
Dynamic Topology Orchestration for Distributed
Cloud-Based Applications

Alexandru-Florian Antonescu∗‡, Philip Robinson†, Torsten Braun‡
∗SAP (Switzerland) Inc., Althardstrasse 80, 8105 Regensdorf, Switzerland

†SAP (UK) Limited, The Concourse, Queen’s Road, Queen’s Island, Titanic Quarter, Belfast BT3 9DT, UK
‡University of Bern, Communication and Distributed Systems (CDS), Neubrueckstrasse 10, 3012 Bern, Switzerland

alexandru-florian.antonescu@sap.com, philip.robinson@sap.com, braun@iam.unibe.ch

Abstract—This paper describes a specification language and
architecture for managing distributed software and mapped com-
pute, storage and network infrastructure services dynamically,
beyond the state of the art in cloud computing. This is referred
to as dynamic application topology orchestration, where the
mapping and configuration of distributed, interconnected, inter-
dependent application services and infrastructure resources are
dynamically adjusted, according to guarantees in Service Level
Agreements (SLAs) and operational constraints. The viability
and benefits of this architectural approach are compared against
simpler strategies, to establish technical and business cases for
the associated engineering effort.

I. INTRODUCTION

Cloud-computing is an evolution of utility-computing [1]
and virtual organizations [2]. Computational, storage and
network resources are acquired for specific purposes, usages
and time-frames, for an agreed price by resource providers
to consumers. Meanwhile, enterprise applications continue to
become more decoupled, service-oriented and composed of
multiple layers [3]. These two trends in infrastructure resource
acquisition and enterprise application architecture provide an
opportunity for various stakeholders. Application architects are
able to design scalable solutions with increased assurance that
the infrastructure can respond to their scaling models. Therein,
application users experience more consistent quality, within
the context of Service Level Agreements (SLAs), without expo-
sure to the underlying complexities of infrastructure ownership
and maintenance. Moreover, the infrastructure providers and
integrators run a more efficient infrastructure operation, by
having insight into the initial and dynamic requirements of
hosted applications and associated SLAs.

Although these opportunities continue to be acknowledged
in the literature ([3], [4], [5], [6]), there is still a need
for comprehensive solutions that deal with (1) distributed
applications with interdependencies and (2) alignment of tech-
nical and business requirements for infrastructure expressed in
SLAs. We define this need as dynamic application topology
orchestration, where an application topology is a structural
specification of how distributed services are to be deployed
and interconnected on any selected execution environment (see
section III-A for a formal description).

The paper continues with section II, providing an overview
of existing work that motivates and enables our approach,
as well as related work that influences our problem analysis

and identification of strategies against which we can compare.
Section III describes the conceptual models of our approach,
while Section IV describes the technical realisation of the
approach, summarising the key capabilities and workflow.
Section V provides a value model for the domain and applies
this to a case study to evaluate our approach against alternative
strategies. Conclusions and future work are summarised in
Section VI.

II. BACKGROUND AND RELATED WORK

This section discusses relevant work in the areas of dis-
tributed cloud-based applications and approaches to their
topology orchestration and management.

A. Distributed Cloud-based Applications

We classify four models of distributed cloud-based applica-
tions found in literature and practice. Redundancy-based mod-
els replicate functionality in different locations for the purpose
of fault mitigation or load-balancing. Capability-based models
arise when individual components and services of a single
application have different compute and storage requirements
that are not likely to be found in one location. Workflow-
based models the necessity and scheduling of individual com-
ponents and services follow a predefined control-flow, such
that collocation and co-activation is inefficient and potentially
conflicting. Finally, the fourth model is concurrency-based,
where there is a performance gain in job decomposition,
parallel processing and result aggregation.

For each of these models there are a set of common
challenges that start with the initial specification of how
application components should be distributed, interconnected,
monitored, maintained and eventually terminated. The chal-
lenges extend to the selection of distributed resources and the
coordination of operations performed on the runtime of the
service. There are currently no best practices established for
these challenges nor evaluation models for solutions.

B. Topology Orchestration and Cloud Management

There is currently one industrially-endorsed standardisation
effort in the area of application topology specification to
our knowledge, known as the Topology and Orchestration
Specification for Cloud Applications (TOSCA) [7]. We hence
use this as our starting point for exploring the anatomy of

application and service topologies. TOSCA is a language
used for defining both the service components of distributed
applications (topology), as well as the service management in-
terfaces (plans). Service orchestration is realized by describing
the interactions between the services using workflows, called
plans. We extend the TOSCA concepts by adding SLA metrics
and scaling rules for both the services and the associated
infrastructure (compute, storage, network) resources.

For the purpose of service specification, we considered the
Unified Service Description Language (USDL)[8], a domain-
independent service description language aimed at expressing
both technical and business aspects. USDL enables description
of capabilities and non-functional characteristics of services,
allowing complex interactions to be captured. An extension
of USDL, the USDL-SLA [9] enables attaching guaranteed
service states and actions in SLAs to service descriptions. We
extend the USDL capabilities with aspects related to network
service management and more general service monitoring.

Much of the initial problem identification and definition
was carried out in the Generalised Architecture for Infras-
tructure Services (GEYSERS) project[10], which aims to de-
liver an architectural blueprint and platform for seamless and
coordinated provisioning of connection-oriented networking
(primarily optical) and IT (application, compute and storage)
resources as infrastructure services. Our involvement in this
project is to provide insights into how application management
could benefit from this holistic approach to infrastructure
virtualization.

C. Related Work

Liu et. al. [5] describe a data-centric approach to cloud or-
chestration by modeling the resources as data structures, which
are then queried and updated using transactional semantics:
views, constraints, actions, stored procedures and transactions.
We follow similar design principles, including the declarative
approach to orchestration description and separation of log-
ical and physical aspects. However, their novel data-centric
approach introduces a new computational model for cloud
management, whereas we seek to enhance the capabilities of
existing management systems where possible.

Juve and Deelman [4] present a system for cloud infrastruc-
ture management with a similar approach envisioned by us, but
only focus on the initial distributed application deployment and
not on dynamic scaling of virtual resources and response to
adaptation triggers. They also do not consider the impact and
provisioning of network resources.

Malawski et al. [11] consider how to optimally provision
for multiple a priori known workflow ensembles with varying
deadline and budget constraints. However, they do not consider
the network as a critical part of the topology orchestration and
focus only on the workflow model rather than the structural
aspects of the application topology. They are also considering a
fixed pool of VMs, which does not change during the workflow
runtime. In contrast, we propose scaling the number of virtual
machines (VMs) based on the service load defined through
SLA guaranteed actions, applicable to all distribution models.

Kim et al. [12] describe a master-agent task scheduler based
on the CometCloud management system, able to provision
and size virtual infrastructures composed of VMs in hybrid
infrastructure environments. Their system is able to operate
in an autonomous manner and to recover from node failures.
They however do not address SLA guarantees, or how the
network is treated as a managed resource.

Lu et al. [6] take another perspective on the problem of
SLA-based planning by considering how to optimise deci-
sions to outsource infrastructure demands to subcontractors.
Their optimisation problem considers the costs, profitability
and SLA failure risks associated with outsourcing. While
we consider similar metrics for optimisation, our automation
objective is not concerned with planning and outsourcing,
but with initial deployment and ongoing adaptation of how
infrastructure resources are used.

III. ENABLING TOPOLOGY ORCHESTRATION

The core concepts of our solution for application topology
specification and orchestration of SLA management, provi-
sioning, monitoring and response are presented in this section.

A. Application Topology and Infrastructure Requirements

An application topology AT is a structural specification
of how distributed services S are to be deployed and inter-
connected on any selected execution environment. We define
the application topology as a tuple AT = (S, SS, Z, ZZ, P)
where:

• S is the set of distributed services that compose the
application. Each Si ∈ S has a unique name Si.uname
and is associated with a set of assets Si.assets
= (a1, ..., an). An asset ai refers to software, images,
scripts or data necessary for the service to be executable.
Each asset ai declares a set of metrics ai.metrics
= (m1, ..,mn) with which its state can be observed. Each
metric mi has a unique name and 1 probe mi.probe
that conforms to a standard protocol defined by the target
infrastructure or platform.

• SS is a set of service relationships (Si, Sj , l) where
i 6= j, l is a label from a predefined enumeration
of relationship types, and (Si, Sj) ⊆ S. Relationships
are used to inform the orchestration of deployment and
service maintenance actions.

• Z is the set of logical regions for containment of col-
located services S. At deployment time each Zi ∈ Z is
mapped to an actual, physical region, which are com-
pute and storage resource pools at different datacenters
or cloud providers. Each Zi is a data-structure with
a unique name Zi.uname, internally required network
Zi.net, storage Zi.str, memory Zi.mem and pro-
cessor Zi.cpu capacities and capabilities. At topology
specification time a mapping Zi ← Si ⊆ S is defined to
assign a subset of services to each zone.

• ZZ is the set of inter-region relationships zz ∈ ZZ =
(Zi, Zj , neti,j), i 6= j and neti,j defines the initial band-

Fig. 1. Extended USDL-SLA Ontology

width requirement for the connectivity between zones Zi

and Zj .
• P defines the set of rules or policies used to manipulate

the state of services in the application topology and
behavior of the infrastructure towards the services. More
on the specification of these rules is given in section III-B.

When the application topology is specified, its infrastructure
requirements are specified per zone, without a priori selection
or assignment of physical regions and resource pools. In this
way a separation of application topology specification and
infrastructure configuration are maintained.

B. Service Level Agreements and Management Rules

A Service Level Agreement (SLA) [13] is a contract be-
tween a consumer and a provider of a service regarding its
usage and quality [14]. It defines guarantees or Quality of
Service (QoS) terms under which the services are provided
and the ways for checking those guarantees. The SLAs might
also contain guaranteed actions, which might be used for
enforcing the validity of the guaranteed states. The content
of an SLA is inevitably used for concrete instantiation and
configuration directives, which parameterize the provisioning
of resources, deployment of software and tuning of settings to
enable effective operation of the service.

We use SLAs as the basis for specifying dynamic behavior
of application and infrastructure services, by using an ex-
tension of the USDL-SLA [9] vocabulary for describing the
guaranteed states and actions (management rules), as well as
the conditions required for automatic execution of the actions.
The SLAs also contain enough information for determining
the context in which the conditions are evaluated.

Rules for managing the dynamic application topology are
specified by the owner/ architect of the topology. All rules have

the format IF NOT vf(gs, gt, (m1, ...,mn)) THEN
ga, where:

• vf ∈ VF is a boolean validation function from the set
of known functions VF, which causes the rule to fire when
false. Standard binary and arithmetic operators are used.

• gs ∈ GS is one guaranteed state from the set of
states GS defined in the SLA, which the infrastructure
is responsible for maintaining. It is the first input to the
validation function vf. Some examples of guaranteed
states include availability, capability, efficiency, stability
and security. The vf uses this as a reference.

• gt ≺ ¬ gs is the guaranteed trigger for the rule
and represents a state that precedes invalidation of the
guaranteed state gs, such that gs should ideally never
be invalid.

• m1, ...,mn ⊆ M is an array and subset of metrics M
registered with the infrastructure. That is, the infrastruc-
ture knows how to obtain and evaluate these metrics. The
array is the second input to the validation function vf.
There are three domains within which metrics are defined:

1) Application.statistic classifies metrics
defined by the application owner to measure statis-
tics for number of users, response times and request
queue lengths.

2) Application.service classifies metrics de-
fined by the application owner to asses the avail-
ability, location and number of application services
and instances.

3) Infrastructure.resources classifies met-
rics defined by the infrastructure administrator to
assess the consumption and availability of memory,
storage, CPU and networking.

• ga ∈ GA is a guaranteed action from the set of known
actions GA. A ga is executed by the infrastructure
management whenever a vf in the associated rule fails.
The following action templates are used for defining
guaranteed actions:

– start <service> with
<parameters...>: used to initiate a specific
service in the application topology.

– stop <service> with-error-level
<level>: used to terminate a service with an
indicator of why the termination should occur.

– update <service>.<metric> with
<value>: used to configure a service’s state
by assigning a value to a defined metric.

– increase <target> by <number>: used for
scaling up to increase performance and reduce re-
sponse times.

– decrease <target> by <number>: used for
scaling down in order to save energy and costs.

– redirect <service> from <region-x>
to <region-y>: used for high-availability
scenarios with redundancy, where a service in
region-x is mirrored or can be substituted by one in

region-y.
Note that the term service is used to describe components of

the application or capabilities of the infrastructure. For exam-
ple, the Computation and Network available to the application
topology are referred to as the ”Computation service” and
”Network service” respectively.

Figure 1 depicts the model used for defining the SLAs. The
SLA model described here is used during the actual service
deployment phase, following the selection of actual regions
used for hosting the services.

The SLA model contains Service Type entities that are used
for representing the linked descriptions [8] of the services.
Each Service Type specifies one or more Monitoring Metrics
that are used during runtime for gathering state information
about the actual service instances. The Service Type also
specifies a Service Level Profile that contains one or more
Service Levels. A Service Level can be either a Guaranteed
State or Guaranteed Action, which are used during runtime for
checking the state of the services and for performing actions
on them, such as scale-up and scale-down. Each Service Level
has a Service Level Expression that is used as described below.

The Guaranteed State service level specifies a single Ser-
vice Level Expression, which is used for checking a service
state-invariant. During runtime, the expression is periodically
evaluated for each service instance of the specified Service
Type and if the guaranteed state is violated, then a log entry
will be created, which can then be used for audit purposes.

The Guaranteed Action also has a Service Level Expres-
sion, which contains the actual code representation of the
guaranteed action, as well as another expression, which is the
condition describing the state in which the application must
be in order to trigger the specified action.

The Service Level Expression has a Representation that
uses one or more Variables. Each variable contains the value
of a specified Monitoring Metric. The Monitoring Metric
has a type, which can be application statistic, service, or
infrastructure, as previously defined. As multiple Service Types
might refer to the same monitoring metric, the variable must
also specify which Service Type is used for setting its value.
Likewise, as the specified service might have instances running
in different regions, the variable must specify to which service
it refers. This is of particular importance for the service
levels that have expressions evaluated in the context of one
or more regions, such as requesting network bandwidth for a
connection between two remote data-centers.

C. Dynamic Topology Orchestration Process

Dynamic topology orchestration is a 5-staged process, fol-
lowing the specification of a valid application topology. The
orchestration process is a continuous process driven by the
monitored metrics, guaranteed triggers and guaranteed actions
in the topology specification. The process is terminated when
the agreed lifetime of the application is expired or other
guaranteed triggers are observed that lead to termination, as
specified in the SLA.

1. Request Handling and Scheduling. This stage involves
transformation of the application topology into multiple, ser-
vice deployment requests and their service request dependen-
cies. There is a 1-to-n mapping between services and requests.
Each request states the relevant service, request type, explicit
target, where it should be executed, operation to be performed,
set of parameters, schedule for the request to be executed and
set of post-deployment information that should be provided
for subsequent requests, according to the dependencies.

2. Infrastructure Preparation. This second stage deter-
mines what infrastructure resources are required, where they
are located and how they should be configured, given a set of
scheduled requests. The first activity of preparation focuses
on the compute and storage end-points, as these need to
be activated before the properties for network paths can be
configured - consider the case where IP addresses are assigned
dynamically. Subsequently reservation of inter-region network
capacity is done, completing the configuration of paths be-
tween relevant - the GEYSERS project[10] can be referenced
for more details on path-computation. The final activity in this
stage is the activation of infrastructure probes according to the
infrastructure metrics specified in the topology.

3. Service Deployment. This stage is the installation of
application-level assets including images, binaries, scripts and
application data on infrastructure resources in regions where
their associated services are mapped. Application-level probes
are then activated according to the application metrics defined
in the topology.

4. Service Monitoring. This stage is a continuous collection
of metrics from the different infrastructure and application
monitoring probes. Each probe is associated with a service
metric. The metric’s value is sent together with the metric
identifier and the unique service identifier to the monitoring
handler, where the value is recorded and a window of v values
stored in memory for noise rejection. For the specified window,
the minimum, maximum and average are calculated and made
available for the use in the evaluation of guaranteed triggers
in SLA expressions.

5. Response. This stage occurs when a guaranteed trigger
is raised and a rule exists to resolve the difference between
the guaranteed trigger and the guaranteed state. The resolution
in the rule is an action that either returns to stage 1, creating
a new request, or the invocation of a specific operation on a
target infrastructure resource or service element. The range of
operations have been classified in Section III-B.

IV. ARCHITECTURE AND SLA-DRIVEN DYNAMIC
HANDLING

This section describes a system architecture for enabling the
5-stage process described in Section III-C. The architecture
is designed as a tool for application topology architects and
administrators. It is a loosely-coupled, message-based archi-
tecture, such that most components are defined as types of
Handlers, as shown in in Figure 2.

Once the application topology specification is completed, it
is submitted to the Request Handler (RH) via the Request

Request Interface Query Interface

Request and Query HandlerScheduler Handler Asset Handler

Resource

Pools

Network Links

Archived

Monitoring

SLA Logs

Application

Handler

App. Templates

Srv. Templates

Service

Handler

Srv. Instances

Infrastructure

Resource Handler

IT/Net

Resources

Rule Outcome

Handler
SLA Rule

Enactor

SLA Rules

Monitoring

Handler

Monitoring Data

Infrastructure

Virtualization

Manager Clients

SLA

Handler

SLA Profiles

R

R

R

R

Orchestration

Handler

SLA Rules

R

R

R

R

R

R

R

R

RR

R

R

R

R

to Monitoring
Handler

R

R

Fig. 2. System Architecture

Interface, triggering stage 1 of the orchestration process.
The states of requests, services and SLA of active topolo-
gies are continuously monitored via a corresponding Query
Interface. The RH queries the Asset Handler (AsH) for a
list of available, infrastructure resource pools of computing,
storage and memory resources according to the requirements
of the topology specification. The application architect or
administrator is responsible for initial selection of mappings
between application regions in the topology specification and
suggested resource pools. Once this initialization mapping is
completed, the RH parses the topology specification into a
set of deployment requests and passes these to the Scheduler
Handler (SH). The SH builds a schedule for requests and
associated handler operations, allowing subsequent or batches
of application topologies to be submitted.

When a topology is scheduled for deployment, the Applica-
tion Handler(AH) is invoked to register the service templates
and dependency mappings in the topology, indicating that
it is being activated. Initially selected infrastructure resource
pools are marked as ’reserved’ for the specific application
topology in the AsH, moving to stage 2 in Section III-C.

This then signals the Infrastructure Resource Handler (IRH)
to establish and set up network links between the resources
pools, which could be at different, physical locations. We
extend concepts and use mechanisms for co-provisioning of
IT (compute, storage, memory) and network resources from
the GEYSERS project[10] for this purpose. The IRH has a
signaling connection to Infrastructure Virtualization Manager
Clients (IVCs) at each site offering resource pools and connec-
tivity. IVCs currently developed are clients for GEYSERS[10]
Logical Infrastructure Composition Layer, OpenNebula[15]
and the GEYSERS Network Control Plane. It is via these IVCs
that the IRH is able to request isolated portions of infrastruc-
ture, per application topology to be served. The network links
are also registered with the AsH once provisioned.

Once this underlying virtual infrastructure of distributed
resource pools and network links is established for the applica-
tion topology, the service templates and SLA profiles from the

topology specification are passed to the Service Handler (SH),
where the actual topology orchestration process is enacted,
corresponding to stage 3 of Section III-C.

The AH processes the application instantiation request by
first identifying the application topology and software tem-
plates referred in the request, as well as the resource pools in-
dicated for hosting the services. For each service template, the
AH requests the Service Handler (SH) the instantiation of the
minimum number of instances in the mapped resource pools.
The SH assigns a unique identifier to the service instance and
then passes the request to the Orchestration Handler, which
resolves the service dependencies and populates the service
context, waiting if necessary for the services to be instantiated.

As the services begin operating, the individual instances
begin sending monitoring information, which is received and
processed at the Monitoring Handler.

After the successful notifications of the services’ instantia-
tions have been received, the AH retrieves the SLA profile for
each service and then registers it at the SLA Handler(SLAH).
The SLAH stores the SLA profile and then passes it to the
Rule Enactor(RE) for processing. The RE extracts the Service
Levels from the SLA profile and for each level determines its
Expression.

For the SLA service levels of type Guaranteed Action, the
expression is wrapped by an IF condition containing the
action’s precondition expression. For the Guaranteed State
SLA service level, the extracted expression is wrapped in a
IF triggering the creation of a Rule Outcome of type SLA-
log when the expression evaluates to false. The generated
code sequences are then compiled into an MVEL expression
[16]. For each expression, its variables are identified, their
values are populated with data from the Monitoring Handler
and then they added to a Context map object that will be
passed to the MVEL framework for evaluation, together with
the compiled sequence. The expression context population and
MVEL evaluation are wrapped in a Runnable and periodically
executed.

At each SLA monitoring cycle, the RE produces Rule
Outcome objects, which are passed to the corresponding Rule
Outcome Handler for processing, based on the outcome’s
type (e.g. scale-up, network-bandwidth-increase). Each rule
outcome has a set of properties that are used for performing
the corresponding action. In case of outcomes generated from
Guaranteed Actions SLA levels, the handler actually triggers
the execution of the desired action by building a request for
one of the Infrastructure Virtualization Clients. In case of
outcomes generated from a Guaranteed State SLA level, the
handler logs the SLA violation by archiving it in the AH.

V. EVALUATION

To evaluate this approach to SLA-driven orchestration for
dynamic application topologies, we use a distributed Enter-
prise Information System (EIS) with variable user numbers,
payload sizes and classes of workloads, shown in Figure 3.

The distributed services are interconnected by a Registry
and Messaging architecture. The evaluation is a mixture of

Consumer

Registry/
Messaging

Registry/
Messaging

Registry/
Messaging

Consumer

Instance

Load-
Balancer

Storage

Load
Generator

Load
Generator

vm/cpu/net
Probes

vm/cpu/net
Controls

SLA Orchestration

1

n

1

1 1
1

1

n

1
1

Host-1 Host-2 Host-3

Region 1 Region 2 Region 3

1
n

1

n

1

n

num-users

queue-length

response-time

num-instances
num-instances

Fig. 3. Application topology for the case study

qualitative architectural analysis and quantitative simulation
and experimentation. The EIS, developed within our research
group for integrating benchmarks for processor and network-
ing infrastructures, is a distributed OSGi application with a
distributed service registry for 4 service classes, where each
service class has its own set of relevant, monitored metrics
and control operations:

(1) Consumer is instantiated per client of the EIS. It
represents a remote, virtual-desktop infrastructure deployed
with proxiimity to the EIS core, such that large pauloads or
transactions do not originate beyond the controlled network.
The monitored metrics are the number of users and the
response-time for requests. The number of Consumer instances
is gradually increased and decreased using a Load Generator.

(2) EIS Instance (or just Instance) is the acutal worker that
handles requests from Consumers. It returns results of different
analytics workload-generating queries using SQL SELECT
statements associated with request classes.

(3) Storage is the provider of the database queried by the
worker Instance to handle the Consumer requests.

(4) Load-Balancer is in place to determine which Instances
should handle incoming Consumer requests. Only one Load-
Balancer is instantiated and it provides access to a queue-
length metric.

In Figure 3 we also depict how the application topol-
ogy model defined in Section III-A is applied. The EIS’
application topology consists of 3 Regions, where Regions
1 and 3 are replicas of Consumer locations each separately
interconnected with Region 2, which contains the server-side
of the EIS. The number of Consumers in Regions 1 and 3
can be varied independently. Rules with SLA triggers and
guaranteed actions are specified for increasing or decreasing
the number of Instance and Storage services running in Region
2 according to the number of concurrent Consumers, the
sizes of workloads they require and the consequent queue-
lengths handled by the Load-Balancer. A compensation for
service provisioning delay is introduced by adding one extra

instance. Simultaneously, the number of Consumers and their
variable payloads also changes the bandwidth requirements
for interconnections between Regions 1 to 2 and 3 to 2. It
is assumed that initial application infrastructure sizing has
been done for creating a mapping between the utilization
metrics (number of concurrent consumers, average workload
sizes and average payload sizes) to compute and networking
capacity requirements. The SLAs associated with the appli-
cation topology do not only specify guaranteed triggers and
actions, they specify foremost constraints on response time for
Consumers. This hence provides the challenge to the providers
of minimising their costs while satisfying the response time
constraints, as breaching constraints results in penalties.

A. Value Model and Alternatives

The value model of the scenario is defined against two
objectives: (1) maximise the assurance that the response time
guarantees for all Consumers will be met and, (2) minimise
wastage of resources to spawn and maintain multiple worker
Instances. To remain competitive, infrastructure providers need
to maintain their reputation for satisfying SLAs, while min-
imising their operational costs and maximising their opera-
tional efficiencies. They will want to accommodate existing
customers, fluctuations in demand and new customers. Given
that cooling of data center equipment and connectivity costs
are the highest contributors to service operation cost, an
increase in efficiency has significant impact on both objectives.
From these 2 objectives we derive 3 evaluation parameters
discussed in the following paragraphs.

Firstly, the reaction time rt for a service, such as creating
a new EIS Instance, is the sum of detection time dt, planning
time pt and action time at required by an administrator or
management system to respond to a potential incident, an
undesirable state or an opportunity to enhance operations. The
average reaction time r̄t (equation 1) is the sum of dt’s, pt’s
and at’s for a series of adaptation triggering events e1, ..., en,
divided by the number of events n.

r̄t =
1

n

n∑
e=1

dte + pte + ate (1)

Secondly, the average number of SLA violations s̄v across a
list of observed service states (s1, ..., sn) ⊆ S, with cardinality
|S|, where S is the set of observable states and each s ∈ S is
a collection of metrics Ms ⊂M . The set S is extracted from
logs and from live monitoring probes.

s̄v =
|S −GS|
|S|

(2)

Finally, the provisioning efficiency PE of the infrastruc-
ture considers the ratios of consumed resources Rt

cons and
provisioned resources Rt

prov for the EIS application topology
over a time series t ∈ (t1, ..., tn). The PE is a measure
of the resource provider’s ability to satisfy demands, while
minimising resource costs and waste. The statistical trends
(PEmean, PEmax, PEmin and PEmode) in PE over the
time series (PE1, ..., PEn) are of interest in assessing the

performance of alternatives to service management, as shown
in Equation 3.

PEt =
Rt

cons

Rt
prov

(3)

There are three fundamental alternatives that can be derived,
considering independent optimisation strategies for the three
objectives stated in the value model. (1) Minimise reaction
time rt: over provision to avoid need to monitor and adapt
the initial deployment; (2) Minimise SLA violations sv: over
provision to avoid violations; (3) Maximise provisioning effi-
ciency PE: provision for mean or modal workload. Different
configurations of these can lead to other alternatives but these
3 make for a comprehensive evaluation against the SLA-driven
orchestration approach.

B. Comparison of Alternatives

To compare the average reaction time r̄t defined in
Equation 1, we use a qualitative architecture analysis
approach to classify all possible adaptation triggers and
estimate the relative reaction time per alternative, in
comparison to an unmanaged system’s response to these
triggers. An unmanged system is considered as one where
there is no active system in place to avoid, monitor or respond
to the classes of adaptation triggers identified. In the scenario
there are 7 classes of event sources, services or resources,
from which metrics can be obtained (1:EIS.Consumers,
2:EIS.Registry, 3:EIs.Load-Balancer, 4:EIS.Instances,
5:Infrastructure.Compute, 6:Infrastructure.Storage and
7:Infrastructure.Network). Secondly, there are 4 types of
observations that can be made as an analysis of these metrics
that will lead to some adaptation action (add/remove Instance
or increase/decrease capacity) being triggered, given the
guarantees in the SLA and operational constraints of the
provider: (1:unavailable/failed, 2:under-performing, 3:over-
performing and 4:expired). This gives 7 × 4 = 28 adaptation
triggers. We then use a comparative scale for the detection
time dt, planning time pt and action time at with values:
0 := no time, 1 := shorter than unmanaged,
2 := same as unmanaged, 3 := longer than
unmanaged. For each of the 28 adaptation triggers, we
rationally assign a value from the comparative scale to dt,
pt and at, per alternative in comparison to an unmanged
system, then calculate r̄t as defined in Equation 1. The results
for the over-provisioned, under-provisioned and dynamic
approaches were 0.5, 1.25 and 0.833 respectively, where the
dynamic approach refers to our system. These results indicate
that the over-provisioned alternative has the best potential for
performing better than an unmanaged system with regards
to the set of adaptation triggers, and the under-provisioned
approach performing the worse. Our dynamic approach sits
in the middle. The reason that the over-provisioned approach
performs best is the provision of redundancy and assumption
that resource costs are irrelevant. With massive redundancy in
place peaks and in some cases failures are masked by readily
available resources. However, this assumption about resource

costs is not scalable or applicable to all circumstances, such
that our dynamic approach has a better potential to satisfy
multiple operational constraints.

In an analysis of SLA violations, using equation 2 and
presented in Figure 4, the over-provisioning alternative will
inevitably yield fewer violations (tending to 0), as its contin-
gency is to over-compensate with redundancy.

0 5 10 15 20 25 30 35

0
20

40
60

80
10

0
12

0

time

U
se

rs

● ● ●
● ● ● ● ●

●
● ● ●

● ● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

mean mean

mode mode

dynamic

dynamic

SLA violation start
SLA violation stop

● total users
dynamic provisioned
max provisioned
mean provisioned
mode provisioned

Fig. 4. SLA Violations

The duration of SLA-violation in this case was the Mode-
Provisioned strategy, as the mode tended to be low for this
particular distribution of users. The duration of SLA-violation
state for our dynamic approach is temporally similar to the
Mean-Provisioned strategy but the difference in user demand
and service capability is significantly smaller throughout the
duration, making the SLA violation impact less significant.

Although the Over-provisioned (or Max-Provisioned) strat-
egy appears to make sense from the perspective of minimising
(zero-setting) reaction time and SLA violations, there is a
penalty to pay for efficiency, as shown in Figure 5.

The dynamic approach enables almost 20% of the operation
time to be at near maximum efficiency, while the Over-
Provisioned approach incurs above 20% at minimum efficiency
for a fluctuating workload. The Over-Provisioned case can
only be efficient if there is a constant burst of maximum antic-
ipated users. Losses in efficiency with the dynamic approach
are again transient, and can be addressed by optimising the
reaction time to adaptation triggers.

VI. CONCLUSIONS

We have presented an SLA-centric specification model,
architecture and value model for dynamic application topology
specification and orchestration. Our specification model is

Dynamic provisioning

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25 SLA violations: 5 / 35

Over−provisioning

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25 SLA violations: 0 / 35

Mean−provisioning

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25 SLA violations: 11 / 35

Mode provisioning

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25 SLA violations: 15 / 35

Fig. 5. Provisioning Efficiency

designed to simplify validation of selection, deployment and
adaptation rules for application to infrastructure mapping.
Secondly, the specification provides application architects
with an application management model that is applicable
at specification and operation time, separating the concerns
of specification from configuration. Subsequently, given an
architecture like we proposed, such a specification increases
the level of infrastructure management automation, including
provisioning, deployment, monitoring, problem specification
and resolution, as an explicit expression of locality, scaling
and adaptation constraints are included for each class of
infrastructure resource: storage, computation and networking.

Finally, the set of four value measures in the value model
we presented have been derived from a first-principle anal-
ysis of application topology management. This provides a
set of measurements that can be used to assess, compare
and strategically enhance different approaches to application
topology management. We applied three of these measures in
a comparison of our dynamic approach with over and under-
provisioned strategies for application topology management.

Our results show that the dynamic approach is a better
choice considering the objectives of minimising SLA viola-
tions and maximising efficiency. A qualitative estimation of the
average reaction time r̄t showed advantages for the dynamic
approach under basic assumptions about the preparedness of
over and under-provisioned strategies for response to adapta-
tion triggers. However, there is some overhead introduced by
the need to monitor more metrics with a greater frequency, and
the incurrence of transient unavailabilities during adaptation of
the infrastructure.

Future work is hence towards a more empirical analysis

of infrastructure adaptation, towards minimising the reaction
time, as well as assessing the impact on management effort.
Some data is being collected from our work in the GEYSERS
project, where a converged model of compute, storage and
network virtual resources is developed. Secondly, we believe
that the main way of minimising reaction time is through more
accurate prediction of when, what and why adaptation triggers
occur during runtime. Further studies are hence towards incor-
porating and assessing the value of predictive algorithms and
methods in our architecture.

Acknowledgments

The work in this paper has been (partly) funded by the
European Union through project GEYSERS (contract no. FP7-
ICT-248657).

REFERENCES

[1] M. Buco, R. Chang, L. Luan, and C. Ward, “Utility computing sla
management based upon business objectives,” IBM Systems J., 2004.

[2] I. Foster and C. Kesselman, “The anatomy of the grid: Enabling scalable
virtual organizations,” Int. J. High Perform. Comput. Appl., 2001.

[3] T. Ellahi, B. Hudzia, H. Li, and P. Robinson, The Enterprise Cloud
Computing Paradigm. John Wiley and Sons, Inc., 2011.

[4] G. Juve and E. Deelman, “Automating application deployment in
infrastructure clouds,” in Cloud Computing Technology and Science
(CloudCom), IEEE Third International Conference on. IEEE, 2011.

[5] C. Liu, Y. Mao, J. Van der Merwe, and M. Fernández, “Cloud resource
orchestration: A data-centric approach,” in Proceedings of the biennial
Conference on Innovative Data Systems Research (CIDR), 2011.

[6] K. Lu, T. Röblitz, and P. Chronz, “Sla-based planning for multi-domain
infrastructure as a service,” Cloud Comp. and Services Science, 2012.

[7] OASIS Committee Specification, “TOSCA version 1.0 2012,” http:
//docs.oasis-open.org/tosca/tosca/v1.0/csd03/tosca-v1.0-csd03.html.

[8] C. Pedrinaci and T. Leidig, “Linked-usdl core,” http://www.linked-usdl.
org/ns/usdl-core, November 2011.

[9] Leidig, T. and C. Momm, “Usdl service level agreement,” http://www.
linked-usdl.org/ns/usdl-sla, April 2012.

[10] E. Escalona, S. Peng, R. Nejabati, D. Simeonidou, J. A. Garcia-Espin,
J. Ferrer, S. Figuerola, G. Landi, N. Ciulli, J. Jimenez, B. Belter, Y. Dem-
chenko, C. de Laat, X. Chen, A. Yukan, S. Soudan, P. Vicat-Blanc,
J. Buysse, M. D. Leenheer, C. Develder, A. Tzanakaki, P. Robinson,
M. Brogle, and T. M. Bohnert, “Geysers: A novel architecture for
virtualization and co-provisioning of dynamic optical networks and it
services,” in Future Network and Mobile Summit 2011, 2010.

[11] M. Malawski, G. Juve, and E. Deelman, “Cost-and deadline-constrained
provisioning for scientific workflow ensembles in iaas clouds,” 24th
IEEE/ACM International Conference on Supercomputing, 2012.

[12] H. Kim, Y. el Khamra, I. Rodero, S. Jha, and M. Parashar, “Autonomic
management of application workflows on hybrid computing infrastruc-
ture,” Scientific Programming, vol. 19, no. 2, 2011.

[13] W. Theilmann, J. Happe, C. Kotsokalis, A. Edmonds, K. Kearney, and
J. Lambea, “A reference architecture for multi-level sla management,”
Journal of Internet Engineering, vol. 4, no. 1, 2010.

[14] A.-F. Antonescu and P. Robinson, “Towards cross stratum sla man-
agement with the geysers architecture,” in Parallel and Distributed
Processing with Applications, IEEE 10th Int. Symposium on, 2012.

[15] D. Milojičić, I. Llorente, and R. Montero, “Opennebula: A cloud
management tool,” Internet Computing, IEEE, 2011.

[16] “Mvel expression language,” http://mvel.codehaus.org, 2012.

