
Content Discovery in Opportunistic Content-Centric

Networks

Carlos Anastasiades, Arian Uruqi, Torsten Braun

Institute of Computer Science and Applied Mathematics

University of Bern, Switzerland

{lastname}@iam.unibe.ch

Abstract— Host-based mobile ad hoc communication requires
the transmission of periodic hello beacons to identify neighbors.
Drawing conclusions from received beacons, e.g., containing
information about existence and neighbor nodes, to available
or demanded content is not possible and the gathered infor-
mation may be outdated quickly due to dynamic environment
changes. Therefore, content-centric networking results in more
flexible communication without the need of neighbor information.
Instead, information about available content is required. In
this paper, we will investigate two different content discovery
strategies and discuss their efficiency for mobile communication.
The algorithms have been implemented in the CCNx framework
and evaluated in VirtualMesh, a hybrid emulation tool for
wireless mobile ad hoc networks.

Index Terms—discovery, content-centric, opportunistic, ad-hoc
networks

I. INTRODUCTION

Content-centric networks are a new networking paradigm

for the future Internet. Routing is performed based on content

identifiers instead of IP addresses. The approach addresses

scalability, security and efficiency concerns of the current

host-based Internet architecture. Many different architectures

have been proposed, [1], [2], [3], [4], which mainly differ

in the way content is named. Hosts need to express interests

in, or subscribe to, names to get the corresponding objects

published by a content source. In this paper, we focus on the

Content-Centric Networking approach proposed in [4], which

is hereafter referred as CCN. Although current research mainly

targets wired networks, CCN has already been identified [5]

as promising approach for mobile and dynamic networks since

communication is more resilient to individual node mobility.

Instead of trying to reach a specific host, the user tries to get a

specific piece of content that can be provided from any other

node that holds the content. Most current research works target

caching, security and forwarding strategies in CCN. In this

work, we investigate a more fundamental requirement, namely,

the discovery of available content in a distributed wireless

broadcast environment. This is required in scenarios without

centralized directories where content objects are generated

dynamically and names cannot be predicted deterministically.

It enables users to learn available content objects and services

without demanding the entire content. Instead of connecting

individually to each host, the requester can express an Interest

and receive an answer from any reachable content source given

that the content is available.

The remainder of this paper is organized as follows: In

section II we shortly review the basic functionality of CCN.

Related work to CCN is reviewed in section III. Section IV

describes content discovery algorithms. Evaluation results are

presented and discussed in section V. Finally, in section VI,

we conclude our work and give prospects to future work.

II. CONTENT-CENTRIC NETWORKING

In this section, we will briefly describe the main concept of

CCN. Readers may refer to [4] for more information.

A. CCN Messages

CCN communication is based on two basic messages:

Interest and Data. Content is organized in segments similar to

chunks in BitTorrent [6]. File transfer is pull-based, and thus,

users have to express Interests in every segment to obtain the

entire content. The CCNx project [7] provides an open source

reference implementation of CCN.

����������	�
����� ����

�� ��� ��	

��

���

��������

��������	
������

�� ��� ��	

��

���

��������

Fig. 1: Forwarding Architecture

The core element of the implementation is the CCN daemon

(CCND), which performs the message processing and forward-

ing decisions. The connections from a CCND to other entities

or local applications are called faces. In case of applications,

the face corresponds to local Unix sockets. In case of mobile

hosts, it corresponds to UDP or TCP sockets over IP. In this

work, we use a multicast face using UDP and a multicast

address to avoid individual IP addressing of mobile nodes.

Figure 1 shows the processing and forwarding architecture

of CCNx. If an application on a node requests content, it

sends an Interest message via a local face to the CCND on

the local host. The CCND processes the message based on

its information in the content store (CS), the pending Interest

table (PIT) and the forwarding Interest base (FIB). Upon the

reception of the Interest, the CCND will first check if the

content is already in the CS, i.e. serving as a cache, and returns

it if available and not expired. If the content is not available, it



will check the PIT whether the same request has already been

expressed. The lifetime of an Interest will determine how long

it stays in the PIT. If it is already in the PIT, the Interest

can be discarded, because the corresponding data message

is already pending. If there is no entry in the PIT, the host

considers the FIB to check whether the host knows where

to get the content from. If there is an entry, the Interest is

inserted into the PIT and forwarded to a remote CCND, e.g.,

via the wireless channel using UDP as transport protocol. At

the remote CCND, the procedure of checking the CS, PIT

and FIB will be repeated. Content is persistently stored and

shared with others in content repositories. CCN hosts that run

a content repository can register the available prefix to their

local CCND resulting in an additional FIB entry. Every Interest

will result in at most one Data message and retransmission of

the same Interest will result in the same Data message. To

receive new content, it is required to either adapt the Interest

prefix or add already received objects in the exclude field of

the Interest.

B. Content Names

In CCN, content names follow a hierarchical structure as

illustrated in Figure 2. The ellipses correspond to name com-

ponents and the rectangles to data files. Each data file consists

of one or several segments (not depicted in the figure). There

are no restrictions on content names and they can be selected

arbitrarily. The hierarchical name structure may not indicate

the location of content objects as Figure 2 shows. Content

objects may be stored on one, multiple or all hosts. In contrast

to flat name spaces, it is not required to agree on common key-

words. These keywords should be diverse enough to describe

all possible objects but not too diverse to avoid confusions

with similar keywords. The hierarchical structure supports the

discovery with general prefixes such as IDs from specific

publishers. A user may look for specific content names relative

to the publisher’s name space, e.g., ’/publisherA/video/’ or

’/publisherA/audio/’. Content consumers may learn the naming

schemes of their favorite publishers such as BBC, iTunes or

netflix. This also enables the integration of social structures to

identify reliable content publishers.

�����

����	�
 ����	��

���

	����������	��

	������� ��	��

�����

�����	���


����

���

��	�����	���

Fig. 2: Hierarchical Name Structure: files may be stored on

different hosts.

III. RELATED WORK

Previous work in [8] investigated the applicability of ex-

isting MANET routing protocols for mobile CCN based on

analytical models. Routing in CCN is equivalent to finding

a content source for a given name. The authors conclude that

structured solutions such as geographic hash tables should only

be used in networks without host churn whereas unstructured

flooding is beneficial in small networks with high host churn.

In CCN, Interests are routed towards content based on content-

specific routing table (FIB) entries whereas content objects

travel the same path back from where the Interest arrived. In

a broadcast domain, this would result in unbounded Interest

forwarding until the entire network is covered. CCN does

not consider any multihop suppression mechanisms to avoid

unnecessary transmissions or collisions.

In [9], CCN is applied to artificial battlefield scenarios

featuring group mobility and hierarchical network topology.

Content publishers distribute meta data of generated content

to their neighbors and domain gateways. This distributed infor-

mation is then used by requesting nodes to forward Interests to

content publishers. Additionally, a content pushing approach is

proposed to distribute information from a command center via

a backbone network to specific locations using geographical

routing. In a simple testbed, the benefits of CCN over existing

routing mechanisms such as the Optimized Link State Routing

protocol (OLSR) are shown, but CCN relies on the hierarchical

structure and meta data distribution for forwarding.

Resilience to individual node mobility independent of the

network topology can only be achieved by broadcast commu-

nication, since no individual nodes need to be configured and

any node may answer requests. Although introducing flexibil-

ity, unbounded broadcast transmission may quickly result in

broadcast storms [10]. In [5] and [11], the authors introduce

the Listen First, Broadcast Later (LFBL) algorithm, which

limits forwarding of Interest messages at every node based on

its relative distance to the content source. Additional header

fields in the messages indicate the hop distance from the

previous forwarder to the destination. These fields are modified

at every hop and messages are only forwarded by nodes closer

to the destination than the previous forwarder. Although the

approach targets the suppression of unnecessary messages, it

may not reach that goal reliably. Not protected by the author’s

signature, the distance fields may yield imprecise information

due to node mobility, particularly if messages are transmitted

from caches or in case of multicast communication.

In this work, we want to investigate content discovery

mechanisms in distributed environments that are independent

of potential subsequent file downloads. Based on the discovery

information, users may decide which content files to down-

load. We limit the communication to single-hop connections

similar to communiation in delay-tolerant opportunistic net-

works [12]. Therefore, we rely on the suppression mechanism

in CCN, which cancels a scheduled transmission if received

from the same face. Routing is replaced by the mobility

of nodes, caching and reexpression of Interests. In contrast



to peer-to-peer based communication, e.g., in delay-tolerant

networks such as Haggle [13] or PodNet [14], where all

hosts periodically transmit hello beacons to keep track of

neighboring hosts, no beaconing is required with CCN. A

host expresses an Interest in a content file and receives data

if it is available. Maintaining the neighbor list drains the

energy of mobile devices, because beacons are transmitted

periodically and independently of any data communication.

In these systems, hosts subsequently connect to neighboring

nodes to ask for available content. In case of dense urban

environments and mobility, many subsequent connections may

be required to find the desired content. In CCN, the requester

may broadcast the Interest and any host that receives it and

holds the corresponding content may respond. This may result

in a faster discovery time, which is a crucial criterion if contact

times are short.

Once the available content collections are known, a rich

set of approaches exist in literature to discover availability of

objects from these collections. Existing works in mobile ad

hoc networks (MANETs) or delay-tolerant networks (DTNs)

apply Bloom Filters [14] or attenuated Bloom Filters [15] to

increase the efficiency of content or service discovery. If the

synchronization of collections is targeted, the CCNx repository

synchronization mechanism may be applied. It is based on

a set reconciliation algorithm [16] that calculates the hashes

of collections in a structured way. Such mechanisms may

therefore optimize our discovery mechanisms, if the preferred

collections are known, but can not replace them.

IV. CONTENT DISCOVERY MECHANISMS

Content discovery mechanisms are required in distributed

environements where content objects are generated dynam-

ically and names cannot be predicted deterministically. In

the absence of centralized directories and periodic beaconing,

users need to learn available content names before selectively

requesting specific objects. This information is required to

avoid the download of all available content objects resulting

in congestion on the wireless medium.

Therefore, we describe two discovery approaches based on

name enumeration requests and regular Interests hereafter.

As motivated in section I, the algorithms target single-

hop communications. We rely on the suppression of data

transmissions in CCN, which cancels the transmission of

scheduled content if received on the same face: for example,

if another node has already responded to an Interest with

the same content object. We assume that every node runs a

repository with persistent storage extending its local temporary

cache and that these repositories are not synchronized among

each other. Although answers from secondary storage are

slower than from primary storage, additional repositories may

help if cached copies are not available anymore or too far

away.

The discovery mechanisms described in this section are

based on the same idea: the discovering node expresses an

Interest with a general prefix and waits for responses. Based

on the response, subsequent Interests may be expressed. If

no answer is received within a timeout period, the content

is assumed to be unavailable. Since Interests are broadcasted,

nodes cannot rely on MAC layer acknowledgements from the

destination as for unicast transmissions and the sender cannot

detect any collisions. Therefore, reliability functionality to

identify collisions and to differentiate them from unavailable

content needs to be performed by the requester. We achieve

this by a retransmission counter: if no answer to a discovery

request is received within the specified time, the requester

reexpresses the request until a configurable limit of trans-

mission attempts has been reached. When reaching the limit

without receiving an answer, the content is assumed to be

unavailable. In order to reduce the collision probability in the

first place, the content sources answer a discovery request after

an additional random answering delay. To adapt to dynamic

changing environments and discover newly available content,

the algorithms may be repeated periodically or based on

external events such as overheard traffic or on-demand. In

contrast to periodic beaconing the users may discover new

available content instead of new peers.

A. Enumeration Request Discovery

The Enumeration Request Discovery (ERD) requires the

expression of name enumeration requests which are addressed

only to local and remote repositories. A name enumeration

request for a certain prefix requests the enumeration of first-

level names under the prefix that are locally available at the

repository. The requests are based on regular Interests but

include command markers to indicate the enumeration. Figure

3 shows a sample message exchange for the naming tree

in Figure 2. For simplicity, we do not show the command

markers that are included in the requesting prefix and the

returned enumeration name. The initial enumeration request

for the prefix /publisherA/ triggers an answer including the

next level components on both hosts, i.e., video, audio or text.

The discovering node will process the first message received

from host 1 and then reexpress the same Interest excluding

the repositoryID from host 1, which is included in the received

enumeration name and based on the repository’s public key, in

the third step. An answer to this request will be served either

by the local CCND that cached the previous answer from host

2 or by host 2 itself if the cached entry expired. We always

ask for the latest list version of the repository and let cached

name enumeration requests timeout quickly.

The discovery procedure is described by algorithm 1. To

discover the entire available name space, the algorithm starts

from the top of the name tree with the shortest possible

prefix and sequentially moves down to the leaves by increasing

the prefix with the discovered name components after every

timeout. At every iteration and level, the requesting user re-

ceives a list of available name components from the repository.

We assume that the mobile repositories are not synchronized

among each other and the content collections are not known.

Therefore, the requesting user has to address each repository

separately excluding the IDs from previous repositories to

avoid inconsistencies. If the requester does not receive an



������ ������

���	
��
�����������
���
���	
��
�����������
���
����������
��
�����������
���	
��
�����������
���
����������
��
��������������
�����������

����� 
��!"�!��


�������

���	
���!�
�
������������
����
����������������# 
����!
�����$�$� ��
���$����

���	
���!�
� ��
������������
����
����������������# 
����!
�����$�$�$�������
��
%��	
���!�
��
������������
����
����������������# 
����!
�����$�$�$�������
��

���%�

Fig. 3: Enumeration Request Discovery Sequence

Algorithm 1 Enumeration Request Discovery

1: p: requested starting prefix
2: L[r]: prefix list of level r, initially r = 0
3: li: component list of ith request
4: idi: id of ith repository
5: function ENUMERATION(p, r)
6: e: exclude = {}
7: {li, idi} = SEND ENUMERATION (p, e)
8: if timeout then

9: return

10: while no timeout do

11: for all components cj in li do

12: q: prefix
13: p+ cj → q
14: if q /∈ L[r] then

15: q → L[r]

16: idi → e
17: i → i+ 1
18: {li, idi} = SEND ENUMERATION (p, e)

19: for all q in L[r] do

20: ENUMERATION(q, r + 1)

21: return

22: function SEND ENUMERATION(p, e)
23: broadcast enumeration Interest message with prefix p
24: and exclude list e containing all received ids

answer within a timeout period, it is assumed that no more

content is available on any reachable host on that level. The

algorithm procedes with the next component until receiving a

timeout for all leaves of the tree.

B. Regular Interest Discovery

The Regular Interest Discovery (RID) is based on the

recursive expression of regular Interest messages. The user

requests an Interest and receives the first data segment in the

response. Although this leads to overhead because only the

content name and no data is required, it is still more efficient

than retrieving all data segments in complete file downloads.

A sample sequence for the name tree of Figure 2 is shown

in Figure 4. The Interest expression in the prefix /publisherA/

will reach both hosts and trigger them to answer with the

first segment of a matching content object. After the reception

of the first segment of /publisherA/audio/music/artistA, the

discovering node requests a new name component exclud-

ing the received artistA. Since host 2 has already sent this

message in step 2, this request will not be forwarded to the

wireless medium but answered from the local CCND’s cache.

Content segments must not expire as quickly as ERD content

lists because they do not correspond to temporary repository

listings but to existing content objects. Interests may therefore

be satisfied from cache. We only discover the human readable

part of the name, i.e., neglecting versions because these may

be found by a version discovery once the name is known. The

procedure is described by algorithm 2.

������ ������

���	
��
�����������
���
���	
��
�����������
��������������
����������
��������
�������������	
���	����	��������	�
	����	�	��	����	��
���	
��
�����������
��������������
����������
�����������������
 ��	
��
�����������
��������������
����������
����������������!���������

"����#
��$%�$��


��������� 

���	
���$�
�� �
������������
�����������������������#
����$&"��
%�
$�'(
)��	
���$�

������������
���������������������!�#
����$&"��
%�
$�'(

���	
���$�
� ��
������������
�����������������������#
����$&"��
%�
$�'(

���) �

Fig. 4: Regular Interest Discovery Sequence

Algorithm 2 Regular Interest Discovery

1: p: request prefix
2: L: name list, initially L = {}
3: c: received content name with c[i], i = 1, ..., n components
4: s: prefix size

5: function DISCOVERY(p)
6: e: exclude = {}
7: s = size(p)
8: c = SEND INTEREST (p, s, e)
9: if no timeout then

10: RECURSIVE(c, s)

11: return

12: function RECURSIVE(c, s)
13: e: exclude = {}
14: do {
15: if size(c) > s+1 then

16: RECURSIVE(c, s+ 1)
17: else

18: c → L
19: if size(c) == s then

20: return

21: c[s+1] → e
22: c = SEND INTEREST (c, s, e)
23: }
24: while(no timeout)
25:
26: return

27: function SEND INTEREST(b, s, e)
28: broadcast Interest with first s components of
29: name b and exclude list e



The algorithm starts by expressing a general prefix in a

name space in the discovery function. After the reception of

the first data segment, the mechanism knows the complete

name of a content file at the leaf of the tree. By excluding the

last components of the received objects, the algorithm searches

only for new names. Because every transmitted packet contains

only one content name, other nodes that overhear the traffic

may cancel the transmission of redundant content objects. In

case of a timeout, i.e., when the limit of the transmission

counter has been reached, it is assumed that no additional

content is available and the algorithm can move up one level by

shortening the prefix by one name component and excluding

this component in the Interest. The algorithm stops after a

timeout at the initial discovery prefix, e.g., ’/publisherA/’ when

all available next level components are excluded. Compared to

the Enumeration Request Discovery, RID quickly finds avail-

able content objects at the leaves but requires the expression

of new discovery requests for every component while ERD

starts from the root and continously discovers multiple name

components until receiving a content object.

V. EVALUATION

A. Evaluation Tools

We implemented the Enumeration Request Discovery

(ERD) and the Regular Interest Discovery (RID) algorithms

described in section IV and integrated it with the CCNx source

code v0.4.2. The implementations are evaluated by emulations

with VirtualMesh [17]. VirtualMesh is a hybrid emulation

tool that combines the real network stack and the CCNx

implementation running on virtualized hosts with simulations

of the wireless communication. The wireless communication

is simulated by the OMNeT++ [18] network simulator using

the INET framework with the default 802.11b MAC layer

implementation. All CCNx messages are broadcasted using

the default parameters and a static contention window of

32 × 20µs = 640µs. We do not consider any additional bit

error models but only transmission errors due to collisions.

B. Emulation Scenarios

The algorithms are evaluated in a static setting of 5 nodes.

Due to single-hop single-radio communication, we assume

that all nodes can directly communicate with each other. One

node, the discovering node, performs the discovery operation

and the other nodes are hosts running repositories containing

different content files. We differentiate between two basic

content distributions in our evaluations:

1) Common case: all repositories store exactly the same

content objects and

2) Distinct case: every content object is uniquely stored at

only one of the repositories.

All content objects are named under the same hierarchy

level by ’/prefix/<content #>’. The discovery algorithms are

implemented as applications forwarding Interests via the local

face to the CCND. If the content is in the CCND’s cache, it

will be returned immediately without forwarding the Interest to

the wireless medium, otherwise it is forwarded to other nodes

and temporarily included in the PIT, as explained in subsection

II-A. All received content information remains valid in the

cache for the entire duration of the discovery. Before every

discovery evaluation is started, all CCND caches are cleared.

Both discovery algorithms will express Interests in the general

prefix ’/prefix/’ to discover the available content objects at all

repositories. Based on the reception of a discovery response,

the mechanism will express the next Interest excluding already

received information as explained in section IV. The discovery

responses differ for ERD and RID: in case of ERD, it is the

ERD content list containing the available content names at the

corresponding repository. In case of RID, it is the first segment

of a content object. Therefore, ERD requires the expression

of one Interest per repository node to receive all content lists

while RID requires the expression of one Interest per available

content object. We use the default segment size of 4096 Bytes.

The Interest lifetime is set to 0.5 seconds and we perform

a retransmission of the same Interest after a retransmission

delay of 0.6 seconds if no response has been received. The

retransmission delay is slightly larger than the Interest lifetime

to ensure that the existing PIT entry has expired and the

retransmitted Interest can be forwarded by the local CCND.

If not stated otherwise, we use a retransmission limit of two

retransmissions before a timeout is assumed. Since discovery

mechanisms should not overload the medium with traffic, we

evaluate different delay parameters influencing the number of

retransmissions and the discovery time in subsection V-C. The

discovery time is defined as time until the discovering node has

discovered all content names and detected a timeout. Based

on these findings, we evaluate both discovery mechanisms

for different numbers of content objects and distributions in

subsection V-D.

C. Discovery Delays

Broadcast requests may trigger potentially many responders.

Therefore, we will evaluate different delay parameters and

their impact on retransmissions and duplicate content trans-

missions in this subsection. The evaluations apply to both

ERD and RID but due to space limitations we only show the

results for RID. The answering delay (AD) defines the interval

[AD, 3AD] within which each host randomly selects a time to

answer a request. Once scheduled, the content object stays in

the senders’ send queue until the answering delay is due; then

it is forwarded to lower layers for transmission. A long AD

may increase the individual discovery time but enables other

hosts to detect concurrent responses.

Figure 5 shows the performance of RID discovery if the

network comprises 40 different content objects, which are all

stored on all hosts, i.e. the common case. The x-axis denotes

the different answering delays in milliseconds. The figure

shows the transmitted requests and received messages at the

discovering node as well as the time to discover all content

objects, i.e. the discovery time. As expected, the number of

received content duplicates is higher with short answering

delays and decreases significantly with higher values. At an

AD of 10ms, the number of received duplicates is even higher



Fig. 5: RID discovery of 40 content objects in the common case

Fig. 6: RID discovery of 40 content objects in the distinct case

than the number of transmitted Interests. Because of the small

AD value, the hosts schedule their content transmission almost

at the same time not leaving enough time to detect and

suppress concurrent transmissions. As soon as the messages

are forwarded from the send queue to the lower layers, no

cancelation is possible anymore. The number of required

Interest retransmissions is suprisingly low: at an AD of 10ms,

every Interest is retransmitted at most once. For the discovery

of 40 content objects, such retransmissions occured at most

five times when using an AD of 10ms and at most once

when using an AD of 30ms or higher. Since all content

objects are stored on all hosts, every Interest will trigger

the same answer from all hosts. Given that the discovering

node’s cache is empty when starting the discovery operation,

no Interest requests can be matched from the local CCND’s

cache. Therefore, to discover 40 objects, the discovering node

transmits at least 43 Interests: 40 Interests to discover the

objects and 3 additional Interests to detect a timeout using

the retransmission limit of 2.

Figure 6 shows the results for the discovering node when

using RID discovery of 40 content objects stored uniquely at

different nodes, i.e. distinct case. Since every content object is

only stored at one node, every request with the general /prefix/

will trigger different responses from the repositories. Since the

transmitted content is not the same, the hosts do not cancel

their scheduled content transmission in case of overheard

transmissions because they cannot uniquely relate their content

transmission to the same Interest. Therefore, the discovering

node’s CCND may receive multiple content objects per Interest

but only one content object per Interest is forwarded to the

discovering application. Subsequent Interests may then be

matched from CCND’s cache and may not be transmitted over

the wireless medium anymore but the percentage of cache

matches is quite low as Figure 6 shows. The discovery time

for RID is approximately halved compared to the common

case since different hosts may reply to the same Interest with

different content objects resulting in a faster discovery.

Surprisingly, although all content objects are uniquely stored

at only one host, content duplicates occur for all AD values

in Figure 6. The reason for that is the fact that subsequent

Interests are expressed immediately after the reception of a

content object resulting in duplicates in case of unsynchro-

nized repositories. We illustrate the problem with the help

of Figure 7 where two hosts store different content objects.

An Interest in the general prefix ’/publisherA/’ triggers

different responses from both hosts. While host 1 answers



������

������

�	�
���	���
����

������������
���������	�����
�����������
���������	�����
������
������
�������

�������������
���������	�����
�������

�������������
���������	�����
�������
 �����������
���������	�����
�������

Fig. 7: Content duplicates due to unsynchronized repositories

with ’contentA’, host 2 may schedule the transmission of

’contentB’. If the discovery node would express a subsequent

Interest immediately after receiving ’contentA’ from host 1

but before receiving ’contentB’ from host2, it would address

host 2 twice. If host 2 has already scheduled the content, i.e.

removed from it’s send queue and forwarded to lower layers,

it cannot remember the previous transmission and sends a

duplicate content. Therefore, we apply an additional Interest

transmission delay (TD) at the discovering node. Whenever

a discovery response is received, the discovering node delays

the transmission of the subsequent Interest by TD. We set

TD = 2×AD, i.e. the maximum time difference between two

content transmissions. This enables the reception of answers

from other nodes before the expression of the next subsequent

Interest. If different content objects are received, the Interest

may be satisfied from the local CCND’s cache. Otherwise, it

is forwarded to the wireless medium.

Figure 8 shows the differences in transmitted Interests and

local cache matches when applying TD=2AD. It can be seen

that if TD is applied, three times more Interest requests can

be satisfied from the cache and, therefore, fewer Interests

have to be transmitted over the wireless medium. In Figure

9 the differences regarding received content duplicates and

discovery time are shown. For TD=2AD we can avoid the

reception of any duplicates relieving the wireless medium from

unnecessary transmissions. The discovery time increases only

moderately for small AD values.

In the following evaluations, we set AD=50ms and

TD=2AD. This avoids all duplicates in the distinct case and

results in a low number of content duplicates in the common

case. It is not possible to avoid duplicates in the common

case completely because two senders may always select the

Fig. 8: RID discovery with TD=2AD vs. TD=0 in the distinct case

Fig. 9: RID discovery with TD=2AD vs. TD=0 in the distinct case



Fig. 10: Comparison between ERD vs. RID in the common case.

same answering time with a certain probability depending

on the AD length. We observed in our evaluations that AD

values above 50ms do not reduce the number of received

duplicates significantly but result in a much larger discovery

time. Since in all our evaluations, retransmissions occured

very infrequently and at most once per Interest, we set the

retransmission counter limit to 1. Although higher network

congestion levels may require higher retransmission limits

to discover content, it may result in even higher congestion

aggravating the traffic situation. In highly congested networks,

we can therefore consider the corresponding content objects

as (temporarily) unavailable.

D. Enumeration Request vs. Regular Interest Discovery

In this subsection, we compare Enumeration Request Dis-

covery (ERD) and Regular Interest Discovery (RID) with

respect to time and number of transmitted and received

messages. We use an answering delay of AD=50ms and set

TD=2AD. The retransmission counter limit is set to 1 re-

transmission resulting in 2 unresponded Interest transmissions

before a timeout is detected.

The efficiency of ERD and RID is evaluated in the same

5-nodes scenario as described in subsection V-B. We consider

different numbers of content objects and content distributions,

i.e. common and distinct, in the network. All hosts either

comprise 1, 4, 12, 20, or 40 content objects. Figure 10 shows

the difference in number of transmitted Interests and discovery

time if all hosts have the same content. The x-axis denotes

different numbers of content objects. If only one content

object is available, RID is more efficient, since it cannot learn

anything new after the first request and the discovery stops

quickly. On the contrary, ERD requests the ERD content list

from all hosts. Only after checking all names on all lists, the

discovering node can be certain to have received everything.

This requires multiple discovery requests. However, due to

the general ERD request prefixes, subsequent requests for

content lists may be answered from the cache. The number

of ERD requests does not depend on the number of content

objects on hosts but the number of hosts in the vicinity.

Therefore, the number of ERD requests and the discovery

time is constant in our setting for all content configurations.

On the contrary, the number of transmitted Interest messages

and discovery responses increase significantly for RID with

increasing number of content objects. If all hosts store the

same content objects, the requester has to express an Interest

for every single content object. Since RID requests ask for

the first data segment, the transmission of the corresponding

responses requires considerably more time.

The figure showing the results in the distinct case is omitted

due to space limitations. If only one content object is stored

in the distinct case at one node, only this node will respond to

requests. Therefore, ERD performs similar to RID: only one

request needs to be transmitted. However, RID performance

degrades with increasing number of discovered content objects

due to the increased number of discovery messages similar to

the common case. As observed in subsection V-C, the same

Interest request may trigger different answers from differ-

ent hosts resulting in approximately 70% fewer transmitted

Interests compared to the common case. This results in a

slightly reduced discovery time because many packets may

be satisfied from cache and only every fourth request needs to

be transmitted.

The Enumeration Request Discovery (ERD) shows good

performance in our evaluations, because it is independent

of the number of content objects. However, the approach

depends on the number of nodes in the network that store the

requested content. Therefore, the approach may be inefficient

in mobile scenarios with many nodes. Compared to RID, the

ERD content lists of all repositories need to be processed

and accumulated to know which content names are available.

Therefore, if all hosts store the same content objects, ERD re-

quires all nodes to request and process all content lists without

learning something new. RID is more efficient to detect small

differences in collections, because it can ask specifically for

new content. Redundant information can already be excluded

in the header to avoid duplicates. RID is also faster in finding

a content object in a highly structured name space with many

name components. In our evaluations, we considered a flat



name space where ERD can perfom well. In a more structured

name space ERD would require subsequent traversing through

all name components until reaching the content objects. There-

fore, the combination of both approaches may be promising.

An initial RID request may quickly find the full name of a

content object. By expressing an ERD request with the prefix

of the received content object, a list containing other objects

may be received from one repository. Instead of reexpressing

other ERD requests, the requester may express RID requests

excluding the learned information from the received ERD

content list.

Discovery information from RID requests may stay for

a longer time in the cache compared to ERD content lists

since they correspond to existing content objects but not to

temporary repository listings. Therefore, with RID discovery

multiple nodes may collaborate and benefit from each others’

discovery operations.

Both discovery mechanisms are not optimized yet and

modifications are required to increase their efficiency. For

example, ERD content lists may be identified by the hash

of their content names instead of the repository identifiers to

avoid multiple transmissions with the same information. On

the other hand, Interests may be extended by a discovery flag,

avoiding the transmission of the entire data object.

VI. CONCLUSIONS AND FUTURE WORK

Discovery of available names is very important in mobile

CCN to learn what content is available. Users require this

information to retrieve content in subsequent transmissions.

We described two methods for content discovery: ERD is

based on name enumeration requests and RID on regular

Interests. The discovery algorithms target the wireless broad-

cast environment. Since wireless broadcast communication is

unreliable and no MAC layer acknowledgments are available,

discovery mechanisms have to account for occasional loss and

collisions. Therefore, we included a retransmission counter

that initiates a retransmission if no information is received

within a timeout period. Evaluations showed that a retrans-

mission limit of only one retransmission is enough to detect

timeouts in our scenario. This can be interpreted as additional

information being temporarily unavailable. In case of very

congested networks, more collisions may occur resulting in

higher counter limits but retransmitting discovery requests

may even aggravate the situation. Avoiding collisions and

received duplicates is another important factor for discovery.

Evaluations showed that delaying the transmission of content

objects helps reducing collisions and duplicate transmissions

but this is not enough. In case of unsynchronized repositories,

delaying the subsequent expression of discovery Interests may

reduce the number of transmitted Interests and avoid received

duplicates. ERD shows constant discovery performance in

static settings independent of the number of contents in the

network while RID decreases with the number of content

objects. On the downside, ERD transmits a request to every

node in the network and will therefore perform worse in

mobile dynamic networks with many nodes or multiple nodes

that have only a few common content objects. Since ERD

responses carry the discovery information in the data, it is

not possible to detect and suppress duplicate transmissions.

RID holds the information in the name and hosts are therefore

able to suppress duplicate transmissions. RID can efficiently

and quickly find only a few content names in a dynamic

network. As part of our future work, we target to extend

our algorithms to multi-hop communication by developping

adequate suppression mechanisms based on overheard traffic.

ACKNOWLEDGMENTS

The work presented in this paper was partially supported by

the Swiss State Secretariat for Education and Research under

grant number C10.0139.

REFERENCES

[1] M. Caesar, T. Condie, J. Kannan, and K. Lakshminarayanan, “ROFL:
Routing on Flat Labels,” in ACM SIGCOMM, Pisa, Italy, September
2006, pp. 363–374.

[2] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica, “A Data-Oriented (and Beyond) Network
Architecture,” in ACM SIGCOMM, Kyoto, Japan, August 2007, pp. 181–
192.

[3] M. Srel, T. Rinta-aho, and S. Tarkoma, “RTFM: Publish/Subscribe In-
ternetworking Architecture,” in ICT-MobileSummit, Stockholm, Sweden,
June 2008, pp. 1–8.

[4] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Network Named Content,” in 5th ACM CoNEXT,
Rome, Italy, December 2009, pp. 1–12.

[5] M. Meisel, V. Pappas, and L. Zhang, “Ad hoc networking via named
data,” in 5th ACM MobiArch, Chicago, USA, September 2010, pp. 3–8.

[6] B. Cohen, “Incentives Build Robustness in BitTorrent,” in 1st P2PEcon,
Berkely, USA, June 2003, pp. 1–5.

[7] CCNx Project. [Online]. Available: http://www.ccnx.org
[8] M. Varvello, I. Rimac, U. Lee, L. Greenwald, and V. Hilt, “On the

Design of Content-Centric MANETs,” in 8th WONS, Bardonecchia,
Italy, January 2011, pp. 1–8.

[9] S. Y. Oh, D. Lau, and M. Gerla, “Content Centric Networking in Tactical
and Emergency MANETs,” in IFIP Wireless Days, Venice, Italy, October
2010, pp. 1–5.

[10] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu, “The broadcast storm
problem in a mobile ad hoc network,” in 5th ACM/IEEE MobiCom,
Seattle, USA, August 1999, pp. 151–162.

[11] M. Meisel, V. Pappas, and L. Zhang, “Listen First, Broadcast Later:
Topology-Agnostic Forwarding under High Dynamics,” in ACITA, Lon-
don, UK, September 2010, pp. 1–8.

[12] G. Karlsson, V. Lenders, and M. May, “Delay-tolerant Broadcasting,”
IEEE Transactions on Broadcasting, vol. 53, no. 1, pp. 369 – 381, March
2007.

[13] J. Su, J. Scott, P. Hui, J. Crowcroft, E. D. Lara, C. Diot, A. Goel,
M. H. Lim, and E. Upton, “Haggle: seamless networking for mobile
applications,” in 9th UbiComp, Innsbruck, Austria, September 2007, pp.
391–408.

[14] V. Lenders, G. Karlsson, and M. May, “Wireless Ad Hoc Podcasting,”
in 4th IEEE SECON, San Diego, USA, June 2007, pp. 273–283.

[15] F. Liu and G. Heijenk, “Context Discovery using Attenuated Bloom
Filters in Ad-Hoc Networks,” in 4th WWIC, Bern, Switzerland, May
2006, pp. 13–25.

[16] D. Eppstein, M. T. Goodrich, F. Uyeda, and G. Varghese, “What’s the
difference? Efficient Set Reconciliation without Prior Context,” in ACM

SIGCOMM, Toronto, Canada, August 2011, pp. 218–229.
[17] T. Staub, R. Gantenbein, and T. Braun, “VirtualMesh: an emulation

framework for wireless mesh and ad hoc networks in OMNeT++,”
SIMULATION, vol. 87, no. 1-2, pp. 66 – 81, January 2011.

[18] A. Varga, “The OMNeT++ Discrete Event Simulation,” in ESM, Prague,
Czech Republic, June 2001.


