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Abstract—To allow remote management of heterogeneous
wireless sensor networks (WSNs), the WSNs should be con-
nected to the Internet. To overcome this problem, we propose
a communication infrastructure, which includes a wireless mesh
network (WMN) operating as a backbone network. In order to
realize such interconnection between the WSN and an external
network without any proxies or middle-boxes, we propose to use
TCP/IP as the standard protocol for all network entities, e.g., for
configuration and uploading application code to the sensor nodes.
We present a cross layer designed communication architecture
which contains a MAC protocol, TCP/IP, and a protocol called
TCP Support for Sensor Nodes (TSS). The MAC protocol
implements the MAC layer of nonbeacon-enabled personal area
networks (PANSs) defined in the IEEE 802.15.4 standard for peer-
to-peer topologies. TSS is located between TCP and IP and
implements mechanisms such as caching and local retransmission
of TCP data packets, local TCP acknowledgment regeneration,
aggressive TCP acknowledgment recovery, congestion and flow
control algorithms. We show that our communication architec-
ture increases the performance of TCP/IP in WSNs significantly.

I. INTRODUCTION

Wireless sensor networks (WSNs) consist of a large number
of sensor nodes. WSNs are used for various applications such
as building monitoring, environment control, wild-life habitat
monitoring, forest fire detection, industry automation, military,
security, and health-care. For such applications, the WSNs can-
not operate in complete isolation. The WSN must be connected
to an external network, such as the Internet, through which
monitoring and controlling entities can reach the WSN. MAR-
WIS (Management Architecture for Heterogeneous Wireless
Sensor Networks) [1] supports common management tasks
such as monitoring, (re)configuration, and updating program
code in a WSN. To handle large heterogeneous WSNs it is
proposed to subdivide it into smaller sensor subnetworks and
use a wireless mesh network (WMN) as backbone.

TCP/IP is the de facto standard protocol suite for wired
communication. By running TCP/IP in the WSN, it is possible
to directly connect the WSN to a wired network infrastructure,
without proxies or middle-boxes [2]. While UDP can be used
to transmit sensor data to a sink, TCP is used for adminis-
trative tasks such as sensor node configuration and updating
program code. Because of the limited resources of the sensor
nodes, the high packet loss, and the inefficiency in memory
and energy consumption of TCP [3], it is rather difficult
to implement TCP/IP on sensor nodes. Optimizations, e.g.

distributed caching of TCP data packets, local retransmissions,
and regeneration of TCP acknowledgment packets can reduce
theses problems [4].

Using TCP/IP to manage WSNs requires an optimization
and harmonization of the different layers, such as physical,
data link, network, and transport layer. Protocols at the dif-
ferent layers have to exchange information across the layers.
We present a cross layer designed communication architecture,
which enables the use of TCP/IP to manage heterogeneous
WSNs. The main parts of the communication architecture
are a MAC protocol, which implements the MAC layer of
nonbeacon-enabled PANs defined in the IEEE 802.15.4 stan-
dard [5] for peer-to-peer topologies, and the TCP Support for
Sensor Nodes (TSS) protocol [6], which is a new protocol
between TCP and IP. We implemented the whole protocol
stack in OMNeT++ [7] using the INET framework and an
accurate radio model of the CC2420 radio transceiver (thus
the bit error rate is much higher than in the standard radio
model). We use the cross layer design paradigm to optimize
and harmonize the protocols at the different layers. While
the original TSS has been implemented on top of a standard
TDMA MAC protocol, we implemented a 802.15.4 conform
MAC protocol. Further, we extend the original TSS by caching
more than one data packet. The size of the buffer can be
configured. The simulations presented in this paper are more
detailed and performed in more complex scenarios as in [6].

The paper is organized as follows. Section II introduces the
related work regarding transport protocols and using TCP/IP in
WSNss. In Section III we present a topology of a heterogeneous
WSN and introduce briefly MARWIS, our management archi-
tecture for such WSNs. In Section IV the MAC protocol and
in Section V the TSS protocol are presented. The developed
protocols are simulated and the results are presented in Section
VI. Section VII concludes the paper and gives an outlook.

II. RELATED WORK

Many new sophisticated transport protocols for WSNs have
been developed. Some of them explicitly focus on reliable
transport of data from sensor nodes to base stations, while
only a few protocols support data transport to the sensor nodes.
The reliability requirements differ significantly depending on
the application, since sensor data often have some redundancy
and some loss can be tolerated. However, packet loss cannot
be tolerated in the case of distributing program code to sensor



nodes. Thus using, adapting, and enhancing standard transport
protocols such as TCP is an alternative.

Reliable Data Transport in Sensor Networks (RMST) [8],
Pump Slowly Fetch Frequently (PSFQ) [9], and Congestion
Detection and Avoidance (CODA) [10] are built on top of
Directed Diffusion [11], which is a common data dissemina-
tion scheme. Event-to-Sink Reliable Transport (ESRT) [12]
provides congestion control.

The use of TCP in wireless networks causes some seri-
ous performance problems. The end-to-end acknowledgment
and retransmission scheme requires expensive retransmissions
along every hop on the path between the sender and the re-
ceiver, if a packet is dropped. In [13], [4] local caching of TCP
segments and local retransmission at intermediate nodes is
proposed. A further problem is the energy consumption of TCP
[3]. In [14] FEC is used to shield TCP from losses not caused
by congestion and helps to improve its throughput. In [15]
the authors try to improve TCP performance by establishing
the optimal TCP window size. In [16], an energy-efficient
protocol called E>TCP is presented. It provides a selective
acknowledgment mechanism and uses header compression.

Approaches for management of WSNs and code distribution
does not support heterogeneous WSN environments. MANNA
[17] is a management architecture for WSNs, which provides
functions to establish configurations for WSN entities. Tiny-
Cubus [18] is a management and configuration framework for
WSNs, which focuses on code distribution and minimizing
code fragments to be distributed in a WSN. Multi-hop Over-
the-Air Programming (MOAP) [19] is a code distribution
mechanism focused on energy-efficient and reliable code dis-
tribution.

III. MANAGEMENT ARCHITECTURE FOR WIRELESS
SENSOR NETWORKS

To connect a WSN to an external network, such as the
Internet, additional infrastructure is required. One possible
solution is a wireless mesh network (WMN), which works
as backbone and supports the connection to the external
network. In addition, it supports the connection between the
different types of sensor nodes in a heterogeneous WSN. To
operate such a WSN the following devices are required: one
(or more) management stations, several wireless mesh nodes
and a rather high number of heterogeneous sensor nodes. A
possible scenario is shown in Figure 1. The sensor nodes of the
different subnetworks are depicted as small circles, triangles
and rhombuses. The mesh nodes are depicted as large circles.
In [1] it is shown that subdivision of a large WSN into smaller
sensor subnetworks improves the performance of a WSN by
reducing the number of hops in a sensor subnetwork.

The WSN is connected to the Internet using the WMN
as backbone. A sensor node can be plugged into a mesh
node via serial interface such as USB. Such sensor node
operates as gateway between the WMN and the WSN. The
mesh nodes communicate via IEEE 802.11b/g/n. The WMN
is connected to the Internet via Ethernet or IEEE 802.11. A
TCP/IP implementation runs on all entities of the network and
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Fig. 1.

is used for reliable point-to-point connections. Every sensor
node and mesh node has its own IP address. Thus, the user can
control and monitor the WSN and every single sensor node
via a management station located in the Internet. Different
types of sensor nodes, which build different subnetworks, can
communicate to each other. Figure 2 shows the protocols
stacks on several entities (management station, mesh nodes,
sensor nodes).
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Fig. 2. A reliable unicast connection with TSS

The design of efficient communication involves all layers
from physical layer up to the application layer. It is not
sufficient to develop a protocol in a single layer, which is
put on the top of another single layer protocol. Thus, it is
necessary to coordinate and harmonize all affected layers.
Important information and states have to be known at all layers
immediately. Such a cross layer design can obtain a reliable
and efficient data transport within the WSN. We provide a
cross layer designed protocol stack on the sensor nodes. This
contains a new MAC protocol for 802.15.4 nonbeacon-enabled
Personal Area Networks (PANs) and TSS between IP and TCP.

IV. MAC PROTOCOL

The MAC protocol at the data link layer depends strongly
on the underlying radio transceiver and is specially tailored
to it. We are using the CC2420 radio transceiver [20], which
implements the physical layer of the IEEE 802.15.4 standard.
The proposed MAC protocol implements the MAC layer
of nonbeacon-enabled PANs defined in the IEEE 802.15.4



standard for peer-to-peer topologies. To our knowledge it is
the first implementation in this way. It provides multihop
communication. All nodes are full function devices (FFD).
The MAC protocol holds a buffer to store the incoming frames
from the lower layer (radio transceiver) and the upper layers
(TCP—TSS—ulIP). The size of the buffer can be configured.
The format of the MAC frame is conform to the IEEE 802.15.4
standard and shown in Figure 3. There are no energy-saving
functionalities such as sleeping periods implemented yet.
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Fig. 3. IEEE 802.15.4 MAC frame.

A. Transmitting and Receiving

The receiving and transmission process is realized as a state
machine. The MAC protocol operates according to the states
of the CC2420 radio transceiver. We provide two modes for
acknowledgments: an explicit acknowledgment (MAC-ACK)
and an implicit acknowledgment (MAC-OVERHEARING).
The state machines for transmitting and receiving are shown
in Figure 4 and work as follows:

1) For transmission of frames the unslotted CSMA-CA

algorithm is used.

2) Data coming from the upper layer are written to the TX
buffer of the radio transceiver. This step depends on the
underlying radio transceiver.This step depends on the
underlying radio transceiver.

3) This step contains the unslotted CSMA-CA algorithm.
Two variables are maintained: NB, and BE. NB is the
number of times the CSMA-CA algorithm was required
to backoff while attempting the current transmission. BE
is the backoff exponent, which is related to how many
backoff periods a device shall wait before attempting to
assess a channel. The MAC protocol delays for a random
number of backoff periods. Via CCA (Clear Channel
Assessment) the radio transceiver indicates, whether the
channel is free. In case of a busy channel the backoff
period is newly calculated and the maximum number of
retransmission attempts is checked.

4) The frame stored in the TX buffer is transmitted. By a
successful transmission it deletes the frame. It retrans-
mits the frame, if there is no confirmation (MAC-ACK
/ MAC-OVERHEARING).

5) When a frame is in the RX buffer, the CC2420 radio
transceiver confirms it via the SFD and the FIFO pin.

6) The received frame is processed (CRC) and handled
according the frame type.

7) In the MAC-ACK mode the MAC-ACK is transmitted.
8) MAC-DATA is delivered to the upper layer.
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Fig. 4. State machine of the MAC protocol.
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B. MAC-ACK vs MAC-OVERHEARING

There are two kinds of acknowledgment modes: MAC-ACK
and MAC-OVERHEARING. In case of MAC-ACK the MAC
protocol initiates the transmission of an acknowledgment. In
case of MAC-OVERHEARING no acknowledgment frame
is transmitted. Instead the radio transceiver listens whether
the following node forwards the frame. The upper layers
get informed about the state of acknowledgment (cross layer
information). There are three states:

o The frame has been successfully transmitted (confirmed
via MAC-ACK or MAC-OVERHEARING).

e The frame has been transmitted, but there is no confir-
mation.

o Frame transmission failed.

The MAC-ACK mode shown in Figure 5 works as follows:

1) MAC-DATA is sent after checking whether the channel
is free and whether there is no Send Stop active.



Node 1 Node 3 Node 4

o It M
{8 < MAC-ACK

(4
MAC-DATA
?MAC'DATA (5 MAC-DATA
VAGACK. MAC-DATA |
Fig. 5. MAC-ACK

2) After successfully receiving the frame a MAC-ACK is
transmitted immediately (after 12 symbols).

3) A MAC-DATA is received which is not addressed for the
receiver. It sets the Send Stop timer, thus corresponding
MAC-ACKs from the receiver to the sender cannot be
destroyed. After the timer has expired it can transmit
regularly.

4) The MAC-ACK is received within the time slot for MAC-
ACK.

5) Collisions can occur. If CRC checks fail, MAC-DATA
frames are destroyed. A MAC-ACK cannot be transmit-
ted and after expiring the time slot for MAC-ACK the
frame is retransmitted.

Node 1 Node 2 Node 3 Node 4

MAC-DATA

time slot for
overhearing
{2} {MAC-DATA

N [~

- 3
MAC-DATA .-
3

timer for
+4«—— retransmission

; (1.5*RTT)
MAC-DATA

Fig. 6.

MAC-OVERHEARING on intermediate nodes.

The MAC-OVERHEARING mode is shown in Figure 6.
There exists no explicit acknowledgment. The sender listens
when the receiver forwards the frame to the next hop. The
mechanism works as follows:
1) The sender transmits a MAC-DATA frame. The receiver
forwards the frame and the sender overhears it (within
the time slot for overhearing).

2) Also in the MAC-OVERHEARING mode collisions can
occur. Because nodes 1 and nodes 3 cannot hear each
other, they transmit frames at the same time. Thus
frames collide and overhearing is impossible.

3) On expiration of the time slot for overhearing there are
no retransmissions. The TSS protocol gets the informa-
tion that the frame is transmitted, but not acknowledged
(not overheard). Retransmission is initiated by TSS.

C. Cross Layer Support of the MAC Protocol

The MAC protocol is responsible to establish a stable
link to the neighbor nodes. The communication should be
energy-efficient. Therefore, the physical layer has to provide
additional information about the transmissions. The radio
transceiver provides CCA (Clear Channel Assessment), LQI
(Link Quality Index), and RSSI (Receive Signal Strength
Indicator). CCA provides information whether the channel
is used or not. LQI indicates the quality of a link between
two nodes and RSSI provides the signal strength. The MAC
protocol decides with this information, if a frame can be
transmitted to a neighbor node. The exchange of information
between the MAC protocol and the TSS protocol is very
important for the reliability mechanisms. The MAC protocol
informs the TSS protocol about the transmission state of a
frame. It can be transmitted successfully or the transmission
can fail (e.g. if the channel was busy). Further, the MAC
protocol gives information about retransmissions of segments
and the traffic between the nodes in the neighborhood. This
information is important for congestion control and avoidance
in the TSS protocol. The TSS layer provides the information
about the buffer size and the free space in the buffer. The MAC
layer uses this information and drops a frame (with payload),
if the buffer is full.

V. TCP SUPPORT FOR SENSOR NODES (TSS)

To ensure a reliable transport in WSNs a new protocol
between TCP and IP, the TCP Support for Sensor Networks
(TSS) [6] protocol has been inserted. This protocol is respon-
sible for the following tasks:

¢ Caching and local retransmission of TCP data packets

o Improving the TCP acknowledgment mechanism

« Flow and congestion control

TSS supports energy-efficient operation of sensor nodes
by reducing the number of transmissions. The TSS protocol
holds a buffer to store the incoming frames from the lower
layers (radio transceiver—MAC) and the upper layer (TCP).
The reliability mechanisms of TSS have an effect, when the
network is overloaded (e.g. because of a high load of packets
of other protocols or interferences). The MAC protocol must
not be too reliable, because in case of unreliable transport
protocols (such as UDP) there can be too high overload and
delays.

A. TSS Caching Local Retransmissions of TCP Data Packets

In general, TCP is a reliable byte stream protocol designed
for wired networks. Reliability is provided by positive ac-
knowledgment with end-to-end retransmissions. In contrast



to a wired connection, a wireless network possesses a high
bit error rate. This leads to many end-to-end retransmissions.
These extra packets reduce the throughput and increase the
round-trip-time (RTT). The extra energy for retransmissions
also reduces the lifetime of the individual sensor nodes. One
of the basic ideas of TSS is to cache a TCP-DATA packet in
the WSN until the packet is acknowledged (shown in Figure
7):
1) The node caches TCP-DATA n and forwards it.
2) The receiver acknowledges TCP-DATA n by transmitting
TCP-ACK n+1.
3) The intermediate node receives TCP-ACK n+1 and
deletes TCP-DATA n. In general, it can delete all TCP-
DATA packets with a lower sequence number than #.

SENDER RECEIVER

drop cached
i | TCP data packet

Basic idea of TSS: caching of TCP data packets.

Fig. 7.

The case of a packet loss is shown in Figure 8 and works as
follows:

1) The node caches TCP-DATA n and forwards it.

2) After forwarding a TCP-DATA packet, the node expects
the acknowledgment (TCP-ACK) within 1.5 * RTT.
Otherwise, the cached packet is retransmitted.

3) After receiving TCP-ACK n+1 it deletes TCP-DATA n
(and all lower TCP-DATA packets) from the buffer.

SENDER RECEIVER

retransmit
packet n

Fig. 8. Basic idea of TSS: retransmission of lost TCP data packets.
Too long retransmission timeouts cause retransmissions by
the sender. Simulations in [6] show that a retransmission
timeout of 1.5 * RTT is adequate to also retransmit multiple
losses of TCP-DATA packets without triggering end-to-end
retransmission. The RTT is measured between the node and
the destination. The RTT coefficient (1.5 in this case) can be
configured. Both ideas above assume that only one TCP-DATA
packet can be cached on every intermediate node and only one
packet is in the network at the same time. If it is assumed that
every intermediate node can buffer more than one packet the
retransmission mechanisms can be extended and optimized.
The throughput can be increased, because of more packets can

be in the network at the same time. The order of the packets
is preserved. Figure 9 shows a packet loss in that case:

1) TCP-DATA n and TCP-DATA n+1 are cached on inter-
mediate nodes and get lost.

2) TCP-DATA n+2 reaches the receiver, which acknowl-
edges the packet.

3) The node recognizes that TCP-DATA n is lost. It for-
wards the acknowledgment, because it does not have
TCP-DATA n cached.

4) Intermediate node 3 has TCP-DATA n in the buffer,
forwards it and deletes the TCP-ACK n.

5) This packet is acknowledged and TCP-DATA n+1 is re-
transmitted (from node 6). The next packet is requested
by transmitting TCP-ACK n+3.
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Fig. 9. Packet loss in an extended scenario.

B. TSS Acknowledgment Mechanisms

Because of the limited memory, only a few packets can
be cached and an efficient caching algorithm is required. A
node caches a packet until it knows that the successor node
has successfully received the packet. This can be discovered
by receiving an acknowledgment on the data link layer or
through overhearing an implicit acknowledgment (shown in
Figure 10):

1) Node 5 receives, caches, and forwards TCP-DATA n and
n+1. The MAC protocol informs the TSS protocol that
forwarding has failed.

2) Now node 5 tries to retransmit TCP-DATA n. After
confirmation it deletes it from the buffer. and transmits
TCP-DATA n+l1.

TSS passes only one packet to the MAC protocol (directed
through the IP) and waits afterwards for confirmation. There
are three states after packet transmission:

o The packet has been transmitted successfully to the next
hop, and it is confirmed through MAC-ACK or MAC-
OVERHEARING.

o The packet has been transmitted, but the MAC-ACK has
not been received or the forwarding of the packet could
not be overheard (MAC-OVERHEARING).

e The MAC protocol was not able to transmit the packet,
because of e.g. channel was busy or some other reasons.
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Fig. 10. Cross layer support of the MAC protocol.

According to these three states of the confirmation the node
can retransmit the packet or not. In the first case the packet
is normally deleted from the buffer. Thus, no retransmission
is possible, even if there is no TCP-ACK within 1.5 * RTT.
If the packet is still in the buffer (according to the basic idea
of TSS shown in Figure 7), the packet is retransmitted after
1.5 * RTT. In the case of a negative confirmation (missed
MAC-ACK or MAC-OVERHEARING), we can retransmit the
packet immediately after the negative confirmation by the
MAC protocol, or we have to wait for 1.5 * RTT and retransmit
it then. In the third case, we can try immediately to retransmit
the packet or to wait a short time until the channel is not busy
anymore. As long as a cached packet has not been successfully
delivered to the next hop, later received packets of the same
connection are not forwarded. Thus, the order of the packets
are not changed.

It happens that a packet has successfully been transmitted
to the next hop, but the acknowledgment or the overhearing
has not been discovered by the sender (shown in Figure 11).
In such case the sender duplicates the packet and retransmits
it. To avoid duplicated packets, every node holds a small
history list with the identification numbers of received TCP
packets and their acknowledgments. In case of a detected
duplicate, it is dropped. The history list is the main element of
the acknowledgment mechanism. The source and destination
address, ports, sequence number, and whether the packet is
acknowledged with a MAC-ACK or TCP-ACK are stored for
each packet. With this information TSS can calculate the
RTT, and assign TCP-ACKs to TCP-DATA packets. Further
current TCP-DATA sequence numbers can be calculated and
retransmissions can be recognized. The mechanism is shown
in Figure 11 and works as follows:

1) The node caches and forwards TCP-DATA n. However,
the MAC protocol confirms that it does transmit the
packet but does not receive a MAC-ACK. Now the node
waits 1.5 * RTT for a MAC-ACK.

2) The next node forwards the packet and the receiver
acknowledges it. TCP-ACK n+1 is delayed, e.g. because
of much traffic in the neighborhood, and does not arrive
at node 4 within 1.5 * RTT.

3) The RTT timer expires and the node retransmits 7CP-
DATA n. The next node recognizes with the history list,

that it has already received the packet (and successfully
forwarded). Thus, it does not forward it and deletes it
from the buffer.
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Fig. 11. History list to avoid packet duplications in the WSN

In TSS, the TCP-ACKs are very important to estimate the
RTT, RTT timers, caching, etc. Experiments in [6] show that
the loss of TCP-ACKs may have severe impact on the amount
of TCP-DATA packet transmissions. Two mechanisms reduce
the consequences of lost TCP-ACKs: local TCP acknowledg-
ment regeneration and an aggressive TCP acknowledgment
recovery (shown in Figure 12).
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Fig. 12. Two mechanisms to reduce the consequences of lost TCP acknowl-
edgments

The local TCP acknowledgment regeneration is used to drop
duplicated TCP data packets, which are already acknowledged
by the receiver. Because of the history list, an intermediate
node can discover an already acknowledged packet. The
duplicated packet is dropped and a TCP acknowledgment with
the highest acknowledgment number seen so far is regenerated
and transmitted. A scenario is shown in 1) of Figure 12).
The aggressive TCP acknowledgment recovery becomes active
when a sensor node cannot ensure by MAC-ACK that the TCP-
ACK has been successfully transmitted to the next hop. Using
MAC-ACK, the retransmission can be enforced directly. It is
shown in 2) of Figure 12.

VI. SIMULATION AND EVALUATION
We implemented TCP/IP, TSS presented in Section V, and
the MAC protocol presented in Section IV in OMNeT++ [7]

and run a number of simulations. We compared MAC-ACK
and MAC-OVERHEARING as well as we evaluated TCP/IP



with and without TSS. We use three different scenarios to
evaluate our cross layer design communication architecture.
First, we arrange the sensor nodes in a line (line scenario,
shown in Figure 13) and establishs a TCP connection between
node 0 and node 6 which transmits 20 bytes (according to a
configuration task) or 1000 bytes (according to a code updating
task). No energy-saving functions such as sleeping cycles
are implemented, because the focus lies on the transmission
performance. The configuration and updating task should be
processed as fast as possible.
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Fig. 13. Sensor nodes arranged in a line.

Second, we arrange the sensor nodes in a cross grid and
establish 2 TCP connections shown in Figure 14. In the
parallel scenario one connection goes from node 0 to node
6 and one connection from node 7 to node 13. The cross
scenario is also based on the cross grid and establish one
TCP connection node 0 to node 11 and one connection from
node 5 to node 6. Also in these scenarios 20 bytes and 1000
bytes are transmitted over a connection.
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Fig. 14.  Sensor nodes arranged in a cross grid.

We evaluate the TSS protocol compared with a pure TCP
implementation the in line, parallel, and cross scenario using
the MAC-ACK mode or the MAC-OVERHEARING mode.
We measure the transmission time, the number of the total
transmitted bytes, and the number of total transmissions in the
network. The transmission time is the duration for transmitting
20 bytes or 1000 bytes over the TCP connection (time between
establishing and closing the connection). The number of total
transmissions gives the number of sent frames. It means not
the number of successfully transmitted frames. The parameters
for the MAC-ACK mode are: TCP window size 780, RTT
coefficient 1.5 (cf. [6]), TSS buffer size 4, MAC buffer size 2,
random backoff time 200 us, and the number of retransmission
attempts 1. The parameters for the MAC-OVERHEARING

mode are the same as for the overhearing period of 15ms.
The size of the MAC frame is 128 bytes (802.15.4 conform).
The average error rate between two neighbor nodes is approx-
imately 15% to 20%, if there are no interferences by other
nodes.

Figure 15 shows the transmission time of 1000 bytes
(typical code updating task) in the three scenarios with TSS
and without TSS using MAC-ACK (3 left points) or MAC-
OVERHEARING (3 right points). Transmission time with TSS
is 10% of pure TCP in case of the line scenario and 20% in
case of the cross scenario. Using MAC-ACK is faster than
using MAC-OVERHEARING. Figure 16 shows the same sce-
narios transmitting 20 bytes (typical configuration task). Here
the effect of TSS is even bigger (30 times better performance
in case of cross scenario in the MAC-ACK mode), because
there are just one TCP-DATA packet transmitted. In the 1000
bytes scenario 129 data packets are needed.
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Fig. 15. Transmission time (1000 byte scenario).
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Fig. 16. Transmission time (20 byte scenario).

Figure 17 shows the number of real transmitted bytes
comparing TSS with pure TCP using MAC-ACK or MAC-
OVERHEARING in the 1000 byte scenario. TSS reduces
the number of total transmitted bytes by reducing the of re-
transmissions significantly. The MAC-OVERHEARING mode
needs less transmitted bytes than the MAC-ACK mode using
TSS. In case of using pure TCP, MAC-ACK needs less trans-
mitted bytes than MAC-OVERHEARING. The same effect
can be seen in the 20 byte scenario shown in Figure 18.

Figure 19 shows the number of transmissions com-
paring TSS with pure TCP using MAC-ACK or MAC-
OVERHEARING in the 1000 byte scenario. Figure 20 shows
the results in the 20 byte scenario. The number of total
transmissions increases, if TSS is not used. In case of the
20 bytes scenario the effect is stronger, because of overhead
of TCP connection establishment.
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Fig. 17. Total sent bytes (1000 byte scenario).
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Fig. 18. Total sent bytes (20 byte scenario).

Without the TSS protocol, only about 60% of 1000 byte
scenarios, and about 85% of the 20 scenarios are successful.
The rest of the transmissions are aborted by TCP timeout after
reaching the retransmission limit.

VII. CONCLUSION AND OUTLOOK

We presented a communication architecture based on cross
layer design containing a IEEE 802.15.4 MAC protocol in the
nonbeacon-enabled mode for peer-to-peer topologies, TCP/IP,
and TCP Support for Sensor Nodes (TSS). Reliability mech-
anisms such as local caching and retransmission of TCP
data packets, and acknowledgment mechanisms in the MAC
protocol and the TSS protocol are described. We showed that
using the additional TSS protocol increase the performance
of TCP in WSNs dramatically. The total transmission time of
pure TCP is reduced to 10%. Also the the transmitted bytes
and transmission count is considerably reduced by TSS.

The next steps including the extension of the protocol
with a congestion and flow control algorithm and the de-
sign of energy-saving functions. Further the communication
architecture should be integrated in the plIP stack of the
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Fig. 19. Total number of transmissions (1000 byte scenario).
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Fig. 20. Total number of transmissions (20 byte scenario).

Contiki operating system to build a real world scenario of
a heterogeneous WSN.
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