
Dynamic SLA Management with Forecasting
using Multi-Objective Optimizations

A.-F. Antonescu, P. Robinson, T. Braun

Technischer Bericht IAM-12-002 vom 5. September 2012

Institut für Informatik und angewandte Mathematik, www.iam.unibe.ch





Dynamic SLA Management with Forecasting
using Multi-Objective Optimizations

Alexandru-Florian Antonescu, Philip Robinson, Torsten
Braun

Technischer Bericht IAM-12-002 vom 5. September 2012

CR Categories and Subject Descriptors:
C.2.4 [Computer-Communication Networks]: Distributed Systems D.2.11
[Software]: Software Architectures H.1.1 [Information Systems]: Systems
and Information Theory

General Terms:
Virtualization, Design, Service Level Agreement Management, Monitoring,
Scaling

Additional Key Words:
Cloud Computing, IaaS, SLA Management, Resource Provisioning,
Forecasting, Monitoring, Dynamic Scaling

Institut für Informatik und angewandte Mathematik, Universität Bern





Abstract
Cost-efficient operation while satisfying performance and availability guar-
antees in Service Level Agreements (SLAs) is a challenge for Cloud Com-
puting, as these are potentially conflicting objectives. We present a frame-
work for SLA management based on multi-objective optimizations. The
framework features a forecasting model for determining the best virtual
machine-to-host allocation given the need to minimize SLA violations, en-
ergy consumption and waste. A comprehensive SLA management solu-
tion is proposed that uses event processing for monitoring and enables
dynamic provisioning of virtual machines onto the physical infrastructure.
We validated our implementation against serveral standard heuristics and
were able to show that our approach is significantly better.





Contents
1 Introduction 1

2 Related Work 2

3 System Model 4

4 Planning and Forecasting 9

5 Implementation 13

6 Evaluation 15

7 Conclusions 18

References 19





Introduction 1

1 Introduction
The efficient management of Service Level Agreements (SLA) is of par-
ticular importance for Cloud Computing, where exclusively-owned Virtual
Machines (VMs) are allocated resources on hosts in a shared physical
infrastructure [1, 2]. However, a multi-objective optimization problem for
resource allocation arises for physical infrastructure providers, where the
ability to deliver advertised levels of performance and capacity availability
need to be maximized, while minimizing energy consumption and resource
wastage.
Leading cloud service providers [3, 4] (of infrastructure or application ser-
vices) use SLA management for specifying and maintaining the quality
of service (QoS) and availability levels to their customers. An important
phase of this process is allocation of resources including initial and run-
time placement optimization.
Dealing with exclusively-owned virtual machine (VM) instances deployed
on a shared physical infrastructure presents a greater challenge for each
phase, given the multi-objective optimization problem introduced earlier,
as well as the differentiation in demands from different classes of VMs and
VM users. Furthermore, the violation of SLAs results in cash penalties for
the provider, adding a direct economic dimension to the problem.
The main contributions of this paper are: (i) a VM to host allocation algo-
rithm that considers the effect of the existing SLAs and monitoring data, (ii)
usage of historical monitoring data to forecast the incoming load on both
the physical and virtual infrastructure, in order to select the allocation that
produces the highest profit contribution (maximize SLA satisfaction, mini-
mize penalties, minimize energy consumption), (iii) extensive evaluation of
the architecture in simulated cloud environments.
The remainder of the paper is structured as follows: section 2 presents
the related work; in section 3 introduce the system model including the
dependencies between the optimization criteria used for evaluating the
cloud resource allocations, the cost model used for modeling the alloca-
tion and assumptions about the incoming requests. In section 4 we de-
scriebe the genetic group allocation algorithm, the multi-criteria evaluator
and forecaster. Section 5 summarizes the technical implementation of the
resource allocator and evaluator together with our design decisions. Sec-
tion 6 describes the experimental evaluation of the system, while section
7 contains our conclusions and future work.



2 IAM-12-002

2 Related Work
We classify the related work into three areas: (i) multi-objective virtual
machine to server allocation algorithms [5, 6] (ii) forecasting algorithms in
resource allocation [7, 8], and (iii) SLA violation prevention [9, 10].
Mazzucco and Dyachuk [5] propose an approach for allocating VMs to
servers by considering energy efficiency aspects by controlling the number
of running servers in the datacenter. However, they do not consider the
case when a server could host multiple VMs. They also use a forecasting
approach for estimating the arrival rate, similar to the one described in this
paper, but only use the number of running servers as the means of saving
energy without considering consolidating VMs into fewer servers.
Xu and Fortes [6] describe a multi-objective resource allocation algorithm
using a group oriented genetic algorithm with a fuzzy averaged fitness
function while we propose a cost based multi-objective evaluation func-
tion using forecasted utilization levels based on historical monitoring data.
They also, only consider the initial allocation of virtual machines but nei-
ther the costs associated with the SLA violations, nor the possibility of
oversubscribing the resources based on forecasted data.
Zhang et al. [7] describe a runtime balancing system which uses statistical
forecasting to determine if a VM will experience high CPU or network uti-
lization during either day or night period and use this information to place
the VM on corresponding hosts, while our approach uses a triple exponen-
tial estimation for forecasting of resource utilization, considering also the
data seasonal trends.
Caron et al. [8] propose using a string matching algorithm for forecasting
resource utilization demand in cloud environments by identifying the VMs
with similar characteristics. Our approach differs by the used forecast al-
gorithm, which considers data seasonal trends, and by using predefined
values for resource utilization of unknown VMs.
Emeakaroha et al. [9] propose using a reactive method based on case
based reasoning for determining actions in case of SLA violations together
with using low level monitoring metrics for determining when SLA will be
breached. In contrast, we support dynamic allocation for VMs, together
with migration as a means of preventing SLA violations by using forecast-
ing of resource utilization based on historical monitoring data.
Gambi et al. [10] propose a model driven framework for SLA violation
prevention using detailed predefined models of the interactions between
the physical and virtual resources including the services running on the
virtual machines. They also consider seasonal and utilization trends, but



Related Work 3

do not take into consideration the cost aspect of the infrastructure, nor the
impact on the energy consumption.



4 IAM-12-002

3 System Model
A typical cloud environment consists of h ∈ H servers each with a given
amount of CPU cores ch, main memory mh and available network band-
width bh. These servers will be used for hosting one or more virtual ma-
chines, which will use a predefined amount of server resources, as deter-
mined by the service level defined (e.g. standard, gold, silver) in the SLA
agreement.
The purpose of SLAs [11, 12] is to define the guaranteed configuration [3]
of the VMs in terms of CPU, memory and network bandwidth and to also
specify their hourly utilization tariff. They can also be used for defining
the penalties in case of SLA violation [3, 4]. As such, a dependency can
be defined between the duration of the SLA violation with regards to a full
month of utilization and a percent of the monthly bill which will be returned
to the customer as a compensation for the suffered losses. This can be
depicted using formula 1.

PenaltySLA =
ai
100

B, up ∈ (U1
i , U

2
i ], ai ∈ [0, 100] (1)

where i is the penalty level, as shown in table 1, PenaltySLA is the penalty
cost calculated as a percent ai of the monthly bills value B if the uptime (in
percents) up has been between the thresholds U1

i and U2
i . An example of

such penalty calculation can be that 10% of the monthly bill will be returned
to the customer if the uptime is between 99% and 99.95%.
The estimated costs of violating the CPU or network SLAs is given by the
time interval while the sum of estimated CPU/network utilization of each
VM exceeds the available resources of the hosts. Formula 2 determines
the uptime value used in formula 1 for calculating the penalty value

up =
1

T

T/tm∑
i=1

ccpui cneti tm (2)

ccpui =

{
1 if ucpui < U cpu

i

0 otherwise

cneti =

{
1 if uneti < Unet

i

0 otherwise

where tm is the monitoring interval, T is the billing period, ucpui and uneti

are the VM’s CPU and network utilization level at the ith monitoring time
slot, U cpu

i are the VM’s host CPU and network utilization level at the ith



System Model 5

monitoring time slot, ccpui and cneti are the SLA complience indicators at the
ith monitoring time slot.
For a given server, it is possible to model its energy consumption as a
linear dependency of the CPU utilization [5]. In case of multi-core/CPU
servers the average CPU utilization of all cores can be used. As a con-
sequence of the fact that the idle power consumption is almost 60% of
the one at full load [5], keeping servers in idle state or at low utilization
would produce low revenues due to the fact that the server will consume
almost as much energy as running with high load, but will generate only
low revenues, if at all. Formula 3 describes the energy costs calculation,
as described in [5].

Pi = Pidle + (Pmax − Pidle)U
cpu
i

Cenergy = CKWh · T
T/tm∑
i=1

Pi (3)

where Pi is the power consumption during ith monitoring time slot, Pidle

and Pmax are the host power consumption at idle and full load, CKWh is
the energy cost per KWh and Cenergy is the total energy cost during T time
interval.
In a cloud environment, usually the VMs experience low CPU utilization,
with 30% average [5] and usually having daily, weekly and monthly sea-
sonality [13]. This helps to predict the resource utilization and do a better
allocation by taking into account how much resources a VM will use, in
fact enabling using the virtual machine live migration as a load balancing
method [14].
The actual costs of VM migration can be expressed by formula 4 which is
the opportunity cost caused by blocking resources on the destination host.
We ignored the downtime which is usually in terms of seconds.

CVM
migration = CVM

uh · tmigration (4)

where CVM
uh is the cost per hour of utilization of a VM and tmigration is the

estimation of time in hours needed for performing the migration. Migra-
tion time is estimated using a linear dependency [14, 15, 16] between the
amount of VMs reserved memory and CPU utilization as expressed by for-
mula 5. The formula could be extended with other factors, such as the
average network bandwidth utilization, as the calculation method would



6 IAM-12-002

remain the same: applying the supperposition principle [17].

tmigration = TMem
idle +

(
TMem
f.load − TMem

idle

)
· ucpu (5)

TMem
idle = TMmin

idle +
(
TMmax
idle − TMmin

idle

)
· αMem

TMem
f.load = TMmin

f.load +
(
TMmax
f.load − T

Mmin
f.load

)
· αMem

αMem =
Mem

Mmax −Mmin

where Mem is the amount of main memory reserved for the VM, ucpu is
the average CPU utilization of the VM at the migration time, TMem

idle and
TMem
f.load are the durations of the VM migration while it uses Mem amount of

memory and its CPU is idling, respective, at full load. The TMem
idle and TMem

f.load

values can be either calculated by linear interpolation, by considering the
time required for migrating a VM configured with the minimum, respective
maximum amount of memory, at constant CPU utilization, either by directly
measuring the live-migration time of a VM with the specified characteris-
tics in terms of memory and average CPU utilization. The αMem is the
percentage that Mem represents of the considered memory range [Mmax

, Mmin].
Although the technical implementation of monitoring physical and virtual
resources is not in the focus of this paper, they play an important role [18],
especially the monitoring interval, tm. The selected value of this parameter
will be given in the implementation section.
We consider four objectives in our approach at allocating the virtual re-
sources: maximizing the total revenues, minimizing the energy costs, min-
imizing the migration costs and also minimizing the SLA penalty costs.
These different objectives are linked by a averaged objective function
which will evaluate the resource allocations using the function as described
by equation 6.

Favg(obj) = wr

M∑
i=1

(
Ci

uh · T i
)
− we

H∑
i=1

Ci
energy − (6)

−wm

M
′∑

i=1

Ci
migration − wp

M
′′∑

i=1

PenaltyiSLA

obj = [wr, we, wm, wp]

where obj is the evaluation objective composed of four weights: wr for rev-
enues, we for energy costs, wm for migration costs and wp for SLA penalty
costs, Favg is the averaged objective function, M is the total number of



System Model 7

Forecast Parameter 

Optimizer
Load Forecaster Monitoring Handler

Multi-Objective 

Evaluator
Allocator

SLA Manager

Landscape ManagerR

1

Infrastructure 

Manager

R11

R

10

R9

R

12

R3

R

5

R

6

R

4

R
7

Managed Physical Infrastructure

R

2

R
8

Figure 1: System Control Loop

VMs, Ci
uh is the per-hour utilization tariff of VM i, T i is the utilization period

of VM i during the given billing period T and M ′ is the number of migrated
VMs, M ′′ is the number of VMs with SLA violations and PenaltyiSLA is the
SLA penalty cost of VM i.
An example of a final objective could be maximization of the total profits, in
which case each objective would have an equal importance, represented
by giving each weight the value one. It might be the case that a provider
might want to offer a ’green’ service, with a strong emphasis on energy
efficiency, in which case he will increase the corresponding weight of the
energy costs. This, however, will affect the other objectives, for example,
the costs with the SLA penalties, as the allocator might select fewer phys-
ical servers for running the VMs in order to decrease the energy costs.
Another possibility would be to offer a performance-oriented service, in
which case, the weights corresponding to the migration costs and SLA
penalties would be increased, which would affect the produced allocations
by using more servers and would raise the energy costs.
An efficient planning algorithm will try to find a global optimum for the al-
location of VMs to hosts for a given billing period by maximizing the total
revenues. Our proposed algorithm attempts to achieve this by performing
a search of a local optimum with a time horizon of one billing period (e.g.
one month).
The system functions in a control loop, as shown in Fig. 1. First, the re-



8 IAM-12-002

quests are prepared by the Landscape Manager and then are passed to
the Allocator module (1) for determining how the virtual machines should
be allocated on the physical infrastructure. The allocator uses the histori-
cal data from the Monitoring module (2) and the system load forecast (3)
for producing an allocation of the VMs to hosts. The actual load forecast is
determined using historical monitoring data (4), using of specifically fitted
forecast parameters calculated (5) by the Forecast Parameters Optimizer
module. Next, the allocation is passed (6) to the Multi-Objective Evalua-
tor, which then uses both existing monitoring data (7) and the forecasted
resource utilization data (8) in order to calculate the costs involved by the
allocation. After selecting the allocation with the minimal costs, the Allo-
cator returns it to the Landscape Manager which will then register the new
virtual resources with the SLA Manager (9) and then will instruct the Infras-
tructure Manager (10) to actually provision the resources on the physical
resources. The control loop is closed by returning of the monitoring data to
the Monitoring Handler (11), followed by informing the SLA Manager about
the resources’ state (12).



Planning and Forecasting 9

4 Planning and Forecasting

The problem of allocating VMs to physical hosts can be seen as a bin-
packing problem, which is known to be NP-hard, suggesting the need for
a heuristic solution. Genetic algorithms are a class of heuristic solutions
that can make use of multi-objective evaluation functions for searching so-
lutions in multi-dimensional spaces.
Given the nature of the VM allocation problem, we selected a specialized
version of genetic algorithms oriented at groups [19]. The group oriented
genetic algorithm [20] operates on groups of objects, leveraging the fact
that the VMs are naturally grouped by the servers on which they are de-
ployed and thus maintains the previously determined good properties of
the groups.
The solution space of our allocation problem is multi-dimensional due to
the multiple objectives used for evaluating them, such as the costs of SLA
violation, energy consumption, VM migration and the total revenues. As
the problem of allocating VMs to physical hosts is a NP-hard combina-
tional optimization problem, it is not feasible to demonstrate the optimality
of a solution. In this case, the solutions produced can only be Pareto-
optimal [21] meaning that a criterion needs to be applied in order to select
a solution. In our case, the criterion used for selecting a solution is the
value of the predicted total profits of the allocation, considering the costs
of the SLA violations, energy consumption and VM migrations.
Given that the average CPU utilization of a VM hosted in a data center is
usually around 30% [5] it is common to overcommit the CPUs of the physi-
cal hosts with factors between 1.5 and 3 [5, 22]. For example, OpenNebula
[23] allows allocating virtual CPUs to a fraction of the available physical
CPUs, using support of Xen and KVM [24] hypervisors. This, however,
could lead to violating the SLAs in case that the collocated VMs simulta-
neously experience high CPU utilization [22]. Given the fact that a server
uses almost 60% [5] of the total power consumption when running idle,
distributing VMs across a large number of servers results in poor server
utilization levels and would hence also diminish revenues due to the high
amount of energy used per VM. Our genetic algorithm allocator with load
forecasting mitigates these problems for VMs with an existing monitoring
history, by choosing the best current allocation that minimizes the costs of
the allocation at the next time step, given that domain-specific constraints
from the application are not breached.
Although it is possible to overcommit both CPU [22, 25] and memory [26,
25] in modern hypervisors, we are considering only oversubscription of the



10 IAM-12-002

CPU, as the oversubscription of memory is usualy associated with system
instability [25].
Below, the basic structure of the genetic algorithm used is given.
Step 1: Generate the initial population

1. randomly allocate genes (VMs) to groups (servers) using the first-fit
heuristic

2. ensure the chromosome is valid with regards to VM’s allocated mem-
ory by reinserting the excluded genes in the groups using the first-fit
heuristic

Step 2: rank and sort the population using the fitness function defined in
equation 6
Step 3: keep an elite number of chromosomes
Step 4a: generate an offspring using crossover with a given probability

1. select two chromosomes from the population using fitness propor-
tionate selection

2. generate offspring using the group-crossover operator

3. ensure the chromosome is valid with regards to VM’s allocated mem-
ory by reinserting the excluded genes in the groups using the first-fit
heuristic

Step 4b: or select the fittest of the parents
Step 5: mutate the offspring with a given probability
Step 6: rank and sort the population using the fitness function defined in
equation 6
Step 7: If the stopping criterion is reached, terminate the search and
return to the current population, else, go to Step 3.

The group oriented genetic algorithm [20] searches for solutions by
generating populations of chromosomes composed of genes which
belong to groups. In our implementation, a chromosome encodes an
allocation by representing the groups as hosts and the genes as VMs
packed onto a given group. The initial population is created by applying
a heuristic algorithm, such as first-fit. Next, the population is sorted
according to the multi-objective fitness function. At each step the algo-
rithm performs two group oriented operations on the current population:
crossover and mutation (described below). Top 10% chromosomes from
the current population are passed into the next population as elitism



Planning and Forecasting 11

seems to improve solution convergence [21]. We use two criteria for
ending solution searching. First is determining when there are no more
improvements, or they are below a certain threshold, in the overall fitness
value of a population. Second involves finding when a solution is not
possible (e.g. the profits generated by the new allocation are lower than
the initial allocation due to the costs of SLA violations, VM migrations and
energy consumption).
Each allocated group inside each chromosome needs to have another lo-
cal allocation applied for determining the allocation of physical CPU cores
to the VM cores. This is achieved by running a similar genetic algorithm as
the one used for allocating VMs to hosts. The allocation is being performed
every time a group is changed.
The evaluation of each chromosome is performed by calculating the pre-
dicted energy costs for the allocation (using a linear power model [5] com-
bined with forecasted CPU utilization data), revenues generated by the
allocation assuming one period of utilization, predicted costs caused by
CPU/network SLA violations (determined using forecasted utilization data)
and costs associated with VM migrations - which are the values of the ob-
jective functions. These values will then be combined by the averaged
objective function, as described by equation 6.
The next step consists of applying the roulette selection [27] for identifying
two possible candidates for producing the new chromosome. With a given
probability () either the group-crossover operator is applied for producing
a new offspring, or the fittest chromosome if selected. After this, with a
given probability, the mutation operator is applied to the offspring, before
adding it to the new population.
After the population has been created, it will be re-evaluated and the pro-
cess is repeated until the stop condition is encountered.
The group-oriented crossover genetic operator functions by retaining the
qualities of the groups and selecting from each chromosome the corre-
sponding group with the highest fitness value, thereby preserving the good
allocations. After all groups have been processed it is possible that there
are unallocated VMs. For these a ’healing’ process is applied by redis-
tributing them according to first-fit-descending heuristic.
The mutation operator is applied by randomly removing a VM from a CPU
or network oversubscribed host and re-allocating it according to the first-
fit heuristic. A key component of the planning system is the forecasting
module used by the allocator algorithm in evaluating the fitness of various
VM to host distributions based on the forecasted VM request rate, CPU
core and network utilization. Given the fact that both the VM request and
resource utilization distributions experience daily, weekly or monthly pat-



12 IAM-12-002

terns [13] we have selected the Holt-Winters algorithm [28] for performing
triple exponential smoothing of the utilization data.
The Holt-Winters algorithm performs an exponential smoothing of the data
by assigning exponentially decreasing weights to the past data comprised
of a period, considering also the data trend and seasonality. The season-
ality refers to repeating of a data pattern after a given number of periods,
called season. The trend refers to the tendency of data to either increase
or decrease in the long term. In our case, the monitoring data obtained
from the VM’s CPU and network utilization, as well as the number or VM
requests, experience seasonality with daily and monthly patterns [29].



Implementation 13

Penalty [%] Lower
availability
limit [%]

Higher
availability
limit [%]

10 99 99.95
25 95 99
50 - 95

Table 1: SLA penalties model

5 Implementation

Three implementation of allocator algorithms were implemented in Java for
the planner system: First Fit [30] Descending, Best Fit Descending and the
Genetic Group-oriented with Forecasting. The actual Holt-Winters fore-
casting is delegated to an external implementation of R Statistical Com-
puting [31]. The forecasted series are kept in a memory cache, as the
prediction values are reused multiple times by the genetic allocator.
Our system makes some assumptions about characteristics of the incom-
ing load, such as the distribution of load according to hourly and daily pat-
terns, having one service instance per VM and though having a predictable
trace of CPU and network utilization. We assume that the VM network uti-
lization data refers only to inter-hosts traffic but not to the intra-host traffic
of the collocated VMs; and that the VM memory is always reserved all at
once, while the VM’s CPU cores are allocated to the physical CPU cores
using the affinity mechanism [32]. We assume that the monitoring sam-
ples are collected every 5 minutes, in order to keed the generated data
volume to a manageable value.
While the assumption of having just one type of service per VM seems re-
stricting, this might be needed in an environment with automatic scaling in
order to enable taking the decision on when the service should be scaled,
based on previously agreed SLAs. This, however, does not prevent the
existence of composite applications containing multiple services. An ex-
ample of such application, with which we experimented, is an Enterprise
Information System (EIS) composed of a load-balancer, a session han-
dler, multiple workers and a storage service. We will describe in a future
paper how the SLA-based System Landscape Orchestrator works to per-
form the dynamic instantiation, configuration and scaling of the services.
Even if there are multiple service instances per VM, this does not change
the nature of the VM-to-Host allocation problem, as the the resource met-
rics would remain the same.



14 IAM-12-002

The penalty model used for calculating the costs of violating the CPU or
network SLAs is described in Table 1. The penalty in percent refers to the
amount of the current bill that will be paid to the customer in the next moth
if the SLA availability is between the lower and the upper bounds. This
implies that the target SLA availability is 99.95
For estimating the VM migration duration (Fig. 2) we used a linear model,
validated against experimental data [15, 16], dependent on the amount
of reserved memory and on the average CPU load of the VM. The figure
represents the linear dependency between the VM migration time and the
amount of reserved memory for when the CPU utilization is near 0 (idle)
and almost at 100% (full load). The actual migration time is determined
by interpolating the time for the average CPU load using the values for the
migration at idle and full CPU utilization. Also, we model the live-migration
impact of the VM by increasing the load of the VM’s CPU with 10% over
a monitoring period, and also increasing the network bandwidth utilization
with the value amount required for transferring the VM’s reserved memory.

Figure 2: Migration time vs. memory and CPU load



Evaluation 15

6 Evaluation
We conducted a number of simulations for validating the system’s char-
acteristics with regards to the multi-criteria optimization of VM allocation.
For this purpose we used synthetic generated VM request traces with sea-
sonal distributions (matching Fig. 3) in order to load the system. For each
VM we generated CPU and network traces with which we fed the monitor-
ing and forecasting modules. We also varied the amount of noise added
to the traces between 30% and 90%, in order to test the system stability.
In order to test the multi-objective evaluator, we selected the scenario in
which the provider wishes to maximize his profits and so we assigned the
value of 1 to all four weights descriebed in section 3.
We simulated a month of VM requests including adding new VMs and
removing existing ones and compared the SLA violations and energy effi-
ciency of the allocations produced by the first-fit algorithms and the group-
oriented genetic algorithm with forecasting. The actual calculations for
determining the costs of SLA violations and energy consumption were per-
formed using the generated monitoring data and not the forecasted data.

For further testing of the algorithm’s stability, we varied the genetic its pa-
rameters considering three different population sizes coresponding to one,
two and four utilization weeks, four values for crossover probability (0.3,
0.5, 0.8 and 1) and the same four values for mutation probability. The
results were consistent with the ones described below.
Our simulated infrastructure was composed of 10 hosts each with quad-
core CPUs, 16 GB of RAM and Gigabit networking. We varied the number
of VMs between 10 and 50. Our results (Figure 4) show a consistent 100%
reduction of network-SLA penalties together with a 30% reduction in CPU-
SLA penalties, at the expense of below 1% of the revenues used for live
migration. The total profits generated by using the GA allocator were in
average 50% higher than the ones generated by the FF allocator. Also, the
GA allocator distributes better the load across the infrastructure, leading to
a more uniform host utilization, lowering of the total energy consumption
and reducing host wear.



16 IAM-12-002

Figure 3: Distribution of resource utilization: above, trend per hour, below,
trace per 5 minutes time slot



Evaluation 17

Figure 4: Cost and profit distribution for GA and FF allocators



18 IAM-12-002

7 Conclusions
We described a system for supporting the planning and load distribution
disciplines of SLA management while taking into consideration multiple
objective optimizations and the impact of SLAs into resource provisioning
and into dynamic scaling of the virtual infrastructures. We proposed a
way of combining resource utilization estimation, with cost prediction and
impact of the infrastructure operations for implementing the complete set
of disciplines used in SLA management. We validated our model using
simulation data and we were able to show that our proposed resource
allocation approach significantly outperforms several standard heuristics.
We plan to extend our work to more complex scenarions as the ones found
in enterprise information systems and to compare the results against more
sophisticated algorithms.

Acknowledgments
The work in this paper has been (partly) funded by the European Union
through project GEYSERS (contract no. FP7-ICT-248657). We also thank
Matthias Thoma for reviewing the paper and to Marcus Pöhls for helping
with implementation and evaluation work.



References 19

References
[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud

computing and emerging IT platforms: Vision, hype, and reality for
delivering computing as the 5th utility,” Future Generation computer
systems, vol. 25, no. 6, p. 599616, 2009.

[2] L. Schubert and J. Keith, “Advances in clouds,” tech. rep., European
Union, 2012.

[3] Amazon Web Services, “Amazon EC2 service level agreement.”
http://aws.amazon.com/ec2-sla/.

[4] Google App Engine, “Google app engine service level agreement.”
https://developers.google.com/appengine/sla.

[5] M. Mazzucco and D. Dyachuk, “Optimizing cloud providers revenues
via energy efficient server allocation,” Sustainable Computing: Infor-
matics and Systems, 2011.

[6] J. Xu and J. Fortes, “Multi-objective virtual machine placement in vir-
tualized data center environments,” in Green Computing and Commu-
nications (GreenCom), 2010 IEEE/ACM Int’l Conference on Int’l Con-
ference on Cyber, Physical and Social Computing (CPSCom), pp. 179
–188, Dec. 2010.

[7] Z. Zhang, H. Wang, L. Xiao, and L. Ruan, “A statistical based re-
source allocation scheme in cloud,” in Cloud and Service Computing
(CSC), 2011 International Conference on, pp. 266 –273, Dec. 2011.

[8] E. Caron, F. Desprez, and A. Muresan, “Forecasting for grid and cloud
computing on-demand resources based on pattern matching,” in
Cloud Computing Technology and Science (CloudCom), 2010 IEEE
Second International Conference on, pp. 456 –463, Dec. 2010.

[9] V. C. Emeakaroha, R. N. Calheiros, M. A. Netto, I. Brandic, and C. A.
De Rose, “DeSVi: an architecture for detecting SLA violations in cloud
computing infrastructures,” in Proceedings of the 2nd International
ICST Conference on Cloud Computing (CloudComp10), 2010.

[10] A. Gambi, M. Pezze, and M. Young, “SLA protection models for vir-
tualized data centers,” in Software Engineering for Adaptive and Self-
Managing Systems, 2009. SEAMS ’09. ICSE Workshop on, pp. 10
–19, May 2009.

http://aws.amazon.com/ec2-sla/
https://developers.google.com/appengine/sla


20 IAM-12-002

[11] M. Kajko-Mattsson and C. Makridis, “Outline of an SLA management
model,” in Software Maintenance and Reengineering, 2008. CSMR
2008. 12th European Conference on, pp. 308 –310, Apr. 2008.

[12] A.-F. Antonescu, P. Robinson, L. M. Contreras-Murillo, J. Aznar,
S. Soudan, F. Anhalt, and J. A. Garcia-Espin, “Towards cross stra-
tum SLA management with the GEYSERS architecture,” in 2012 IEEE
10th International Symposium on Parallel and Distributed Processing
with Applications (ISPA), pp. 527 –533, July 2012.

[13] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic characteriza-
tion: a view from the edge,” in Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement, IMC ’07, (New York, NY, USA),
pp. 15–28, ACM, 2007.

[14] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, “Cost of virtual
machine live migration in clouds: A performance evaluation,” in Cloud
Computing (M. Jaatun, G. Zhao, and C. Rong, eds.), vol. 5931 of
Lecture Notes in Computer Science, pp. 254–265, Springer Berlin /
Heidelberg, 2009.

[15] “IBM techdocs white paper: Evaluating microsoft hyper-v live mi-
gration performance using IBM system x3650 m3 and IBM sys-
tem storage DS3400.” http://129.33.205.81/jct03001c/support/

techdocs/atsmastr.nsf/WebIndex/WP101828, Dec. 2010.

[16] M. Nelson, B. H. Lim, G. Hutchins, et al., “Fast transparent migra-
tion for virtual machines,” in Proceedings of the annual conference on
USENIX Annual Technical Conference, p. 2525, 2005.

[17] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and sys-
tems. Prentice Hall, 1997.

[18] C. Molina-Jimenez, S. Shrivastava, J. Crowcroft, and P. Gevros, “On
the monitoring of contractual service level agreements,” in Electronic
Contracting, 2004. Proceedings. First IEEE International Workshop
on, p. 18, 2004.

[19] H. Iima and T. Yakawa, “A new design of genetic algorithm for bin
packing,” in Evolutionary Computation, 2003. CEC ’03. The 2003
Congress on, vol. 2, pp. 1044 – 1049 Vol.2, Dec. 2003.

[20] E. Falkenauer, “A hybrid grouping genetic algorithm for bin packing,”
Journal of heuristics, vol. 2, no. 1, p. 530, 1996.

http://129.33.205.81/jct03001c/support/techdocs/atsmastr.nsf/WebIndex/WP101828
http://129.33.205.81/jct03001c/support/techdocs/atsmastr.nsf/WebIndex/WP101828


References 21

[21] A. Konak, D. W. Coit, and A. E. Smith, “Multi-objective optimization
using genetic algorithms: A tutorial,” Reliability Engineering & System
Safety, vol. 91, pp. 992–1007, Sept. 2006.

[22] “High performance SQL server workloads on hyper-v,” May 2010.

[23] D. Milojic andic and, I. M. Llorente, and R. S. Montero, “Opennebula:
A cloud management tool,” Internet Computing, IEEE, vol. 15, pp. 11
–14, march-april 2011.

[24] F. Camargos, G. Girard, and B. Ligneris, “Virtualization of linux
servers: a comparative study,” in Proceedings of the Linux Sympo-
sium, vol. 47, pp. 63–76, 2008.

[25] D. Williams, H. Jamjoom, Y. H. Liu, and H. Weatherspoon, “Over-
driver: Handling memory overload in an oversubscribed cloud,” in
Proceedings of the 7th ACM SIGPLAN/SIGOPS international confer-
ence on Virtual execution environments, p. 205216, 2011.

[26] C. A. Waldspurger, “Memory resource management in VMware ESX
server,” SIGOPS Oper. Syst. Rev., vol. 36, p. 181194, Dec. 2002.

[27] T. Bäck, Evolutionary algorithms in theory and practice: evolution
strategies, evolutionary programming, genetic algorithms. Oxford
University Press, USA, 1996.

[28] P. S. Kalekar, “Time series forecasting using holt-winters exponential
smoothing,” Kanwal Rekhi School of Information Technology, 2004.

[29] “Host server cpu utilization in amazon ec2cloud.”
http://huanliu.wordpress.com/2012/02/17/

host-server-cpu-utilization-in-amazon-ec2-cloud/.

[30] A. C. Yao, “New algorithms for bin packing,” Journal of the ACM,
vol. 27, no. 2, p. 207227, 1980.

[31] R Development Core Team, R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Computing, 2008.

[32] Z. Li, Y. Bai, H. Zhang, and Y. Ma, “Affinity-aware dynamic pinning
scheduling for virtual machines,” in 2010 IEEE Second International
Conference on Cloud Computing Technology and Science (Cloud-
Com), pp. 242 –249, Dec. 2010.

http://huanliu.wordpress.com/2012/02/17/host-server-cpu-utilization-in-amazon-ec2-cloud/
http://huanliu.wordpress.com/2012/02/17/host-server-cpu-utilization-in-amazon-ec2-cloud/

	Introduction
	Related Work
	System Model
	Planning and Forecasting
	Implementation
	Evaluation
	Conclusions
	References

