
Management of Heterogeneous Wireless Sensor Networks∗

Markus Anwander, Gerald Wagenknecht, Thomas Staub, and Torsten Braun
Institute of Computer Science and Applied Mathematics

Neubrückstrasse 10
3012 Bern, Switzerland

{anwander|wagen|staub|braun}@iam.unibe.ch

ABSTRACT
Wireless sensor networks (WSNs) are taking a big step for-
ward to productive deployments. Heterogeneous WSNs are
gaining importance. Complex problem settings consisting
of different environmental conditions require specific sen-
sor nodes for the individual tasks resulting in heterogeneous
networks. As the different types of sensor nodes may be
incompatible, a more general management architecture for
these heterogeneous environments is a necessity. Individ-
ual nodes have to be reconfigured and updated during their
lifetime. Our WSN management framework supports com-
mon management tasks such as monitoring the WSN, con-
figuration of the WSN, code updates, and managing sensor
data. Our management architecture consists of the following
infra-structural elements: a management station, a number
of management nodes and a high number of heterogeneous
sensor nodes. All management tasks are controlled by the
management station. Management nodes are implemented
as wireless mesh nodes.

1. INTRODUCTION
A WSN consists of a number of sensor nodes. They have
a large area of applications, e.g., event detection, localiza-
tion, tracking, monitoring and many more, which require
specific nodes to perform the individual tasks. This results
in heterogeneous networks.

Currently available sensor nodes are mainly prototypes for
research purposes. A number of sensor nodes have been eval-
uated. We selected four of them to build a heterogeneous
sensor network: ESB nodes [1], tmote SKY [2], BTnodes
[3] and micaZ [4]. For the management backbone a Wire-
less Mesh Network (WMN) consisting of Wireless Router
Application Platform boards (WRAP) [5] nodes have been
selected.

∗This work has been supported by the Hasler Foundation
under grant number ManCom 2060 and the Swiss National
Science Foundation under grant number 200020-113677/1

Contiki [6] is being used as operating system running on the
sensor nodes. It is a dynamic operating system with special
focus on portability. It is written in C and supports 14 plat-
forms and 5 CPU types. A small TCP/IP [7] stack (µIP) is
implemented. Contiki, moreover supports preemptive multi-
threading, inter-process communication and dynamic run-
time linking of standard Executable Linkable Format (ELF)
files. Program modules can be updated and loaded at run-
time. Contiki and the network simulator COOJA are open
source projects and run under BSD license.

To improve current research our concept adds mecha-
nisms to support heterogeneity for management in WSNs.
MANNA [8] presents an information architecture and a func-
tional management architecture for WSNs. The manage-
ment architecture provides functions to establish configu-
rations for sensor network entities. Each of the hierarchi-
cal deployed manager nodes is responsible for a cluster of
sensor nodes. The information architecture defines the in-
formation units and the information exchange among the
entities. Currently no implementation of MANNA exists.
Guidelines are proposed, but the communication model and
other issues are not yet defined. TinyCubus [9] presents
a management and configuration framework for WSNs. It
also bases on a clustered architecture assigning certain roles
to sensor nodes. Another focus is code distribution min-
imizing the code fragments to be distributed in a WSN.
Reliability shall be supported by implicit acknowledgments
and retransmissions. The code distribution mechanism has
been evaluated in rather friendly environments without high
error rates. The Deployment Support Network (DSN) to ob-
serve, control, and reprogram a deployed WSN over the air
is presented in [10]. Major drawback of this approach is
the need of an additional wireless backbone network. The
Global Sensor Networks (GSN) [11] provides a middleware
for fast and flexible integration and deployment of hetero-
geneous sensor networks. The key concept in GSN is the
usage of virtual sensors, which abstract from implementa-
tion details of access to sensor data and correspond either
to data streams received directly from sensors. [12] surveys
software update techniques in WSNs. Its design space con-
sists of the execution environment at the sensor nodes, the
software distribution protocol in the network and optimiza-
tion of transmitted updates.

The following sections describe the WSN management
framework including the management scenario and the man-
agement tasks (Section 2), the management architecture

(Section 3), as well as the management protocols (Section
4). Future work is presented in Section 5.

2. MANAGEMENT SCENARIO AND
TASKS

A heterogeneous wireless sensor network consists of different
types of sensor nodes, which might measure different data
and perform different tasks. To operate such a (sub)network
the following devices are required: one management station,
several mesh nodes and a comparatively high number of het-
erogeneous sensor nodes. A possible scenario is shown in
Figure 1.

The sensor nodes might have different sensors for monitoring
the environment. All sensor nodes of one type are able to
communicate with each other and build a sensor subnet.
Many existing sensor platforms have different radio modules
and are thus not able to communicate with each other. The
different subnets are interconnected by wireless mesh nodes.
They provide interfaces for different sensor subnets and act
as gateways. Besides the inter-subnet communication, the
mesh nodes perform management tasks. Each mesh node is
responsible for one or more subnets. Control of the sensor
nodes is done via the management station. The management
station is connected to the mesh nodes via Ethernet or via
IEEE 802.11.

IEEE 802.11

Internet

IEEE 802.3

mangement
station

mangement
station

mesh
node

sensor nodes

Figure 1: A possible management scenario

From the management point of view there are several tasks
required to manage a WSN and its sensor nodes. In gen-
eral we can divide these into four areas: (1) monitoring the
WSN and the sensor nodes, (2) (re)configuring the WSN
and the sensor nodes, (3) updating the sensor nodes and (4)
managing the sensor data.

The monitoring task requires that all sensor nodes in
the several subnets are displayed at the management sta-
tion with all necessary information. This includes sensor
node hardware details (e.g. chip, transceiver), sensor node
software details (e.g. operating system versions), and dy-
namic properties (e.g. battery). The node ID and other
static information is sent when a sensor node joins the net-
work. Additionally the management station may query sen-
sor nodes. The (re)configuration task includes sensor

node configuration and network configuration. Code dis-
tribution mechanisms perform the operating system or the
application updates. Mechanisms to handle incomplete, in-
consistent and failed updates have to be provided.

3. MANAGEMENT ARCHITECTURE
The management architecture contains the following struc-
tural elements: a management station, some mesh nodes
as management nodes, sensor node gateways plugged into a
mesh node, and the different sensor nodes.

3.1 Management Station
The management station is divided into two parts. It con-
sists of a laptop or remote workstation to access a web in-
terface to control the WSN and a mesh node running the
management system for Wireless Mesh Networks (WMNs)
[13] including a web server (shown in Figure 2).

HTTP Server with PHP

Management Station

User Interface
(Web Browser)

WSN
Monitor

WSN
Configurator

Code Update
Manager

CFEngine

Laptop or remote workstation

Management system for WMNs

Mesh
Network

1

2
3

4

Sensor
Nodes

Figure 2: Management station architecture

The communication between the user interface and the
management system for WMNs is done via HTTPS. The
management system for WMNs contains a small Linux
distribution including all required applications, especially a
HTTP server supporting PHP. The HTTP server maintains
several modules to handle the requests and transmit them
to mesh nodes, sensor nodes or CFEngine [14]. Communi-
cation with a mesh node is done via TCP/IP with HTTPS
servers running on the mesh nodes (depicted as 2 in Figure
2). The communication between the management station
and the sensor nodes is done via TCP/IP (depicted as 3 in
Figure 2). For data transmission within the mesh network,
CFEngine is used. The WSN monitor is responsible for
monitoring the whole network. It shows the mesh nodes
with their subordinate sensor nodes including all available
information of the sensor nodes. The user may request in-
formation from a single sensor node. The WSN configu-
rator is responsible for the configuration of the WSN. The
code update manager distributes the uploaded image via
CFEngine. It shows the available program versions and per-
forms the updating process.

3.2 WSN Manager
The WSN manager running on the mesh nodes consists of
the following components: program version database, WSN
information database, sensor database, WSN monitor mod-
ule, WSN configurator module, and code update manager
module (shown in Figure 3). The sensor database stores
all measured data as tuples (node ID, sensor ID, value,

Mesh Node

WSN Monitor
Module

WSN Configurator
Module

Code Update
Manager Module

WSN Manager

Mesh
Network 1

4

Program
Version DB

WSN
Information DB

Sensor
Data DB

2Sensor
Node

Gateways

3

6
HTTP Server

5

CFEngine

Figure 3: Mesh node architecture

timestamp). The WSN information database consists
of all infra-structural data. Each entry contains ID, prop-
erty ID, value, and timestamp. The properties are e.g. chip,
transceiver, and battery status. The program version
database stores the versions of all available programs con-
taining program ID, version, target platform, timestamp,
and link to the image. The CFEngine is responsible for
distributing the databases within the mesh network. The
WSN monitor module connects to the WSN information
DB and to the sensor data DB for responding the requests
from the management station. It writes sensor and node
data into the databases. The WSN configurator mod-
ule connects to the WSN information database to read and
write data. It further queries the sensor node properties
and sends commands. The code update manager mod-
ule stores newly uploaded images in the program version
DB. It also updates the sensor nodes. It includes methods
to reduce the distributed code (differential patch, compres-
sion).

3.3 Sensor Node Manager
As shown in Figure 4, the management tasks are handled by
a sensor node manager. It consists of sensor node moni-
tor, sensor node configurator, sensor data sender, and code
updater. The sensor node monitor sends the requested
values to the mesh node. The sensor node configurator
executes the configuration requests and notifies the mesh
node. The code updater receives the image of the appli-
cation or operating system (differential patch, compressed,
or uncompressed) and performs the update. It confirms the
success of the update to the mesh node.

Sensor Node

Ap
pl

ica
tio

n
1

Contiki

1Sensor
Nodes

Ap
pl

ica
tio

n
2

Ap
pl

ica
tio

n
N

Se
ns

or
 N

od
e

M
on

ito
r

Se
ns

or
 N

od
e

Co
nfi

gu
ra

to
r

Co
de

up

da
te

r

Sensor Node Manager

Contiki Core

Figure 4: Sensor node architecture

4. WSN MANAGEMENT PROTOCOLS
4.1 WSN Monitoring Protocol
The monitoring protocol enables a management node to get
all information about the network topology, all sensor node
properties and all measured sensor data. It can be divided
into 2 cases: The first case describes how the management
station explores the mesh network and the subordinate sen-
sor node networks. The second case describes the situation
when the user queries a selected sensor directly.

WSN Inf
DB

MANAGEMENT
STATION

WSN
Monitor

MESH NODE

4 2

Sensor
Data DB

WSN Manager
(WSN Monitor Module)

MESH NETWORK

CFEngine WSN Inf
DB

MESH NODE

4 2

Sensor
Data DB

WSN Manager
(WSN Monitor Module)

CFEngine

3
1

Figure 5: WSN monitor queries the mesh nodes

When the management station joins the mesh network, it
connects to the next available mesh node. Because the in-
formation is distributed using CFEngine within the mesh
network, the information about the WSN topology of distant
mesh nodes is several minutes old. In order to receive the
actual topology, the management station queries all other
mesh nodes (Figure 5). The protocol works as follows: (1)
The management station queries all mesh nodes about their
subordinated sensor nodes. (2) The WSN monitor modules
queries the WSN information DB. (3) The management sta-
tion requests the current sensor data of every subordinated
sensor node. (4) The WSN monitor module queries the sen-
sor data DB.

WSN Inf
DB

MANAGEMENT
STATION

WSN
Monitor

MESH NODE

Sensor
Data DB

WSN Manager
(WSN Monitor Module)

MESH NETWORK

CFEngine

SENSOR NODE
GATEWAY

SENSOR
NODE

1

2

43

5

Figure 6: User requests sensor node information di-
rectly

The second case is shown in Figure 6 and works as follows:
(1) The user requests either sensor node information or sen-
sor data from a single sensor node or from a group of sen-
sor nodes. The request is transmitted via a unicast, multi-
cast or broadcast transport protocol to the queried sensor
nodes. (2) The sensor sends the requested information back
to the mesh node. (3) The WSN manager module writes the
new information into the according database. (4) It copies
the information to CFEngine which distributes it within the
WMN. (5) The WSN sends a confirmation to the WSN mon-
itor.

4.2 WSN Configuration Protocol
With the WSN configuration protocol the properties of the
sensor nodes as well as the network can be configured. Ex-
amples are changing sensing intervals or routing tables. It
works similar as the WSN monitoring described in 4.1. The
request message contains a configuration command.

When a new sensor node joins the following tasks are per-
formed (see Figure 7): (1) First, it broadcasts a ’Hello’ mes-
sage to the WSN configurator module. (2) An initial net-
work configuration is negotiated. Then all available infor-
mation of the sensor node is requested. (3) The sensor node
is registered in the WSN information DB. (4) All available
information is propagated to CFEngine for distribution.

WSN Inf
DB

MESH NODE

WSN Manager
(WSN Configurator Module)

CFEngin
e

SENSOR NODE
GATEWAY

SENSOR
NODE

1

43
2

Figure 7: A new sensor node joins the sensor net-
work

4.3 Code Update Protocol
The code update protocol contains mechanisms to upload
and distribute the images within the mesh network, notify-
ing the management station about the available programs,
and performing the update. The new image of an appli-
cation or the operating system is uploaded and stored in
the program version database and distributed within the
WMN. The management station is notified which programs
are available in the program version database.

MESH NETWORK

CFEngine Program
Version DB

MANAGEMENT
STATION

Code Update
Manager

MESH NODE
CFEngine

2

SENSOR NODE
GATEWAY

SENSOR
NODE

4

6

5
WSN Inf

DB

3

WSN Manager
(Code Update Manager Module)

1

7

8

Figure 8: The user initiates the code update for the
sensor node

Figure 8 shows the update process of the sensor nodes: (1)
The program version and the sensor nodes are selected. The
code update manager sends this request to the concerned
mesh nodes. (2) The installed program version is checked
by querying the WSN information DB. (3) A patch is gen-
erated from the old and new image. (4) This is sent to the
selected sensor nodes. (5) On the sensor node the update is
installed. (6) The update is acknowledged. (7) The WSN
information DB is updated. (8) The management station is
notified about the success.

5. FUTURE WORK
After defining the management architecture and selecting
the appropriate sensor node platforms and operating sys-
tem, the next tasks concern the implementation of the sen-
sor node management architecture. Other important tasks
are the development of reliable communication mechanisms
for WSNs. This includes reliable transport protocols for
unicast, multicast and broadcast communication. The next
step is to develop a reliable point-to-point transport proto-
col. In detail, the Contiki TCP stack for Distributed TCP
Caching (DTC) [15] mechanism and TCP Support for Sen-
sor networks (TSS) [7] will be extended.

6. REFERENCES
[1] J. Schiller, A. Liers, H. Ritter, R. Winter, Th. Voigt.

ScatterWeb Low Power Sensor Nodes and Energy
Aware Routing. HICSS-38, Hawaii, USA, Jan 2005.

[2] Tmote SKY. http://www.moteiv.com. Last visit 04.07.

[3] J. Beutel, M. Dyer, M. Hinz, L. Meier, M. Ringwald.
Next-generation prototyping of sensor networks.
SenSys’04, Baltimore, USA, Nov 2004.

[4] J. Hill, D. Culler. MICA: A Wireless Platform for
Deeply Embedded Networks. IEEE Micro, November
2002.

[5] WRAP. http://www.pcengines.ch. Last visit 04.07.

[6] A. Dunkels, B. Grönvall, Th. Voigt. Contiki - a
Lightweight and Flexible Operating System for Tiny
Networked Sensors. 1st IEEE Workshop on Embedded
Networked Sensors, Tampa, USA, Nov 2004.

[7] T. Braun, T. Voigt, A. Dunkels. TCP Support for
Sensor Networks. IEEE/IFIP (WONS 2007), Obergurgl,
Austria, Jan 2007.

[8] L. Ruiz, J. Nogueira, A. Loureiro. Manna: A
management architecture for wireless sensor networks
IEEE Communications Magazine, Vol. 41, No. 2, Feb
2003, pp. 116-125.

[9] P. Marron, A. Lachenmann, D. Minder, M. Gauger,
O. Saukh, K. Rothermel. Management and configuration
issues for sensor networks Int. Journal of Network
Management, Vol. 15, 2005, pp. 235-253.

[10] M. Dyer, J. Beutel, L. Thiele, T. Kalt, P. Oehen,
K. Martin, P. Blum. Deployment Support Network - A
Toolkit for the Development of WSNs EWSN’07, Delft,
Jan 2007.

[11] K. Aberer, G. Alonso, D. Kossmann. Data
Management for a Smart Earth. SIGMOD Record, Vol.
35, No. 4, Dec 2006.

[12] C. Han, R. Kumar, R. Shea, M. Srivastava. Sensor
network software update management: a survey. Int.
Journal of Network Management, Vol. 15, 2005, pp.
283-294.

[13] T. Staub, D. Balsiger, M. Lustenberger, T. Braun.
Secure Remote Management and Software Distribution
for Wireless Mesh Networks ASWN’07, Santander,
Spain, May 2007.

[14] Cfengine. http://www.cfengine.org. Last visit 04.07.

[15] A. Dunkels, T. Voigt, H. Ritter, and J. Alonso.
Distributed TCP Caching for Wireless Sensor Networks.
Annual Mediterranean Ad Hoc Networking Workshop,
Bodrum, Turkey, Jun 2004.

