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We describe a specification language and architecture for managing distributed software and mapped compute, storage
and network infrastructure services dynamically, beyond the state of the art in cloud computing. This is referred to as
dynamic application topology orchestration, where the mapping and configuration of distributed, interconnected, interdependent
application services and infrastructure resources are dynamically adjusted, according to guarantees in Service Level Agreements
(SLAs) and operational constraints.

The core concepts of our solution are application topology specification and orchestration of SLA management, provisioning,
monitoring and response.

A Service Level Agreement (SLA) [1] is a contract between a consumer and a provider of a service regarding its usage and
quality [2]. It defines guarantees or Quality of Service (QoS) terms under which the services are provided and the ways for
checking those guarantees. The SLAs might also contain guaranteed actions, which might be used for enforcing the validity of
the guaranteed states. The content of an SLA is inevitably used for concrete instantiation and configuration directives, which
parameterize the provisioning of resources, deployment of software and tuning of settings to enable effective operation of the
service.

We use SLAs as the basis for specifying dynamic behavior of application and infrastructure services, by using an extension
of the USDL-SLA [3] vocabulary for describing the guaranteed states and actions (management rules), as well as the conditions
required for automatic execution of the actions. The SLAs also contain enough information for determining the context in
which the conditions are evaluated.

Figure 1 depicts the model used for defining the SLAs, which are used during the actual service deployment phase. The SLA
model contains Service Type entities that are used for representing the linked descriptions [4] of the services. Each Service Type
specifies one or more Monitoring Metrics that are used during runtime for gathering state information about the actual service
instances. The Service Type also specifies a Service Level Profile that contains one or more Service Levels. A Service Level
can be either a Guaranteed State or Guaranteed Action, which are used during runtime for checking the state of the services
and for performing actions on them, such as scale-up and scale-down. Each Service Level has a Service Level Expression that
is used as described below.

The Guaranteed State service level specifies a single Service Level Expression, which is used for checking a service state-
invariant. During runtime, the expression is periodically evaluated for each service instance of the specified Service Type and
if the guaranteed state is violated, then a log entry will be created, which can then be used for audit purposes.

Fig. 1. Extended USDL-SLA Ontology
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The Guaranteed Action also has a Service Level Expression, which contains the actual code representation of the guaranteed
action, as well as another expression, which is the condition describing the state in which the application must be in order to
trigger the specified action.

The Service Level Expression has a Representation that uses one or more Variables. Each variable contains the value of a
specified Monitoring Metric.

Dynamic topology orchestration is a 5-staged process, following the specification of a valid application topology. The
orchestration process is a continuous process driven by the monitored metrics, guaranteed triggers and guaranteed actions in
the topology specification. The process is terminated when the agreed lifetime of the application is expired or other guaranteed
triggers are observed that lead to termination, as specified in the SLA.

1. Request Handling and Scheduling. This stage involves transformation of the application topology into multiple, service
deployment requests and their service request dependencies. There is a 1-to-n mapping between services and requests. Each
request states the relevant service, request type, explicit target, where it should be executed, operation to be performed, set
of parameters, schedule for the request to be executed and set of post-deployment information that should be provided for
subsequent requests, according to the dependencies.

2. Infrastructure Preparation. This second stage determines what infrastructure resources are required, where they are
located and how they should be configured, given a set of scheduled requests. The first activity of preparation focuses on the
compute and storage end-points, as these need to be activated before the properties for network paths can be configured -
consider the case where IP addresses are assigned dynamically. Subsequently reservation of inter-region network capacity is
done, completing the configuration of paths between relevant - the GEYSERS project[5] can be referenced for more details
on path-computation. The final activity in this stage is the activation of infrastructure probes according to the infrastructure
metrics specified in the topology.

3. Service Deployment. This stage is the installation of application-level assets including images, binaries, scripts and
application data on infrastructure resources in regions where their associated services are mapped. Application-level probes are
then activated according to the application metrics defined in the topology.

4. Service Monitoring. This stage is a continuous collection of metrics from the different infrastructure and application
monitoring probes. Each probe is associated with a service metric. The metric’s value is sent together with the metric identifier
and the unique service identifier to the monitoring handler, where the value is recorded and a window of v values stored in
memory for noise rejection. For the specified window, the minimum, maximum and average are calculated and made available
for the use in the evaluation of guaranteed triggers in SLA expressions.

5. Response. This stage occurs when a guaranteed trigger is raised and a rule exists to resolve the difference between the
guaranteed trigger and the guaranteed state. The resolution in the rule is an action that either returns to stage 1, creating a new
request, or the invocation of a specific operation on a target infrastructure resource or service element.

We have designed an SLA-centric specification model, architecture and value model for dynamic application topology
specification and orchestration. Our specification model is designed to simplify validation of selection, deployment and
adaptation rules for application to infrastructure mapping. Secondly, the specification provides application architects with an
application management model that is applicable at specification and operation time, separating the concerns of specification
from configuration. Subsequently, given an architecture like we proposed, such a specification increases the level of infrastructure
management automation, including provisioning, deployment, monitoring, problem specification and resolution, as an explicit
expression of locality, scaling and adaptation constraints are included for each class of infrastructure resource: storage,
computation and networking.
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