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Abstract

Increasing availability of mobility data and technical advancements
that leverage communication speed and computation efficiency
enable the use of machine learning based methods for solving
complex challenges regarding Intelligent Transportation Systems
(ITS). This work employs Convolutional Neural Networks (CNNSs) to
estimate future urban traffic flows. CNNs are a popular form of deep
learning networks that are able to identify and extract complex
spatio-temporal data characteristics. Nevertheless, it is still an
effortful task to find a highly-accurate CNN architecture due to the
large set of available hyper-parameters. Hence, this thesis
proposes RL-CNN, a framework to autonomously generate high-
accuracy urban traffic flow predictors with no human intervention.
The proposed framework employs Reinforcement Learning (RL) to
autonomously search for optimized CNN architectures. These
architectures are then used as highly-accurate urban traffic flow
predictors. The proposed RL-CNN framework was trained and
tested on a real-world, large-scale dataset, collected in the city of
Porto, Portugal. The results of this thesis show that RL-CNN
outperforms the compared state-of-the-art urban traffic flow
predictors by 5% - 10%. Additionally, the convergence time is
improved by 20% - 33% compared to another RL based approach
tested in this paper.
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Abstract—Accurate prediction of urban traffic flows brings
enormous advantages to big cities. Therefore, many urban traffic
flow predictors have been developed in recent years. Urban traffic
flow predictors aim to identify complex mobility patterns and
capture urban traffic flow characteristics from large-scale histor-
ical datasets. Afterward, trained models are used to predict the
future traffic volume in terms of the number of moving objects
(e.g., vehicles). Convolutional Neural Networks (CNN) and other
deep learning approaches are brilliant choices because of their
ability to learn Spatio-temporal dependencies. Nevertheless, the
extensive set of hyper-parameters tends to make these neural
networks overly complex and challenging to design. In this work,
we introduce RL-CNN, a framework based on Reinforcement
Learning whose objective is to autonomously discover high-
performance CNN architectures for the given traffic prediction
task without human intervention. We examine the proposed RL-
CNN model as a traffic flow estimator on a real-world and large-
scale vehicular network dataset. We observe improvements of 5%
- 10% in the average traffic flow prediction accuracy over the
state-of-art approaches.

Index Terms—Convolutional Neural Networks, Reinforcement
Learning, Urban Traffic Estimation.

I. INTRODUCTION

Comprehensive urban traffic information can benefit urban
citizens’ daily life and improve urban transportation efficiency.
Accurate predictions of such traffic information are of great
importance for route planning, navigation, and other mobil-
ity services. Urban traffic prediction generally applies traffic
models to analyze various historical and real-time traffic data
to predict traffic conditions in terms of the number of moving
objects (e.g., vehicles) in the future. Thanks to the popularity
of ubiquitous sensing and Intelligent Transportation Systems
(ITS) in recent years, we can gather unprecedented mobility
data by exploiting various mobile devices (e.g., smartphones
and on-board GPS devices). Such emerging big data availabil-
ity makes accurate traffic predictions viable.

To leverage such benefits, conventional machine learning
models (e.g., SVM, Random Forest, etc.) attempt to predict
urban traffic flows. However, traffic flows in large cities can
be influenced by various factors in practice, for example,
transport regulations, weather conditions, etc. The classical

machine learning models have shown to be inadequate to
describe traffic characteristics comprehensively and can not
achieve accurate predictions [1].

Recently, Convolutional Neural networks (CNN) and other
deep learning-based approaches show outstanding ability to
learn and predict future states of urban traffic. However,
the broad set of hyper-parameters makes defining a high-
performance architecture for neural networks a complex task
[2]. Hyper-parameters are typically the variables that deter-
mine the architecture of neural networks (e.g., number of
hidden layers, number of units in each hidden layer, etc.).

This work proposes a framework to predict urban traffic
flows in large cities based on historical data. We use a
recently proposed model to remove human interventions in
CNN architecture design [3], Zoph et al. utilized a Re-
inforcement learning (RL) based method to find the most
appropriate neural network architecture for a given dataset.
Thus, RL provides a self-learning process based on positively
rewarding high-performance architectures and penalizing low-
performance ones. Within this process, the objective is to
adapt the architecture description of a neural network (e.g., the
number of hidden layers, the number of units and the activation
functions in each hidden layer, etc.) towards the most efficient
architecture a provided dataset.

Results show that our proposed RL-CNN framework
achieves 5% - 10% average prediction accuracy improvements
over the state-of-art approaches tested in this paper.

We organized the other sections of this work as follows.
The related work and existing researches for urban traffic flow
prediction are reviewed in section II. The problem statement,
addressing the challenges of future traffic flow estimation in
urban areas, is presented in section III. Section IV describes
the proposed traffic flow predictor using Reinforcement Learn-
ing and CNN. The results and the evaluation methodology are
presented in section V. Finally, section VI concludes the paper.

II. RELATED WORK

In recent years neural network-based predictors and statis-
tical models are introduced as two efficient approaches for



predicting urban traffic flows. For instance, as a statistical
model, the k-nearest neighbors (KNNs) have been proposed
to estimate the urban traffic [4]. Besides, Support vector ma-
chines (SVMs) based predictors [5], [6], [7] delivered promis-
ing results in estimating the future states of urban traffic. Deep
learning-based predictors are also employed in the traffic flow
prediction problem. The authors in [8] integrated Deep Neural
Networks with Markov based algorithm to estimate the number
of moving objects on the urban trajectories. Besides, in [9],
the authors suggested integrating Artificial Neural Networks
(ANNSs) with statistical models to estimate traffic flow in urban
areas. Due to the poor generalization ability of ANNs caused
by their shallow architecture, several efficient deep learning-
based predictors were proposed to predict traffic flows in large
cities. In [10], the authors applied the deep learning-based
predictors to estimate the future state of urban traffic in city
environments. In [11], Huang et al. benefited from Deep Belief
Networks (DBNGs) to traffic flow forecasting. Besides, in [12]
authors suggested to combine combines deep restricted Boltz-
mann machines (RBMs) with a Recurrent Neural Network
(RNN, which inherited the advantages of the both predictors.
The work in [13] proposed to use a Stack Auto-Encoder
(SAE) to capture Spatio-temporal features of urban traffic; the
extracted features are fed to a deep learning-based predictor
to estimate urban traffic. In [14] authors presented promising
results by applying CNNs to estimate urban traffic flows.
In general, neural networks-based predictors delivered better
results compared with traditional statistical models because
they have much deeper architecture and are therefore able to
learn complex data characteristics. Regardless of the success
of the presented deep learning-based traffic flow predictors,
developing neural networks’ architecture is still an exhausting
procedure. In this paper, we automate the development process
of a high-performance CNN based traffic flow predictor with
no human intervention.

III. PROBLEM STATEMENT

This work addresses the challenges of future traffic flow
estimation in urban areas. Estimating future traffic flows is
an important part of ITS, city traffic management systems,
and general traffic flow optimization, by allocating and de-
allocating (optimizing) available resources based on future
traffic flow estimation.

Our research focuses on getting highly-accurate CNN-
based traffic flow predictors and the automation process for
developing them. We define a traffic flow as the aggregated
number of moving objects (e.g., vehicles, etc.) that passed a
base station (e.g., RSU - Road Side Unit, etc.) in a defined
time period. Time period 7' is defined as the tuple of two
date-time values T = [t1,t2]. The difference between two
date-time values is defined as granularity G = t5 — ¢ and is
measured in minutes. Therefore, based on the provided data,
we attempt to estimate the traffic flow within a time period
of granularity G = 30minutes and over the whole day. The
number of moving objects N passing RSU R during time
period T' € P can therefore be noted as Ry = N. Thus,

we further defined the traffic flow at time 7" over the whole
city as Cr = [RL, ..., RE], where k is the total amount of
RSUs in the city. Figure 1 displays the traffic flow density
in the city of Porto, Portugal, which is, in fact, the intensity
of traffic congestion in a chosen time period [15]. The plot
illustrates that, in the city center of Porto, Portugal, the main
roads and the bridges have much higher traffic flow density
than the farther parts of the city and, therefore, indicate that
these areas are more congested than others, noticeable by the
orange and red coloring of the areas, respectively. The blue
and light green areas indicate less traffic flow density and
less traffic congestion, although also covering areas in the city
center. Hence, this work aims to create highly-accurate traffic
flow density predictors so that traffic density can be estimated,
and consequently, traffic congestion over the whole city can
be reduced.

Furthermore, developing the architectures for deep learning
models such as CNN is a tedious and challenging process:
many hyper-parameters have to be fine-tuned, and CNN struc-
tures have increased depth and complexity, resulting in a
broad set of possible CNN architectures of almost infinite
size. Therefore, we attempt to automate human CNN devel-
opment processes using RL-based methods, anticipating faster
developed, and highly-accurate CNN predictors. This paper
focused on an RL-based approach for developing optimized
CNN architectures without human intervention. Afterward,
optimized CNN acts as a highly-accurate predictor that at-
tempts to forecast future traffic flows regarding the number
of aggregated moving objects that passed the RSU during a
defined time period.
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Fig. 1: Traffic flow density in the city of Porto, Portugal

I'V. URBAN TRAFFIC FLOW PREDICTION

In this section, we introduce a Reinforcement Learning
based framework called RL-CNN. The objective of RL-CNN
is to autonomously choose a high-performance CNN predictor
for a given learning task. Our learning task focuses on finding
high-quality urban traffic flow predictors. We use the Neural



Architecture Search (NAS) framework as the primary search
method in this work. [3]. In this framework, the RL-based
controller creates architectures for an RNN. The architecture
of a neural network generally describes the number of hidden
layers and their composition and connectivity. In this frame-
work, the learning algorithm is trained to make predictions on
a validation dataset. The RL-based controller is updated with
the algorithm’s outputs to generate improved architectures in
the future. Our proposed RL-CNN framework consists of three
essential units: (¢) CNN as a child predictor whose objective is
to reach an acceptable traffic flow prediction accuracy; (i) the
search space that the controller attempts to explore to define
high-performance CNNs; and (7i7) the controller based on Q-
learning to propose improved child CNN architectures so that
the expected prediction results are maximized. The following
subsections and Figure 2, representing the system model, are
explaining the details of each unit and how they are integrated
to predict traffic flow in urban environments.

Hyper-parameters

| l

Learning Agent
Controller: Q-learning

1 |

Computed prediction accuracy

Child CNN predictor

S

Action space
Parameter space

Fig. 2: RL-CNN System Architecture

A. Deep Learning and Convolutional Neural Networks

Although various forms of deep learning models share a
common architecture, which contains an input layer, an output
layer, and from one to more than a thousand hidden layers in
between, raw data initializes the input layer’s values, while
the output layer emits the desired predictions. All hidden
layers are responsible for transforming states of the input layer
into the output layer’s expected predictions by capturing the
high-level abstraction of the input data. Each layer in the
network contains units, and the number of units can vary
among different layers. Links exist between units of any two
neighboring layers, and each link is associated with a weight.

The CNN model is a popular deep learning algorithm
composed of an input and an output layer and multiple hidden
layers, which can be the convolutional, pooling, or fully
connected layers. The convolutional layer adopts filters that
apply certain transformations on the input data to capture their
properties. Hence, convoluted data in the form of a feature
map of the transformed input data is output by convolutional
layers. Besides, convolutional operations preserve the spatial
relationship in the dataset using small portions of neighboring
input data. Convolutional layers are often followed by pooling
layers that employ MaxPooling or MinPooling filters to
learn more abstract representations of the data. MaxPooling
filters apply maximization functions, and MinPooling filters

apply minimization functions while running over convoluted
data. Thus, pooling layers simplify data by summarizing
regions, therefore downsizing convoluted data and reducing
the dataset’s complexity. Finally, the last layer is the fully
connected layer, fed with the output of the last convolutional
or pooling layer to complete the prediction task.

B. Search Space

To have high accurate CNN as a traffic flow predictor, the
learning agent (controller in Section IV-C) aims to explore the
defined search space, which includes:

o Parameter space is defined as a set of all relevant pa-

rameters that the learning agent can choose to suggest
a description of architecture to child CNN. We define
the depth of CNN model as the maximum number of
layers (convolutional, pooling and flatten layers) as an
integer number selected from (3,100]. For each con-
volutional layer, the size of filters is selected from
{5,100, 150, 200,250} and the size of pooling layer is
chosen from {5, 10,15, 20, 25};

« Action space forces the controller to take certain actions.
For instance, MaxPooling layers often deliver better
results in comparison with MinPooling layers [16].
Therefore, we constrain our learning agent to always
add a MaxPooling layer after each convolutional layer.
Also, we allow the controller to terminate the architecture
search process if the child CNN delivers an acceptable
traffic flow prediction accuracy (e.g., 90%).

Additionally, the learning agent is forced to use Softmax
[17] and Rectified Linear Unit (ReLU) [18] as activation
functions on output layers and hidden convolutional layers,
respectively. ReLU’s ability to increase non-linearities while
also decreasing training time makes it particularly useful when
stacking hidden layers (e.g., using deep neural networks). In
contrast, the Softmax activation function is primarily used in
the output layer to output a vector representing the probability
distribution of potential outcomes (e.g., list of future traffic
flow in terms of moving objects, etc.). Note that the framework
itself is not restricting the search space. We purposely defined
it for faster convergence. Otherwise, the architecture search
process will terminate when the learning agent can reach the
convergence level (e.g., reaching a highly accurate child CNN
architecture).

C. CNN Architecture Search Strategy

Different approaches have been developed to explore the
search space to define neural network architectures. These
approaches include random search, Bayesian Optimization,
RL, and other gradient-based methods used in works of
Liashchynskyi et al. [19], Wu et al. [20], and Baker et al.
[21], respectively. This research focuses on RL-based NAS,
where a (Q-learning-based controller generates a neural net-
work architecture, trains the generated neural architecture on
training data, and computes an accuracy metric on validation
data. The controller receives the prediction accuracy in the
form of a reward. Positive reward signals the increase in



the prediction accuracy, and a high positive reward value is
equivalent to a high accuracy increase. Therefore, a negative
reward indicates a decrease in the prediction accuracy, and
large negative reward values signal a poor prediction accuracy.

The agent’s ultimate goal is to learn to generate neural net-
work architectures that result in a high validation accuracy by
maximizing the controller’s reward. We are now summarizing
the theoretical notation of Q-learning, as used in our research.
For that, we setup a discrete and finite Search space, consisting
of Parameter space S and Action space A (see Section IV-B).
This leaves the agent with a finite but huge set of possible
neural network architectures to choose from, hence the use
of RL. At each iteration ¢t € {0,1,2,...}, the agent in state
s € S will take an action a C A(s) to pass into the next
state s’. At each iteration ¢, the computed accuracy is given to
the agent as a reward signal (r; € R), which depends on the
transition from state s to the next state s’. The learning agent’s
goal is to find the most accurate network architecture. To do
so0, the agent needs to maximize the total accumulated reward
over all possible iterations. Next follows the definition of the
recursive reward maximization problem. We define Q' (s, a),
for any state s € S and action a € A (s), as the maximum
total expected reward. Furthermore, Q' (s, a) is also called Q-
value and Q'(-) is known as the action-value function. We
define r(s,a) as the computed reward value for choosing
action a in state s and E,/5 , as the expected probability of
selecting action a in state s to translate into state s’. Therefore,
we can note the Bellman’s Equation, which is the recursive
maximization equation, as follows:

Q’(s,a):ES/‘Sya r(s,a) +v max Q' (s',a') 1)

a’eA(s")

The learning agent has no a-priori knowledge about the
consequences of choosing the suggested architectures. The
only known information consists of the search space, including
all available actions and parameters. Therefore, an iterative
approach of the Bellman’s Equation is needed (see Equation
2) so that the learning agent can adapt based on the reward
for choosing the suggested architecture.

Qi (5:0) = (1= Qi (s,0) +a |ty max, Qu (<)) @

‘e

The priority of newly acquired information over old infor-
mation is determined by the Q-learning rate a € (0,1],
whereas the importance of future rewards is determined by
the discount factor v € (0, 1]. This research uses the e-greedy
exploration/exploitation strategy [22]. Our approach is to take
a random action with probability ¢, where we set the € to decay
over time so that the controller learns to explore the search
space early and gradually exploits the suggested architectures
to the child CNN to achieve the maximum reward.

V. PERFORMANCE ANALYSIS

We validate the proposed RL-CNN framework to generate
a high-performance CNN algorithm as an urban traffic flow
estimator by conducting extensive experiments on a real-world
dataset. The experiment details are explained in subsection

V-A, the metrics are depicted in subsection V-B, and the results
in subsection V-C.

A. Experiment Setup

We require mobility trace datasets to train and test the
proposed RL-CNN framework properly. For this, a real-world
VANET testbed deployed in the city of Porto, Portugal, is
used in this work [15]. More than 600 networked vehicles
(OBUs) were tracked by the over 70 RSUs (Road-Side Units)
distributed all over the city of Porto. One part of the collected
large-scale dataset consists of RSUs records (RSU ID, RSU
location, traffic volume, etc.), and the other part includes in-
formation about OBUs (OBU ID, connection times, connected
RSU Ids, etc.). However, to train our RL-CNN and make traffic
flow estimations, only RSU IDs, OBU IDs, and timestamps
are required. We mainly focused on prediction accuracy as
our evaluation metric. Our proposed framework performs the
search for a highly accurate network during the exploration
phase. For that, we split the dataset into two subsets, of which
70% 1is used for training the algorithm, and the remaining
30% is used for testing the suggested estimators. During
the exploitation phase, which starts after convergence, the
discovered CNN estimator is trained for 300 iterations over the
whole dataset, the so-called epochs. Too many epochs can lead
to performance problems, resulting in longer training times and
over-fitting. Because of that, a method named Early Stopping
is used in this research. The computed accuracy is monitored
by Early Stopping, and training is halted if the accuracy
change over the patience epochs (the number of epochs to
wait before Early Stopping triggers, €.g., Pepochs = 9) is
less than A,,;, = 0.5. The other parameters, batch size, an
initial learning rate of the CNN, are set to 200 and 0.003,
respectively. We want to give a higher weight to rewards in
the far future. Therefore, the discount factor () is set to 1,
and the ()-learning rate () is set to 0.01. We used a High-
Performance Computing Cluster at the University of Bern in
Switzerland (HPC Cluster - UBELIX !) with Intel(R) Xeon(R)
CPU E5-2630 v4 @ 2.20GHz for training and evaluation of
our suggested traffic flow predictors.

B. Evaluation Metrics

To evaluate the proposed RL-CNN algorithms traffic flow
prediction quality, we use the accuracy [3], which measures
how often the predicted result is correct compared to the
overall number of predictions.

#predictionScorrect

Accuracy =
#predZCtzonscorrect + #predzcmonsincorr‘ect

In this work, a correct prediction occurs if the RL-CNN
based estimation, optimized CNNs, equals to the effective
number of aggregated moving objects; an incorrect prediction
occurs if the estimation does not equal the effective number
of aggregated moving objects.

Thttps://docs.id.unibe.ch/ubelix
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C. Evaluation Results

This subsection details the results of the traffic flow pre-
diction accuracy of the proposed RL-CNN model, and the
accumulated training time needed for the convergence of
finding the RL-CNN based density predictor. We run experi-
ments using the Porto dataset to compare the accuracy of the
RL-CNN with HERITOR, proposed in [23], and XGBoost,
proposed in [24].

Figure 3 shows the traffic flow prediction accuracy of the
RL-CNN, HERITOR, and XGBoost in the business days
(Monday to Friday) and weekends (Saturday and Sunday).
The results clearly show that the RL-CNN outperforms both
HERITOR and XGBoost on both business days and weekends.
RL-CNN delivers an average prediction accuracy of 85% and
79% for business days and weekends, respectively. Mean-
while, HERITOR delivers an average traffic flow prediction
accuracy of 80% for business days and 77% for weekends.
XGBoost is the one with the lowest performance compared
to the other prediction algorithms, with an average traffic
flow prediction accuracy of 74% for business days and 70%
for weekends. The proposed RL-CNN architecture achieves
the highest maximum prediction accuracy for both business
days and weekends, providing the best prediction accuracy

in simple and more complex situations. This is the result of
hyper-parameter tuning done autonomously, combined with
CNN predictors’ excellent ability to capture Spatio-temporal
features. Especially on business days, the RL-CNN density
predictor achieves a prediction accuracy of 91%. On week-
ends, the proposed RL-CNN density estimator reached below
80% prediction accuracy, and the RL-CNN density predictor
reached a maximum of 85% prediction accuracy. However,
this can be due to the quality of input data, which favored
business days over weekends (more data on business days).

We compared the urban traffic flow prediction results of RL-
CNN, HERITOR, and XGBoost with the ground truth and
presented the average density over the city throughout the day
in Figure 4. Our results demonstrate the efficiency of RL-
CNN. During both business days and weekends, the traffic
flow prediction provided by RL-CNN is very much like the
real traffic flow. The density estimations of RL-CNN-based
predictors (colored in red) are following the ground truth data
(colored in blue) closely. Beyond the figure’s results, we also
measured improvements of 5% — 10% over the state-of-the-art
methods tested in this paper. Therefore, this shows that our
proposed RL-CNN framework accurately estimates the traffic
flow density and captures the upward and downward traffic



flow movements precisely.
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Furthermore, Figure 5 shows the comparison of elapsed
accumulated training time until the respective algorithm con-
verges. The two RL based algorithms, the proposed RL-
CNN and HERITOR, are outperformed by XGBoost. This
is not surprising because XGBoost is designed to be highly
efficient and extremely fast. XGBoost does not need to find
an optimized neural network architecture before making the
density prediction. Once found, the RL-based neural network
density predictors are also rapid in estimating future traffic
flows. Nevertheless, comparing both RL based approaches,
RL-CNN outperforms HERITOR by 20% on business days
and 33% on weekends. This makes our proposed RL-CNN not
only superior on prediction performance but also in resource
usage.

VI. CONCLUSIONS

This paper proposed the RL-CNN framework, which em-
ploys reinforcement learning to discover high-accurate CNNs
without human interventions. We examine the proposed RL-
CNN model as a traffic flow estimator on a real-world and
large-scale dataset, namely the Porto dataset. We observe
improvements of 5% - 10% in average traffic flow prediction
accuracy over the state-of-art while maintaining reasonable
and improved convergence time compared to state-of-the-art
RL frameworks. The combination of prediction results and
convergence time evaluation indicates that our proposed RL-
CNN framework can be of great use in assisting traffic flow
forecasting tasks. Future work will address this applicability
to traffic management platforms.
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