction with traffic monitoring,
which is used by other adaptive protocols. We evaluate the impact on energy
consumption, packet loss and throughput. This evaluation was performed by
using the four small-scale scenarios in the WISEBED testbed.

• Packet aggregation: We evaluate the impact of packet aggregation on en-
ergy consumption and reliability by the four small-scale scenarios in the
WISEBED testbed.

5.2.1 Acknowledgment Mechanism

This subsection compares the energy consumption of hardware and software ac-
knowledgments. In a first step, we compare the energy profiles of a sender sending
beacons strobes with both acknowledgment mechanisms. The frequency of the
beacon strobe transmission determines how long a receiver has to listen to the
channel to detect a beacon strobe. In a second step, we evaluate the resulting en-
ergy profiles for a receiver performing a channel check to detect a beacon strobe.
An energy profile depicts the power consumption over a certain time period.

Figures 5.13 and 5.14 show two recorded energy profiles for a sender trans-
mitting BEAM beacon strobes with the size of 56 bytes including the physical
preamble. In the depicted examples, the corresponding receiver never wakes up
to send the acknowledgment. Both energy profiles are recorded by the RIGOL
multimeter with 50’000 samples per second. The energy profile in Figure 5.13
represents BEAM with enabled hardware acknowledgment support. The energy
profile in Figure 5.14 represents BEAM with software acknowledgments.

Both versions use the same mechanism to send a beacon strobe. At point (1),
they turn the radio module into transmission mode to start the transmission of the
next beacon strobe. The beacon strobe with a size of 56 bytes is transmitted by
the CC2420 radio module at (2). The subsequent mechanism and time required to
check the channel for an incoming acknowledgment of both versions is different.

The sender supporting BEAM with hardware acknowledgments switches di-
rectly to listening mode after sending the last byte. BEAM checks the channel to
detect if there is an ongoing transmission (3). If no transmission has been detected,
no acknowledgment was sent by the receiver. BEAM switches the CC2420 again
to transmission mode to send the next beacon strobe (4).
The sender using BEAM with software acknowledgments turns off the radio mod-
ule after sending the last byte of the beacon strobe (5). A receiver requires from

133

5.2. EVALUATION OF BEAM PROTOCOL OPTIMIZATION TECHNIQUES

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6 7 8 9 10

El
ec

tri
c

cu
rre

nt
 [m

A]

Time [ms]

hardware ACK
2 3 4

1

silent period

sending
beacon strobe

sending
beacon strobe

sending
beacon strobe

sending
beacon strobe

Figure 5.13: Energy profiles of beacon strobes with hardware acknowledgment.

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6 7 8 9 10

El
ec

tri
c

cu
rre

nt
 [m

A]

Time [ms]

software ACK

5

762

1

silent period

sending
beacon strobe

sending
beacon strobe

silent
period

Figure 5.14: Energy profiles of beacon strobes with software acknowledgment.

1.7 ms to 4.2 ms to copy the received beacon strobe to the microcontroller, to cre-
ate and copy the acknowledgment to the radio module and start the transmission.
1.3 ms after turning off the radio module, the sender turns on the radio module,
switches it into listening mode and waits for the acknowledgment from the re-
ceiver (6). Experiments show that turning on the radio module after 1.4 ms causes
a loss of 10% of the acknowledgments. The listen period must cover the entire
time period during an acknowledgment could be received. If no acknowledgment
has been detected, the next beacon strobe is sent (7).

The silence period shown in Figures 5.13 and 5.14 to check the channel for an
incoming acknowledgment determines how long a receiver node has to listen to
the channel to detect a beacon strobe transmission. The channel checks, which are
periodically performed by all nodes in the WSN, are the major energy consuming
tasks during low traffic periods. Therefore, the periodical channel checks have to
be as energy efficient as possible to achieve an energy efficient WSN. A channel

134

5.2. EVALUATION OF BEAM PROTOCOL OPTIMIZATION TECHNIQUES

check can be either done continuously or periodically.
Figure 5.15 shows the two energy profiles of a receiver node to detect an in-

coming beacon strobe transmission with a continuous channel observation. For
continuous listening, the radio module is turned on and immediately switched to
listening mode. Then, one CCA check is performed to detect an ongoing trans-
mission. If a CCA check detects an ongoing transmission, then BEAM keeps the
radio module in listening mode to receive the next beacon strobe. If no transmis-
sion has been detected, BEAM keeps the radio module in listening mode to search
for a frame start. The listen period corresponds to the remaining silence period
between two beacon strobes. If still no frame start (SFD) has been detected after
the remaining listen period, no beacon strobes are transmitted. BEAM turns off the
radio module and calculates the start of the next wake-up period.

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6 7 8

El
ec

tri
c

cu
rre

nt
 [m

A]

Time [ms]

software ACK
hardware ACK

Figure 5.15: Channel check by a receiver node with continuous listening.

The channel observation can alternatively be done with periodic CCA checks. Fig-
ure 5.16 shows periodic CCA checks to detect ongoing beacon strobe transmis-
sions with and without the CC2420 acknowledgment support. The periodic CCA

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6 7 8

El
ec

tri
c

cu
rre

nt
 [m

A]

Time [ms]

software ACK
hardware ACK

Figure 5.16: Channel check by a receiver node with periodic CCA.

135

5.2. EVALUATION OF BEAM PROTOCOL OPTIMIZATION TECHNIQUES

checks are executed once per millisecond. Using hardware acknowledgment sup-
port, two CCA operations in a row are sufficient to detect beacon strobes. Using
only software acknowledgments, seven CCA checks are required. The time inter-
val between the individual CCA checks should not be longer. Otherwise, the time
required to transmit a short beacon strobe is shorter than the time between the indi-
vidual CCA checks. If a CCA check detects an ongoing transmission, then BEAM
keeps the radio module in listening mode to receive the next beacon strobe.

Table 5.1 shows the required energy for the different channel check techniques
shown in Figure 5.15 and 5.16. The results show that using hardware acknowl-
edgments is clearly more energy efficient than using software acknowledgments.
Moreover, it makes sense to use periodic CCA checking. An advantage using soft-
ware acknowledgment is the possibility to modify the content of the acknowledg-
ment. For example, to add node state informations to the acknowledgment. Based
on the results of this subsection, we use hardware acknowledgments and periodic
CCA checking for the final BEAM version.

Acknowledgments type periodic CCA
checking

Energy [µJ] Standard
deviation
[µJ]

Software acknowledgment No 322.59 0.4413
Software acknowledgment Yes 116.13 0.0040
Hardware acknowledgment No 82.79 0.0122
Hardware acknowledgment Yes 38.92 0.0038

Table 5.1: Required energy for different kind of channel checks.

5.2.2 Beacon Strobe Transmission Delay Optimizations

This subsection describes the evaluation of the BEAM transmission delay opti-
mization. Originally, BEAM immediately starts with sending beacon strobes after
having received a single frame from the upper layer H2HR. The transmission delay
optimization tries to estimate the next wake-up of the receiver. If an estimation was
possible, BEAM delays the beacon strobe transmission near the expected wake-up
time point of the receiver. Table 5.2 shows the used protocol properties to analyze
the impact of the transmission delay optimization. To analyze the transmission
delay optimization, we used the RIGOL multimeter setup from Figure 5.6. The
node that is connected to the RIGOL multimeter creates a packet every second and
forwards it to a second node.

Figure 5.17 shows a typical recorded profile with (red) and without (green)
transmission delay optimization. At (1), the sensor application creates a packet
and forwards it to the UDP socket. BEAM receives a 40 bytes frame from the
upper layer, after the application payload has passed the network stack. BEAM
without the transmission delay optimization immediately performs a CCA check

136

5.2. EVALUATION OF BEAM PROTOCOL OPTIMIZATION TECHNIQUES

RDC protocol BEAM
Strobe type Including payload
BEAM-payload 40 bytes
Duty cycle duration 125 ms
Transport protocol UDP
End-to-end reliability No

Table 5.2: Measurement setup for transmission delay optimization evaluations

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60

El
ec

tri
c

cu
rre

nt
 [m

A]

Time [ms]

without transmission delay optimization
with transmission delay optimization
2 4 5

1

3

Figure 5.17: Energy profile of strobe transmissions with and without transmission delay.

and starts sending beacon strobes (2). This happens around 40 ms before the ad-
dressed receiver is expected to perform the next channel check at around (4).

BEAM using the transmission delay optimization postpones the beacon trans-
mission until 8 ms before the estimated wake-up (3). The receiver node wakes up
at (4) and detects an ongoing transmission. It receives the next beacon strobe and
sends an acknowledgment back (5). Then both senders turn off the radio module.
In this particular measurement, the node with the transmission delay optimization
delays the transmission for 34 ms. This reduces the energy required by the sender
in the shown measurement from 2436 µJ to 806 µJ.

Next, we use the WISEBED small-scale network topologies defined in Subsection
5.1.1 to analyze the impact of the transmission delay optimization on energy con-
sumption and reliability. In each experiment, we send 10’000 packets at different
data rates to evaluate the impact of the traffic load. First, we analyze the achieved
reduction of the required amount of transmitted beacon strobes to forward a packet
to the next hop. Figure 5.18 shows the measured delays applied by the transmission
delay optimization.

• Line scenario: No serious interference or congestion problems appeared.
BEAM is able to delay most of the beacon strobe transmissions until the ex-

137

5.2. EVALUATION OF BEAM PROTOCOL OPTIMIZATION TECHNIQUES

pected wakeup of the receiver. Every packet reaches the sink node, before
the next packet is generated. The transmission delay optimization signifi-
cantly reduces the amount of transmitted beacon strobes in this scenario.

• Parallel scenario: There are only few collisions at higher traffic load as
the individual nodes have individual wake-up periods. If two nodes have
to forward a packet at the same time, the receivers usually have different
wake-up time points. Therefore, the beacon strobe periods of the different
transmissions do not overlap. Most of the transmission delay optimizations
can be applied successfully.

• Merging and cross scenarios: These scenarios are more challenging with
higher traffic load. The middle node receives traffic from two senders. The
performance corresponds to the line scenario as long as only one single
packet must be forwarded at the same time. But if both senders try to send
a packet during the same period to the middle node, the beacon strobes will
collide. One packet then must be retransmitted later.

 0

 20

 40

 60

 80

 100

re
du

ce
d

tra
ns

m
is

si
on

 ti
m

e
[m

s]

 line
scenario

 parallel
scenario

merging
scenario

 cross
scenario

1 pkt/s
2 pkt/s
3 pkt/s
4 pkt/s

Figure 5.18: Reduction of the beacon strobe transmission time period.

The transmission delay optimization shows the best performance at low traffic load
and basic network topologies defined in Subsection 5.1.1. The transmission delay
optimization then significantly reduces the required beacon strobes.

The impact of the transmission delay optimization on energy costs is evaluated
in the next experiment. We compare the energy consumption of BEAM with and
without the transmission delay optimization in the same WISEBED testbed sce-
narios. The measured energy costs at two different traffic load values are shown
in Figure 5.19. Moreover, we analyze the expected transmission count (ETX) in-
troduced in Section 2.5.6. A retransmission is performed in case of a missing
acknowledgment or if a collision has been detected during the beacon strobe trans-
mission. Postponing a beacon strobe transmission due to a busy channel is not

138

5.2. EVALUATION OF BEAM PROTOCOL OPTIMIZATION TECHNIQUES

counted as retransmission. Figure 5.20 shows the ETX count measured in the in-
dividual scenarios.

 0

 200

 400

 600

 800

 1000

 1200

en
er

gy
 p

er
 b

yt
e

[u
J]

 line
scenario

 parallel
scenario

merging
scenario

 cross
scenario

1 pkt/s
1 pkt/s SYNC
4 pkt/s
4 pkt/s SYNC

Figure 5.19: Energy per byte with and without transmission delay.

 1

 2

 3

 4

 5

 6

 7

 8

 9

ET
X

co
un

t [
#]

 line
scenario

 parallel
scenario

merging
scenario

 cross
scenario

1 pkt/s
1 pkt/s SYNC
4 pkt/s
4 pkt/s SYNC

Figure 5.20: ETX count measured in the different scenarios.

The energy costs in the line scenario are significantly reduced by the transmission
delay optimization. Over 95% of the packets can be forward at the next wake-up
period of the receiver node. The transmission delay optimization works perfectly
at higher traffic load rate. The energy costs for the parallel scenario are signifi-
cantly reduced by the transmission delay optimization. Without transmission delay
optimization, some retransmissions are required at higher traffic load as the longer
beacon strobe periods result in a higher probability of collisions between the two
paths in this scenario. The energy costs of the merging and cross scenarios are re-
duced considerably by the transmission delay optimization. These scenarios show
several retransmissions at higher traffic load. They are basically caused by colli-
sions when two nodes try do send a packet at the same time to the middle node.

139

5.2. EVALUATION OF BEAM PROTOCOL OPTIMIZATION TECHNIQUES

At higher traffic load a sender sometimes must buffer several packets in the packet
buffer. In this case, the BEAM traffic prediction mechanism reduces the duty cy-
cle duration to increase the bandwidth. Shorter duty cycle durations reduce the
average beacon strobes required by the BEAM version without transmission delay
optimization.
We observed that in some cases that the transmission delay optimization cannot be
applied or even fails:

1. If the neighbor table entry of the receiver has expired, no delay can be ap-
plied. This happens amongst others if too many transmissions fail.

2. The transmission delay is not applied if the expected wake-up time is within
the next 8 ms.

3. If neither the acknowledgment nor a beacon strobe collision has been de-
tected, the sender assumes that the transmission delay failed. In this case
the neighbor table entry is marked as expired. For the next transmission, no
transmission delay is used.

Due to the achieved results, the final BEAM version uses transmission delay opti-
mization. It significantly reduces energy consumption and interferences.

5.2.3 Beacon Strobe Modes

This subsection evaluates the two BEAM beacon strobe versions introduced in Sec-
tion 4.1.2. The BEAM version with beacon strobes including the payload requires
only two instead of four successful transmissions to forward a data frame. On the
other hand, the noninvolved neighbor nodes using the BEAM version with short
beacon strobes require less energy to analyze overheard packets. Both versions
use hardware acknowledgments and transmission delay optimization for beacon
strobes. We compare their individual energy usage and reliability to determine
the best beacon strobe strategy. Therefore, we evaluate the two versions in the
WISEBED testbed small-scale network topologies defined in Subsection 5.1.1.
We add six more nodes to each scenario to evaluate the impact of the beacon
strobe mode on noninvolved neighbor nodes. Noninvolved neighbor nodes in these
extended small-scale network topologies do not forward any traffic as they are
never addressed. Sometimes, noninvolved neighbor nodes detect an ongoing bea-
con strobe transmission during their wake-up period. In this case, the node must
receive the next beacon strobe to check the address of the beacon strobe. Table
5.3 shows the used protocol properties to analyze the impact of the beacon strobe
design.
In each scenario extended with six noninvolved neighbor nodes, we sent 10’000
packets. The noninvolved nodes calculate the consumed energy to overhear the
traffic in the neighborhood every second. First, we compare the energy consump-
tion required to forward 40 bytes. Figure 5.21 shows the corresponding measured
energy for both beacon strobe modes.

140

5.2. EVALUATION OF BEAM PROTOCOL OPTIMIZATION TECHNIQUES

RDC protocol BEAM
Strobe type Including payload
BEAM-payload 40 & 100 bytes
Duty cycle duration 125 ms
Transport protocol UDP
End-to-end reliability No

Table 5.3: Measurement setup for beacon strobe evaluations

 0

 200

 400

 600

 800

 1000

 1200

1 1 2
 line scenario

2 4 4 1 1 2
 parallel scenario

2 4 4 1 1 2
 merging scenario

2 4 4 1 1 2
 cross scenario

2 4 4

en
er

gy
 p

er
 b

yt
e

[u
J]

strobe with payload
strobe without payload

packetss

Figure 5.21: Energy per byte of involved nodes with 40 bytes payload.

The outliers are caused by retransmitted packets. In all tested scenarios, the variant
using beacon strobes with payload requires less energy, especially at high traffic
rates with more challenging interferences. This is basically due to three reasons:

1. With short beacon strobes, the receiver node has to receive at least two
frames. This requires more energy than receiving a single beacon strobe
including the payload.

2. With short beacon strobes, additional energy may be required to send the
data frame part after receiving the early acknowledgment.

3. The short beacon strobe mode performed more frequently a retransmission
as the receiver only has one chance to receive the data part after sending the
early acknowledgment. If the payload is included in the beacon strobe, the
data part is sent repeatedly. In case of corrupted data, the receiver can wait
for the next beacon strobe.

Figure 5.22 shows the measured number of local hop-to-hop retransmissions. Post-
poning a beacon strobe transmission due to a busy channel is not counted as retrans-
mission. The BEAM version using beacon strobes without payload requires more
retransmission attempts, especially at higher data rates and in the challenging cross
scenario.

141

5.2. EVALUATION OF BEAM PROTOCOL OPTIMIZATION TECHNIQUES

 0

 1

 2

 3

 4

 5

 6

 7

1 1 2
 line scenario

2 4 4 1 1 2
 parallel scenario

2 4 4 1 1 2
 merging scenario

2 4 4 1 1 2
 cross scenario

2 4 4

re
tra

ns
m

is
si

on
s

pe
r p

ac
ke

t [
#]

strobe without payload
strobe with payload

packetss

Figure 5.22: Required retransmissions per hop.

In addition, we tested the energy profile with the maximum BEAM payload of 118
bytes. Also with maximal payload, the version including the payload in the beacon
strobe requires less energy. The required energy per byte decreases with increasing
BEAM payload.

Next, we analyze the energy consumption of the noninvolved neighbor nodes.
Here, we periodically measured the required energy consumption every second.
Figure 5.23 shows the energy consumption of the noninvolved neighbor nodes with
a payload of 40 bytes, Figure 5.24 shows the one with the maximum payload. All
noninvolved nodes require more energy when using the version with beacon strobes
including payload. Especially, high traffic load and large payloads require clearly
more energy. The higher the traffic load is, the higher is probability of detecting an
ongoing transmission. The beacon strobes including the payload are significantly

packetss
 0

 500

 1000

 1500

 2000

1 1 2
 line scenario

2 4 4 1 1 2
 parallel scenario

2 4 4 1 1 2
 merging scenario

2 4 4 1 1 2
 cross scenario

2 4 4

en
er

gy
 p

er
 s

ec
on

d
[u

J]

strobe without payload
strobe with payload

Figure 5.23: Energy per second of the noninvolved neighbor nodes with 40 bytes payload.

142

5.2. EVALUATION OF BEAM PROTOCOL OPTIMIZATION TECHNIQUES

packetss
 0

 500

 1000

 1500

 2000

1 1 2
 line scenario

2 4 4 1 1 2
 parallel scenario

2 4 4 1 1 2
 merging scenario

2 4 4 1 1 2
 cross scenario

2 4 4

en
er

gy
 p

er
 s

ec
on

d
[u

J]

strobe without payload
strobe with payload

Figure 5.24: Energy per second of the noninvolved neighbor nodes with max. payload.

longer than the ones without payload. Therefore, the radio module requires a con-
siderably longer listening interval to receive a beacon strobe including the payload.
This results in a higher energy consumption.

Nevertheless, the overall energy required by beacon strobes including payload ver-
sion is lower. When giving the same amount of energy to every node in a WSN,
the WSNs using the beacon strobe version including payload will be longer able
to deliver data to the sink. This is also the case if the used routing mechanism is
able to replace nodes that ran out of power. For the final version of BEAM we use
beacon strobes including payload for the following reasons:

1. Energy consumption and network lifetime: The overall energy consumed
by involved and noninvolved is lower when using beacon strobes including
payload. This increases network lifetime.

2. Robustness against interferences: Beacon strobes including payload are
more robust against interferences. They require only two instead of four
successful transmissions. Additionally, in case of bit error in the data frame,
the receiver is able to just wait for the next beacon strobe.

3. Code complexity: The logic for beacon strobes including payload is less
complex. It requires only two (strobe, ack) instead of four individual trans-
missions (strobe, ack, data, ack)to forward data to the next hop. This reduces
code complexity and enhances protocol robustness.

5.2.4 Duty Cycle Evaluation

This subsection evaluates the longest and shortest useful duty cycle duration. The
shortest reasonable duty cycle duration is required to achieve highest possible
throughput at high traffic load. The longest duty cycle duration is used by all idle

143

5.2. EVALUATION OF BEAM PROTOCOL OPTIMIZATION TECHNIQUES

nodes and to forward low traffic load. The less energy is required in idle mode,
the longer is the network lifetime. Longer default duty cycle durations require less
energy, but increase the required packet delivery time.

First, we search for the shortest reasonable duty cycle duration to achieve high-
est possible throughput. We use the telosB small-scale testbed line and parallel
scenarios defined in Subsection 5.1.1 for these evaluations. The TARWIS event
recording system is not able to handle this large amount of traffic. The application
on the sender node creates 64 packets per second and sends them towards the net-
work stack. A lot of them are dropped, due to insufficient bandwidth. Table 5.4
shows the used protocol configurations.

RDC protocol BEAM with fix duty cycle durations
Strobe type Including payload
BEAM-payload 40 bytes
Transmission delay Yes
Transport protocol UDP
End-to-end reliability No
Used scenarios Line, parallel

Table 5.4: Measurement setup for transmission delay optimization evaluations

The amount of wake-up periods executed per second is limited. BEAM performs
two channel checks during a wake-up period to ensure a free channel (see Figure
5.8). Performing up to 256 wake-up periods per second, the radio module is able
to handle a specific sleeping period after the two channel checks. At minimum
duty cycle duration, one channel check after each other is executed. Technically
the shortest time between two individual channel checks with the CC2420 radio
module is 1.984 ms. This results in a maximum of 504 wake-up periods per second.
Moreover, we measured the throughput without any sleeping period. In this case,
the radio module stays in listening mode and waits for incoming packets. Figure
5.25 shows the successfully transmitted packets for different duty cycle durations.
In both evaluated scenarios, throughput continuously increases for up to 256 wake-
up periods per second. Then, throughput rate remains static in the line scenario and
decreases in the parallel scenario. In the line scenario, the processing limit of the
microcontroller is reached. It is not possible to forward more packets through the
used µIP stack due to the processing load of the microcontroller. Decreasing of the
throughput in the parallel scenario is caused by too much interference.

Using BEAM, the sender knows the current duty cycle duration of the receiver
to calculate the retransmission delay. The corresponding retransmission delays for
the minimum duty cycle duration and no sleeping period result in fast retransmis-
sions. Fast retransmission can allocate so much radio channel time that no other
node is able to forward any packets while the sender tries to forward all packets
from the packet buffer. This often results in unbalanced traffic load between the
two paths in the parallel scenario. In the final BEAM version we use a maximum

144

5.2. EVALUATION OF BEAM PROTOCOL OPTIMIZATION TECHNIQUES

 0

 10

 20

 30

 40

 50

 60

 70

pa
ck

et
s

re
ce

iv
ed

 p
er

 s
ec

on
d

[s
-1

]

wake-ups per second [s-1]
2 4 8 16 32 64 128 256 504

 min duty
 no
duty

parallel scenario
line scenario

(max) sleep

Figure 5.25: Throughput of different fixed duty cycle durations.

of 256 wake-up periods per second during high data rates.

To define a meaningful default duty cycle duration, we employed the WISEBED
testbed. The consumed energy was recorded every second. We performed this mea-
surement for different duty cycle durations for one hour during daytime (from 10
am to 11 am) and for one hour after might night. Figure 5.26 shows the measured
energy consumption for different default duty cycle durations. More than 32 wake-
up periods per second do not make any sense as the default duty cycle duration
should be as long as possible to preserve energy. All measurements were made on
channel 26 of the CC2420 at 2.480 GHz to prevent external interferences caused
by IEEE 802.11 devices. As expected, the energy correlates with the amount of
wake-up periods per second. The variation of the energy is caused by random ex-
ternal interference, which is interpreted as potential incoming frame. This causes a

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

en
er

gy
 p

er
 s

ec
on

d
[u

J]

wake-ups per second [s-1]
1 2 4 8 16 32

day
night

Figure 5.26: Energy consumption of different duty cycle durations.

145

5.2. EVALUATION OF BEAM PROTOCOL OPTIMIZATION TECHNIQUES

longer listen cycle to wait for the next beacon strobe. The duty cycle duration and
daytime does not show an impact on the percentage of executed wake-up periods
detecting an ongoing transmission. In every scenario, around 2.5% of all chan-
nel checks detect an ongoing transmission. Especially, the measurements at 16
and 32 wake-up periods per second show that the external interferences are evenly
distributed over time.

It is not possible to define a definitive meaningful default duty cycle duration for
all scenarios in a WSN. Instead, the default duty cycle duration must be selected
according to the requirements of the WSN application. Shorter default duty cycle
durations are used for short packet delivery times, longer default duty cycle dura-
tions are used to enhance the lifetime of the WSN. For our further evaluations, we
decide to use a default length of eight wake-up periods per second as ContikiMAC
and XMAC are also additionally using eight wake-up periods per second in the
Contiki default configuration.

5.2.5 Traffic Prediction

A major contribution of BEAM is its traffic prediction mechanism introduced in
Section 4.1.3. It is used to adapt the current duty cycle duration to the expected
traffic load. It replaces the traffic monitoring mechanism used by other existing
adaptive MAC protocols to determine the current duty cycle duration. These proto-
cols are only able to handle low traffic load and simple network topologies causing
low interferences. Traffic monitoring is not able to handle inter-flow and inter-flow
interferences generated by nodes that are sending a packet at the same time. We
used the WISEBED testbed small-scale network topologies defined in Subsection
5.1.1 to compare BEAM using traffic prediction with BEAM using traffic moni-
toring. Table 5.5 shows the used protocol configurations. We used different traffic
load values form 2 - 32 packets per second. Each experiment was executed twice,
each time for around 100 minutes. The throughput achieved with traffic monitoring
mechanism is shown in Figure 5.27. The results of the traffic prediction mecha-
nisms are depicted in Figure 5.28. The lowest tested traffic load can be forwarded
by using the default duty cycle duration of 125 ms. With increasing traffic load,
shorter cycles are required to offer the required additional bandwidth. Moreover,
the channel load increases with increasing traffic load. This increases the probabil-

RDC protocol BEAM
Strobe type Including payload
Default duty cycle duration 125 ms
BEAM-payload 40 bytes
Transmission delay Yes
Transport protocol UDP
End-to-end reliability No

Table 5.5: Measurement setup for traffic prediction evaluations

146

5.2. EVALUATION OF BEAM PROTOCOL OPTIMIZATION TECHNIQUES

 0
 5

 10
 15
 20
 25
 30
 35
 40

2 2 2 2 4 4 4 4 8 8 8 8 16 16 16 16 32 32 32 32

pa
ck

et
s

[#
] r

ec
ei

ve
d

pe
r s

ec
on

d

packets [#] sent per second

Line
Parallel
Merge
Cross

Figure 5.27: Throughput with traffic monitoring.

 0
 5

 10
 15
 20
 25
 30
 35
 40

2 2 2 2 4 4 4 4 8 8 8 8 16 16 16 16 32 32 32 32

pa
ck

et
s

[#
] r

ec
ei

ve
d

pe
r s

ec
on

d

packets [#] sent per second

Line: prediction
Line: monitor
Para.: prediction
Para.: monitor

Figure 5.28: Throughput with traffic prediction.

ity that the channel is already busy if a sender tries to start sending beacon strobes,
especially in the merging and cross scenario where two nodes try to send a packet
to the same node. In addition, higher traffic load increases the probability of packet
loss by internal interferences. These circumstances periodically cause temporary
blocking of one or more links. During such blocking, some nodes are either not
able to receive or to send a packet for a certain time period. The blocked sender
nodes correctly detect congestion and extend the retransmission delay to reduce
channel load. During this time, the sender must store additionally received packets
in its packet buffer. Duty cycle handling of a blocked receiver node depends on the
used adaptation mechanism.

By using traffic prediction, it is possible for the receiver to know that packets
are pending. The receiver keeps short duty cycle durations. The first packet re-
ceived after the blocking period then updates traffic prediction. The receiver can
immediately update the duty cycle duration to an adequate length.

147

5.2. EVALUATION OF BEAM PROTOCOL OPTIMIZATION TECHNIQUES

With traffic monitoring, the receiver detects decreasing traffic load during a
blocking period. Therefore, the receiver adapts the duty cycle durations to lower
traffic load. The unsteady traffic flow during congestion makes it difficult for traffic
monitoring to adapt the duty cycle durations to a sufficient length.

• Line scenario: Traffic monitoring is forwarding up to eight packets per sec-
ond without a significant end-to-end packet loss. Up to this traffic load, no
adaptation of the duty cycle duration is required. At higher traffic load, traf-
fic monitoring sometimes reduces duty cycle duration of a receiver node due
to a blocked sender node. Traffic prediction is able to handle up to the fastest
tested traffic load. At 32 packets per second, sometimes a sender is blocked
too long. It must drop some packets then.

• Parallel scenario: In this scenario, BEAM started to adapt the duty cycle
durations at a data rate of eight packets per second. Traffic monitoring is
able to properly handle up to eight packets per second with adapted duty
cycle durations. At higher throughput, we observed the following behavior
with traffic monitoring. One of the two parallel flows is able to forward all
generated packets, while the other flow must drop a large amount of gen-
erated packets. The flow with high packet loss uses the default duty cycle
duration, while the other flow was able to adapt the duty cycle duration to
the generated data rate. Sometimes, the flow with high packet loss is able to
adapt the duty cycle durations for some seconds. Then, the resulting inter-
flow interferences cause congestion, which decreases the data rate on one or
both flows. The traffic monitoring mechanism recognizes the lower data rate
and reduces the wake-up frequency to the default value for low data rates.
Traffic monitoring is not able to detect the need to adapt the duty cycle dura-
tions at the flow with the high packet loss ratio. Traffic prediction is capable
to keep short duty cycle durations on both paths, even if one is blocked for a
certain time. Sometimes, a few packets have to be dropped during detected
congestion.

• Merging scenario: Traffic monitoring is able to support up to 4 packets per
second in this scenario. At higher data rates, one of the sender nodes de-
tects congestion and reduces the data rate sometimes. The intermediate node
shows most of the time a shortened duty cycle duration and is able to con-
stantly receive packets from one of the senders. At 16 and 32 packets per
second, it can happen that the sink node is interfered by transmission of the
senders forwarding packets to the intermediate node and, therefore, reduces
its duty cycle durations. The intermediate node then must drop a lot of pack-
ets, too. Traffic prediction is able to keep short duty cycle durations on both
paths, even if one is blocked for a certain time. Nevertheless, it is not possi-
ble to successfully forward two flows with each 32 packets per second over
a single hop. The resulting 64 packets per second exceed the performance of

148

5.2. EVALUATION OF BEAM PROTOCOL OPTIMIZATION TECHNIQUES

the used network stack and the radio channel capacity reaches a critical limit
at this data rate.

• Cross scenario: The cross scenario shows similar challenges such as the
merging scenario. But the middle node must send and receive packets from
two nodes. Traffic monitoring already shows some packet loss at four pack-
ets per second. Traffic prediction shows some packet loss at 16 and 32 pack-
ets per second.

Figure 5.29 shows the associated total packet loss. The lowest traffic rates of 2
and 4 packets per second are skipped to gain a better overview. All these skipped
measurements show packet loss below 4%. The green area at the bottom of Figure
5.29 depicts the highest end-to-end packet loss ratio, which can be recovered by our
end-to-end retransmissions. Higher packet loss can, usually, not be recovered. The
hop-to-hop reliability mechanism already drops too many packets caused by too
high data rate or interferences. Additional traffic caused by end-to-end reliability
mechanisms would only increase the packet loss instead of reducing it.

 0

 20

 40

 60

 80

 100

8 8 8 8 16161616 32323232 8 8 8 8 16161616 323232 32 [p/s]

pa
ck

et
 lo

ss
 [%

]

Traffic monitoring Traffic prediction

Line
Parallel
Merge
Cross

Figure 5.29: Packet loss at different traffic load values with traffic monitoring and predic-
tion.

The results presented in this subsection clearly show that using traffic prediction
performs significantly better than using traffic monitoring. Moreover, traffic pre-
diction is able to detect the amount of pending packets during congestion. The final
version of BEAM, therefore, uses traffic prediction to adapt the duty cycle duration
to the current traffic flow.

5.2.6 Packet Aggregation

Packet aggregation requires the cooperation of BEAM and H2HR. It can minimize
the amount of small packets in the network. Up to three UDP/µIP packets with a
very short application payload can be aggregated into one BEAM frame. Packet

149

5.2. EVALUATION OF BEAM PROTOCOL OPTIMIZATION TECHNIQUES

aggregation cannot be used with large payloads. A large packet only fits once into
an IEEE 802.15.4 frame. The OMNeT++ simulator and the WISEBED testbed
evaluation show that as soon as BEAM must decrease the duty cycle duration,
traffic load is high enough to aggregate packets. At lower traffic load values, packet
aggregation shows neither an impact on energy consumption nor on reliability. At
high traffic load, packet aggregation can prevent or at least decrease congestion by
reducing the number of concurrently forwarded packets. This reduces the overall
energy consumption and the required number of transmissions.

Table 5.6 shows the used protocol properties to analyze the impact of packet ag-
gregation optimization at high traffic load. We used the WISEBED testbed small-
scale network topologies defined in Subsection 5.1.1. Each network topology is
tested with two different traffic load values. In each setup, 10’000 packets are
generated per UDP flow. Figure 5.30 shows the measured energy consumption.
Packet aggregation reduces the required energy at high traffic load and in challeng-
ing network topologies by reducing the total amount packets to be forwarded. The
reduction of forwarded packets lowers the total amount of required beacon strobe
transmissions. Shortening of the beacon strobe transmissions additionally reduces
interferences. Moreover, packet aggregation is able to reduce end-to-end retrans-

RDC protocol BEAM
Strobe type Including payload
BEAM-payload 37 bytes
Default duty duration 125 ms
Transmission delay Yes
Transport protocol UDP
End-to-end reliability No

Table 5.6: Measurement setup for packet aggregation evaluations

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

4 4 8 8 4 4 8 8 4 4 8 8 4 4 8 8 [p/s]

en
er

gy
 p

er
 b

yt
e

[u
J]

 line scenario parallel scenario merging scenario cross scenario

without aggregation
with aggregation

Figure 5.30: Energy consumption with and without packet aggregation.

150

5.3. RELIABILITY EVALUATIONS OF H2HR AND UDP-E2E

missions and enhances throughput. Therefore, the final versions of BEAM and
H2HR support packet aggregation to optimize performance during periods with
high traffic load.

5.2.7 BEAM Protocol Optimization Techniques Summery

This subsection summarizes the selected BEAM protocol optimization techniques
for the final version of BEAM. The decisions are based on the evaluation results,
which have been presented above.

• Acknowledgment mechanism: We use the CC2420’s hardware support for
acknowledgments. Hardware acknowledgments significantly reduce energy
consumption.

• Beacon strobe transmission delay: We use the introduced transmission
delay optimization. It significantly lowers the energy consumption during
low traffic load. With increasing traffic, it additionally reduces collisions
and interferences.

• Strobe design: We use BEAM with beacon strobes including payload. It
shows a slightly lower energy consumption. Nevertheless, it is more robust
against interferences and code complexity is lower.

• Duty cycle duration: For comparison with ContikiMAC and XMAC, we
use default duty cycle duration of eight wake-ups per second with these two
protocols. BEAM can be configured for other application requirements by
adapting the default duty cycle duration. If a long network lifetime is re-
quired, the duty cycle duration can be extended. If a low delay is required,
the duty cycle duration can be reduced. To offer the highest possible band-
width we use 256 cycles per second.

• Traffic prediction: We use traffic prediction to adapt duty cycle durations.
Traffic prediction performs significantly better than traffic monitoring.

• Packet aggregation: We use packet aggregation. Small packets can be ag-
gregated to reduce the total amount of transmitted packets. A lower packet
count reduces interference caused by reducing the required beacon strobes.
The lower packet count additionally reduces the energy consumption.

The following section makes use of the presented final BEAM version to evaluate
the H2HR protocol.

5.3 Reliability Evaluations of H2HR and UDP-E2E

First, this section presents the evaluation of the H2HR hop-to-hop reliability mech-
anisms. H2HR is part of the link layer and located on top of BEAM. H2HR uses

151

5.3. RELIABILITY EVALUATIONS OF H2HR AND UDP-E2E

BEAM transmission reports introduced in Section 4.2.2 to detect lost packets and
retransmits them with an appropriate retransmission delay. The applied retrans-
mission delays have a significant impact on the success of retransmission and con-
gestion handling. Generally, a retransmission delay should be as short as possible
to support steady and short packet delivery times. Longer random retransmission
delays are required during congestion caused by high channel load. Too early
executed retransmission at high channel load may fail and result in additional in-
terferences. This results in a critical channel load and decreases the traffic flow
even more.

We developed the congestion detection mechanism introduced in Section
4.2.2 to determine an appropriate retransmission delay. This mechanism uses the
three information sources (number of retransmissions, transmission report and
neighbor table introduced in Section 4.2.2) to estimate the current congestion state
and to calculate an appropriate retransmission delay. The evaluation of an appro-
priate weighting for three the individual information sources was performed in two
steps. First, we used the OMNeT++ simulator for extensive tests to compare all
possible weights of the three introduced information sources.

In a second step, we evaluated the most promising weights within a real world
testbed. The evaluation shows that, without delaying the retransmission during
congestion, sometimes all transmissions fail in the affected area for a longer time
period. Usually, this results in high packet loss caused by buffer overflows. Adding
an appropriate retransmission delay enables continuous traffic flow. In addition,
it enables BEAM to frequently update the neighbor table information to provide
up-to-date network information. Some evaluated scenarios generated too many
packets for the used WSN network topology. In this case, the retransmission delay
mechanism resulted in a backpressure mechanism, which dropped packets at the
generating node before they were sent. To enhance the backpressure effect, H2HR
additionally applies an appropriate delay to the first transmission attempt of the
next packet. In the following subsections, we evaluate how the three information
sources can be used by H2HR to optimize the congestion detection mechanism for
calculating an appropriate transmission delay. Afterwards, we evaluate the impact
of the end-to-end reliability protocols UDP-E2E and TCP on the packet loss ratio.
The evaluations show that the performance of end-to-end reliability protocols is
limited. Under low traffic load, they are able to recover over 98% of the dropped
packets. At higher traffic load, they may generate more traffic loss.

5.3.1 H2HR Simulation Evaluation

In a first step of finding the best usage of the three information sources, we im-
plemented the streaming scenario shown in Figure 5.4a in the OMNeT++ simu-
lator. We used the graphical runtime environment to determine a traffic pattern
that creates serious congestion. Using this traffic pattern, we created an evaluation
environment featuring 10’000 runs with different random seeds. This offers the
opportunity to evaluate all different combinations and weights of the different in-

152

5.3. RELIABILITY EVALUATIONS OF H2HR AND UDP-E2E

formation sources with exactly the same traffic timings and resulting interference
patterns. The simulation results suggest that all of the three information sources
have to be taken into account to detect congestion most reliably and rapidly. At low
congestion no retransmission delay needs to be added. With increasing congestion,
the retransmission delay must be quickly increased. The simulations additionally
indicate that, contrary to one’s expectations, an end-to-end reliability mechanism
can decrease the packet-delivery ratio at high traffic load. Above a certain traffic
load, the packet loss is higher with UDP-E2E than without, due to intra-flow inter-
ferences generated by negative acknowledgments. At lower traffic load, UDP-E2E
increases the packet-delivery ratio to 99.8%.

Based on the simulation results, we evaluate the most promising weight com-
binations in the WISEBED testbed. The next subsection presents the results of the
WISEBED testbed evaluation. The finally used weights are described in the H2HR
protocol description in Section 4.2.

5.3.2 H2HR Real Word Evaluation

In the following WISEBED experiments, we determine the best usage of the three
available information sources introduced in Section 4.2.2. Figure 5.31 shows the
used large-scale streaming scenario defined in Subsection 5.1.2. The streaming
scenario generates more internal inferences than the small-scale scenarios defined
in Subsection 5.1.1. We used different combinations of the three information
sources to evaluate the impact of the individual information source on reliability
and energy consumption.

Table 5.7 shows the different used combinations of the information sources for
the WISEBED testbed evaluations.

6

9

8

2

3

74

10

1

115

(a) Traffic flow.

source

source

source

source
sink

(b) WISEBED testbed nodes.

Figure 5.31: WISEBED testbed streaming scenario used for H2HR transmission delay
evaluation.

153

5.3. RELIABILITY EVALUATIONS OF H2HR AND UDP-E2E

One combination uses only the failed number of transmission attempts, which rep-
resents the information source commonly used by other hop-top-hop retransmis-
sion mechanisms. Two combinations additionally use either the BEAM neighbor
table or the BEAM transmission report as second information source. One combi-
nation uses all three information sources. The shortcut defined in the first column
of Table 5.7 called ID refers to corresponding combination. On top of µIP, we use
UDP. UDP does not support any end-to-end retransmission functionality. There-
fore, we use UDP-E2E on top of UDP to enable end-to-end reliability.

ID Description Number of re-
transmissions

Transmission
report

Neighbor
table

NR Number of retrans-
missions (NR)

x

NR/RL Additional delay for
receiver load (RL)

x x

NR/CL Additional delay for
channel load (CL)

x x

All Using all sources x x x

Table 5.7: Information sources used for the WISEBED testbed evaluations.

Packet Loss

Each of the combinations shown in Table 5.7 has been tested with a moderate traf-
fic load of 0.5 packets per second and a high traffic load of 2 packets per second on
each of the four paths in the large-scale streaming scenario (see Figure 5.31). The
channel load is rather low for this traffic load. BEAM is able to efficiently forward
the packets at this traffic load. UDP-E2E can send a negative acknowledgment
without overloading the radio channel. A data rate of 2 packets per second results
in a traffic load that generates a critical level of inter-flow interference within the
used network topology. Figure 5.32 shows the resulting end-to-end packet loss for
both traffic load values. Both traffic load values are evaluated with retransmission
limits of 3, 10 and 20 attempts (RTX Att.). For each measurement, we used 15’000
packets. There is no noticeable difference between a limit of 10 and 20 retransmis-
sions, as less than 0.2% of the transmissions require more than 10 retransmissions.
With a limit of three retransmissions, the packets are dropped too quickly during
periods of congestion.

The H2HR hop-to-hop reliability mechanism is able to deliver over 99.9% of
the generated packets at moderate traffic load and at least 10 retransmission at-
tempts. Only isolated packets are missing. The additional use of the transmission
report and neighbor table does not provide a noticeable improvement compared to
a normal random back-off mechanism. However, it reduces the end-to-end packet
loss at high traffic load. We achieved the best results by using all sources at the
critical traffic load.

154

5.3. RELIABILITY EVALUATIONS OF H2HR AND UDP-E2E

 0

 10

 20

 30

 40

 50

 60

pa
ck

et
 lo

ss
 [%

]

NR
NR/RL
NR/CL
All

2 packet/sec0.5 packet/sec

3 RTX Att. 10 RTX Att. 20 RTX Att. 3 RTX Att. 10 RTX Att. 20 RTX Att.

Figure 5.32: End-to-end packet loss ratio at different traffic load values.

Figure 5.33 depicts how many of the created data and acknowledgment packets are
dropped between sender and sink. H2HR is able to forward over 99.5% of all pack-
ets towards the sink, at moderate traffic load and with at least 10 retransmission
attempts. Packet loss is caused by a packet overflow during congestion. Most of
the packets are dropped on the last hop, on which all four flows have to be handled
concurrently. Here, the node receives more packets than it can forward to the next
node. This results in an overflow of the packet buffer. The packet loss that occurs
when having a limit of three retransmissions has a different reason. Here, most
of the packets are dropped due to having exceeded the retransmission limit. The
packet buffer does not overflow.

 0

 10

 20

 30

 40

 50

 60

pa
ck

et
 lo

ss
 [%

]

NR
NR/RL
NR/CL
All

2 packet/sec0.5 packet/sec

3 RTX Att. 10 RTX Att. 20 RTX Att. 3 RTX Att. 10 RTX Att. 20 RTX Att.

Figure 5.33: Packets dropped at different traffic load values.

At high traffic load significantly more and longer congestion periods have to be
handled. The maximum number of applied retransmissions has significant influ-
ence to congestion handling. With a high limit of 10 or 20 retransmissions, more

155

5.3. RELIABILITY EVALUATIONS OF H2HR AND UDP-E2E

than 60% of the dropped packets are dropped by the node that generated the packet.
This reduces the total amount of packets in the network to a reasonable limit. With
an overloading traffic load of four packets per second, over 90% of the dropped
packets are dropped directly by the node that generated the packets. This is ba-
sically caused by the retransmission delay calculated by H2HR and packet loss
caused by bit errors. Packets dropped by nodes generating them reduces the buffer
overflows inside the network during congestion periods. With a low retransmission
limit of three retransmissions, clearly more packets are injected into the network.
Their packets are dropped during congestion periods by exceeding the retransmis-
sion limit. This reduces the total amount of concurrently forwarded packets during
congestion periods and, therefore, it additionally reduces the congestion. The over-
all packet loss with a low retransmission limit is clearly higher than with sufficient
retransmissions.

Every negative acknowledgment sent by UDP-E2E produces intra-flow inter-
ferences. This may cause additional packet loss if the traffic load is already reach-
ing a critical level.

Energy Consumption

Figure 5.34 shows the energy consumption of the different measurement scenar-
ios. The packet loss ratio shows two opposite effects with respect to energy. First,
a minimized end-to-end packet loss ratio requires more energy for the excessive
retransmission of lost packets. Second, every received packet reduces the energy
percentage per successfully transmitted byte. With up to three end-to-end retrans-
missions per packet, many unsuccessful end-to-end retransmissions are skipped. It
shows that reducing the packet loss ratio to the possible minimum requires much
additional energy.

 0
 100
 200
 300
 400
 500
 600
 700
 800

en
er

gy
 p

er
 b

yt
e

[u
J]

NR
NR/RL
NR/CL
All

2 packet/sec0.5 packet/sec

3 RTX Att. 10 RTX Att. 20 RTX Att. 3 RTX Att. 10 RTX Att. 20 RTX Att.

Figure 5.34: Energy per successfully transmitted byte.

The additional use of the transmission report and neighbor table information slightly
reduces energy consumption per transmitted byte at high traffic load. The combi-

156

5.3. RELIABILITY EVALUATIONS OF H2HR AND UDP-E2E

nation of transmission report and neighbor table information does not show an
observable additional improvement in energy consumption.

UDP-E2E is responsible for a considerable part of the used energy. The nega-
tive acknowledgments require plenty of additional beacon strobes and shorter duty
cycle durations to enable bi-directional traffic. Too many negative acknowledg-
ments may cause even more packet loss instead of reducing it. The following
subsection shows the impact of end-to-end retransmission mechanisms on packet
loss.

5.3.3 End-to-end versus Hop-to-Hop Reliability

End-to-end reliability mechanisms ensure nearly 100% delivery ratio at low and
moderate traffic load. In our measurements, end-to-end packet loss was below
0.2% for the applied traffic load values. Our network stack offers two different end-
to-end reliability mechanisms introduced in Subsection 5.1.5. One offered reliabil-
ity mechanism is UDP-E2E, the other is TCP. The two mechanisms significantly
differ. UDP-E2E sends negative acknowledgments for missed packets, while TCP
is using positive acknowledgments for successfully received packets. Sending the
acknowledgment at an appropriate time is a challenging task for an end-to-end reli-
ability protocol. TCP features a sophisticated mechanism for sending acknowledg-
ments. UDP-E2E using excessive configuration sends negative acknowledgments
whenever a lost packet has been detected. UDP-E2E using standard configuration
also sends a negative acknowledgment if a lost packet has been detected, but waits
with sending an additional negative acknowledgment either until the missed data
packet has arrived or 1.5 times the average RTT.

Figure 5.35 compares end-to-end packet loss of TCP with UDP-E2E in stan-
dard and excessive configuration. Moreover, Figure 5.35 shows the end-to-end
packet loss with UDP without any end-to-end reliability mechanism (No-E2E). All
experiment setups are using H2HR with 10 retransmission attempts. TCP clearly

 0

 20

 40

 60

 80

 100

pa
ck

et
 lo

ss
 [%

]

packets sent per second [s-1]

0.5 1 2 4 8

TCP
UDP-E2E excessive
UDP-E2E standard
No-E2E

Figure 5.35: End-to-end packet loss.

157

5.4. IMPACT OF FEC CODES TO ENERGY EFFICIENT WSNS

shows the worst performance. The excessive transmission of acknowledgments in
the opposite direction overloads the channel by too many intra-flow interferences.
UDP-E2E excessive and UDP-E2E standard are able to successfully deliver 100%
of the packets up to a data rate of one packet per second. At a generated data
rate of 2 packets per second per node, the channel shows a critical channel load.
Packet loss with UDP-E2E excessive is clearly higher than for UDP-E2E standard.
No-E2E does not perform any end-to-end retransmission. On one hand, No-E2E
shows the lowest packet loss for load above the critical value. On the other hand,
No-E2E shows packet loss ratios of 0 - 1% at low and moderate traffic load. For the
final protocol stack, we, therefore, use UDP-E2E standard. It generally achieves
a delivery ratio of 100% at low data rates. But in a few measurements, some of
the 15’000 generated packets are missing. This can be caused by an error in the
TARWIS event recording system or by high external interferences. No-E2E cannot
be used as it shows up to 1% packet loss at low and moderate traffic load.

5.3.4 Summary Reliability Evaluations of H2HR and UDP-E2E

We use the information of the transmission report and neighbor table to optimize
hop-to-hop reliability in the final version of H2HR. It enables detecting occurring
congestion as well as calculating an appropriate retransmission delay. Reliabil-
ity functions generally increase the energy requirements, as additional retransmis-
sions are required for dropped packets. The information sources used by H2HR
decrease the additionally required energy by reducing the needed retransmissions
during congestion periods and while increasing the delivery ratio. H2HR reduces
the required end-to-end retransmissions, which additionally decreases energy con-
sumption and congestion. Our evaluations show that a hop-to-hop reliability mech-
anism forcing local retransmissions clearly performs better in terms of reliability
with lower energy requirements than when using end-to-end retransmissions. End-
to-end reliability mechanisms are not suitable for high traffic load. At high traffic
load, end-to-end reliability mechanisms can even increase packet loss instead of re-
ducing it. However, end-to-end reliability mechanisms combined with hop-to-hop
reliability mechanisms are able to offer an nearly 100% end-to-end delivery ratio
at low traffic load values. Hop-to-hop reliability mechanisms without end-to-end
reliability support only achieve an end-to-end delivery ratio of 99% at low traffic
load values.

5.4 Impact of FEC Codes to Energy Efficient WSNs

In this section, we take a closer look to the impact of FEC codes on the energy
efficiency and reliability of real world WSN stacks. We evaluate the impact of dif-
ferent radio modules, different SNR levels and interferences to the performance of
the FEC codes. For example, the DSSS mechanism of the CC2420 is significantly
more robust against interferences than the OOK modulation of the bit/byte-oriented

158

5.4. IMPACT OF FEC CODES TO ENERGY EFFICIENT WSNS

radio modules. Moreover, we integrate FEC codes to our protocols to evaluate the
impact of FEC codes to the energy efficiency and reliability performance of a real
world WSN stack. BEAM would support FEC codes if they are able to either
reduce the energy consumption or improve reliability.

The following subsections evaluate step-by-step two FEC codes featuring dif-
ferent recovery options. In a first step, Subsection 5.4.1 determines the additional
energy required for encoding, decoding and transmission of parity bytes. Subsec-
tion 5.4.2 evaluates packet loss of FEC codes within a simple real world testbed
featuring different network conditions. This enables a basic estimation of the re-
covery potential of FEC codes. Subsection 5.4.3 analyses the impact of the FEC
codes in an energy efficient and reliable real world WSN stack. Therefore, we
integrated both FEC codes into BEAM to support energy efficiency and provide
detection and retransmission of lost packets. Finally, Subsection 5.4.4 measures
how the throughput is affected by FEC codes.

5.4.1 Encoding and Decoding Payload

This subsection measures the energy required for encoding and decoding data
packets by different FEC implementations on a telosB node. Using FEC codes,
every packet must be encoded before it can be sent. Decoding is only required
if the CRC check indicates a bit error in the received packet. The authors of [9]
and [41] evaluated the time required by different FEC codes to encode and decode
data. They evaluated BCH code, Hamming code, repetition code [61] and Dou-
ble Error Correcting, Triple Error Detecting (DETECT) code [32]. The presented
evaluations are made by the use of the ECC library implemented in Scatterweb
[31] on MSB430 nodes [8]. The authors additionally integrated their ECC library
into Contiki [40]. For our measurements, we use Hamming(12,8) [33] and Reed-
Solomon(255, 225) [70] with 66 bytes data payload. These two FEC codes are
often used in WSN applications (e.g., [53] and [14]). Hamming(12,8) represents
an FEC code with low energy requirements but low recovery potential. Reed-
Solomon(255, 225) represents an FEC code with a high recovery potential. Un-
fortunately, the complex algorithms used by for Reed-Solomon(255, 225) result
in significantly longer execution time and a higher energy usage than the Ham-
ming(12,8) code.

To measure the required energy, we use again the RIGOL multimeter connected
to a telosB node. Contiki puts the micro-controller as often as possible into sleep
mode. During the entire FEC calculation period, the micro-controller is operating
at full power. The difference between the energy levels represents the required
energy for encoding and decoding. The measured energy consumption for one
second of FEC code calculations is 16.72 mJ with a standard deviation of 0.1023
mJ. The energy consumption for one second during idle mode depends on the used
operating system, which is responsible of handling the duty cycles of the microcon-
troller. A microcontroller running Contiki requires 1.43 mJ for one second during
idle mode (Section 5.1.4). This results in an additional energy requirement of 15.29

159

5.4. IMPACT OF FEC CODES TO ENERGY EFFICIENT WSNS

mJ for one second during FEC calculations.
First, we measured encoding and decoding times required by the Hamming

code implementation used by [9] and [41]. This implementation requires 102.5 ms
to encode 66 bytes payload with Hamming(12,8). This is 79 times longer than the
results published in [53]. The ECC library implementation used by [9] and [41]
is inefficient and should not be used to retrieve meaningful results. The imple-
mentation used by [53] is not available. Therefore, we made a new implementation
of a Hamming(12,8) code. Our own Hamming(12,8) code implementation requires
only 30% more calculation time than the implementation from [53]. The difference
in calculation time is most likely caused by a different implementation strategy, re-
quiring less computation power on a telosB node. The performance difference of
both Hamming(12,8) codes on a telosB node are shown in Figure 5.36. Own im-
plementation refers to our implementation, while reference implementation refers
to [53].

 0

 1

 2

 3

 4

 5

 6

own
implement.

implement.
reference

own
implement.

implement.
reference

pr
oc

es
si

ng
 ti

m
e

[m
s]

encoding Hamming(12,8)
decoding Hamming(12,8)

Figure 5.36: Encoding and decoding time of Hamming(12,8) for 66 bytes payload.

The available ECC library provided by [40] does not include a Reed-Solomon im-
plementation. Therefore, we created our own Reed-Solomon(255, 225) implemen-
tation and compared its performance to the Reed-Solomon(255, 225) implementa-
tion of [53]. Figure 5.37 shows the encoding and decoding time for 66 bytes pay-
load of both versions. Our own implementation is 55% faster in encoding and up
to 6 times faster in decoding. The Reed-Solomon decoding time from the reference
implementation depends on the occurred byte errors. The reference implementa-
tion requires longer time to decode a code word with 15 erroneous bytes than a
code word without error. Our implementation requires always the same time for
decoding regardless of the amount of byte errors in the code word.
Table 5.8 shows the additional energy required by the microcontroller to encode
and decode data with our FEC code implementations on a telosB node with Con-
tiki. The presented values do not include the additional energy costs required by
the radio module to transmit the parity bits. With the telosB node, sending and
receiving parity bits requires additionally 3.66 µJ/Byte (see Section 3.1). We use

160

5.4. IMPACT OF FEC CODES TO ENERGY EFFICIENT WSNS

own
implement.

 0

 50

 100

 150

 200

pr
oc

es
si

ng
 ti

m
e

[m
s]

encoding Reed-Solomon(255, 225)
decoding Reed-Solomon(255, 225)

implement.
reference

own
implement.

implement.
reference

own
implement.

implement.
reference

no bit error 15 byte error

Figure 5.37: Encoding and decoding time of Reed-Solomon(255,225).

both FEC implementations in the following evaluations.

FEC code Encoding
[µJ/Byte]

Decoding
[µJ/Byte]

Hamming(12,8) 0.147 0.162
Reed-Solomon(255, 225) 1.80 2.34

Table 5.8: FEC calculation costs per byte on a telosB running Contiki

Transmission Costs

Next, we measured the energy required to forward one single packet with a payload
of 66 bytes for both FEC codes. Moreover, we measured the energy required by a
hybrid packet recovery mechanism, combining ARQ with FEC to forward a packet
with 66 bytes payload. We used the line scenario in the evaluation setup to measure
the electrical current (see Figure 5.6). The individual telosB nodes are placed in
a distance of 20 cm. This reduces the bit error ratio to below 1%. On the link
layer, we use nullRDC and nullMAC without any duty cycle mechanism. In a first
step of the measurement, we recorded the energy required by the sender to encode
and transmit one single packet with 66 bytes payload. In a next step, we recorded
the energy required by the receiver to receive a packet and decode the packet if
required. The energy recordings are split into those two steps as only one sensor
node can be connected to the RIGOL multimeter.

First, we measured the energy costs in case of an error free transmission.
In these experiments the protocols using FEC codes encode the payload and for-
ward the frame including the parity information to the receiver. The CRC check
of the CC2420 on the receiver side indicates the error free reception of the packet.
Therefore, the receiver can skip the FEC decoding and can just remove the parity
information. With the ARQ protocol, the sender transmits a packet and the receiver
sends back an acknowledgment.

161

5.4. IMPACT OF FEC CODES TO ENERGY EFFICIENT WSNS

Second, we measured the energy costs in case of a single bit error, which
is recoverable by the FEC code. To simulate the erroneous transmissions, we in-
tentionally added a one bit error to the encoded payload on the sender side. The
receivers using FEC codes are able to recover this single bit error by decoding
and processing the parity information. With the ARQ protocol, the sender has to
retransmit the erroneous frame.

Figure 5.38 shows results of the energy measurements in these scenarios. The
energy consumed by the radio module depends on the packet length. The parity
information of the Hamming(12,8) (HAM) and Reed-Solomon(255,225) (RS) en-
coded payload requires additional energy. The hardware acknowledgment of the
ARQ mechanism requires roughly the same additional energy as the 30 bytes parity
data of the Reed-Solomon(255,225) code. ARQ is the most energy efficient mecha-
nism in case of an error free transmission, even though an acknowledgment is sent.
In case of a single bit error, FEC codes have to decode the parity information and
ARQ must perform an additional transmission. In this case, the Hamming(12,8)
code is more energy efficient than ARQ.

 0

 100

 200

 300

 400

 500

 600

 700

HAM RS ARQ HAM RS ARQ

en
er

gy
 [u

J]

no bit error one bit error

Radio module
FEC calculation

Figure 5.38: Energy to forward one packet with different reliability techniques.

If more than two retransmissions are required, then a successful recovering by
Reed-Solomon(255,225) is more energy efficient than ARQ. These results do not
allow a general conclusion about their energy efficiency within a real WSN. On one
hand, only slightly damaged packets can be recovered by Hamming(12,8). Section
5.4.2 analyses how many of the received packets can be successfully recovered by
the used FEC codes. On the other hand, FEC codes have to be integrated into an
energy efficient network stack supporting local retransmissions. These influences
and the impact of adaptive FEC algorithms are evaluated in Subsection 5.4.3. Be-
fore that, we evaluate the recovery potential of FEC codes at different network
conditions in the next subsection.

162

5.4. IMPACT OF FEC CODES TO ENERGY EFFICIENT WSNS

5.4.2 Recovery Potential of FEC Codes

This subsection shows the recovery potential of our FEC code implementation un-
der different network conditions. The following conditions affect the bit error ratio
and the amount of detected frame starts:

• Process gain: Different radio modules feature different process gains. High
process gain decreases the bit error ratio and increases the probability of
detecting a frame start.

• Received data transmission signal strength. The received signal strength
of the data transmission depends on environment characteristics such as dis-
tance and obstacles. The higher the received signal strength is the higher is
the probability of a successful transmission.

• Internal interferences: Ongoing traffic increases internal interferences. A
high traffic load increases the bit error ratio and decreases the probability of
detecting a frame start.

• SNR: The combination of the received signal strength with the ongoing in-
ternal and external interferences determines the SNR. High SNR decreases
the bit error ratio and increases the probability of detecting a frame start.

Testbed Setup

We use telosB and MSB430 nodes to evaluate the impact of the process gain. The
radio module of the telosB shows a significantly higher process gain than the radio
module of the MSB430 node. Both nodes types are connected to a notebook.
The notebook acts as recording device to analyze the occurred bit errors. The
FEC codes are implemented in Contiki. On the link layer, we use nullRDC and
nullMAC. Figure 5.39 shows the testbed setup. For high SNR, nodes 1 and 2 are
placed in a distance of 30 cm. For the low SNR values, we used nodes 1 and 3.
They are placed in two rooms on the same floor level separated by a corridor. We
placed node 4 on the upper floor level to generate internal interferences. The
transmissions by node 4 are hard to detect by receiver node 1. The third node
constantly transmits packets after a short back-off including a channel check. We
divide the transmitted packets into four groups to analyze the recovery potential:

1. Recovery success: The occurred bit errors were recovered by the evaluated
FEC codes. Packets of this group would be lost without FEC.

2. Recovery fail: The received packet contains too many bit errors to be re-
covered by the evaluated FEC code. An FEC code with a higher recovery
capacity might be able to correct the bit errors.

3. No bit errors: Packets received without any bit error. FEC codes do not
have an impact on this group.

163

5.4. IMPACT OF FEC CODES TO ENERGY EFFICIENT WSNS

2

1

3

4

Figure 5.39: WISEBED testbed FEC evaluation setup.

4. Missed frame start: These packets could not be detected by the radio mod-
ule due to bit errors in the frames start byte. FEC codes do not have an effect
on this group.

Bit Errors Caused by External Interferences

Figure 5.40 shows the amount of received packets without internal interferences.
External interferences are caused by surrounding electrical devices. Especially,
devices operating in the 2.4 GHz ISM band may cause significant external interfer-

 0

 20

 40

 60

 80

 100

telosB MSB telosB MSB telosB MSB telosB MSB

re
ce

iv
ed

 p
ac

ke
ts

 [%
]

Hamming Reed-Solomon Hamming Reed-Solomon

No bit-errors
Recovery success
Recovery faild
Missed frame start

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

telosB MSB telosB MSB telosB MSB telosB MSB

re
ce

iv
ed

 p
ac

ke
ts

 [%
]

Low SNR Reed-Solomon High SNR Reed-Solomon

No bit-errors
Recovery faild
Recovery success

 0

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

telosB MSB telosB MSB telosB MSB telosB MSB

re
ce

iv
ed

 p
ac

ke
ts

 [%
]

Low SNR Reed-Solomon High SNR Reed-Solomon

No bit-errors
Recovery faild
Recovery success

Figure 5.40: Different kinds of bit errors with external interferences.

164

5.4. IMPACT OF FEC CODES TO ENERGY EFFICIENT WSNS

ences in these experiments. For each result, 50’000 packets have been transmitted
from node 2 to node 1 for high SNR and from 2 to node 1 for low SNR. In case of
high SNR, over 99% of the packets have been received without any bit error. Less
than 1% packets are lost. With low SNR, the higher process gain of the telosB
node results in a significantly lower bit error ratio than for the MSB430 nodes.
The telosB node was able to receive more packets without any bit errors than the
MSB node was able to detect. Process gain enhances the probability of detecting a
frame start. In all scenarios, Reed-Solomon(255,225) is able to repair clearly more
erroneous packets than Hamming(12,8). Less than 6% of the packets transmitted
by the telosB nodes are successfully recovered by an FEC code.

Bit Errors Caused by External and Internal Interferences

Figure 5.41 shows the measured amount of received packets including internal in-
terferences. The original transmitter sends a total of 50’000 packets to the receiver.
A packet is only transmitted if a free channel is detected. Otherwise, the trans-
mission is postponed. The internal interferences show a noticeable effect to all
measurement setups. The high process gain of the CC2420 radio module increases
the amount of detected packets and decreases the bit error ratio. Over 75% of the
received packets are received without any bit error. The Reed-Solomon(255,225)
FEC code is able to repair more than half of the packets received with bit errors.
Hamming(12,8) only repairs a small amount of the corrupted packets.

 0

 20

 40

 60

 80

 100

telosB MSB telosB MSB telosB MSB telosB MSB

pa
ck

et
s

in
cl

ud
in

g
bi

t e
rro

rs
 [%

]

Hamming Reed-Solomon Hamming Reed-Solomon

No bit-errors
Recovery success
Recovery faild
Missed frame start

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

telosB MSB telosB MSB telosB MSB telosB MSB

re
ce

iv
ed

 p
ac

ke
ts

 [%
]

Low SNR Reed-Solomon High SNR Reed-Solomon

No bit-errors
Recovery faild
Recovery success

 0

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

telosB MSB telosB MSB telosB MSB telosB MSB

re
ce

iv
ed

 p
ac

ke
ts

 [%
]

Low SNR Reed-Solomon High SNR Reed-Solomon

No bit-errors
Recovery faild
Recovery success

Figure 5.41: Different kinds of bit errors with external and internal interferences.

Conclusions of Recovery Potential of FEC Codes

The results presented in this subsection show that the process gain has a higher
impact on the packet loss ratio than FEC codes. The radio module generates the

165

5.4. IMPACT OF FEC CODES TO ENERGY EFFICIENT WSNS

process gain during the carrier wave modulation. Therefore, it enhances the prob-
ability of a frame start detection. A high process gain is able to receive more error
free packets than a radio module with low process gain is able to detect. Further-
more, no additional calculations are required by the microcontroller. Therefore,
process gain requires no additional calculation time and less energy than FEC
codes. The removal of the decoding delay significantly reduces the delay for send-
ing an acknowledgment. In Subsection 5.2.1, we showed that a short acknowledg-
ment response time is required to minimize the energy required for the periodic
channel checks. An outcome of these experiments is the confirmation that packet
oriented radio modules are the significantly better choice than bit/byte oriented
radio modules concerning reliability and energy efficiency.

The results presented in this subsection additionally show that FEC codes could
make sense for bit/byte oriented radio modules such as the CC1020 used in [41].
The evaluated byte oriented radio module CC1020 shows a clearly higher bit error
ratio at low SNR values than the packet oriented radio module CC2420. This is
caused by the simple OOK modulation technique used by bit/byte oriented radio
modules. Furthermore, bit/byte oriented radio modules require several times more
energy and time than packet oriented radio modules to forward the same amount of
data (see Section 3.1). Therefore, a corrupted packet recovered by a FEC code on
sensor node using a bit/byte oriented radio module preserves clearly more energy
than a packet recovered on sensor node using a packet oriented radio module.

Nevertheless, all evaluated FEC codes were able to reduce the required num-
bers of retransmission attempts for all types of radio modules. In the following
subsections, we evaluate the impact of FEC codes on packet oriented radio mod-
ules in more detail. Furthermore, we analyze if the energy preserved by less trans-
mission attempts is sufficient to compensate the additional energy costs caused by
the FEC calculations.

5.4.3 Evaluating FEC Codes in an Energy Efficient WSN Stack

This subsection evaluates the impact of FEC codes to a real world network stack
supporting energy efficiency and reliability. Therefore, we added FEC support to
BEAM and H2HR as introduced in Subsection 4.1.5. This enables evaluating our
FEC code implementations including energy efficiency and an ARQ mechanism.

Testbed Setup

Table 5.9 defines and explains the acronyms for the evaluated FEC code imple-
mentations considered in this subsection. Using the static FEC implementations
(RS static, HAM static), every transmitted packet is encoded. Using the adap-
tive FEC implementations (RS adaptive, HAM adaptive), introduced in Subsection
4.1.5, the FEC encoding is always applied after a transmission containing one or
more bit errors. After a transmission without a single bit error the FEC encoding
is disabled until the next bit error is detected. Moreover, we compare the different

166

5.4. IMPACT OF FEC CODES TO ENERGY EFFICIENT WSNS

FEC implementations to BEAM and H2HR without FEC support (No FEC).

Acronym FEC code Application
Hamming(12,8) Reed-Solom(255,225) Static Adaptive

RS static x x
HAM static x x
RS adaptive x x
HAM adaptive x x
No FEC

Table 5.9: Evaluated protocol versions with static, adaptive and without FEC support.

Table 5.10 shows the used WISEBED testbed to analyze the energy consumption
and data delivery reliability performance of different FEC versions.

Testbed WISEBED
Scenario Stream (see Figure 5.5)
RDC protocol BEAM with FEC support
Unencrypted data payload 66 bytes
Payload with Hamming(12,8) 99 bytes
Payload with Reed-Solomon(255,225) 96 bytes
Traffic load (low) 0.5 packets/sec
Traffic load (high) 2 packets/sec
Packets per experiment 10’000
Transport protocol UDP
End-to-end reliability UPD-E2E

Table 5.10: Measurement setup for BEAM with different FEC versions.

Performance Evaluation of Data Delivery Reliability

Figure 5.42 shows the ETX count measured for the different protocols. At 0.5
packets per second more than 50% of the transmissions were successfully at the
first attempt. At this data rate, H2HR is able to achieve a delivery ratio of over
99.8% for all protocol versions. Therefore, less than 0.2% of the packets require
end-to-end retransmission. The low traffic load creates only low internal inter-
ferences resulting in few packet collisions. Resulting congestion can be cleared
before the packet buffer overflows. At low traffic load, the protocol no FEC shows
a higher ETX count than the FEC enabled protocols. Therefore, the used FEC
codes are able to reduce the required local transmission attempts. The FEC en-
abled protocols do not show a measurable difference among themselves.

The channel occupancy and the resulting internal interferences reach a critical
level at a data rate of 2 packets per second. The FEC enabled protocols show now
a higher ETX count as well as significantly more and longer periods of congestion

167

5.4. IMPACT OF FEC CODES TO ENERGY EFFICIENT WSNS

 2

 4

 6

 8

 10
ET

X
co

un
t [

#]

0.5 packets / second 2 packets / second

HAM static
HAM adaptive
RS static
RS adaptive
No FEC

 2

 4

 6

 8

 10
ET

X
co

un
t [

#]

0.5 packets / second 2 packets / second

HAM static
HAM adaptive
RS static
RS adaptive
No FEC

Figure 5.42: ETX count for protocols with static, adaptive and without FEC support.

than No FEC. This results in packet dropping caused by buffer overflow. The
congestion additionally affects the transmission delay optimization of BEAM. The
resulting longer beacon strobe periods increase internal interferences, which cause
more additional bit errors in a single packet than the FEC code is able to recover.
Therefore, the FEC codes even increase the packet loss ratio at high traffic load
values.

Table 5.11 shows the amount of successfully recovered encoded packets. The
rest of the received encoded packets either was free from bit errors or contained too
many bit errors for a successfully recovering. The Reed-Solomon code was able to
restore more packets than the used Hamming code. The adaptive versions recover
more encoded packets than the corresponding static versions.

traffic load Hamming(12,8) Reed-Solomon(255,225)
packets/sec Static Adaptive Static Adaptive
0.5 1.2% 3.0% 8.2% 10.4%
2.0 2.5% 4.8% 12.4% 21.2%

Table 5.11: Successfully recovered packets.

The energy efficiency of adaptive FEC implementation using the CC2420 radio
module is limited for the following three reasons:

• CC2420 radio module only shows isolated packets with bit errors: The
majority of the adaptively encoded packets do not show any bit error in our
experiments. This indicates that most bit errors are caused by short-term
interferences and collisions. Adaptive FEC implementation using different
FEC codes, as introduced by [41], would switch most of the time between
no FEC and the weakest FEC Hamming code when using a CC2420 radio
module. Moreover, most of the encrypted packets do not contain a bit error.

168

5.4. IMPACT OF FEC CODES TO ENERGY EFFICIENT WSNS

Figure 5.43 depicts an example of two different adaptive FEC implementa-
tions. Only few of the packets received by the CC2420 radio module show
bit errors. The FEC with immediate encryption adaption encrypts a data
packet after detecting a bit error. The next frame does not contain any bit
error, therefore, the following packet is not anymore encoded. FEC with
immediate delayed adaption encrypt several packets after detecting an erro-
neous transmission. In case of multiple FEC codes, only the weakest FEC
code is applied, due to only one packet contained an error.

Packets received

normal packet FEC encoded packetPackets transmitted

packet

packet

packet

100 5 15 20 25 30 35

0 5 10 15 20 25 30 35

0 5 10 15 20 25 30 35

FEC with delayed
encryption adaption

FEC with immediate
encryption adaption

packet received with not recoverable bit errors
packet received without bit errors packet received with recoverable bit errors

bit errors bit errors bit errors bit errors

Figure 5.43: Adaptive FEC codes with CC2420 radio module.

• Amount of bit errors in a corrupted packet: Our Reed-Solomon(255,225)
implementation shows a higher recovery potential than every FEC code used
in [41]. Nevertheless, Reed-Solomon(255,225) is only able recover up to
21.2% of the corrupted packets in our measurement. Therefore, also a more
detailed adaptive FEC implementation would not have recovered more than
21.2% of the corrupted packet in these measurements.

• Radio duty cycle protocol: ARQ mechanisms and FEC codes require a ra-
dio duty cycling protocol to save energy. ARQ based mechanisms are clearly
more suitable to realize an energy efficient radio duty cycling protocol than
FEC codes (see Subsection 4.1.5).

Table 5.12 shows the overall packet loss including end-to-end retransmissions. The
end-to-end retransmission mechanism of UDP-E2E is able successfully forward all
packets at a traffic load of 0.5 packets per second. Therefore, FEC codes do not
have impact on the packet loss at low traffic load. At 2 packets per second, the
FEC enabled protocols show a significantly higher end-to-end packet loss than the
protocol No FEC. The adaptive FEC protocol versions show lower packet loss than
their static versions. Additionally, Hamming(12,8) shows lower packet loss than
Reed-Solomon(255,225). At high traffic load, all the FEC enabled protocols show

169

5.4. IMPACT OF FEC CODES TO ENERGY EFFICIENT WSNS

clearly higher traffic loss than No FEC. The results in Table 5.12 show that No FEC
is superior to the FEC enabled protocols concerning reliability.

traffic load Hamming(12,8) Reed-Solom(255,225) BEAM/H2HR
packets/sec Static Adaptive Static Adaptive No FEC
0.5 0% 0% 0% 0% 0%
2.0 12.5% 4.3% 35.4% 6.2% 0.2%

Table 5.12: Overall packet loss.

Energy Consumption Evaluation

Besides reliability we analyzed the impact on energy consumption. We added an
energy measurement mechanism to the FEC implementation to evaluate the energy
required for FEC encoding and decoding calculations. This FEC energy measure-
ment mechanism accumulates the time periods required by the microcontroller to
execute FEC encoding and decoding operations. The used energy is calculated by
multiplying the required time with the power required by the microcontroller at
100% load. Figure 5.44 shows the corresponding energy consumption.

 0

 200

 400

 600

 800

 1000

en
er

gy
 p

er
 b

yt
e

[u
J]

0.5 packets / second 2 packets / second

HAM static
HAM adaptive
RS static
RS adaptive
No FEC

 0

 200

 400

 600

 800

 1000

en
er

gy
 p

er
 b

yt
e

[u
J]

0.5 packets / second 2 packets / second

HAM static
HAM adaptive
RS static
RS adaptive
No FEC

Figure 5.44: Energy required forwarding 66 bytes payload.

At low traffic load, the FEC enabled protocols require more energy than No FEC.
This is caused by the short beacon strobes, the required FEC calculations and the
additionally transmitted parity data. The difference between No FEC and HAM
adaptive is caused by the beacon strobe mode and the longer payload. Table 5.13
shows the percentage of the energy required for the FEC calculations. The rest of
the energy is required by the radio module. The higher the traffic load is the more
packets have to be decoded due to bit errors caused by interferences. Adaptive FEC
codes encode a lower amount of data packets.

170

5.4. IMPACT OF FEC CODES TO ENERGY EFFICIENT WSNS

traffic load Hamming(12,8) Reed-Solomon(255,225)
packets/sec Static Adaptiv Static Adaptiv
0.5 1.41% 0.239% 16.5% 7.95%
2.0 5.17% 3.14% 27.4% 16.1%

Table 5.13: Percentage of the energy required for the FEC calculations.

5.4.4 Throughput

This subsection takes an additional look to the impact of FEC codes on the through-
put. The previous subsections showed that FEC mechanisms reduce the through-
put of a real world WSN network stack featuring additional functions such as radio
duty cycling or ARQ based retransmission. The intention of this subsection is to
measure the throughput using telosB nodes and Contiki without duty cycling and
the overhead of ARQ. For the following throughput evaluations we create an addi-
tional network stack. We use nullRDC and nullMAC on the link layer to achieve
high throughput on the link layer. We completely removed µIP from the network
stack to minimize the delay caused by the network stack. We added the FEC codes
Hamming(12,8) and Reed-Solomon(255,225) to nullRDC. As an ARQ reference,
we modified the nullMAC protocol to retransmit a lost packet up to three times with
a short random back-off delay. Figure 5.45 depicts the network stack designed for
throughput evaluation.

ra
di

o
m

ic
ro

co
nt

ro
lle

r

PHY

RIME

MAC

Application Test Application

nullMAC

nullRDC

chameleon

abc, broadcast, unicast

CC2420 driver

Hamming(12,8)
Reed-Solomon(255,225)

Up to 3 retransmission

Figure 5.45: FEC enabled network stack for throughput evaluation.

We use two telosB nodes placed within a distance of 20 cm as depicted in Figure
5.46. The sensor node is connected over a serial line to a notebook to control the
experiment. The second node is connected to the RIGOL multimeter. The first
node, which is directly connected to the notebook, initially sends a packet with
66 bytes payload to the second node. This second node sends it back to the first
node one and the first again to the second. The packets now go back and forth as
fast as possible between the two nodes. This enables the measurement of the time
required to forward a packet over two hops with the RIGOL multimeter and the

171

5.4. IMPACT OF FEC CODES TO ENERGY EFFICIENT WSNS

notebook.

- +

Multimeter
RIGOL DM3052

Power source
VLP-1303 PRO

node 1
(telosB)

notebook

20 cm node 2
(telosB)

66 byte
payload

USB

Figure 5.46: Testbed for throughput evaluations.

The high SNR results in over 99% error free transmissions. We created three ex-
periments with this testbed. In every experiment, we compared the performance of
nullRDC with enabled Hamming(12,8) or Reed-Solomon(255,225) support with
nullRDC without FEC support. In experiment 1, we measured the required time
to forward a packet if no bit errors occur. In this case, the FEC enabled protocols
only have to encode the payload. The decoding is not required due to no bit error
occurred. In experiments 2 and 3 we measured the impact of bit errors by injecting
a single bit error into the encoded packets. In experiment 2, only one of the two
nodes makes this injection. In experiment 3, both nodes inject a single bit error.
By injecting only a single bit error, both FEC codes are able to repair the packets.
In experiment 2 and 3, the protocol without FEC support executes one retransmis-
sion due to the bit error injected in the first packet. No bit error is injected to the
retransmitted packet.

The results are shown in Figure 5.47. In all experiments, FEC codes show
always a lower throughput, although the FEC codes do not need any retrans-
mission. Both FEC codes and ARQ handled exact same amount of bit errors.
Due to the CC2420 acknowledgment support, the retransmission of an erroneous
packet is clearly faster than encoding and successfully recovering a packet by Reed-
Solomon. Therefore, Reed-Solomon shows a very low throughput due time re-
quired for recovering an erroneous packet. ARQ on the CC2420 radio module is
able transmit around seven additional data packets during the time period required
by our Reed-Solomon implementation to encode and recover a single packet.

5.4.5 FEC Summary

The performance of FEC codes depends on the used radio module. FEC codes
show promising results on bit/byte oriented radio modules featuring only low en-

172

5.5. COMPARING BEAM TO EXISTING WSN PROTOCOLS

 0

 20

 40

 60

 80

 100

fo
rw

ar
ed

 p
ac

ke
ts

 p
er

 s
ec

on
d

No bit-error Bit-error in
every 2nd packet

 Bit-error in
every packet

ARQ
Hamming(12,8)
Reed-Solomon(255,225)

Figure 5.47: Throughput with and without FEC codes.

ergy efficiency and low reliability. But with packet oriented radio modules using
a DSSS spreading mechanism, FEC codes require more time and energy than the
ARQ mechanism offered by the radio module. The evaluated FEC codes are nei-
ther able to reduce the energy usage nor to enhance the reliability of our real world
WSN network stack using a packet oriented radio module. Although FEC codes
are able to reduce the ETX count under low traffic load on these radio modules, a
standard ARQ mechanism is able to recover the erroneous packets using less en-
ergy. Under high traffic load values, ARQ mechanisms show a lower end-to-end
packet loss than FEC enabled protocols. In our measurements, the more energy
efficient Hamming(12,8) code recovered less than 5% of the corrupted packet. The
advanced FEC code Reed-Solomon(255,225), which has a high recovery potential,
was able to recover up to 21.2% of the erroneous packets. Unfortunately, the per-
centage of packets recovered by all our implemented FEC codes are insufficient
to compensate for their additional time requirements and energy costs. Therefore,
we do not use FEC support in our final protocol versions of BEAM and H2HR
designed for the CC2420 radio module. Maybe a more complex adaptive FEC
mechanism with a radio duty cycle mechanism optimized for adaptive FEC code is
able to save energy with the CC2420 radio module.

5.5 Comparing BEAM to Existing WSN Protocols

This section compares our final protocol versions of BEAM and H2HR with al-
ready existing link layers protocols for packet oriented radio modules. The evalu-
ated protocols included in the network stacks are shown in Figure 5.11 and 5.12.
The following performance characteristics are analyzed:

• Energy consumption: We compare the energy required to forward data as
well as the energy consumed by idle neighbor nodes. The adapted Contiki
energy profiler measures the consumed energy.

173

5.5. COMPARING BEAM TO EXISTING WSN PROTOCOLS

• Reliability and Throughput: End-to-end packet loss measurements are
used to compare the data delivery reliability performance of the used pro-
tocols. Reliability depends strongly on the used traffic load. Therefore, the
traffic load limit is evaluated in addition.

• Packet delivery time: Finally, we compare the required packet delivery
time of the network stacks. The packet delivery time is defined as the time
between the first transmission of a generated packet by the sender node and
the successful reception by the addressed receiver node.

The presented measurements are all made in the WISEBED testbed. We use the
three large-scale scenarios described in Subsection 5.1.2. The next subsection
presents the energy evaluation.

5.5.1 Energy Consumption

In this subsection we compare the energy consumption of BEAM, XMAC and
ContikiMAC in the large-scale scenarios defined in the WISEBED testbed. More-
over, we analyze the energy consumption of the noninvolved neighbor nodes in the
streaming scenario.

Energy Consumption Required in the Streaming Scenario

First, we compare the energy required to forward traffic in the streaming scenario
(Figure 5.4a). We analyze different generated traffic rates from 0.125 to 8 packets
per second on each of the four end-to-end flows. We use UDP packets with a link
layer payload of 40 bytes. For each configuration, we send 50’000 packets. Figure
5.48 shows how much energy was required to forward one byte for different gen-
erated traffic load values of BEAM, XMAC and ContikiMAC. Moreover, Figure
5.49 depicts only BEAM and ContikiMAC for a better comparability of the two
protocols.
Below 0.25 packets per second, only one single packet is usually forwarded in the
entire network at the same time. The reliability mechanism handles external inter-
ferences. This results in quite predictable energy consumption for low traffic load
values. The total energy consumed by the radio module increases with additional
traffic load while the required energy per byte decreases with additional traffic
load. The energy per byte decreases due to periodic channel checks. Depending
on the traffic load, dozens or hundreds of wake-up periods are performed between
forwarding of 2 packets. This dramatically increases the energy costs required per
byte at very low traffic rate.

Above 0.25 packets per second, there is an increasing probability of multiple
packets at the same time in the WSN. This causes inter-flow interferences, which
have to be handled by the reliability mechanism, i.e., by longer beacon strobe trans-
missions and additional hop-to-hop retransmissions. Therefore, the energy costs of
ContikiMAC and BEAM clearly increase to above 0.25 packets per second. The

174

5.5. COMPARING BEAM TO EXISTING WSN PROTOCOLS

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

en
er

gy
 p

er
 b

yt
e

[u
J]

packets generated per second [#]
0.125 0.25 0.5 1.0 2.0 4.0 8.0

XMAC
ContikiMAC
BEAM

Figure 5.48: Energy per byte in UDP streaming scenario (including XMAC).

 0

 500

 1000

 1500

 2000

 2500

en
er

gy
 p

er
 b

yt
e

[u
J]

packets generated per second [#]
0.125 0.25 0.5 1.0 2.0 4.0 8.0

ContikiMAC
BEAM

Figure 5.49: Energy per byte in UDP streaming scenario (without XMAC).

energy cost of XMAC only increases slightly, as the packet error ratio of XMAC is
too high to be handled by the hop-to-hop reliability protocol (CSMA) of Contiki.
Most of the packets are dropped by the hop-to-hop reliability protocol CSMA on
the first hops.

The data rate can only be increased up to a specific radio channel load. At
higher channel loads the resulting internal interferences cause congestion and de-
crease the forwarded traffic load. If considerably more packets are generated than
the radio channel is able to handle, then the exceeding packets are usually dropped
on the first hops. The quicker the exceeding packets can be dropped, the less they
stress the radio channel. The reliability evaluation in Subsection 5.5.2 takes more
detailed look on this topic.

XMAC requires clearly more energy than ContikiMAC and BEAM. First, as
XMAC requires significantly longer listen intervals to execute periodic channel
checks. Second, XMAC uses the radio channel capacity clearly less efficiently

175

5.5. COMPARING BEAM TO EXISTING WSN PROTOCOLS

than ContikiMAC and BEAM. Thus, XMAC requires clearly more beacon strobes
to forward a packet. The beacon strobe mechanism used by XMAC is more vul-
nerable to interferences than the beacon strobe mechanisms of ContikiMAC and
BEAM. This is basically caused by not supporting a beacon strobe transmission
delay function and by not using the CC2420 radio module link layer support. This
results in additional retransmissions by the hop-to-hop reliability protocol CSMA.

ContikiMAC and BEAM require nearly the same energy for periodic channel
checks at low traffic load values. But BEAM requires less beacon strobe trans-
missions at low traffic rates than Contiki, due to a more precise beacon strobe
transmission delay mechanism. BEAM and H2HR achieve a clearly more efficient
channel usage than ContikiMAC with CSMA. Nodes using BEAM show a higher
total energy consumption than nodes using ContikiMAC at data rates higher than 2
packets per second. But the higher throughput of BEAM results in a lower energy
consumption per successfully received byte at the sink.

Energy Consumption of Noninvolved Neighbor Nodes

Next, we analyze the energy required by idle neighbor nodes. These nodes perform
periodic wake-up periods to check the channel. They never have to forward any
packet. Figure 5.50 shows the measured energy consumption. XMAC requires
clearly more energy than the other protocols due to the longer listen intervals to
execute periodic channel checks. At higher traffic load values, XMAC sometimes
detects an incoming strobe at the beginning of the listen interval. This requires
slightly less energy than listening to the channel for the required time to detect a
potential beacon strobe. The idle nodes of ContikiMAC and BEAM show similar
energy consumption.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

en
er

gy
 p

er
 s

ec
on

d
[u

J/
s]

packets generated per second [#]
0.125 0.25 0.5 1.0 2.0 4.0 8.0

XMAC
ContikiMAC
BEAM

Figure 5.50: Energy per second of noninvolved nodes.

176

5.5. COMPARING BEAM TO EXISTING WSN PROTOCOLS

Energy Consumption Required in the Event and Burst Scenarios

Next, we compare the energy consumption of XMAC, ContikiMAC and BEAM
within the event and burst scenario defined in Subsection 5.1.2. In the event sce-
nario, four nodes try to forward one single packet nearly simultaneously to the sink
(Figure 5.4b). We measure the energy required to forward the packet containing
the event notification. The notification packet has a size of 43 bytes on the link
layer. In the burst scenario, the sink sends 800 bytes application data to the four
nodes (Figure 5.4c). Figure 5.51 shows the energy per byte required in the event
and burst scenario. The event scenario does not trigger any end-to-end retransmis-

 0

 1000

 2000

 3000

 4000

 5000

en
er

gy
 p

er
 b

yt
e

[u
J]

Event scenario Burst scenario

XMAC
ContikiMAC
BEAM

Figure 5.51: Energy per forwarded byte in event and burst scenario.

sions. The receiver cannot detect a missing packet without ever having received
one. The missing packet cannot be detected before the next packet (generated by
the next event) indicates the missing sequence number. But such a delayed packet
is not useful for many real applications. Therefore, we do not make use of the pos-
sibility to detect packet loss in the event scenario. For the burst scenario, UDP-E2E
is able to detected all packet losses. Like in the previous measurements, UDP-E2E
only requests one lost packet at a time.

The event and burst scenarios do only properly work with UDP-E2E in these exper-
iment setups. Most of the burst scenarios with executed TCP did not successfully
deliver 800 bytes to all the four target nodes. The TCP acknowledgments for the
SYN and data packets generated too much intra-flow interferences. XMAC and
ContikiMAC additionally show problems with TCP in the event scenario. In most
cases, either the first TCP SYN or some data packets get lost.

Event scenario: XMAC requires most energy per received byte. This is caused
by more beacon strobe transmissions and higher packet loss. ContikiMAC shows
some more beacon strobe transmissions than BEAM and a longer total time to
transmit packets. XMAC and ContikiMAC generate clearly longer congestion pe-
riods than BEAM/H2HR on the first two hops where all four nodes concurrently
try to send the notification packet.

177

5.5. COMPARING BEAM TO EXISTING WSN PROTOCOLS

Burst scenario: With XMAC, most of the packets are dropped during the first try.
They have to be retransmitted by UDP-E2E. Therefore, XMAC requires clearly
more energy than ContikiMAC and BEAM. ContikiMAC requires a longer packet
delivery time and more end-to-end retransmissions than BEAM.

5.5.2 Reliability and Throughput

This subsection compares the reliability of the different link layer protocols. Re-
liability strongly depends on traffic load. The lower the traffic load is the lower
are the internal interferences and resulting collisions as well as bit errors. At very
low traffic load values, only one single packet is concurrently forwarded in the net-
work. Under this condition only external interferences have to be handled. Local
and end-to-end retransmission mechanisms increase interferences.

Both retransmission mechanisms require appropriate retransmission delays to
not overload the already crowded radio channel. First, we analyze the packet
loss ratio in the streaming scenarios. Figure 5.52 shows the measured packet loss.
XMAC/CSMA shows the highest packet loss ratio. This link layer protocol com-
bination shows a too high hop-to-hop packet loss ratio. UDP-E2E is not able to
retransmit all lost packets. ContikiMAC/CSMA with UDP-E2E is able to forward
over 99.8% of the packets up to a traffic load of 0.25 packets per second on each
of the four paths. BEAM/H2HR is able to forward up to 2 packets per second.

 0

 20

 40

 60

 80

 100

pa
ck

et
lo

ss
 [%

]

packets per second [s-1]
0.125 0.25 0.5 1.0 2.0 4.0 8.0

XMAC
ContikiMac
BEAM

Figure 5.52: Packet loss ratio under different traffic load values.

End-to-end reliability mechanisms are only able to successfully retransmit packets
if the hop-to-hop reliability mechanism does not drop too many packets. Every
dropped packet generates additional interferences by the triggered end-to-end re-
transmissions. The performance of the hop-to-hop reliability mechanisms is es-
sential for the overall reliability performance of the network stack. End-to-end
reliability mechanisms should be used very carefully. They waste energy and can
increase the total packet loss ratio at critical traffic load.

178

5.5. COMPARING BEAM TO EXISTING WSN PROTOCOLS

Throughput is closely related to packet loss. We analyze the throughput at dif-
ferent traffic load values. We generated traffic load values, which are much higher
than the throughput the underlying protocols can handle. Figure 5.53 shows the
measured traffic flows. XMAC and ContikiMAC show a significantly lower through-
put. All three protocols experience a growth in throughput to an offered load of 1
packet per second. With a higher offered load, the throughput of XMAC and Con-
tikiMAC decreases. The throughput of BEAM increases up to an offered load of 4
packets per second. Moreover, with BEAM the throughput does not decrease with
a higher offered load.

 0

 2

 4

 6

 8

 10

 12

 14

th
ro

ug
hp

ut
 [s

-1
]

offered load [s-1]
0.125 0.25 0.5 1.0 2.0 4.0 8.0 16.0 32.0

XMAC
ContikiMac
BEAM

Figure 5.53: Maximum throughput.

5.5.3 Packet Delivery Time

This subsection takes a look at the required end-to-end packet delivery time of the
experiments discussed in the previous subsections. Packet delivery time is defined
as the time between the first transmission of a generated packet by the sender node
and the successful reception by the addressed receiver node. Figure 5.54 shows
the measured packet delivery times in the streaming scenario. Most of the packets
show a quite similar average packet delivery time. Packets delivered without any
end-to-end retransmission are usually delivered in less than one second. BEAM
reduces the duty cycle duration with increasing traffic load. This results in a shorter
packet delivery time for BEAM packets at high traffic load.

The longest packet delivery times of several seconds are caused by successful end-
to-end retransmissions. Up to 2 packets per second over 99% of the packet can be
successfully forwarded to the sink. UDP-E2E sometimes requires several retrans-
mission attempts for a packet. Above this critical traffic load, UDP-E2E must start
dropping packets from the packet buffer. The higher the traffic load above the criti-
cal traffic load is, the lower is the probability that UDP-E2E is able to successfully
retransmit a packet. The longest packet delivery times above eight packets per sec-
ond are caused by local retransmission delays to avoid congestion. ContikiMAC

179

5.5. COMPARING BEAM TO EXISTING WSN PROTOCOLS

 0

 1

 2

 3

 4

 5
de

liv
er

y
tim

e
[s

ec
]

packets [#] per second
0.125 0.25 0.5 1.0 2.0 4.0 8.0 16.0 32.0

XMAC
ContikiMAC
BEAM

Figure 5.54: Packet delivery time for the stream scenario.

with UDP-E2E shows a similar behavior.

In the event scenario, we measured the time required by the first frame to reach
the sink. The results are shown in Figure 5.55a. XMAC, ContikiMAC and BEAM
are using the same default duty cycle duration during the event is detected. With
XMAC, 55.3% of the events were not reported to the sink due to too strong inter-
ferences and resulting packet loss. This limits the outliers of XMAC. The beacon
strobe mechanism of XMAC is more vulnerable to the internal interferences caused
in the scenario. ContikiMAC and BEAM show almost the same packet delivery
times.

For the burst scenario, we measured the time required to successfully forward
the data to four nodes. The measured times are shown in Figure 5.55b. With

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

de
liv

er
y

tim
e

[s
ec

]

XMAC
ContikiMAC
BEAM

(a) Event scenario.

 0

 20

 40

 60

 80

 100

de
liv

er
y

tim
e

[s
ec

]

XMAC
ContikiMAC
BEAM

(b) Burst scenario.

Figure 5.55: Packet delivery time for the event and burst scenarios.

180

5.6. BEAM COMPARED TO ENERGY EFFICIENT MAC PROTOCOLS FOR
BIT/BYTE ORIENTED RADIO MODULES

XMAC/CSMA most packets have to be retransmitted by UDP-E2E. This requires
a lot of additional time.

5.5.4 Summary Comparing BEAM to Existing WSN Protocols

In this section we compared the performance of our contributed link layer stack to
existing link layer stacks for energy efficient packet oriented radio modules. Our
link layer stack, containing BEAM and H2HR, was the most energy efficient and
reliable of the evaluated link layer stacks. Moreover, our contributed link layer
protocols shows a significant higher throughput than the other evaluated protocols.
This is due to the fact that our contributed link layer stack is able to handle intra-
flow and inter-flow interferences. The other protocols struggle with handling intra-
flow and inter-flow interferences caused by concurrently forwarded packets. All
link layer stacks evaluated in this section are designed for packet oriented radio
modules. The following section additionally compares our contributed protocols
to energy efficient MAC protocols on bit/byte oriented radio modules.

5.6 BEAM Compared to Energy Efficient MAC Proto-
cols for Bit/Byte Oriented Radio Modules

Within a real world testbed, a direct comparison of BEAM to energy efficient MAC
protocols, which use adapted physical preambles or specific link frame headers
such as MaxMAC is extremely difficult. Those energy efficient MAC protocols
require different types of radio modules and do usually neither handle hop-to-hop
nor end-to-end reliability mechanisms. We made the following assumptions to per-
form a reasonable comparison of BEAM to other energy efficient MAC protocols
using bit/byte oriented radio modules.

• Energy efficient MAC protocols for bit/byte oriented radio modules require
adapting the link or physical headers and cannot be implemented on packet
oriented radio modules such as the CC2420.

• The energy usage of the reference link layer protocol introduced in Subsec-
tion 3.1.4 depicts the maximum energy efficiency that can be reached by the
required bit/byte oriented radio modules. Real world protocol implementa-
tions usually require several magnitudes more energy than the reference link
layer protocol. This is due to real world protocols additionally require energy
to check the channel and perform retransmissions of lost packets. Moreover,
energy efficient link layer protocols usually require additional messages such
as beacon strobes, long preambles or synchronization messages to handle the
duty cycles.

Figure 5.56 shows the energy required by the reference protocol to forward 50
bytes payload. The energy used by bit/byte oriented radio modules is calculated

181

5.7. EXPERIENCES WITH DIFFERENT EVALUATION METHODOLOGIES

for a physical data rate of 38.4 kb/s. Next to the reference protocol calculations we
performed a real world experiment with our contributed network stack including
BEAM, H2HR and UDP-E2E. We forwarded 15’000 packets including 50 bytes
payload, with a packet rate of 2 packets per second in a line scenario with three
nodes. We used the testbed including the RIGOL multimeter described in Figure
5.6 to determine the energy usage of the middle node, which is forwarding the
packets. As expected, the energy consumption measured in the real world experi-
ment is several magnitudes higher than the energy required by the hypothetical ref-
erence link layer protocol. Nevertheless, the real world implementation of BEAM
including H2HR reliability support still requires less energy than every other en-
ergy efficient MAC protocols using bit/byte oriented radio modules.

real world experiment
with H2HR/BEAM

reference protocol

en
er

gy
 re

qu
ire

d
fo

r
50

 b
yt

es
 p

ay
lo

ad
 [μ

J]

 0

 1000

 2000

 3000

 4000

 5000

telosB
CC2420

BTnode
CC1000

MSB430
CC1020

ESB
TR1001

telosB
CC2420

Figure 5.56: Energy usage of BEAM compared to the reference protocol.

5.7 Experiences with Different Evaluation Methodolo-
gies

This section describes the experiences made with different evaluation methodolo-
gies. In the first part, we describe how the results achieved by the OMNeT++
simulator match to the results delivered by the WISEBED testbed. The second part
discusses the impact of the used traffic load on the achieved results.

5.7.1 Simulation versus Real World Experiences

The results of most real world experiments presented in this chapter confirm results
achieved with the OMNeT++ simulator. Especially the line, parallel and merge
scenarios show similar results, which lead to the same conclusions. However, in
some cases the evaluated protocols show a better performance in the OMNeT++
simulator than in real world testbeds. Besides the better results, the individual

182

5.7. EXPERIENCES WITH DIFFERENT EVALUATION METHODOLOGIES

measurements show a smaller standard deviation and less outliers. This happens in
some of the cross scenarios as well as during operations when the radio channel is
highly allocated. In these cases, the used models in the OMNeT++ simulator are
not able to properly simulate the internal interferences. Real world experiments
show more retransmissions under high traffic load and in complex scenarios.

Extensive and complex optimization algorithms perform better with the OM-
NeT++ simulator than in real world testbeds. They show an improvement in the
OMNeT++ simulator, but fail in real world experiments. The main reason for
the difference are simplifications at the physical layer. These simplifications do
not consider delays caused by radio modules and microcontrollers, i.e., simpli-
fied radio models are not able to simulate different kind of interferences caused
at high traffic loads. Therefore, we propose to use OMNeT++ simulator models
that simulate microcontroller delays, radio module behavior as well as interfer-
ences as realistically as possible. This includes implementing the state machine,
delays and interface of the radio module. In addition, network topologies generat-
ing inter-flow and intra-flow interferences should be used. Otherwise a proposed
optimization could improve the behavior within a simulated environment, but fail
in real world under high traffic load and interferences. A good example for this is
the duty cycle duration adaptation mechanism based on monitoring used by XMAC
and MaxMAC. This works perfectly fine for basic simulations or simple real world
implementations, but it completely fails in more challenging environments.

All protocol implementations show significantly better results with the simple
radio model delivered by OMNeT++. The developed CC2420 radio module in-
cluding a customized radio model based on real world SNR measurements delivers
results that are closer to the results achieved by the WISEBED real world testbed
than the radio model delivered by OMNeT++. Compared to bit/byte oriented ra-
dio modules, packet oriented radio modules have the advantage that receiving and
sending a frame is independent from the microcontroller load. Controlling and
timing of the radio module is a state machine, which is well defined and can be ac-
curately simulated. No challenging UART bus transmission delay problems have
to be simulated when sending or receiving a packet while processing other data.
Therefore, the results achieved in real world test beds are rather consistent with the
results predicted by emulation of packet oriented radios than bit/byte radio mod-
ules.

5.7.2 Impact of Traffic Load

The used network topology and the applied traffic load influence the level of inter-
flow and intra-flow interferences. Simulations and real word experiments show that
there are two different traffic load thresholds in a WSN.

Up to the first traffic load threshold, neither significant inter-flow nor intra-flow
interferences appear. This is due to the fact that, up to this traffic load, only one
single packet is concurrently forwarded in the WSN. The measured packet loss is
almost constant. The concrete packet loss ratio primarily depends on the SNR of

183

5.7. EXPERIENCES WITH DIFFERENT EVALUATION METHODOLOGIES

the individual links. Evaluations with traffic load values up to the first threshold do
not deliver significant results. They do not analyze the robustness of the protocol
against inter-flow and intra-flow interferences.

At higher data rates, several packets are concurrently forwarded in the network.
The protocols have to handle the increasing inter-flow and intra-flow interferences
as well as congestion by an adequate mechanism. The second traffic load thresh-
old is reached when the hop-to-hop reliability mechanism must drop packets. Up to
this traffic load threshold, an efficient protocol is able to handle the generated pack-
ers without significant packet loss. The more efficient the protocol in forwarding
packets is, the higher is the second traffic load threshold.

With further increasing traffic load, the radio channel will reach the maximum
channel load. Packets have to be dropped to prevent congestion. The maximum
channel load depends on the used protocol mechanism.

184

Chapter 6

Conclusions and Outlook

Wireless Sensor Networks have experienced an increasing degree of research in-
terests and a growing number of industrial applications in the last decade. Various
real world WSNs are individually customized to fulfill their intended purposes with
limited energy resources and small processing power of a microcontroller. These
real world WSNs have to be cost-efficient and to ensure functional reliability dur-
ing operation.

6.1 Addressed Challenges

The following challenges for real world WSNs are addressed in this thesis :

• Energy Efficiency: Energy efficiency is a key challenge in the realization of
a real world WSN. Battery powered sensor nodes offer only a limited amount
of energy, which determines the node and network lifetime. Energy preserv-
ing mechanisms enhance network lifetime by turning off energy consuming
components such as the radio module, the microcontroller and attached sens-
ing devices. The longer the sleeping period in relation to the wake-up period
is, the more energy can be saved. Most effective but also most challenging is
to save energy by duty cycling the radio module. Another technique for pre-
serving energy is to reduce the amount of packet transmissions in a WSN.
Reducing the amount of transmissions can be realized by reducing intra-
flow and inter-flow interferences to decrease the bit error probability and by
adding redundant information to enable data recovery at receiver nodes.

• Reliable Data Transmission: Current real world WSN protocol stacks only
offer weak data reliability support. Usually, they struggle when handling
inter-flow and intra-flow interferences generated by concurrently forwarded
packets. Transmission attempts have to be scheduled carefully in order to not
interfere with transmissions of other, maybe hidden, nodes. Otherwise, pe-
riods with high traffic load generating inter-flow and intra-flow interferences
result in congestion and significant packet loss.

185

6.2. CONTRIBUTED AND APPLIED PROTOCOLS

• Network Connectivity: Usually, real world WSNs consist of heterogeneous
sensor nodes, equipped with individual sensing devices to detect different
environmental characteristics. The individual heterogeneous sensor nodes
should be interconnected among themselves and connected to the Internet
for remote management applications.

6.2 Contributed and Applied Protocols

To provide a solution for all these challenges we contribute an energy efficient real
world WSN protocol stack supporting reliable data transmission. We use standard
network and transport protocols to establish and handle end-to-end connection be-
tween sensor nodes in a WSN and servers in the Internet. Moreover, we use the
standardized physical and data link layer protocol IEEE 802.15.4 to enable di-
rect communication among heterogeneous neighbor nodes. Bellow we provide an
overview of the individual protocols used in our WSN network stack.

• BEAM: BEAM supports asynchronous adaptive duty cycles to adapt the
frequency of the wake-up periods according to current traffic load. The con-
tributed traffic prediction mechanism is able to predict incoming traffic
load even during congestion and heavy interferences. The higher the in-
coming traffic load is, the shorter are the applied sleeping periods. BEAM is
designed to work best with the energy efficient and IEEE 802.15.4 compliant
packet-oriented radio module CC2420. IEEE 802.15.4 compliant radio mod-
ules enable the interconnection of heterogeneous sensor nodes and they sup-
port the DSSS spread spectrum technique, which significantly enhances the
robustness against interferences. Moreover, BEAM offers a detailed trans-
mission report to the hop-to-hop reliability protocol to detect congestion.

• H2HR: H2HR enables hop-to-hop reliability including a congestion detec-
tion and control mechanism. The contributed congestion detection and
control mechanism is able to detect and properly react on intra-flow and
inter-flow interferences as well as congestion by adapting the frequency of
individual transmission attempts. This results in higher throughput and re-
duces the number of energy consuming retransmission attempts caused by
packet collisions.

• UDP-E2E: UDP-E2E is an application layer protocol supporting end-to-end
reliability based on UDP. Using UDP-E2E, a reliable and energy efficient
end-to-end transport service between sensor nodes and machines in the In-
ternet may be offered. The application layer protocol employs standardized
network sockets to support a regular application programming interface.

• µIP : Our contributed network stack extends the existing modular Contiki
network stack including µIP. µIP enables the support of IP, TCP, UDP and

186

6.3. MAIN RESULTS AND CONCLUSIONS

ICMP, which build the de facto standard protocol suite for Internet com-
munication. By running these protocols in the WSN, it is possible to di-
rectly connect the WSN to a wired network infrastructure without proxies or
middle-boxes.

6.3 Main Results and Conclusions

Our main contribution is an energy efficient real world WSN protocol stack sup-
porting reliable data transmission in heterogenous WSNs. We contribute three pro-
tocols BEAM, H2HR and UDP-E2E to improve energy efficiency, data reliability
and throughput of the existing Contiki network stack supporting µIP.
BEAM is an energy preserving, adaptive RDC protocol with a forward-looking
traffic load prediction mechanism to determine an appropriate duty cycle also dur-
ing periods of congestion. Congestion requires short sleeping periods to increase
network bandwidth for high traffic load. Existing adaptive duty cycle protocols
use traffic monitoring mechanisms to adapt sleeping periods to traffic load. Traffic
monitoring mechanisms count the recently forwarded amount of packets to deter-
mine the current traffic load. Congestion results in a lower forwarded number of
packets. This causes a lower number of counted packets and, therefore, traffic mon-
itoring will increase the sleeping period length in case of congestion. The traffic
prediction mechanisms enables BEAM to apply short sleeping periods also during
periods with congestion to offer sufficient network bandwidth.

The BEAM frame headers are fully compliant with IEEE 802.15.4. This en-
ables the execution of common link layer tasks such as sending acknowledgments
or CRC calculations directly by the CC2420 radio module without interaction with
the microcontroller.
H2HR is a hop-to-hop reliability protocol including a congestion detection and
control mechanism. H2HR uses the explicit acknowledgment mechanism of BEAM
to detect packet loss. Local retransmissions of a lost packets avoid energy-costly
end-to-end retransmissions. The individual packet transmissions have to be care-
fully timed to reduce intra-flow or inter-flow interferences generated by concur-
rently forwarded packets. Moreover, the hidden node problem represents a major
problem in network scenarios with multiple networks paths. Especially periods
with numerous concurrently forwarded packets may result in congestion due to
too heavy interferences. The congestion detection and control mechanism enables
H2HR to calculate according transmission delays to reduce the number of colli-
sions caused by concurrently forwarded packets.

BEAM and H2HR feature a packet aggregation mechanism to prevent or at
least decrease congestion by reducing the number of concurrently forwarded pack-
ets. The reduction of concurrently forwarded packets reduces interferences and
increases throughput.
UDP-E2E supports end-to-end reliability for UDP streams. It is based on selective
acknowledgments using sequence numbers to request end-to-end retransmission of

187

6.4. OUTLOOK

lost packets. UDP-E2E is able to successfully retransmit lost packets if the hop-to-
hop reliability mechanism does not drop more than 2-5% of the packets between
source and sink. Higher end-to-end packet loss rates cannot be recovered, because
intra-flow interferences caused by the selective acknowledgments increase packet
loss instead of reducing it.
Our evaluation of available radio modules presented in Chapter 3 shows that the
CC2420 radio module is the most energy efficient and robust of the evaluated ra-
dio modules. The DSSS mechanism of the CC2420 is significantly more robust
against interferences than the modulation techniques used by bit/byte-oriented ra-
dio modules. Moreover, the CC2420 was the only radio module that supports a
standardized physical and link layer to enable direct communication among het-
erogeneous sensor node platforms. The CC2420 is widely used in various sensor
nodes such as telosB, micaZ, sensinode or imote2. The link layer functions offered
by the CC2420 radio module reduce the load of the microcontroller and ensure a
precisely predictable transmission timing, which is required to realize energy effi-
cient radio duty cycles.
In addition, we evaluated the impact of FEC codes on the energy efficiency and
data reliability in real world WSNs. We added FEC support to BEAM to enable
real energy measurements on sensor nodes in a WSN. Usually, the impact of FEC
codes to energy efficiency is evaluated without a radio duty cycling protocol.

The reliability performance of FEC codes depends on the used radio module.
The evaluated FEC codes show promising results on bit/byte oriented radio mod-
ules featuring low energy efficiency and low data reliability. However, they fail
on energy efficient packet oriented radio modules using frequency spreading tech-
niques such as DSSS. Although FEC codes are able to reduce the ETX count under
low traffic load, H2HR is able to recover the erroneous packets using less energy.
Under high traffic load values, the FEC enabled protocols shows higher end-to-
end packet loss than BEAM and H2HR without FEC support. The evaluated FEC
codes are neither able to reduce the energy usage nor to enhance the reliability of
our real world WSN network stack using a packet oriented radio module. In our
measurements, the more energy efficient Hamming(12,8) code recovered less than
5% of the corrupted packets. The advanced FEC code Reed-Solomon(255,225),
which has a high recovery potential, was able to recover up to 21.2% of the er-
roneous packets. This recovery rates are insufficient to compensate the additional
time requirements and energy costs of the FEC coding.

6.4 Outlook

Our contributed WSN protocol stack improves the energy efficiency, data reliability
and network connectivity in WSNs. However, there are some additional ideas to
improve our WSN protocol stack for real world WSN applications:
Lifetime defined link layer protocol: Usually, adaptive radio duty cycling pro-
tocols use a fixed default duty cycle duration length. For example ContikiMAC

188

6.4. OUTLOOK

comes with a default duty cycle duration of 125ms. Long predefined default duty
cycle durations enhance the network lifetime but also increase the packet delivery
time. A lifetime defined link layer protocol supports an adaptive default duty cy-
cle duration. The length is adapted according to the remaining battery energy and
recommended lifetime. Software based energy profilers enable the recording of
the already consumed energy. By knowing the total amount of energy provided by
the used battery and the already consumed energy, the remaining lifetime can be
estimated. If the remaining energy is too low, then BEAM and H2HR are able to
save additional energy. BEAM can increase the default duty cycle duration to save
more energy during periods with low traffic load. Moreover, H2HR can reduce
the retransmission limit to reduce the energy during high traffic load. Allowing
packet loss during congestion, avoids plenty of energy consuming retransmission
attempts. Moreover, reducing the retransmission attempts during periods with too
many concurrently forwarded packets, decrease the inter-flow and intra-flow inter-
ferences. Simulations can be used to calculate the energy required for an intended
traffic load, data reliability and lifetime to determine small and cost-efficient bat-
teries.

Hardware support: Our evaluations show that link layer tasks executed by the
radio module require significantly less execution time and energy than handling
by a software based application on the microcontroller. Moreover, link layer tasks
executed by the radio module reduce the complexity of WSN protocol implemen-
tations. Spectrum spread techniques on a radio module significantly increases the
robustness against interference and resulting bit errors. Future radio modules may
support frequency-hopping spread spectrum (FHSS) techniques, which use differ-
ent carrier waves frequencies to increase robustness against interference. FHSS
switches between the channels in a pseudorandom sequence, which is known to
the transmitter and receiver. Next to security advantages, FHSS shows a high re-
sistants to interferences. The resistants to interference can be enhance by using
Adaptive Frequency Hopping Spread Spectrum (Adaptive FHSS). Adaptive FHSS
tries to use only frequencies with low bit error rates. Perhaps future packet oriented
radios for WSNs will support FHSS.

Predefined scenarios and traffic patterns in real world testbeds: Comparing
own protocol implementations to existing ones is challenging. Usually every pro-
tocol implementation is evaluated in a different testbed with different traffic loads
and network scenarios. Protocols evaluated in basic network scenarios or with
low traffic load do neither consider intra-flow and inter-flow interferences nor the
impact of congestion. Defining a set of experiment setups with specific network
scenarios and traffic loads in real world WSN testbeds such as WISEBED may im-
prove comparability of different protocols. By using such predefined experiment
setups, protocols could be better compared to each other.

189

Chapter 7

Acronyms

A-MPDU Aggregated MAC Protocol Data Units

A-MSDU Aggregated MAC Service Data Units

A-PPDU Aggregated Physical Protocol Data Units

abc Anonymous Best Effort Single-hop Broadcast

AFH Adaptive Frequency Hopping spread Spectrum

AFH Adaptive Frequency Hopping spread Spectrum

ARQ Automatic Repeat Request

ASK Amplitude Shift Keying

Adaptive FHSS Adaptive Frequency Hopping Spread Spectrum

BCH Bose-Chaudhuri-Hocquenghem

BEAM Burst-aware Energy-efficient Adaptive MAC

BFSK Binary Frequency Shift Keying

CCA Clear Channel Assessment

CNS Center at Nearest Source

CRC Cyclic Redundancy Check

CSMA Carrier Sense Multiple Access

DSSS Direct Sequence Spread Spectrum

ECC Error Correction Codes

EEPROM Electrically Erasable Programmable Read-Only Memory

191

ESB Embedded Sensor Board

ETH Eidgenössische Technische Hochschule

ETX Expected Transmission Count

FCF Frame Control Field

FCS Frame Check Sequence

FEC Forward Error Correction

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

FSK Frequency shift keying

GFSK Gaussian Frequency Shift Keying

GIT Greedy Incremental Tree

GUI Graphical User Interface

H2H Hop-to-hop Reliability

H2H Hop-to-hop

IAM Institute of Computer Science and Applied Mathematics

ibc Identified Best Effort Single-hop Broadcast

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IP Internet Protocol

ISM Industrial, Scientific and Medical

LMAC Lightweight Medium Access

LPL Low Power Listening

LPP Low Power Probing

LQI Link Quality Indication

MFR MAC Footer

mh Best Effort Multi-hop Unicast

MHR MAC Header

192

MPDU MAC Protocol Data Units

MPDU MAC Protocol Data Unit

MSB430 Modular Sensor Board 430

MSDU MAC Service Data Units

NED Network Description

nf Best Effort Multi-hop Flooding

NRZ Non Return to Zero

OMNeT++ Objective Modular Network Testbed

OOK On Off Keying

OQPSK Offset Quadrature Phase Shift Keying

PSDU Physical Service Data Unit

PSK Phase Shift Keying

RAM Random Access Memory

RDC Radio Duty Cycle

RFC Requests for Comments

RMST Reliable Multi-Segment Transport

ROM Read-Only Memory

RSSI Received Signal Strength Indicator

RTT Round-Trip-Time

ruc Reliable Single-hop Unicast

S-MAC Sensor-MAC

SAW Surface Acoustic Wave

SFD Start of Frame Delimiter

SHR Synchronization Header

sibc Stubborn identified Best Effort Single-hop Broadcast

SNR Signal to Noise Ratio

SPT Shortest Paths Tree

193

suc Stubborn Best Effort Single-hop Unicast

TARWIS Testbed Management Architecture for Wireless Sensor Networks

TCP Transport Control Protocol

TDMA Time Division Multiple Access

TIK Computer Engineering and Networks Laboratory

trickle Reliable Multi-hop Flooding

TSS TCP Support for Sensor Networks

uabc Unique Anonymous Best Effort Single-hop Broadcast

uc Best Effort Single-hop Unicast

UDP-E2E UDP End-to-end Reliability

UDP User Datagram Protocol

uibc Unique Identified Best Effort Single-hop Broadcast

USB Universal Serial Bus

WPAN Wireless Personal Area Networks

WSN Wireless Sensor Network

WiseML Wireless Sensor Network Markup Language

194

Bibliography

[1] “A4-Mesh: Authentication, Authorization, Accounting, and Auditing in
Wireless Mesh Networks.” [Online]. Available: a4-mesh.unibe.ch

[2] A. Varga, “The OMNeT++ Discrete Event Simulation System.” European
Simulation Multiconference (ESM), Prague, Czech Republic, June 2001,
pp. 319–324. [Online]. Available: http://www.omnetpp.org

[3] M. Anwander and T. Braun, “A Reliable, Traffic-adaptive and Energy-
efficient Link Layer for Wireless Sensor Networks.” Submitted for Publica-
tion to European Conference on Wireless Sensor Networks (EWSN), Ghent,
Belgium, February 2013.

[4] M. Anwander, G. Wagenknecht, and T. Braun, “Management of Wireless
Sensor Networks using TCP/IP.” International Workshop on Sensor Net-
work Engineering (IWSNE), Santorini, Greece, June 2008, pp. II.1–II.8.

[5] M. Anwander, G. Wagenknecht, T. Braun, and K. Dolfus, “BEAM: A Burst-
Aware Energy-Efficient Adaptive MAC Protocol for Wireless Sensor Net-
works.” International Conference on Networked Sensing Systems (INSS),
Kassel, Germany, May 2009, pp. 61–72.

[6] Atmel, “AVR 8-bit Microcontrollers: Datasheets, Specifications and
Reference Manuals.” [Online]. Available: http://www.atmel.com/products/
avr/

[7] N. I. Australia, “Castalia - a simulator for Wireless Sensor Networks.”
[Online]. Available: http://castalia.npc.nicta.com.au

[8] M. Baar, E. Koeppe, A. Liers, and J. Schiller, “The ScatterWeb MSB-430
Platform for Wireless Sensor Networks.” SICS Contiki Workshop, Kista,
Sweden, March 2007.

[9] S. Barthlomé, “Investigating Forward Error Correction Strategies on
MSB430 Sensor Nodes.” Master Thesis, University of Bern, Switzerland,
May 2011.

[10] U. Berkeley., “Crossbow TelosB mote (TPR2400).” [Online]. Available:
www.xbow.com/pdf/Telos PR.pdf

195

a4-mesh.unibe.ch
http://www.omnetpp.org
http://www.atmel.com/products/avr/
http://www.atmel.com/products/avr/
http://castalia.npc.nicta.com.au
www.xbow.com/pdf/Telos_PR.pdf

BIBLIOGRAPHY

[11] J. Beutel, M. Dyer, O. Kasten, M. Ringwald, and K. Römer, “BTnodes -
A Distributed Environment for Prototyping Ad Hoc Networks.” [Online].
Available: www.btnode.ethz.ch

[12] T. Braun, T. Voigt, and A. Dunkels, “TCP Support for Sensor Networks.”
Wireless On demand Network Systems and Services (WONS), Obergurgl,
Austria, January 2007, pp. 162–169.

[13] M. Buettner, V. Gary, E. Anderson, and R. Han, “X-MAC: A Short Pream-
ble MAC Protocol for Duty-cycled Wireless Sensor Networks,” in in Sen-
Sys. ACM Conference on Embedded Networked Sensor Systems (SenSys),
Boulder, USA, November 2006, pp. 307–320.

[14] M. Busse, T. Haenselmann, T. King, and W. Effelsberg, “The Impact
of Forward Error Correction on Wireless Sensor Network Performance.”
ACM Workshop on Real-World Wireless Sensor Networks (REALWSN),
Uppsala, Sweden, June 2006.

[15] R. G. C. Intanagonwiwat and D. Estrin, “Directed diffusion: a scalable and
robust communication paradigm for sensor networks,” in Proceedings of the
sixth annual international conference on Mobile computing and networking,
Boston, MA USA, 2000, pp. 56–67.

[16] C. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Com-
munication. Academic Press Inc, 1998.

[17] Crossbow Technologies. [Online]. Available: http://www.xbow.com

[18] W. Dargie and C. Poellabauer, Fundamentals of Wireless Sensor Networks:
Theory and Practice. John Wiley & Sons, 2010.

[19] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-throughput
path metric for multi-hop wireless routing,” in Proceedings of the 9th ACM
International Conference on Mobile Computing and Networking (MobiCom
03), San Diego, California, September 2003.

[20] Deliverable D4.1: First Set of well-designed Simulations, “Experiments and
possible Benchmarks. Technical Report,” June 2008. [Online]. Available:
http://www.wisebed.eu

[21] A. Dunkels, “Full TCP/IP for 8-Bit Architectures.” International Confer-
ence on Mobile Systems, Applications, and Services (MobiSys), San Fran-
cisco, USA, May 2003, pp. 85–98.

[22] A. Dunkels, J. Alonso, T. Voigt, and H. Ritter, “Distributed TCP Caching for
Wireless Sensor Networks.” Mediterranean Ad-Hoc Networks Workshop
(Med-Hoc-Net), Bodrum, Turkey, June 2004, pp. 13–28.

196

www.btnode.ethz.ch
http://www.xbow.com
http://www.wisebed.eu

BIBLIOGRAPHY

[23] A. Dunkels, B. Groenvall, and T. Voigt, “Contiki - a Lightweight and
Flexible Operating System for Tiny Networked Sensors.” IEEE Workshop
on Embedded Networked Sensors (EmNets), Tampa, Florida, November
2004, pp. 455–462. [Online]. Available: http://www.sics.se/contiki/

[24] A. Dunkels, L. Mottola, N. Tsiftes, F. Osterlind, J. Eriksson, and N. Finne,
“The Announcement Layer: Beacon Coordination for the Sensornet Stack.”
European Conference on Wireless Sensor Networks (EWSN), Bonn, Ger-
many, February 2011, pp. 211–226.

[25] A. Dunkels, F. Österlind, and Z. He, “An Adaptive Communication Archi-
tecture for Wireless Sensor Networks.” ACM Conference on Embedded
Networked Sensor Systems (SenSys), Sydney, Australia, November 2007,
pp. 335–349.

[26] A. Dunkels, “The contikimac radio duty cycling protocol,” 2011.

[27] A. Dunkels, J. Alonso, T. Voigt, H. Ritter, and J. H. Schiller, “Connecting
wireless sensornets with tcp/ip networks,” in WWIC’04, 2004, pp. 143–152.

[28] A. Dunkels, F. Osterlind, N. Tsiftes, and Z. He, “Software-based on-line
energy estimation for sensor nodes,” in Proceedings of the Fourth Workshop
on Embedded Networked Sensors (Emnets IV), Cork, Ireland, Jun. 2007.
[Online]. Available: http://www.sics.se/∼adam/dunkels07softwarebased.
pdf

[29] A. El-Hoiydi and J. D. Decotignie, “WiseMAC: An Ultra Low Power MAC
Protocol for Multihop Wireless Sensor Networks.” International Workshop
on Algorithmic Aspects of Wireless Sensor Networks (ALGOSENSORS),
Turku, Finland, July 2004, pp. 18–31.

[30] E. Ertin, A. Arora, R. Ramnath, and M. Nesterenko, “Kansei: A Testbed For
Sensing At Scale.” ACM/IEEE International Conference on Information
Processing In Sensor Networks (IPSN), Nashville, Tennessee, USA, April
2006, pp. 399–406.

[31] S. O. S. F. U. B. . S. GmbH. [Online]. Available: http://scatterweb.mi.
fu-berlin.de/

[32] T. A. Gulliver and V. K. Bhargava, “A Systematic (16,8) Code for Correcting
Double Errors and Detecting Triple-Adjacent Errors,” IEEE Transactions on
Computers, vol. 42, January 1993.

[33] R. Hamming, “Error Detecting and Error Correcting Codes,” vol. 26, no. 2,
pp. 147–160, April 1950.

[34] V. Handziski, A. Koepke, A. Willig, and A. Wolisz, “TWIST: A Scalable
and Reconfigurable Testbed for Wireless Indoor Experiments with Sensor

197

http://www.sics.se/contiki/
http://www.sics.se/~adam/dunkels07softwarebased.pdf
http://www.sics.se/~adam/dunkels07softwarebased.pdf
http://scatterweb.mi.fu-berlin.de/
http://scatterweb.mi.fu-berlin.de/

BIBLIOGRAPHY

Network.” ACM/SIGMOBILE International Workshop on Multi-hop Ad
Hoc Networks (REALMAN), Florence, Italy, May 2006.

[35] HART communication. [Online]. Available: http://www.hartcomm.org

[36] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and
D. Ganesan, “Building efficient wireless sensor networks with low-level
naming,” 2001.

[37] P. Horowitz and W. Hill, The Art of Electronics. Cambridge University
Press;, 1989.

[38] P. Hurni, M. Anwander, and G. Wagenknecht, “TARWIS - Testbed
Management Architecture for Wireless Sensor Network Testbeds.”
[Online]. Available: http://rvs.unibe.ch/research/software.html

[39] P. Hurni and T. Braun, “Real-World Experiences with the Maximally Traffic
Adaptive Medium Access Control Protocol.” Technical Report IAM-11-
001, Institute of Computer Science and Applied Mathematics, University of
Bern, Switzerland, June 2011.

[40] P. Hurni and S. Barthlomé, “libECC: An Open-Source Library of Error
Correcting Codes (ECCs) for the MSP430 Microcontroller.” [Online].
Available: http://rvs.unibe.ch/research/software.html

[41] P. Hurni, S. Barthlomé, and T. Braun, “Link-Quality Aware Run-Time
Adaptive Forward Error Correction Strategies in Wireless Sensor Net-
works.” European Conference on Wireless Sensor Networks (EWSN),
Trento, Italy, submitted, February 2012.

[42] P. Hurni, U. Bürgi, and M. A. T. Braun, “TCP Performance Optimizations
for Wireless Sensor Networks.” European Conference on Wireless Sensor
Networks (EWSN), Trento, Italy, submitted, February 2012.

[43] IEEE, “Ieee standard for information technology- telecommunications
and information exchange between systems-local and metropolitan area
networks-specific requirements-part 11: Wireless lan medium access con-
trol (mac) and physical layer (phy) specifications,” IEEE Std 802.11-1997,
pp. i –445, 1997.

[44] IEEE, Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications (ANSI/IEEE Std 802.11, 1999 Edition (R2003)), Insti-
tute of Electrical and Electronics Engineers, Inc., Jun. 2003.

[45] IEEE, IEEE 1 Std. 802.15.1, IEEE Standard for Information Technology
Local and Metropolitan Area Networks Specific Requirements Part 15.1, In-
stitute of Electrical and Electronics Engineers, Inc., 2005.

198

http://www.hartcomm.org
http://rvs.unibe.ch/research/software.html
http://rvs.unibe.ch/research/software.html

BIBLIOGRAPHY

[46] ISA. [Online]. Available: http://www.isa.org

[47] V. K. John Bard, Software Defined Radio. John Wiley & Sons, 2007.

[48] Kalsi, Electronic Instrumentation. Mcgraw Hill Higher Education, 2010.

[49] B. Krishnamachari, D. Estrin, and S. B. Wicker, “The impact of data aggre-
gation in wireless sensor networks,” in 22nd International Conference on
Distributed Computing Systems, Workshops (ICDCSW 02) July 2-5, 2002,
Vienna, Austria, Proceedings. IEEE Computer Society, 2002, pp. 575–578.

[50] P. Kumar, M. Günes, Q. Mushtaq, and J. Schiller, “Optimizing duty-cycle
for delay and energy bound wsn applications,” in Proceedings of the 2010
IEEE 24th International Conference on Advanced Information Networking
and Applications Workshops, ser. WAINA ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 692–697.

[51] P. Kumar, M. Günes, Q. Mushtaq, and B. Blywis, “A real-time and energy-
efficient mac protocol for wireless sensor networks,” in 6th IEEE Inter-
national Conference on Wireless and Optical Communications Networks,
Cairo, Egypt, April 2009.

[52] H. Lee, A. Cerpa, and P. Levis, “Improving wireless simulation through
noise modeling,” in In IPSN 07: Proceedings of the 6th international con-
ference on Information processing in sensor networks. ACM Press, 2007,
pp. 21–30.

[53] C.-J. M. Liang, N. B. Priyantha, J. Liu, and A. Terzis, “Surviving Wi-fi Inter-
ference in Low Power ZigBee Networks.” ACM Conference on Embedded
Networked Sensor Systems (SenSys), Zurich, Switzerland, November 2010,
pp. 309–322.

[54] Y.-D. Lin, J.-H. Yeh, T.-H. Yang, C.-Y. Ku, S.-L. Tsao, and Y.-C. Lai,
“Efficient dynamic frame aggregation in ieee 802.11s mesh networks,” Int.
J. Commun. Syst., vol. 22, no. 10, pp. 1319–1338, Oct. 2009. [Online].
Available: http://dx.doi.org/10.1002/dac.v22:10

[55] Y. Lin and V. W. S. Wong, “Frame aggregation and optimal frame size adap-
tation for ieee 802.11n wlans,” in GLOBECOM’06, 2006, pp. –1–1.

[56] R. R. R. M. Zorzi, “Is TCP energy efficient?” IEEE International Work-
shop on Mobile Multimedia Communications (MoMuC’99): San Diego,
California, USA, November 1999, pp. 198–201.

[57] M. A. Mahmood and W. Seah, “Reliability in Wireless Sensor Networks:
Survey and Challenges Ahead.” School of Engineering and Computer Sci-
ence, Victoria University of Wellington, Wellington, New Zealand, April
2006.

199

http://www.isa.org
http://dx.doi.org/10.1002/dac.v22:10

BIBLIOGRAPHY

[58] L. A. N. Man and S. Committee, “Ieee std 802.15.4c-2009 (amendment
to ieee std 802.15.4-2006) ieee standard for information technology -
telecommunications and information exchange between systems - local and
metropolitan area networks - specific requirements - part 15.4: Wireless lan
medium ac,” IEEE Std 802154c2009 Amendment to IEEE Std 8021542006,
vol. 2009, no. April 2009, pp. 1–21.

[59] Matthias Ringwald and Kay Roemer, “BitMAC: a deterministic, collision-
free, and robust MAC protocol for sensor networks,” in EWSN’05, 2005, pp.
57–69.

[60] E. McCune, Practical Digital Wireless Signals. Cambridge University
Press, 2010.

[61] R. Morelos-Zaragoza, The Art of Error Correcting Coding. Second Edition,
John Wiley and Sons, 2006.

[62] MoteWeb: Harvard Sensor Network Testbed Software. [Online]. Available:
http://motelab.eecs.harvard.edu/

[63] L. Mottola, G. P. Picco, M. Ceriotti, c. Gunǎ, and A. L. Murphy, “Not
all wireless sensor networks are created equal: A comparative study on
tunnels,” ACM Trans. Sen. Netw., vol. 7, no. 2, pp. 15:1–15:33, Sep. 2010.
[Online]. Available: http://doi.acm.org/10.1145/1824766.1824771

[64] R. Musaloiu, C. Liang, and A. Terzis, “Koala: Ultra-Low Power Data Re-
trieval in Wireless Sensor Networks.” ACM/IEEE International Confer-
ence on Information Processing in Sensor Networks (IPSN), St. Louis, USA,
April 2008, pp. 421–432.

[65] M. Z. H. Y. C. A. B. Nouha Baccour, Anis Koubaa and M. Alves, “Radio
link quality estimation in wireless sensor networks: a survey,” in In ACM
Transactions on Sensor Networks. Volume 8, Issue 4. ACM, November
2012.

[66] P. Hurni and T. Braun, “MaxMAC: a Maximally Traffic-Adaptive MAC Pro-
tocol for Wireless Sensor Networks.” European Conference on Wireless
Sensor Networks (EWSN), Coimbra, Portugal, February 2010, pp. 289–305.

[67] C. Pazos, J. Sanchez Agrelo, and M. Gerla, “Using back-pressure to im-
prove tcp performance with many flows,” in INFOCOM ’99. Eighteenth
Annual Joint Conference of the IEEE Computer and Communications So-
cieties. Proceedings. IEEE, vol. 2, mar 1999, pp. 431 –438 vol.2.

[68] W. W. Peterson and E. J. Weldon, Error-Correcting Codes. MIT Press,
1998.

200

http://motelab.eecs.harvard.edu/
http://doi.acm.org/10.1145/1824766.1824771

BIBLIOGRAPHY

[69] M. Petrova, L. Wu, P. Mahonen, and J. Riihijarvi, “Interference measure-
ments on performance degradation between colocated ieee 802.11g/n and
ieee 802.15.4 networks,” in Networking, 2007. ICN ’07. Sixth International
Conference on, april 2007, p. 93.

[70] I. Reed and G. Solomon, “Polynomial Codes over certain finite Fields,” So-
ciety for Industrial and Applied Mathematics (SIAM) Journal, vol. 8, no. 2,
pp. 300–304, June 1960.

[71] RF Monolithics Incorporated: TR1001 868.35 MHz Hybrid Transceiver.
[Online]. Available: www.rfm.com/products/data/tr1001.pdf

[72] RIGOL, “Digital Multimeter DM3052,” 2012. [Online]. Available:
http://www.rigol.com/prodserv/DigitalMultimeters/

[73] P. Roshan, Wireless Local-area Network Fundamentals. Macmillan Tech-
nical Publishing, 2003.

[74] A. Saif, M. Othman, S. Subramaniam, and N. Hamid, “An enhanced a-msdu
frame aggregation scheme for 802.11n wireless networks,” in Wireless Per-
sonal Communications. Springer US, 2011, pp. 1–24.

[75] J. Schiller, A. Liers, H. Ritter, R. Winter, and T. Voigt, “ScatterWeb - Low
Power Sensor Nodes and Energy Aware Routing.” Hawaii International
Conference on System Sciences (HICSS), Hawaii, USA, January 2005, pp.
1–9.

[76] J. H. Schiller, A. Liers, and H. Ritter, “ScatterWeb: A Wireless Sensornet
Platform for Research and Teaching,” Elsevier Computer Communications,
vol. 28, pp. 1545–1551, August 2005.

[77] T. Selvam and S. Srikanth, “A frame aggregation scheduler for ieee
802.11n,” in Communications (NCC), 2010 National Conference on, 2010,
pp. 1–5.

[78] Sentilla. [Online]. Available: www.sentilla.com

[79] Seventh Framework Programme FP7 - Information and Communication
Technologies, “Wireless Sensor Networks Testbed Project (WISEBED),”
FP7 Project 2008-2011. [Online]. Available: http://www.wisebed.eu

[80] A. Sikora and V. Groza, “Coexistence of ieee802.15.4 with other systems
in the 2.4 ghz-ism-band,” in Instrumentation and Measurement Technology
Conference, 2005. IMTC 2005. Proceedings of the IEEE, vol. 3, may 2005,
pp. 1786 –1791.

[81] H. Sizun, Radio Wave Propagation for Telecommunication Applications.
Springer Berlin Heidelberg, 2004.

201

www.rfm.com/products/data/tr1001.pdf
http://www.rigol.com/prodserv/Digital Multimeters/
www.sentilla.com
http://www.wisebed.eu

BIBLIOGRAPHY

[82] D. R. Smith, Digital Transmission Systems. Springer US, 2003.

[83] D. Son, B. Krishnamachari, and J. Heidemann, “Experimental study of
concurrent transmission in wireless sensor networks,” in Proceedings of the
4th international conference on Embedded networked sensor systems, ser.
SenSys ’06. New York, NY, USA: ACM, 2006, pp. 237–250. [Online].
Available: http://doi.acm.org/10.1145/1182807.1182831

[84] K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis, “An empirical study
of low-power wireless,” ACM Trans. Sen. Netw., vol. 6, no. 2, pp.
16:1–16:49, Mar. 2010. [Online]. Available: http://doi.acm.org/10.1145/
1689239.1689246

[85] K. Srinivasan, M. Jain, J. I. Choi, T. Azim, E. S. Kim, P. Levis, and
B. Krishnamachari, “The κ factor: inferring protocol performance
using inter-link reception correlation,” in Proceedings of the sixteenth
annual international conference on Mobile computing and networking, ser.
MobiCom ’10. New York, NY, USA: ACM, 2010, pp. 317–328. [Online].
Available: http://doi.acm.org/10.1145/1859995.1860032

[86] F. Stann and J. Heidemann, “Rmst: Reliable data transport in sensor
networks,” in Proceedings of the First International Workshop on Sensor
Net Protocols and Applications, Anchorage, Alaska, USA, 2003, pp.
102–112. [Online]. Available: 049

[87] P. Suarez, C. Renmarker, T. Voigt, and A. Dunkels, “Increasing ZigBee net-
work lifetime with X-MAC.” ACM Workshop on Real-World Wireless
Sensor Network (REALWSN), Glasgow, Scotland, November 2008, pp. 13–
18.

[88] Texas Instruments, “16-Bit Ultra-Low Power MSP430 Microcontrollers:
Datasheets, Specifications and Reference Manuals.” [Online]. Available:
http://focus.ti.com/

[89] Texas Instruments CC1000: Single Chip Very Low Power RF Transceiver.
[Online]. Available: http://www.ti.com/lit/gpn/cc1000

[90] Texas Instruments CC1020: Single-Chip FSK/OOK CMOS RF Transceiver.
[Online]. Available: http://www.ti.com/lit/gpn/cc1020

[91] Texas Instruments CC2420: 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF
Transceiver. [Online]. Available: http://www.ti.com/product/cc2420

[92] J. Thelen and D. Goense, “Radio wave propagation in potato fields,” in In
1st Workshop on Wireless Network Measurements, 2005.

[93] TWISTv1: The TWIST testbed software suite, 2011. [Online]. Available:
http://www.twist.tu-berlin.de/wiki/TWIST/Software/TWISTv1

202

http://doi.acm.org/10.1145/1182807.1182831
http://doi.acm.org/10.1145/1689239.1689246
http://doi.acm.org/10.1145/1689239.1689246
http://doi.acm.org/10.1145/1859995.1860032
049
http://focus.ti.com/
http://www.ti.com/lit/gpn/cc1000
http://www.ti.com/lit/gpn/cc1020
http://www.ti.com/product/cc2420
http://www.twist.tu-berlin.de/wiki/TWIST/Software/TWISTv1

BIBLIOGRAPHY

[94] L. H. van and P. Havinga, “A lightweight medium access protocol
(lmac) for wireless sensor networks: Reducing preamble transmissions and
transceiver state switches,” in 1st International Workshop on Networked
Sensing Systems, INSS 2004. Tokio, Japan: Society of Instrument
and Control Engineers (SICE), 2004, pp. 205–208. [Online]. Available:
http://doc.utwente.nl/64756/

[95] A. Varga, “INET Framework, an open-source communication networks
simulation package for the OMNeT++ simulation environment.” [Online].
Available: http://inet.omnetpp.org/

[96] VOLTCRAFT, “Power supply VLP-1303 PRO,” 2012. [Online]. Available:
http://www.voltcraft.ch/index.php?site=netztechnik

[97] G. Wagenkecht, M. Anwander, and T. Braun, “Hop-to-Hop Reliability in IP-
based Wireless Sensor Networks - a Cross-Layer Approach.” International
Conference on Wired/Wireless Internet Communications 2009 (WWIC’09)
, Enschede, The Netherlands, June 2010, pp. 195–202.

[98] G. Wagenknecht, M. Anwander, and T. Braun, “MARWIS: A Management
Platform for Heterogeneous Wireless Sensor Network.” Ercim News, Vol.
5031/2008, Nr. 76, January 2009, pp. 18–19.

[99] G. Werner-Allen, P. Swieskowski, and M. Welsh, “MoteLab: a Wireless
Sensor Network Testbed.” ACM/IEEE International Conference on Infor-
mation Processing in Sensor Networks (IPSN), Los Angeles, USA, April
2005, pp. 483–488.

[100] D. Yang, Y. Xu, and M. Gidlund, “Coexistence of ieee802.15.4 based net-
works: A survey,” in IECON 2010 - 36th Annual Conference on IEEE In-
dustrial Electronics Society, nov. 2010, pp. 2107 –2113.

[101] W. Ye, J. Heidemann, and D. Estrin, “An Energy Efficient MAC Proto-
col for Wireless Sensor Networks.” IEEE International Conference on
Computer Communications (INFOCOM), New York, USA, June 2002, pp.
1567–1576.

[102] Yifeng Yang, “AN1066 MiWi Wireless Networking Protocol Stack,
describing the Microchip MiWi stack,” 2009. [Online]. Available:
http://ww1.microchip.com/downloads/en/appnotes/01066a.pdf

[103] ZigBee Alliance. [Online]. Available: http://www.zigbee.org

203

http://doc.utwente.nl/64756/
http://inet.omnetpp.org/
http://www.voltcraft.ch/index.php?site=netztechnik
http://ww1.microchip.com/downloads/en/appnotes/01066a.pdf
http://www.zigbee.org

List of Publications

Refereed Papers (Journals, Conferences, Workshops)

• M. Anwander and T. Braun, “A Reliable, Traffic-adaptive and Energy-efficient
Link Layer for Wireless Sensor Networks,” Submitted for Publication to Eu-
ropean Conference on Wireless Sensor Networks (EWSN), Ghent, Belgium,
February 2013.

• S. Morgenthaler, T. Braun, Z. Zhao, T. Staub, M. Anwander, “UAVNet: A
Mobile Wireless Mesh Network Using Unmanned Aerial Vehicles,” in 3rd
International Workshop on Wireless Networking and Control for Unmanned
Autonomous Vehicles , Anaheim, CA, USA, December 3 - 7, 2012

• M. Anwander, T. Braun, A. Jamakovic, T. Staub, “Authentication and Au-
thorisation Mechanisms in support of Secure Access to WMN Resources,” in
The Fourth IEEE International Workshop on Hot Topics in Mesh Networking
(HOTMESH), San Francisco, USA, June 25, 2012, IEEE, ISBN 978-1-4673-
1239-4

• G. Wagenknecht, M. Anwander, T. Braun, “Performance Evaluation of Reli-
able Overlay Multicast in Wireless Sensor Networks,” in 10th International
Conference on Wired/Wireless Internet Communications (WWIC), Santorini,
Greece, June 6 - 8, 2012, pp. 114-125, Springer Berlin Heidelberg, ISBN
978-3-642-30629-7

• P. Hurni, M. Anwander, G. Wagenknecht, T. Staub, T. Braun, “TARWIS -
A testbed management architecture for wireless sensor network testbeds,”
in IEEE/IFIP Network Operations and Management Symposium (NOMS),
Maui, Hawaii, USA, April 16 - 20, 2012, pp. 611-614, IEEE Xplore, ISBN
978-1-4673-0267-8

• A. Jamakovic, M. Anwander, T. Braun, P. Kropf, E. Schiller, J. Schwanbeck,
T. Staub, “A4-Mesh: Connecting Remote Sites,” in Switch Journal, March,
2012, pp. 15-17, Switch

• P. Hurni, U. Buergi, M. Anwander, T. Braun, “TCP Performance Optimiza-
tions for Wireless Sensor Networks,” in 9th European Conference on Wire-

205

List of Publications

less Sensor Networks, Trento, Italy, February 15 - 17, 2012, pp. 17-32,
Springer-Verlag Berlin, Heidelberg, ISBN 978-3-642-28168-6

• G. Wagenknecht, M. Anwander, T. Braun, “SNOMC: An Overlay Multicast
Protocol for Wireless Sensor Networks,” in 9th Annual Conference on Wire-
less On-demand Network Systems and Services (WONS), Courmayeur, Italy,
January 9 - 11, 2012, pp. 75-78, IEEE Xplore, ISBN 978-1-4577-1721-5

• G. Coulson, B. Porter, I. Chatzigiannakis, C. Koninis, S. Fischer, D. Pfisterer,
D. Bimschas, T. Braun, P. Hurni, M. Anwander, G. Wagenknecht, S. Fekete,
A. Kroeller, T. Baumgartner, “Flexible Experimentation in Wireless Sensor
Networks,” in Communications of the ACM, Vol. 55, Nr. 1, January, 2012,
pp. 82-90, ACM New York, USA, ISSN 0001-0782

• P. Hurni, M. Anwander, G. Wagenknecht, T. Staub, and T. Braun, “TAR-
WIS - A Testbed Management Architecture for Wireless Sensor Network
Testbeds,” in 7th International Conference on Network and Service Man-
agement (CNSM 2011), Paris, France, October 24-28, 2011, submitted for
publication.

• M. Anwander, G. Wagenknecht, T. Braun, K. Dolfus, “BEAM: A Burst-
Aware Energy-Efficient Adaptive MAC Protocol for Wireless Sensor Net-
works,” in Seventh International Conference on Networked Sensing Sys-
tems, Kassel, Germany, June 15 - 18, 2010, pp. 195-202, IEEE Press, ISBN
978-1-4244-7909-2

• T. Staub, M. Anwander, K. Baumann, T. Braun, M. Brogle, K. Dolfus,
C. Félix, and P. K. Goode, “Connecting Remote Sites to the Wired Back-
bone by Wireless Mesh Access Networks,” in 16th European Wireless Con-
ference, Lucca, Italy, April 12 - 15, 2010, pp. 675 - 682, IEEE Xplore, ISBN
978-1-4244-5999-5.

• T. Staub, M. Anwander, K. Baumann, T. Braun, M. Brogle, P. Dornier,
C. Félix, and P. K. Goode, “Wireless Mesh Networks - Connecting Remote
Sites,” in SWITCH Journal, Zurich, Switzerland, March, 2010, pp. 10-12.

• P. Hurni, G. Wagenknecht, M. Anwander, T. Braun, “A Testbed Management
Architecture for Wireless Sensor Network Testbeds (TARWIS),” in 7th Euro-
pean Conference on Wireless Sensor Networks (EWSN), Coimbra, Portugal ,
February 17 - 19, 2010, pp. 33-35, Springer, ISBN 978-989-96001-3-3

• G. Wagenknecht, M. Anwander, T. Braun, “Hop-to-Hop Reliability in IP-
based Wireless Sensor Networks - a Cross-Layer Approach,” in Interna-
tional Conference on Wired/Wireless Internet Communications 2009 (WWIC’09),
Enschede, The Netherlands, Vol. 5546/2009, May 27 - 29, 2009, pp. 61-72,
Springer LNCS, ISBN 978-3-642-02117-6

206

List of Publications

• P. Hurni, T. Braun, M. Anwander, “Evaluation of WiseMAC and Extensions
on Wireless Sensor Nodes,” in Springer Telecommunication Systems Jour-
nal, Vol. 43, Nr. 1-2, September 4, 2009, Springer US, ISSN 1018-4864

• P. Hurni, T. Staub, G. Wagenknecht, M. Anwander, and T. Braun, “A Secure
Remote Authentication, Operation and Management Infrastructure for Dis-
tributed Wireless Sensor Network Testbeds,” in 1st Workshop on Global Sen-
sor Networks (GSN’09) co-located with KiVS’09, Kassel, Germany, Vol. 17,
March 6 - 7, 2009, pp. 1-6, Electronic Communications of the EASST, ISSN
1863-2122.

• G. Wagenknecht, M. Anwander, T. Braun, “MARWIS: A Management Plat-
form for Heterogeneous Wireless Sensor Networks,” in Ercim News, Vol.
5031/2008 , Nr. 76, January, 2009, pp. 18-19, ERCIM EEIG, ISSN 0926-
4981

• G. Wagenknecht, M. Anwander, Marc Brogle, T. Braun, “Reliable Multicast
in Wireless Sensor Networks,” in 7. GI/ITG KuVS Fachgespräch Drahtlose
Sensornetze, Berlin, Germany, September 25 - 26, 2008, pp. 69-72, Freie
Universitaet Berlin, Fachbereich Mathematik und Informatik, Tech. Report
B 08-12

• M. Anwander, G. Wagenknecht, T. Braun, “Management of Wireless Sensor
Networks using TCP/IP,” in International Workshop on Sensor Network En-
gineering (IWSNE) at the 4th IEEE/ACM International Conference on Dis-
tributed Computing in Sensor Systems, Santorini Island, Greece, June 11,
2008, pp. II.1-II.8, ISBN 978-90-9023209-6

• G. Wagenknecht, M. Anwander, T. Braun, T. Staub, J. Matheka, and S. Mor-
genthaler, “MARWIS: A Management Architecture for Heterogeneous Wire-
less Sensor Networks,” in 6th International Conference on Wired/Wireless
Internet Communications (WWIC’08), Tampere, Finland, Vol. LCNS, Nr.
5031, May 28 - 30, 2008, pp. 177-188, Springer, ISBN 978-3-540-68805-1.

• M. Anwander, G. Wagenknecht, T. Staub, and T. Braun, “Management of
Heterogenous Wireless Sensor Networks,” in 6. Fachgespräch ’Drahtlose
Sensornetze’ der GI/ITG-Fachgruppe ’Kommunikation und Verteilte Systeme’,
Aachen, Germany, July 16 - 17, 2007, pp. 63-66, Distributed Systems Group,
RWTH Aachen University, ISSN 0935-3232.

• T. Staub, T. Bernoulli, M. Anwander, M. Wälchli, and T. Braun, “Experi-
mental Lifetime Evaluation for MAC Protocols on Real Sensor Hardware,”
in ACM Workshop on Real-World Wireless Sensor Networks (REALWSN’06),
Uppsala, Sweden, June 19, 2006, pp. 25-29, ACM Press, ISBN 1-59593-
431-6.

207

List of Publications

Books

• T. Braun, M. Anwander, P. Hurni, M. Waelchli, “MAC Protocols for Wire-
less Sensor Networks, Next Generation Mobile Networks and Ubiquitous
Computing” Hershey, New York, USA, October, 2010, pp. 165 - 174, IGI
Global, ISBN 978-1-60566-250-3

Unrefereed Papers (Technical Reports, Project Deliverables)

• G. Coulson, G. Wagenknecht, M. Anwander, et al., “Report on the Inte-
gration of the Software Infrastructure,” WISEBED Deliverable D2.3, June,
2010

• T. Staub, M. Anwander, M. Brogle, K. Dolfus, T. Braun, K. Baumann,
C. Félix, and P. Dornier, “Wireless Mesh Networks for Interconnection of
Remote Sites to Fixed Broadband Networks (Feasibility Study),” Universität
Bern, Institut für Informatik und angewandte Mathematik, Bern, Switzer-
land, December 18, 2009, IAM-09-007.

• M. Brogle, S. Serbu, D. Milic, M. Anwander, P. Hurni, C. Spielvogel, C.
Fautsch, D. Harmanci, L. Charles, H. Sturzrehm, G. Wagenknecht, T. Braun,
T. Staub, C. Latze, and R. Standtke, “BeNeFri Summer School 2009 on De-
pendable Systems,” Münchenwiler, Switzerland, September 8, 2009, IAM-
09-006.

• M. Brogle, D. Milic, M. Anwander, G. Wagenknecht, M. Wälchli, T. Braun,
R. Kummer, M. Wulff, R. Standtke, H. Sturzrehm, E. Riviere, P. Felber,
S. Krenn, C. Ehret, C. Latze, P. Hurni, and T. Staub, “BeNeFri Summer
School 2008 on Dependable Systems,” Quarten, Switzerland, November 18,
2008, IAM-08-003.

• T. Braun, U. Ultes-Nitsche, M. Brogle, D. Milic, P. Lauer, T. Staub, G. Wa-
genknecht, M. Anwander, M. Wälchli, M. Wulff, C. Latze, M. Hayoz, C. Ehret,
and T. Nicola, “RVS Retreat 2007,” Quarten, Switzerland, December, 2007,
IAM-07-004.

• M. Anwander, G. Wagenknecht, T. Braun, “Sensor Node Platform and Mid-
dleware for Management of Wireless Sensor Networks,”June 19, 2007, iam-
07-003

• M. Anwander, G. Wagenknecht, T. Braun, “Energy-efficient Management of
Heterogeneous Wireless Sensor Networks,” April 30, 2007, IAM-07-002

208

� � � � � � � ���	

���������	
�����
�
���������

�������������

��	������������

�	����������

!�"#��������� ���	������� �����������$�����	�	��������

%�	���������
��	�

���	��&��������
��	�

&"#���������#�����	' ������ �"#���������
��	 ����
�	������(��)���	���������������������������

������
�����*�������
���	+	�#�
�
�������	�����'�����,-�	��"#���������������������*�������

��	�������,�����'�#�
���"#��������"#��������+��"#��	
�������	�
�����	'������������)�����

��������	����������	�����./��
��	+�0�!�"#�	�
��������1���	+	���(����
���2	��
���033/�

4
�������5��(����	�	�+���6�	+���������)�1��������������
��	�(�����#�����%�	����
���"#	��	���	

7�	�$�	��

5�	���"#��)	

Anwander Markus

00-102-921

Informatik

X

Reliability in Energy Efficient Wireless Sensor

Prof. Dr. Torsten Braun

Bern, 15.11.2012

 Networks

Curriculum Vitae

Personal Details

Name Markus Anwander

Date of Birth December 29, 1974

Address Wilkerstr 24

CH-3097 Liebefeld, Switzerland

Hometown Untereggen SG, Switzerland

Nationality Swiss

Education

2006 – 2012 Ph.D. student in Computer Science at the University of
Bern, Switzerland

2006 Master of Science in Computer Science, University of
Bern, Switzerland

2000 – 2006 Study of Computer Science at the University of Bern, mi-
nor fields in Mathematics and Communication science

1996 – 2000 General qualification for university entrance, IMSE Sar-
gans, Switzerland

1991 – 1994 Apprenticeship as chemical laboratory worker, Ivoclar,
Liechtenstein

211

	List of Figures
	List of Tables
	Introduction
	Overview
	Problem Statement
	Contributions
	Thesis Outline

	Related Work
	Radio Modules and Physical Layer Techniques
	Survey of Characteristics of Radio Modules for WSNs
	Modulation Techniques
	Spread Spectrum Techniques
	Radio Module CC1000
	Radio Module TR1001
	Radio Module CC1020
	Radio Module CC2420

	Evaluated Sensor Node Platforms
	Embedded Sensor Node Developed at FU Berlin
	Modular Sensor Board 430 Developed at FU Berlin
	BTnode Developed at ETH Zurich.
	TelosB Mote Platform Developed by UC Berkeley
	MicaZ Developed by UC Berkeley and Crossbow

	Operating Systems for Sensor Nodes
	Contiki
	ScatterWeb

	Evaluation Tools
	OMNeT++ Network Simulation Framework
	WISEBED WSN Testbed Controlled by TARWIS
	RIGOL DM3052 Digital Multimeter

	Reliability Techniques
	Reasons for Erroneous Data Forwarding in WSNs
	Overview Reliability Techniques
	Automatic Repeat Request Mechanism
	Forward Error Correction Codes
	ARQ combined with FEC Mechanisms
	Reliability Metrics
	Summary Reliability Techniques

	WSN Network Stack Protocols and Mechanisms
	Link Layer Protocol
	Network and Transport Protocols
	Packet Aggregation Mechanism
	Back Pressure Mechanisms

	Conclusions

	Hardware Pre-Evaluation
	Required Energy and Time to Forward Data
	Energy Required to Send a Single Byte
	Minimal Energy Required to Send a Single Frame
	Minimal Energy Required to Forward a Single Frame
	Hypothetical Reference Link Layer Protocol

	Energy Required to Check the Radio Channel
	Robustness against Interferences
	Testbed Setup
	Packet Loss Caused by External Interferences
	Packet Loss Caused by External and Inter-flow Interferences
	IEEE 802.11 Interferences

	Network connectivity
	Hardware Pre-Evaluation - Conclusion

	WSN Protocols
	Burst Aware Energy Efficient Adaptive MAC Protocol
	Impact of CC2420 Characteristics on BEAM Design
	Basic Functionality of BEAM
	BEAM Optimizations
	BEAM Reliability Support
	BEAM FEC Support
	BEAM Summary

	Hop-to-Hop Reliability Protocol
	Packet Queue
	Congestion Detection and Control Mechanism
	H2HR backpressure mechanism
	Forwarding a Data Frame
	Packet Aggregation

	UDP End-to-End Reliability Protocol
	UDP-E2E Sequence Numbers
	UDP-E2E Frames

	Network Stack Overview

	Evaluation
	Evaluation Setup
	Small-scale Scenarios and Testbed Setup
	Large-scale Scenarios and Testbed Setup
	Evaluated Performance Characteristics
	Energy Evaluation Techniques
	Evaluated Contiki Compliant Network Stacks
	Summary of Evaluation Setup

	Evaluation of BEAM Protocol Optimization Techniques
	Acknowledgment Mechanism
	Beacon Strobe Transmission Delay Optimizations
	Beacon Strobe Modes
	Duty Cycle Evaluation
	Traffic Prediction
	Packet Aggregation
	BEAM Protocol Optimization Techniques Summery

	Reliability Evaluations of H2HR and UDP-E2E
	H2HR Simulation Evaluation
	H2HR Real Word Evaluation
	End-to-end versus Hop-to-Hop Reliability
	Summary Reliability Evaluations of H2HR and UDP-E2E

	Impact of FEC Codes to Energy Efficient WSNs
	Encoding and Decoding Payload
	Recovery Potential of FEC Codes
	Evaluating FEC Codes in an Energy Efficient WSN Stack
	Throughput
	FEC Summary

	Comparing BEAM to Existing WSN Protocols
	Energy Consumption
	Reliability and Throughput
	Packet Delivery Time
	Summary Comparing BEAM to Existing WSN Protocols

	BEAM Compared to Energy Efficient MAC Protocols for Bit/Byte Oriented Radio Modules
	Experiences with Different Evaluation Methodologies
	Simulation versus Real World Experiences
	Impact of Traffic Load

	Conclusions and Outlook
	Addressed Challenges
	Contributed and Applied Protocols
	Main Results and Conclusions
	Outlook

	Acronyms
	Bibliography
	List of Publications
	Curriculum Vitae

